Package ‘MRFA’

January 8, 2019

Type Package
Title Fitting and Predicting Large-Scale Nonlinear Regression Problems
 using Multi-Resolution Functional ANOVA (MRFA) Approach
Version 0.4
Date 2019-01-07
Author Chih-Li Sung
Maintainer Chih-Li Sung <i.amdfchile@gmail.com>
Description Performs the MRFA approach proposed by Sung et al. (2019+) <arXiv:1709.07064> to fit
 and predict nonlinear regression problems, particularly for large-scale and
 high-dimensional problems. The application includes deterministic or stochastic
 computer experiments, spatial datasets, and so on.
License GPL-2 | GPL-3
RoxygenNote 6.1.1
Depends R (>= 2.14.1)
Imports fields, glmnet, grplasso, methods, plyr, randtoolbox, foreach,
 stats, graphics, utils
NeedsCompilation no
Repository CRAN
Date/Publication 2019-01-07 23:10:03 UTC

R topics documented:

aic.MRFA ... 2
bic.MRFA ... 3
confidence.MRFA 5
cv.MRFA ... 7
MRFA_fit ... 9
predict.MRFA 12

Index ... 14
Extract AIC from a Fitted Multiresolution Functional ANOVA (MRFA) Model

Description

The function extracts Akaike information criterion (AIC) from a fitted MRFA model.

Usage

```r
aic.MRFA(fit)
```

Arguments

- `fit`: a class MRFA object estimated by `MRFA_fit`.

Value

A vector with length `length(lambda)` returning AICs.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

- `predict.MRFA` for prediction of the MRFA model.

Examples

```r
# Not run:

grlee09 <- function(xx)
{
  x1 <- xx[1]
  x2 <- xx[2]
  x3 <- xx[3]
  x4 <- xx[4]
  x5 <- xx[5]
  x6 <- xx[6]
  term1 <- exp(sin((0.9*(x1+0.48))*10))
  term2 <- x2 * x3
  term3 <- x4
  y <- term1 + term2 + term3
  return(y)
}
```
library(mrfa)

Training data and testing data
set.seed(2)
n <- 100; n_rep <- 3; n_new <- 50; d <- 6
X.train <- matrix(runif(d*n), ncol = d)
X.train <- matrix(rep(X.train, each = n_rep), ncol = d)
Y.train <- apply(X.train, 1, grlee09)
Y.train <- Y.train + rnorm(n*n_rep, 0, 0.05)
X.test <- matrix(runif(d*n_new), ncol = d)
Y.test <- apply(X.test, 1, grlee09)

Fitting
MRFA_model <- MRFA_fit(X.train, Y.train)
print(aic.MRFA(MRFA_model))
print(bic.MRFA(MRFA_model))

Prediction : AIC and BIC
lambda.aic <- MRFA_model$lambda[which.min(aic.MRFA(MRFA_model))]
Y.pred <- predict(MRFA_model, X.test, lambda = lambda.aic)$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))

lambda.bic <- MRFA_model$lambda[which.min(bic.MRFA(MRFA_model))]
Y.pred <- predict(MRFA_model, X.test, lambda = lambda.bic)$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))

End(Not run)

bic.MRFA

Extract BIC from a Multiresolution Functional ANOVA (MRFA) Model

Description

The function extracts Bayesian information criterion (BIC) from a fitted MRFA model.

Usage

bic.MRFA(fit)

Arguments

- fit: a class MRFA object estimated by MRFA_fit.

Value

A vector with length length(lambda) returning BICs.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>
See Also

`predict.MRFA` for prediction of the MRFA model.

