Package ‘MRHawkes’

August 20, 2018

Type Package

Title Multivariate Renewal Hawkes Process

Version 1.0

Date 2018-08-15

Author Tom Stindl and Feng Chen

Maintainer Tom Stindl <t.stindl@unsw.edu.au>

Description Simulate a (bivariate) multivariate renewal Hawkes (MRHawkes) self-exciting process, with given immigrant hazard rate functions and offspring density function. Calculate the likelihood of a MRHawkes process with given hazard rate functions and offspring density function for an (increasing) sequence of event times. Calculate the Rosenblatt residuals of the event times. Predict future event times based on observed event times up to a given time. For details see Stindl and Chen (2018) <doi:10.1016/j.csda.2018.01.021>.

License GPL (>= 2)

Depends IHSEP, stats

NeedsCompilation no

Repository CRAN

Date/Publication 2018-08-20 11:20:02 UTC

R topics documented:

MRHawkes-package .. 2
fivaqks ... 3
mllMRH ... 4
mllMRH1 ... 6
mllMRH2 ... 8
predDen ... 10
simMRHawkes .. 12
simNSMHP ... 14
simpred .. 15
TmllMRH .. 17
typeRes ... 19
Description

Simulate the (bivariate) multivariate renewal Hawkes (MRHawkes) process with a given distribution for the two waiting times between immigrants, given offspring density functions, and also the branching ratios. Calculation of the likelihood of a MRHawkes process model with a given sequence of (distinct) event times and labels up to a censoring time. Calculate the Rosenblatt residuals of fitting an MRHawkes process model to a sequence of event times and labels. Calculate the (filtering) distribution of the index of the most recent immigrant. Predict the time of the next event since the censoring time. Predict event times from the censoring time to a future time point.

Details

The DESCRIPTION file:

Package: MRHawkes
Type: Package
Title: Multivariate Renewal Hawkes Process
Version: 1.0
Date: 2018-08-15
Author: Tom Stindl and Feng Chen
Maintainer: Tom Stindl <t.stindl@unsw.edu.au>
Description: Simulate a (bivariate) multivariate renewal Hawkes (MRHawkes) self-exciting process, with given immigrations, given offspring density functions, and also branching ratios. Calculation of the likelihood of a MRHawkes process model with a given sequence of (distinct) event times and labels up to a censoring time. Calculate the Rosenblatt residuals of fitting an MRHawkes process model to a sequence of event times and labels. Calculate the (filtering) distribution of the index of the most recent immigrant. Predict the time of the next event since the censoring time. Predict event times from the censoring time to a future time point.
License: GPL (>=2)
Depends: IHSEP, stats
NeedsCompilation: no
Packaged: 2016-11-04 12:35:53 UTC; z3376311

Index of help topics:

MRHawkes R Multivariate Renewal Hawkes Process
Tml1MRH R Minus loglikelihood of an (bivariate) MRHawkes model with truncated most recent immigrant probabilities
fivaqks R Fiji and Vanuatu Earthquake Data
ml1MRH R Minus loglikelihood of an (bivariate) MRHawkes model
ml1MRH1 R Minus loglikelihood of an (bivariate) MRHawkes model with most recent immigrant probabilities
ml1MRH2 R Minus loglikelihood of an (bivariate) MRHawkes model with Rosenblatt residuals
predDen R MRHawkes (bivariate) predictive density function
simMRHawkes Simulate an (bivariate) renewal Hawkes (MRHawkes) process
simNSMHP Simulate a (bivariate) non-stationary multivariate Hawkes process (NSMHP)
simpred Simulate a fitted (bivariate) MRHawkes process model
typeRes Minus loglikelihood of an (bivariate) MRHawkes model with Universal residuals

Author(s)
Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

References

Fiji and Vanuatu Earthquake Data

Description
Times and magnitudes (Richter scale) of earthquakes in the regions of Fiji and Vanuatu, for the period 1990-2015.

Usage
data(fivaqks)

Format
A data set containing 22 variables for earthquakes around Fiji and Vanuatu from 1991 to 2015.

 time Time of quake
 latitude Latitude of the quake
 longitude Longitude of the quake
 mag Magnitude of the quake

Source
United States Geological Survey (USGS)
Examples

data(fivaqks)

mllMRH

Minus loglikelihood of an (bivariate) MRHawkes model

Description

Calculates the minus loglikelihood of an (bivariate) MRHawkes model with given immigration
demand functions μ, offspring density functions h and branching ratios η for the event times and
types data on the interval $[0, \text{cens}]$.

