Package ‘MRPC’

November 16, 2019

Type Package
Version 2.2.0
Date 2019-11-15
Title PC Algorithm with the Principle of Mendelian Randomization
Author Md Bahadur Badsha [aut,cre], Evan A Martin [ctb] and Audrey Qiuyan Fu [aut]
Maintainer Md Bahadur Badsha <mdbadsha@uidaho.edu>
Description A PC Algorithm with the Principle of Mendelian Randomization. This package implements the MRPC (PC with the principle of Mendelian randomization) algorithm to infer causal graphs. It also contains functions to simulate data under a certain topology, to visualize a graph in different ways, and to compare graphs and quantify the differences.
License GPL (>= 2)
Depends R (>= 3.0)
LazyData TRUE
Imports bnlearn, compositions, dynamicTreeCut, GGally, fastcluster, gtools, graph, graphics, Hmisc, methods, mice, network, pcalg, psych, Rgraphviz, stats, sna, utils, WGCNA
NeedsCompilation no
Repository CRAN
Date/Publication 2019-11-16 05:20:03 UTC

R topics documented:

 aSHD .. 2
 CompareMethodsNodeOrdering 4
 CompareMethodsVStructure 6
 CutModules .. 7
 data_examples .. 8
 data_GEUVADIS .. 12
Adjusted structural hamming distance (aSHD)

The SHD as implemented in the R package pcalg (Kalisch et al., 2012) and bnlearn(Scutari, 2010), counts how many differences exist between two directed graphs. This distance is 1 if an edge exists in one graph but is missing in the other, or if the direction of an edge is different between the two graphs. The larger this distance is the more different the two graphs are. We adjusted the SHD to reduce the penalty of having the wrong direction of an edge to 0.5. For example, between two graphs $V \rightarrow T1 \leftarrow T2$ and $V \rightarrow T1 \rightarrow T2$, the SHD is 1 and the aSHD is 0.5.

Usage

$$aSHD(g1, g2, GV, edge_presence = 1.0, edge_direction = 0.5)$$
Arguments

- **g1**: First graph object
- **g2**: Second graph object
- **GV**: The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data matrix. For example, if the data has one genetic variant, first column, then GV = 1, if 2, 1st and 2nd column, then GV = 2, and so on.

- **edge.presence**: The weight for an edge being present.
- **edge.direction**: The weight for the edge direction.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

Examples

```r
# True model (V1 --> T1 --> T2 --> T3)
tarmat_s1 <- matrix(0,
                    nrow = 4,
                    ncol = 4)
colnames(tarmat_s1) <- c("V1", "T1", "T2", "T3")
rownames(tarmat_s1) <- colnames(tarmat_s1)

tarmat_s1[1, 2] <- 1
tarmat_s1[2, 3] <- 1
tarmat_s1[3, 4] <- 1

# Graph object of the true graph
Truth <- as(tarmat_s1, "graphNEL")

# Inferred graph (V1 --> T1 <-- T2 --> T3)
tarmat_s2 <- matrix(0,
                    nrow = 4,
                    ncol = 4)
colnames(tarmat_s2) <- c("V1", "T1", "T2", "T3")
rownames(tarmat_s2) <- colnames(tarmat_s2)
```

```r
```
Create an adjacency matrix for the inferred graph
tarmat_s2[1, 2] <- 1
tarmat_s2[3, 2] <- 1
tarmat_s2[3, 4] <- 1

Graph objects for the inferred graph
Inferred <- as(tarmat_s2, "graphNEL")

Distance <- aSHD(Truth, Inferred,
 GV = 1,
 edge.presence = 1.0,
 edge.direction = 0.5)

Description

Investigate the performance of five methods on the same data but with different node orderings: MRPC (Badsha and Fu, 2019; Badsha et al., 2018), pc, implemented in pcalg (Kalisch et al., 2012), and pc.stable, mmpc, and mmhc, the last three all implemented in bnlearn (Scutari, 2010). See details in Badsha et al., 2018.