Examples

```r
## Not run:

### Testing function: GRAMACY & LEE (2009) function

#### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University

`grlee09 <- function(xx)`
```r
{
 x1 <- xx[1]
 x2 <- xx[2]
 x3 <- xx[3]
 x4 <- xx[4]
 x5 <- xx[5]
 x6 <- xx[6]

 term1 <- exp(sin((0.9*(x1+0.48))^{10}))
 term2 <- x2 * x3
 term3 <- x4

 y <- term1 + term2 + term3
 return(y)
}```

```r
library(MRFA)

#### Training data and testing data

```r
set.seed(2)
n <- 100; n_rep <- 3; n_new <- 50; d <- 6
X.train <- matrix(runif(d*n), ncol = d)
X.train <- matrix(rep(X.train, each = n_rep), ncol = d)
Y.train <- apply(X.train, 1, grlee09)
Y.train <- Y.train + rnorm(n*n_rep, 0, 0.05)
X.test <- matrix(runif(d*n_new), ncol = d)
Y.test <- apply(X.test, 1, grlee09)

Fitting

`MRFA_model <- MRFA_fit(X.train, Y.train)`
```r
print(aic.MRFA(MRFA_model))
print(bic.MRFA(MRFA_model))
```

Prediction: AIC and BIC

```r
lambda.aic <- MRFA_model$lambda[which.min(aic.MRFA(MRFA_model))]
y.pred <- predict(MRFA_model, X.test, lambda = lambda.aic)$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))
```

```r
lambda.bic <- MRFA_model$lambda[which.min(bic.MRFA(MRFA_model))]
y.pred <- predict(MRFA_model, X.test, lambda = lambda.bic)$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))
```

End (Not run)

```
The function computes the confidence intervals of predicted responses (only works for linear regression model).

Usage

```r
confidence.MRFA(object, xnew, X, lambda = object$lambda,
 conf.level = 0.95, var.estimation = c("rss", "cv", "posthoc")[1],
 w.estimation = c("cv", "nugget")[1], K = 5, nugget = 1e-06,
 parallel = FALSE, verbose = FALSE)
```

Arguments

- **object**: a class MRFA object estimated by `MRFA_fit`.
- **xnew**: a testing matrix with dimension `n_new` by `d` in which each row corresponds to a predictive location.
- **X**: input for `mrfa_fit`.
- **lambda**: a value. The default is `min(object$lambda)`.
- **conf.level**: a value specifying confidence level of the confidence interval. The default is 0.95.
- **var.estimation**: a character string specifying the estimation method for variance. "rss" specifies residual sum of squares, "cv" specifies a cross-validation method with K fold, and "posthoc" specifies a post-hoc estimation method. The default is "rss".
- **w.estimation**: a character string specifying the estimation method for weights `w`. "cv" specifies a cross-validation method with K fold, and "nugget" specifies a least square error method with nugget=`nugget`. The default is "cv".
- **K**: a positive integer specifying the number of folds.
- **nugget**: a value specifying the nugget value for `w.estimation`. The default is 1e-6. It only works when `w.estimation="nugget"`.
- **parallel**: logical. If TRUE, apply function in parallel using parallel backend provided by `foreach`.
- **verbose**: logical. If TRUE, additional diagnostics are printed.

Details

When the details about `var.estimation` and `w.estimation` can be seen in Sung et al. (2017+).
**Value**

- **lower bound**: a vector with length \( n_{new} \) displaying lower bound of predicted responses at locations \( x_{new} \).
- **upper bound**: a vector with length \( n_{new} \) displaying upper bound of predicted responses at locations \( x_{new} \).
- **conf.level**: as above.

**Author(s)**

Chih-Li Sung <iamdflchile@gmail.com>

**See Also**


**Examples**

```r
Not run:

Testing function: OTL circuit function
#
Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University
#
otlcircuit <- function(xx)
{
 Rb1 <- 50 + xx[1] * 100
 Rb2 <- 25 + xx[2] * 45
 Rf <- 0.5 + xx[3] * 2.5
 Rc1 <- 1.2 + xx[4] * 1.3
 Rc2 <- 0.25 + xx[5] * 0.95
 beta <- 50 + xx[6] * 250

 Vb1 <- 12*Rb2 / (Rb1+Rb2)
 term1a <- (Vb1+0.74) * beta * (Rc2+9)
 term1b <- beta*(Rc2+9) + Rf
 term1 <- term1a / term1b

 term2a <- 11.35 * Rf
 term2b <- beta*(Rc2+9) + Rf
 term2 <- term2a / term2b

 term3a <- 0.74 * Rf * beta * (Rc2+9)
 term3b <- (beta*(Rc2+9)+Rf) * Rc1
 term3 <- term3a / term3b