Usage

mllMRH(data, cens, par,
 h1.fn = function(x, p) 1 / p * exp(- x / p),
 h2.fn = function(x, p) 1 / p * exp(- x / p),
 mu1.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
 },
 mu2.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
 },
 h1.fn = function(x, p) pexp(x, rate = 1 / p),
 h2.fn = function(x, p) pexp(x, rate = 1 / p),
 Mu1.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
 },
 Mu2.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
 })

Arguments

data A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.
cens A scalar. The censoring time.
par A numeric vector. Contains the ten parameters of the model, in order of the immigration parameters $\mu(.)$ for the two renewal distributions, the two offspring parameters $h(.)$ and lastly the four branching ratios η.
A (vectorized) function. The offspring density function for type one events.

h2.fn
A (vectorized) function. The offspring density function for type two events.

mu1.fn
A (vectorized) function. The immigration hazard function for events of type one.

mu2.fn
A (vectorized) function. The immigration hazard function for events of type two.

H1.fn
A (vectorized) function. Its value at t gives the integral of the offspring density function from 0 to t for type one events.

H2.fn
A (vectorized) function. Its value at t gives the integral of the offspring density function from 0 to t for type two events.

Mu1.fn
A (vectorized) function. Its value at t gives the integral of the immigrant hazard function from 0 to t for type one events.

Mu2.fn
A (vectorized) function. Its value at t gives the integral of the immigrant hazard function from 0 to t for type two events.

Value
Value of the negative log-likelihood.

Author(s)
Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

Examples

```r
## Magnitude 5.5 or greater earthquakes over the 25 year period from
## 01/01/1991 to 31/12/2015.
data(fivaqks);
near.fiji <- grep("Fiji", fivaqks$place)
near.vanuatu <- grep("Vanuatu", fivaqks$place)
t.beg <- strptime("1991-01-01 00:00:00", "%Y-%m-%d %H:%M:%S", tz = "UTC")
t.end <- strptime("2015-12-31 23:59:59", "%Y-%m-%d %H:%M:%S", tz = "UTC")
t0 <- 0
t1 <- as.numeric(t.end - t.beg)
tms <- strptime(fivaqks$time, "%Y-%m-%dT%H:%M:%OSZ", tz = "UTC")
ts <- as.numeric(tms[1] - t.beg)
ts.f <- ts[near.fiji]; ts.f <- ts.f[ts.f >= 0 & ts.f <= t1]
ts.va <- ts[near.vanuatu]; ts.va <- ts.va[ts.va >= 0 & ts.va <= t1]
ts.c <- c(ts.f, ts.va)
z.c <- c(rep(1, times = length(ts.f)), rep(2, times = length(ts.va)))
o <- order(ts.c)
data <- cbind(ts.c[o], z.c[o])
## calculate the minus log-likelihood of an (bivariate) MRHawkes with some
## parameters the default hazard functions and density functions are Weibull
## and exponential respectively
mllMRH(data, cens = t1, par = c(0.488, 20.10, 0.347, 9.53, 461, 720,
     0.472, 0.293, 0.399, -0.0774))
```
mllMRH1

Minus loglikelihood of an (bivariate) MRHawkes model with most recent immigrant probabilities

Description

Calculates the minus loglikelihood of an (bivariate) RHawkes model with given immigration hazard functions μ, common offspring density functions h and branching ratios η for event times and event types data on interval $[0, \text{cens}]$. The same as `mllMRH` although this version also returns the most recent immigrant probabilities at the censoring.

Usage

```r
mllMRH1(data, cens, par,
  h1.fn = function(x, p) 1 / p * exp(- x / p),
  h2.fn = function(x, p) 1 / p * exp(- x / p),
  mu1.fn = function(x, p){
    exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
    pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
    log.p = TRUE))
  },
  mu2.fn = function(x, p){
    exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
    pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
    log.p = TRUE))
  },
  H1.fn = function(x, p) pexp(x, rate = 1 / p),
  H2.fn = function(x, p) pexp(x, rate = 1 / p),
  Mu1.fn = function(x, p){
    - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
    log.p = TRUE)
  },
)```

```r
calculate the MLE for the parameter assuming known parametric forms
of the immigrant hazard function and offspring density functions.