Usage

`CompareMethodsNodeOrdering(N, model, signal, n_data, n_nodeordering)`

Arguments

- **N**: The number of observations.
- **model**: Either `truth1` or `truth2` to specify the model to generate data from.
- **signal**: The signal strength which is the coefficient of the parent nodes in the linear model.
- **n_data**: The number of independent data sets to generate.
- **n_nodeordering**: The number of times to reorder the nodes.

Details

The code runs a method on a data set, derives a vector of the differences between the inferred and the true adjacency matrix, and converts the difference vector into a decimal. A decimal of 0 indicates perfect recovery of the truth. Decimals such as 446 and -2214 indicate two different inferred graphs, both different from the truth.
The output is a matrix where the columns indicate which method and which node ordering (e.g., the columns may be 'MRPC_NO1', 'MRPC_NO2', 'PC_NO1', 'mmhc_NO6' and so on), and each row contains the decimals from different methods for one simulated data set under different node orderings.

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

Examples

We will generate 2 different data sets from truth1 (V1-->T1-->T2-->T3) # with signal = 1, N = 100 and 6 different node orderings. Therefore, we will # get 2 by 30 output matrix, where the first and second rows are for data sets 1 and 2 respectively. # Columns 1:6, 7:12, 13:18, 19:24 and 25:30 are for MRPC, pc, pc.stable, mmpc and # mmhc respectively with node order 1, 2, ..., 6.
library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # pc.stable, mmpc, and mmhc

Run
Output <- CompareMethodsNodeOrdering(N = 100,
 signal = 1,
 n_data = 2,
 n_nodeordering = 6)
CompareMethodsVStructure

Comparison of inference accuracy of different methods on data with and without a v-structure

Description

This function compares inference accuracy on graphs with and without a v-structure in terms of recall and precision by five methods MRPC, pc, pc.stable, mmpc, and mmhc, across multiple data sets. See details in Badsha et al., 2018. Also see Badsha and Fu, 2019.

Usage

CompareMethodsVStructure(N, signal, model, includeGV, ita)

Arguments

- **N**: Number of observations.
- **signal**: The coefficient of parent nodes in the linear model. For example, strong = 1.0, moderate = 0.5, and weak = 0.2.
- **model**: The graph from which the data is generated. Specifically, two graphs are considered here: 'model 1' (V1->T1->T2), which does not contain a v-structure, and 'model 2' (V1->T1<-T2), which is a v-structure.
- **includeGV**: If TRUE, include edges involving genetic variants (GVs) when comparing the true and inferred graphs. If FALSE, exclude such edges.
- **ita**: Number of independent data sets to simulate.

Details

The output is a matrix, where the rows are the five methods: MRPC, pc, pc.stable, mmpc, and mmhc, and the columns are the mean of recall, sd of recall, mean of precision, and sd of precision, respectively. Mean and sd are calculated across all the simulated data sets. For methods from the bnlearn package (pc.stable, mmpc and mmhc), we apply the blacklist argument to exclude edges pointing at the genetic variant, and therefore evaluate recall and precision including the edges involving these edges (i.e., includeGV = TRUE).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
CutModules

CutModules

References

See Also

RecallPrecision: Performance evaluation in terms of recall and precision.

Examples

For demonstration purposes, only 10 data sets
with a sample size of 100 are simulated here.

Comparison of inference accuracy on model 1 without a v-structure
Result1 <- CompareMethodsVStructure(N = 100,
 signal = 1.0,
 'model1',
 includeGV = TRUE,
 ita = 10)

Comparison of inference accuracy with a v-structure
Result2 <- CompareMethodsVStructure(N = 100,
 signal = 1.0,
 'model2',
 includeGV = TRUE,
 ita = 10)

CutModules

Cut a numeric variable into intervals

Description

Similar to cut2 function with some modification.