 Vm <- term1 + term2 + term3
 return(Vm)
}

library(MRFA)
```
cv.MRFA

---

### training data and testing data

```
set.seed(2)
n <- 100; n_new <- 10; d <- 6
X.train <- matrix(runif(d*n), ncol = d)
Y.train <- apply(X.train, 1, otlcircuit)
X.test <- matrix(runif(d*n_new), ncol = d)
Y.test <- apply(X.test, 1, otlcircuit)
```

### Fitting

```
MRFA_model <- MRFA_fit(X.train, Y.train)
```

### Prediction

```
Y.pred <- predict(MRFA_model, X.test, lambda = min(MRFA_model$lambda))$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))
```

### confidence interval

```
conf.interval <- confidence.MRFA(MRFA_model, X.test, X.train, lambda = min(MRFA_model$lambda))
print(conf.interval)
```

---

### Description

Computes the K-fold cross validated mean squared prediction error for multiresolution functional ANOVA model.

### Usage

```
cv.MRFA(X, Y, order = 10, level = 10, lambda = exp(seq(log(500), log(0.001), by = -0.01)), K = 10, plot.it = TRUE, parallel = FALSE, verbose = FALSE, ...)
```

### Arguments

- **X**: input for `MRFA_fit`
- **Y**: input for `MRFA_fit`
- **order**: input for `MRFA_fit`
- **level**: input for `MRFA_fit`
- **lambda**: lambda values at which CV curve should be computed.
- **K**: a positive integer specifying the number of folds.
- **plot.it**: logical. If TRUE, a CV curve will be shown. The default is TRUE.
- **parallel**: logical. If TRUE, apply cross-validation function in parallel using parallel back-end provided by foreach. The default is FALSE.
verbose logical. If TRUE, additional diagnostics are printed. The default is FALSE.

... additional arguments to MRFA_fit.

Value

lambda lambda values at which CV curve is computed.
cv the CV curve at each value of lambda.
cv.error the standard error of the CV curve

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>

See Also

MRFA_fit for fitting a multiresolution functional ANOVA model.

Examples

```r
Not run:

Testing function: GRAMACY & LEE (2009) function
Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University

glee09 <- function(xx)
{
 x1 <- xx[1]
 x2 <- xx[2]
 x3 <- xx[3]
 x4 <- xx[4]
 x5 <- xx[5]
 x6 <- xx[6]

 term1 <- exp(sin((0.9*(x1+0.48))^10))
 term2 <- x2 * x3
 term3 <- x4

 y <- term1 + term2 + term3
 return(y)
}

library(mrfa)
Training data and testing data

set.seed(2)
n <- 100; n_rep <- 3; n_new <- 50; d <- 6
X.train <- matrix(runif(d*n), ncol = d)
X.train <- matrix(rep(X.train, each = n_rep), ncol = d)
Y.train <- apply(X.train, 1, glee09)
Y.train <- Y.train + rnorm(n*n_rep, 0, 0.05)
X.test <- matrix(runif(d*n_new), ncol = d)
Y.test <- apply(X.test, 1, glee09)
```
### Fitting

```r
MRFA_model <- MRFA_fit(X.train, Y.train)
```

##### Computes the K-fold cross validated

```r
cv.out <- cv.MRFA(X.train, Y.train, K = 5, lambda = seq(0.01, 3, 0.1))
```

##### Prediction : CV

```r
lambda_cv <- cv.out$lambda[which.min(cv.out$cv)]
Y.pred <- predict(MRFA_model, X.test, lambda = lambda_cv)$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))
```

## End(Not run)

---

### MRFA_fit

*Fit a Multi-Resolution Functional ANOVA (MRFA) Model*

---

### Description

The function performs the multi-resolution functional ANOVA (MRFA) approach.

### Usage