system.time(est <- optim(c(0.488, 20.10, 0.347, 9.53, 461, 720,
 0.472, 0.293, 0.399, -0.0774),
 mllMRH, data = data, cens = t1,
 control = list(maxit = 5000, trace = TRUE),
 hessian = TRUE))
```

```r
point estimate by MLE
est$par
standard error estimates:
diag(solve(est$hessian))^
```
Mu2.fn = function(x, p){
  - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE, log.p = TRUE)
}

Arguments

  data  A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.

  cens  A scalar. The censoring time.

  par  A numeric vector. Contains the ten parameters of the model, in order of the immigration parameters \( \mu(.) \) for the two renewal distributions, the two offspring parameters \( h(.) \) and lastly the four branching ratios \( \eta \).

  h1.fn  A (vectorized) function. The offspring density function for type one events.

  h2.fn  A (vectorized) function. The offspring density function for type two events.

  mu1.fn  A (vectorized) function. The immigration hazard function for events of type one.

  mu2.fn  A (vectorized) function. The immigration hazard function for events of type two.

  H1.fn  A (vectorized) function. Its value at \( t \) gives the integral of the offspring density function from 0 to \( t \) for type one events.

  H2.fn  A (vectorized) function. Its value at \( t \) gives the integral of the offspring density function from 0 to \( t \) for type two events.

  Mu1.fn  A (vectorized) function. Its value at \( t \) gives the integral of the immigrant hazard function from 0 to \( t \) for type one events.

  Mu2.fn  A (vectorized) function. Its value at \( t \) gives the integral of the immigrant hazard function from 0 to \( t \) for type two events.

Value

  mll  minus log-likelihood

  p  most recent immigrant probabilities at the censoring time

  n  number of events

Author(s)

  Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

See Also

  mllMRH
Examples

data <- cbind(sort(runif(1000,0,1000)),
  sample(1:2, size = 1000, replace = TRUE))
tmp <- mllMRH1(data = data, cens = 1001,
  par = c(3,1.2,1/3,0.2,1,1.5,0.2,0.2,0.3))
## last immigrant probabilities
lip <- tmp$lip
## sample last immigrant at censoring time for component one and
## component two respectively
c(sample(0:1000, 1, replace = TRUE, prob = rowSums(lip)),
sample(0:1000, 1, replace = TRUE, prob = colSums(lip)))

mllMRH2

Minus loglikelihood of an (bivariate) MRHawkes model with Rosenblatt residuals

Description

Calculates the minus loglikelihood of an (bivariate) RHawkes model with given immigration hazard functions $\mu$, common offspring density functions $h$ and branching ratios $\eta$ for event times and event types data on interval $[0, cens]$. The same as mllMRH although this version also returns the Rosenblatt residuals for goodness-of-fit assessment of the event times.

Usage

mllMRH2(data, cens, par,
  h1.fn = function(x, p) 1 / p * exp(- x / p),
  h2.fn = function(x, p) 1 / p * exp(- x / p),
  mu1.fn = function(x, p){
    exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
    pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
    log.p = TRUE))
  },
  mu2.fn = function(x, p){
    exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
    pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
    log.p = TRUE))
  },
  H1.fn = function(x, p) pexp(x, rate = 1 / p),
  H2.fn = function(x, p) pexp(x, rate = 1 / p),
  Mu1.fn = function(x, p){
    - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
    log.p = TRUE)
  },
  Mu2.fn = function(x, p){
    - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
log.p = TRUE)

Arguments

data A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.
cens A scalar. The censoring time.
par A numeric vector. Contains the ten parameters of the model, in order of the immigration parameters $\mu(.)$ for the two renewal distributions, the two offspring parameters $h(.)$ and lastly the four branching ratios $\eta$.
h1.fn A (vectorized) function. The offspring density function for type one events.
h2.fn A (vectorized) function. The offspring density function for type two events.
mu1.fn A (vectorized) function. The immigration hazard function for events of type one.
mu2.fn A (vectorized) function. The immigration hazard function for events of type two.
H1.fn A (vectorized) function. Its value at $t$ gives the integral of the offspring density function from 0 to $t$ for type one events.
H2.fn A (vectorized) function. Its value at $t$ gives the integral of the offspring density function from 0 to $t$ for type two events.
Mu1.fn A (vectorized) function. Its value at $t$ gives the integral of the immigrant hazard function from 0 to $t$ for type one events.
Mu2.fn A (vectorized) function. Its value at $t$ gives the integral of the immigrant hazard function from 0 to $t$ for type two events.

Details

Calculate the MRHawkes point process Rosenblatt residuals

Value

mll minus log-likelihood
W Rosenblatt residuals of observed event times

Author(s)

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

See Also

mllMRH
Examples

```r
n <- 1000
data <- cbind(sort(runif(n,0,1000)),
 sample(1:2, size = n, replace = TRUE))
tmp <- mllMH2(data = data, cens = 1001,
 par = c(1,1,1,1,1,0.5,0.2,0.2,0.3))
pp <- ppoints(n)
par(mfrow=c(1,2))
plot(quantile(tmp$W,prob=pp),pp,type="1",
 main="Uniform QQ plot",
 xlab="Sample quantiles",ylab="Theoretical quantiles")
abline(a = 0, b = 1, col = 2)
a <- acf(tmp$W, main = "ACF Plot")
ks.test(tmp$W,"punif")
Box.test(tmp$W,lag=tail(a$lag,1))
```

**predDen**  
*MRHawkes (bivariate) predictive density function*

**Description**

Calculates the predictive density of the next event time after the censoring time `cens` based on the observations over the interval $[0, \text{cens}]$.

**Usage**

```r
predDen(x, data, cens, par,
 h1.fn = function(x, p) 1 / p * exp(- x / p),
 h2.fn = function(x, p) 1 / p * exp(- x / p),
 mu1.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
 },
 mu2.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
 },
 H1.fn = function(x, p) pexp(x, rate = 1 / p),
 H2.fn = function(x, p) pexp(x, rate = 1 / p),
 Mu1.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
 },
 Mu2.fn = function(x, p){
```
predDen

- pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
  log.p = TRUE)

Arguments

x A scalar. The amount of time after the censoring time cens.
data A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.
cens A scalar. The censoring time.
par A numeric vector containing the twelve parameters of the model, in order of the immigration parameters \( \mu(\cdot) \) for the two component distributions, the four offspring parameters \( h(\cdot) \) and lastly the four branching ratios \( \eta \).
h1.fn A (vectorized) function. The offspring density function for type one events.
h2.fn A (vectorized) function. The offspring density function for type two events.
mu1.fn A (vectorized) function. The immigration hazard function for events of type one.
mu2.fn A (vectorized) function. The immigration hazard function for events of type two.
H1.fn A (vectorized) function. Its value at \( t \) gives the integral of the offspring density function from 0 to \( t \) for type one events.
H2.fn A (vectorized) function. Its value at \( t \) gives the integral of the offspring density function from 0 to \( t \) for type two events.
Mu1.fn A (vectorized) function. Its value at \( t \) gives the integral of the immigrant hazard function from 0 to \( t \) for type one events.
Mu2.fn A (vectorized) function. Its value at \( t \) gives the integral of the immigrant hazard function from 0 to \( t \) for type two events.

Value

The predictive density of the next event time evaluated at \( x \).

Author(s)

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

Examples

```r
Magnitude 5.5 or greater earthquakes over the 25 year period from
01/01/1991 to 31/12/2015.
data(fivaqks);
near.fiji <- grep("Fiji", fivaqks$place)
near.vanuatu <- grep("Vanuatu", fivaqks$place)
t.beg <- strptime("1991-01-01 00:00:00", "%Y-%m-%d %H:%M:%S", tz = "UTC")
t.end <- strptime("2015-12-31 23:59:59", "%Y-%m-%d %H:%M:%S", tz = "UTC")
```
simMRHawkes

Simulate an (bivariate) renewal Hawkes (MRHawkes) process

Description

Simulate an (bivariate) renewal Hawkes (MRHawkes) process with given renewal immigration distribution functions $\mu$, offspring density functions $h$ and branching ratios $\eta$ using the cascading structure of the process.

Usage