```r
MRFA_fit(X, Y, weights = rep(1, length(Y)), order = 10, level = 10,
lambda.min = 1e-05, converge.tol = 1e-10, nvar.max = min(3 *
length(Y), 3000), k = 2, pen.norm = c("2", "N")[1],
model = LinReg(), standardize.d = TRUE, center = TRUE,
standardize = TRUE, parallel = FALSE, verbose = TRUE)
```

### Arguments

- **X**
  - a design matrix with dimension n by d.
- **Y**
  - a response vector of size n.
- **weights**
  - a vector of observation weights.
- **order**
  - a positive integer specifying the highest order of interactions that can be entertained in the model. The default is 10.
- **level**
  - a positive integer specifying the highest resolution level that can be entertained in the model. The default is 10.
- **lambda.min**
  - a positive value specifying the minimum penalty value to be performed before the convergence criterion is met.
- **converge.tol**
  - convergence tolerance. It converges when relative difference with respect to function value (penalized likelihood) is smaller than the tolerance. The default is 1e-10.
- **nvar.max**
  - maximum number of non-zero variables.
- **k**
  - a positive integer specifying the order of Wendland covariance function. The default is 2.
A multi-resolution functional ANOVA (MRFA) model targets a low resolution representation of a low order functional ANOVA, with respect to strong effect heredity, to form an accurate emulator in a large-scale and high dimensional problem. This function fits an MRFA model using a modified group lasso algorithm. One can consider the loss function

$$\frac{1}{n} \sum_{i=1}^{n} \left( y_i - \sum_{|u|=1}^{D_{\text{max}}} \sum_{r=1}^{R_{\text{max}}} \sum_{k=1}^{n_u(r)} \beta_{uk}^r \varphi_{uk}^r (x_{iu}) \right)^2 + \lambda \sum_{|u|=1}^{D_{\text{max}}} \sum_{r=1}^{R_{\text{max}}} \sqrt{N_u(r) \sum_{v \subseteq u \cap s \leq r} \sum_{k=1}^{n_v(s)} (\beta_{vk}^r)^2},$$

where $\varphi_{uk}^r (x_{iu})$ is the basis function with resolution level $r$ and with dimension $u \subset \{1, 2, \ldots, d\}$, and $D_{\text{max}}$ and $R_{\text{max}}$ respectively are the maximal orders of functional ANOVA and multi-resolution level, which are indicated by order and level.

The group lasso path along the penalty parameter $\lambda$ is given by the function, where the $\lambda_{\text{max}}$ is automatically given and $\lambda_{\text{min}}$ is given by users, which is indicated by lambda.min. The group lasso algorithm is implemented via the modifications to the source code of the grplasso package (Meier, 2015).

$\lambda_{\text{min}}$, converge.tol and nvar.max are the options for stopping the fitting process. Smaller $\lambda_{\text{min}}$, or smaller converge.tol, or larger nvar.max yields more accurate results, particularly for deterministic computer experiments. pen.norm specifies the type of penalty norm in the loss function. model specifies the response type, which can be non-continuous response, in the case the loss function is replaced by negative log-likelihood function. More details can be seen in Sung et al. (2017+).

Value

An MRFA object is returned, for which aic.MRFA, bic.MRFA and predict methods exist.

Author(s)

Chih-Li Sung <iamdfchile@gmail.com>
See Also

`predict.MRFA` for prediction of the MRFA model.

Examples

```r
Not run:

#' Testing function: OTL circuit function

Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University

otlcircuit <- function(xx)
{
 Rb1 <- 50 + xx[1] * 100
 Rb2 <- 25 + xx[2] * 45
 Rf <- 0.5 + xx[3] * 2.5
 Rc1 <- 1.2 + xx[4] * 1.3
 Rc2 <- 0.25 + xx[5] * 0.95
 beta <- 50 + xx[6] * 250