```r
simMRHawkes(re.dist1 = rweibull, par.redist1 = list(shape = 3, scale = 1.2),
 re.dist2 = rweibull, par.redist2 = list(shape = 1/3, scale = 0.2),
 h1.fn = function(x, p.h1) 1/p.h1 * exp(-x/p.h1),
 h2.fn = function(x, p.h2) 1/p.h2 * exp(-x/p.h2),
 p.h1 = 1, p.h2 = 1,
 eta11 = 0.3, eta12 = 0.1, eta21 = 0.1, eta22 = 0.3, cens = 100,
 B = 10, B0 = 50,
 max.h1 = max(optimize(h1.fn, c(0, cens), maximum = TRUE, p = p.h1)$obj,
 h1.fn(0, p.h1), h1.fn(cens, p.h1)) * 1.1,
 max.h2 = max(optimize(h2.fn, c(0, cens), maximum = TRUE, p = p.h2)$obj,
 h2.fn(0, p.h2), h2.fn(cens, p.h2)) * 1.1)
```

Arguments

- **re.dist1** The renewal distribution for type one events.
- **re.dist2** The renewal distribution for type two events.
- **par.redist1** A numeric list. The parameters of the renewal distribution for type one events.
- **par.redist2** A numeric list. The parameters of the renewal distribution for type two events.
- **h1.fn** A (vectorized) function. The offspring density function for type one events.
h2.fn  A (vectorized) function. The offspring density function for type two events.
p.h1  A numeric vector. The parameters of the offspring density for type one events.
p.h2  A numeric vector. The parameters of the offspring density for type two events.
etal1  A numeric scalar. The self-exciting branching ratio for type one events.
etal2  A numeric scalar. The cross-exciting branching ratio for type one events due to the effects of a type two event.
etal21  A numeric scalar. The cross-exciting branching ratio for type two events due to the effects of a type one event.
etal22  A numeric scalar. The self-exciting branching ratio for type two events.
cens  A scalar. The censoring time.
b  A numeric scalar. Tuning parameter
b0  A numeric scalar. Tuning parameter
max.h1  A numeric scalar. The maximum value of the offspring density for type one events.
max.h2  A numeric scalar. The maximum value of the offspring density for type two events.

Details

The function works by simulating the arrival times of immigrants according to the respective renewal immigration distribution for each event type. The birth times of offspring from each immigrant are then simulated according to an non-stationary multivariate Hawkes Process (NSMHP) with appropriate baseline and excitation functions.

Value

A numeric matrix. The row column contains the event times in ascending order while the second column contains the corresponding event type.

Author(s)

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

Examples

```r
B <- 10; i <- 0;
data <- replicate(B,
{cat(i<<i+1,'\n');
 simMRHawkes(re.dist1 = rweibull,
 par.redist1 = list(shape = 3, scale = 1.2),
 re.dist2 = rweibull,
 par.redist2 = list(shape = 1 / 3, scale = 0.2),
 p.h1 = 1, p.h2 = 1,
 etal1 = 0.3, etal2 = 0.1,
 etal21 = 0.1, etal22 = 0.3,
 cens = 100)
})
```
Simulate a bivariate non-stationary multivariate Hawkes process (NSMHP)

Description

Simulate a bivariate non-stationary multivariate Hawkes process (NSMHP) with given baseline intensity functions and self-excitation functions using the cascading structure of the process.

Usage

```r
simNSMHP(TT = 100,
 nu1 = function(t) 0.6*exp(-t),
 nu2 = function(t) 0.2*exp(-t),
 g11 = function(t) 0.6*exp(-t),
 g12 = function(t) 0.2*exp(-t),
 g21 = function(t) 0.1*exp(-t),
 g22 = function(t) 0.5*exp(-t))
```

Arguments

- **TT**: A scalar. The censoring time.
- **nu1**: Baseline intensity function for type one events.
- **nu2**: Baseline intensity function for type two events.
- **g11**: Self-exciting function for type one events given the parent is a type two event.
- **g12**: Cross-exciting function for type one events given the parent is a type two event.
- **g21**: Cross-exciting function for type two events given the parent is a type one event.
- **g22**: Self-exciting function for type two events given the parent is a type two event.

Details

The function works by simulating generation 0 events according to independent Poisson processes with the baseline intensity functions; then keep simulating future generation events as long as the number of the previous generation events of any type is non-zero. For each event type, we simulate these events according to M independent Poisson processes with the appropriate excitation intensity. When this recursive process stops, return events of all generations with their respective type labels as the events of the NSMHP on the interval (0,T).

Value

- **offspr1**: All offspring events of type one
- **offspr2**: All offspring events of type two

Author(s)

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>
**Examples**

```r
B <- 10; i <- 0;
data <- replicate(B,
 {cat(i<<-i+1,'\n');
 simNSMHNP(TT = 100)
 })
```

---

**Description**

Simulate a fitted bivariate MRHawkes process model after the censoring time `cens` to a future time point `cens_tilde` using the cascading structure of the process.

**Usage**

```r
simpred(data, par, cens, cens_tilde,
 re.dist1 = rweibull,
 par.redist1 = list(shape = par[1], scale = par[2]),
 re.dist2 = rweibull,
 par.redist2 = list(shape = par[3], scale = par[4]),
 h1.fn = function(x, p.h1) 1 / p.h1 * exp(- x / p.h1),
 h2.fn = function(x, p.h2) 1 / p.h2 * exp(- x / p.h2),
 p.h1 = par[5], p.h2 = par[6],
 eta11 = par[7], eta12 = par[8], eta21 = par[9], eta22 = par[10],
 B = 10, B0 = 50, npn1 = NULL,
 max.h1 = max(optimize(h1.fn, c(0, cens_tilde - cens)), maximum = TRUE,
 p = p.h1)$obj, h1.fn(c(0, 0), p.h1),
 h1.fn(cens_tilde - cens, p.h1)) * 1.1,
 max.h2 = max(optimize(h2.fn, c(0, cens_tilde - cens)), maximum = TRUE,
 p = p.h2)$obj, h2.fn(c(0, 0), p.h2),
 h2.fn(cens_tilde - cens, p.h2)) * 1.1)
```

**Arguments**

- `data` A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.
- `par` A numeric vector. Contains the ten parameters of the model, in order of the immigration parameters $\mu(.)$ for the two renewal distributions, the two offspring parameters $h(.)$ and lastly the four branching ratios $\eta$.
- `cens` A scalar. The censoring time.
- `cens_tilde` A scalar. The time that the simulation run uptil.
- `re.dist1` The renewal distribution for type one events.
- `re.dist2` The renewal distribution for type two events.
A numeric list. The parameters of the renewal distribution for type one events.

A numeric list. The parameters of the renewal distribution for type two events.

A (vectorized) function. The offspring density function for type one events.

A (vectorized) function. The offspring density function for type two events.

A numeric vector. The parameters of the offspring density for type one events.

A numeric vector. The parameters of the offspring density for type two events.

A numeric scalar. The self-exciting branching ratio for type one events.

A numeric scalar. The cross-exciting branching ratio for type one events due to the effects of a type two event.

A numeric scalar. The cross-exciting branching ratio for type two events due to the effects of a type one event.

A numeric scalar. The self-exciting branching ratio for type two events.

A numeric scalar. Tuning parameter

A numeric scalar. Tuning parameter

A numeric square matrix. The joint last immigrant probabilities.

A numeric scalar. The maximum value of the offspring density for type one events.

A numeric scalar. The maximum value of the offspring density for type two events.

A numeric matrix that contains the simulated event times from censoring time cens up until cens tilde and the corresponding event types.

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

## Examples

```r
Magnitude 5.5 or greater earthquakes over the 25 year period from 01/01/1991 to 31/12/2015.
data(fivaqks);
near.fiji <- grep("Fiji", fivaqks$place)
near.vanuatu <- grep("Vanuatu", fivaqks$place)
t.beg <- strptime("1991-01-01 00:00:00", "%Y-%m-%d %H:%M:%S", tz = "UTC")
t.end <- strptime("2015-12-31 23:59:59", "%Y-%m-%d %H:%M:%S", tz = "UTC")
t0 <- 0
t1 <- as.numeric(t.end - t.beg)
tms <- strptime(fivaqks$time, "%Y-%m-%dT%H:%M:%OSZ", tz = "UTC")
ts <- as.numeric(tms[-1] - t.beg)
ts <- c(as.numeric(tms[1] - t.beg)/24, ts)
ts.f1 <- ts[near.fiji]; ts.f1 <- ts.f1[ts.f1 >= 0 & ts.f1 <= t1]
ts.va <- ts[near.vanuatu]; ts.va <- ts.va[ts.va >= 0 & ts.va <= t1]
```
tsc <- c(ts.fi, ts.va)
zc <- c(rep(1, times = length(ts.fi)), rep(2, times = length(ts.va)))
o <- order(tsc)
data <- cbind(tsc[o], zc[o])

# simulate future event time based on MLE fitted Hawkes model
N <- 100; i <- 0;
data.pred <- replicate(N,
  {cat(i==i+1, '\n');
   simpred(data = data,
     par = c(0.488, 20.10, 0.347, 9.53, 461, 720,
     0.472, 0.293, 0.399, -0.0774),
     cens = t1, cens.tilde = t1 + 1000)}
)

---

**Tml1MRH**  
*Minus loglikelihood of an (bivariate) MRHawkes model with truncated most recent immigrant probabilities*

**Description**

Calculates the minus loglikelihood of an (bivariate) MRHawkes model with given immigration hazard functions $\mu$, offspring density functions $h$ and branching ratios $\eta$ for event times and event types data on interval $[0, \text{cens}]$ with truncated most recent immigrant probabilities looking back at only the previous $B$ event times.

**Usage**