 Vb1 <- 12*Rb2 / (Rb1+Rb2)
 term1a <- (Vb1+0.74) * beta * (Rc2+9)
 term1b <- beta*(Rc2+9) + Rf
 term1 <- term1a / term1b

 term2a <- 11.35 * Rf
 term2b <- beta*(Rc2+9) + Rf
 term2 <- term2a / term2b

 term3a <- 0.74 * Rf * beta * (Rc2+9)
 term3b <- (beta*(Rc2+9)+Rf) * Rc1
 term3 <- term3a / term3b

 Vm <- term1 + term2 + term3
 return(Vm)
}

library(MRFA)

Training data and testing data

set.seed(2)
n <- 1000; n_new <- 100; d <- 6
X.train <- matrix(runif(d*n), ncol = d)
Y.train <- apply(X.train, 1, otlcircuit)
X.test <- matrix(runif(d*n_new), ncol = d)
Y.test <- apply(X.test, 1, otlcircuit)

Fitting

MRFA_model <- MRFA_fit(X.train, Y.train, verbose = TRUE)

Prediction

Y.pred <- predict(MRFA_model, X.test, lambda = min(MRFA_model$lambda))$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))

End(Not run)
```
predict.MRFA

Prediction of Multi-Resolution Functional ANOVA (MRFA) Model

Description
The function computes the predicted responses.

Usage
## S3 method for class 'MRFA'
predict(object, xnew, lambda = object$lambda,
        parallel = FALSE, ...)

Arguments
- **object**: a class MRFA object estimated by `mrfa_fit`.
- **xnew**: a testing matrix with dimension `n_new` by `d` in which each row corresponds to a predictive location.
- **lambda**: a value, or vector of values, indexing the path. The default is `object$lambda`.
- **parallel**: logical. If `TRUE`, apply function in parallel in `ldply` using parallel backend provided by `foreach`.
- ... for compatibility with generic method `predict`.

Value
- **lambda**: as above.
- **coefficients**: coefficients with respect to the basis function value.
- **y_hat**: a matrix with dimension `n_new` by `length(lambda)` displaying predicted responses at locations `xnew`.

Author(s)
Chih-Li Sung <iamdfchile@gmail.com>

See Also
`mrfa_fit` for fitting a multiresolution functional ANOVA model.

Examples
## Not run:
"""
# Testing function: OTL circuit function
#### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University ####
otlcircuit <- function(xx)
{
predict.MRFA

Rb1 <- 50 + xx[1] * 100
Rb2 <- 25 + xx[2] * 45
Rf <- 0.5 + xx[3] * 2.5
Rc1 <- 1.2 + xx[4] * 1.3
Rc2 <- 0.25 + xx[5] * 0.95
beta <- 50 + xx[6] * 250

Vb1 <- 12 * Rb2 / (Rb1 + Rb2)
term1a <- (Vb1 + 0.74) * beta * (Rc2 + 9)
term1b <- beta * (Rc2 + 9) + Rf
term1 <- term1a / term1b

term2a <- 11.35 * Rf
term2b <- beta * (Rc2 + 9) + Rf
term2 <- term2a / term2b

term3a <- 0.74 * Rf * beta * (Rc2 + 9)
term3b <- (beta * (Rc2 + 9) + Rf) * Rc1
term3 <- term3a / term3b

Vm <- term1 + term2 + term3
return(Vm)

library(MRFA)

### Training data and testing data ###
set.seed(2)
n <- 1000; n_new <- 100; d <- 6
X.train <- matrix(runif(d * n), ncol = d)
Y.train <- apply(X.train, 1, otlcircuit)
X.test <- matrix(runif(d * n_new), ncol = d)
Y.test <- apply(X.test, 1, otlcircuit)

### Fitting ###
MRFA_model <- MRFA_fit(X.train, Y.train, verbose = TRUE)

### Prediction ###
Y.pred <- predict(MRFA_model, X.test, lambda = min(MRFA_model$lambda))$y_hat
print(sqrt(mean((Y.test - Y.pred)^2)))

## End(Not run)
Index

aic.MRFA, 2
bic.MRFA, 3
confidence.MRFA, 5
cv.MRFA, 7
MRFA_fit, 6, 8, 9, 12
predict.MRFA, 2, 4, 6, 11, 12