```r
Tml1MRH(data, cens, par, B = 25,
 h1.fn = function(x, p) 1 / p * exp(-x / p),
 h2.fn = function(x, p) 1 / p * exp(-x / p),
 mu1.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
 },
 mu2.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
 },
 H1.fn = function(x, p) pexp(x, rate = 1 / p),
 H2.fn = function(x, p) pexp(x, rate = 1 / p),
 Mu1.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
 },
)```
Mu2.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
}

Arguments

data A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.
cens A scalar. The censoring time.
par A numeric vector. Contains the ten parameters of the model, in order of the immigration parameters \(\mu(.) \) for the two renewal distributions, the two offspring parameters \(h(.) \) and lastly the four branching ratios \(\eta \).
B A scalar. The number of previous events that are considered to be possible last immigrant arrivals.
h1.fn A (vectorized) function. The offspring density function for type one events.
h2.fn A (vectorized) function. The offspring density function for type two events.
mu1.fn A (vectorized) function. The immigration hazard function for events of type one.
mu2.fn A (vectorized) function. The immigration hazard function for events of type two.
H1.fn A (vectorized) function. Its value at \(t \) gives the integral of the offspring density function from 0 to \(t \) for type one events.
H2.fn A (vectorized) function. Its value at \(t \) gives the integral of the offspring density function from 0 to \(t \) for type two events.
Mu1.fn A (vectorized) function. Its value at \(t \) gives the integral of the immigrant hazard function from 0 to \(t \) for type one events.
Mu2.fn A (vectorized) function. Its value at \(t \) gives the integral of the immigrant hazard function from 0 to \(t \) for type two events.

Value

Value of the negative log-likelihood.

Author(s)

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

Examples

Magnitude 5.5 or greater earthquakes over the 25 year period from
01/01/1991 to 31/12/2015.
data(fivaqks);
near.fiji <- grep("Fiji", fivaqks$place)
near.vanuatu <- grep("Vanuatu", fivaqks$place)
typeRes

Minus loglikelihood of an (bivariate) MRHawkes model with Universal residuals

Description

Calculates the minus loglikelihood of an (bivariate) RHawkes model with given immigration hazard functions \(\mu \), common offspring density functions \(h \) and branching ratios \(\eta \) for event times and event types data on interval \([0, cens]\). The same as \texttt{mllMRH} although this version also returns the Universal residuals for goodness-of-fit assessment of the event types.

Usage

\[
\text{typeRes}(\text{data, cens, par, } U = \text{runif(length(data[,1]))}, h1.fn = \text{function}(x, p) 1 \div p \times \text{exp}(-x \div p),
\]

```r

t.beg <- strftime("1991-01-01 00:00:00", "%Y-%m-%d %H:%M:%S", tz = "UTC")
t.end <- strftime("2015-12-31 23:59:59", "%Y-%m-%d %H:%M:%S", tz = "UTC")

t0 <- 0
t1 <- as.numeric(t.end - t.beg)
tms <- strftime(fivaqks$time, "%Y-%m-%dT%H:%M:%OS", tz = "UTC")
ts <- as.numeric(tms[1] - t.beg)
tms <- strftime(fivaqks$time, "%Y-%m-%dT%H:%M:%OS", tz = "UTC")
tsms <- strftime(fivaqks$time, "%Y-%m-%dT%H:%M:%OS", tz = "UTC")

tms <- strftime(fivaqks$time, "%Y-%m-%dT%H:%M:%OS", tz = "UTC")
tsms <- strftime(fivaqks$time, "%Y-%m-%dT%H:%M:%OS", tz = "UTC")

## calculate the minus loglikelihood of an (bivariate) MRHawkes with some
## parameters the default hazard functions and density functions are Weibull
## and exponential respectively

tmllMRH(data, cens = t1, par = c(0.488, 20.10, 0.347, 9.53, 461, 720,
0.472, 0.293, 0.399, -0.0774), B = 200)

## calculate the MLE for the parameter assuming known parametric forms
## of the immigrant hazard function and offspring density functions.

system.time(est <- optim(c(0.488, 20.10, 0.347, 9.53, 461, 720,
0.472, 0.293, 0.399, -0.0774),

## point estimate by MLE

est$par

## standard error estimates:

diag(solve(est$hessian)) ^ 0.5

```
h2.fn = function(x, p) 1 / p * exp(- x / p),
mu1.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
},
mu2.fn = function(x, p){
 exp(dweibull(x, shape = p[1], scale = p[2], log = TRUE) -
 pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE))
},
H1.fn = function(x, p) pexp(x, rate = 1 / p),
H2.fn = function(x, p) pexp(x, rate = 1 / p),
Mu1.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
},
Mu2.fn = function(x, p){
 - pweibull(x, shape = p[1], scale = p[2], lower.tail = FALSE,
 log.p = TRUE)
})

Arguments

- **data**: A two column matrix. The first column contains the event times sorted in ascending order. The second column contains the corresponding event type with the label one or two.
- **cens**: A scalar. The censoring time.
- **par**: A numeric vector. Contains the ten parameters of the model, in order of the immigration parameters $\mu(.)$ for the two renewal distributions, the two offspring parameters $h(.)$ and lastly the four branching ratios η.
- **U**: A numeric vector. Contains auxiliary uniform random variables on the unit interval.
- **h1.fn**: A (vectorized) function. The offspring density function for type one events.
- **h2.fn**: A (vectorized) function. The offspring density function for type two events.
- **mu1.fn**: A (vectorized) function. The immigration hazard function for events of type one.
- **mu2.fn**: A (vectorized) function. The immigration hazard function for events of type two.
- **H1.fn**: A (vectorized) function. Its value at t gives the integral of the offspring density function from 0 to t for type one events.
- **H2.fn**: A (vectorized) function. Its value at t gives the integral of the offspring density function from 0 to t for type two events.
- **Mu1.fn**: A (vectorized) function. Its value at t gives the integral of the immigrant hazard function from 0 to t for type one events.
- **Mu2.fn**: A (vectorized) function. Its value at t gives the integral of the immigrant hazard function from 0 to t for type two events.
Details

Calculate the MRHawkes point process Universal residuals

Value

mll minus log-likelihood
V Universal residuals of observed event types

Author(s)

Tom Stindl <t.stindl@unsw.edu.au> Feng Chen <feng.chen@unsw.edu.au>

See Also

mllMRH

Examples

```r
n <- 1000
data <- cbind(sort(runif(n,0,1000)),
                sample(1:2, size = n, replace = TRUE))
tmp <- typeRes(data = data, cens = 1001,
                par = c(1,1,1,1,1,1,0.5,0.2,0.2,0.3))
pp <- ppoints(n)
par(mfrow=c(1,2))
plot(quantile(tmp$V,prob=pp),pp,type="l",
    main="Uniform QQ plot",
    xlab="Sample quantiles",ylab="Theoretical quantiles")
abline(a = 0, b = 1, col = 2)
a <- acf(tmp$V, main = "ACF Plot")
ks.test(tmp$V,"punif")
Box.test(tmp$V,lag=tail(a$lag,1))
```
Index

*Topic **MLE**
 - mllMRH, 4
 - predDen, 10
 - Tml1MRH, 17

*Topic **MRHawkes**
 - mllMRH, 4
 - predDen, 10
 - Tml1MRH, 17

*Topic **datasets**
 - fivaqks, 3

*Topic **forecast**
 - simpred, 15

*Topic **likelihood**
 - mllMRH, 4
 - mllMRH1, 6
 - predDen, 10
 - Tml1MRH, 17

*Topic **most recent immigrant probabilities**
 - mllMRH1, 6

*Topic **package**
 - MRHawkes-package, 2

*Topic **point process**
 - mllMRH2, 8
 - typeRes, 19

*Topic **predict**
 - simpred, 15

*Topic **renewal process**
 - simMRHawkes, 12

*Topic **residual**
 - mllMRH2, 8
 - typeRes, 19

*Topic **self-exciting**
 - simMRHawkes, 12
 - simNSMHP, 14

*Topic **simulations**
 - simpred, 15

fivaqks, 3