Usage

CutModules(x, cuts, m, g, levels.mean = FALSE, digits, minmax = TRUE,
oneval = TRUE, onlycuts = FALSE)
Arguments

- **x**: Numeric vector to classify into intervals.
- **cuts**: Cut points
- **m**: Desired minimum number of observations in a group.
- **g**: Number of quantile groups.
- **levels.mean**: Set to TRUE to make the new categorical vector have levels attribute that is the group means of x instead of interval endpoint labels.
- **digits**: Number of significant digits to use in constructing levels. The default is 3, and 5 if levels.mean = TRUE.
- **minmax**: If cuts is specified but min(x) < min(cuts) or max(x) > max(cuts) augments cuts to include min and max x.
- **oneval**: If an interval contains only one unique value, the interval will be labeled with the formatted version of that value instead of the interval endpoints unless oneval = FALSE.
- **onlycuts**: Set to TRUE to only return the vector of computed cuts. This consists of the interior values plus outer ranges.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

data_examples

Example data under a simple and complex models

Description

Example data under the simple and complex graphs. Data may be continuous or discrete.

Usage

```r
data(data_examples)
```

Details

For each model, the graph and a simulated data matrix are available for both continuous and discrete data.

For continuous data with genetic information: 1000 samples in row and 6 variables in column. First two columns are the genetic variants and remaining columns are gene expression.

Continuous data without genetic information: 1000 samples in row and 8 variables in column.
Discrete data with genetic information: 1000 samples in row and 6 variables in column. First column is the genetic variant and remaining columns are the gene expression.

Discrete data without genetic information: 1000 samples in row and 5 variables in column.

Continuous data with genetic information for complex model: 1000 samples in row and 22 variables in column. First 14 column is the genetic variants and remaining columns are the genes expression.

Value

A list that containing the numeric data matrix and components of a graph.

- **simple**: Simple model.
- **complex**: Complex model.
- **cont**: Continuous.
- **disc**: Discrete.
- **withGV**: With genetic information.
- **withoutGV**: Without genetic information.
- **data**: Data matrix.
- **graph**: Components of a graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

```r
# Continuous data with genetic varitant (GV)
data("data_examples")

# Extract the sample size
n <- nrow(data_examples$simple$cont$withGV$data)

# Extract the node/column names
V <- colnames(data_examples$simple$cont$withGV$data)

# Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$cont$withGV$data),
                   n = n)

# Infer the graph by MRPC
data.mrpc.cont.withGV <- MRPC(data = data_examples$simple$cont$withGV$data,
suffStat = suffStat_C,
GV = 2,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
```
data_examples

FDRcontrol = TRUE,
verbose = TRUE)

Plot the results
par(mfrow = c(1, 2))
plot the true graph
plot(data_examples$simple$cont$withGV$graph,
 main = "truth")
plot the inferred graph
plot(data.mrpc.cont.withGV,
 main = "inferred")

Continuous data without genetic information
load the data
data("data_examples")

Extract the sample size
n <- nrow(data_examples$simple$cont$withoutGV$data)

Extract the node/column names
V <- colnames(data_examples$simple$cont$withoutGV$data)

Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$cont$withoutGV$data),
 n = n)

Infer the graph by MRPC
data.mrpc.cont.withoutGV <- MRPC(data = data_examples$simple$cont$withoutGV$data,
suffStat = suffStat_C,
GV = 0,
FDR = 0.05,
alpha = 0.05,
indepTest = '\{gaussCItest\}',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot the results
par(mfrow = c(1, 2))
plot the true graph
plot(data_examples$simple$cont$withoutGV$graph,
 main = "truth")
plot the inferred graph
plot(data.mrpc.cont.withoutGV,
 main = "inferred")

Discrete data with genetic information
load the data
data("data_examples")

Extract the sample size
n <- nrow(data_examples$simple$disc$withGV$data)

Extract the node/column names
V <- colnames(data_examples$simple$disc$withGV$data)

Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$disc$withGV$data),
 n = n)

Infer the graph by MRPC
data.mrpc.disc.withGV <- MRPC(data = data_examples$simple$disc$withGV$data,
suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussC1test',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot the results
par(mfrow = c(1, 2))
plot the true graph
plot(data_examples$simple$disc$withGV$graph,
 main = "truth")
Plot the inferred causal graph
plot(data.mrpc.disc.withGV,
 main = "inferred")

Discrete data without genetic information
load the data
data("data_examples")

Extract the sample size
n <- nrow (data_examples$simple$disc$withoutGV$data)

Extract the node/column names
V <- colnames(data_examples$simple$disc$withoutGV$data)

Calculate Pearson correlation
suffStat_C <- list(C = cor(data_examples$simple$disc$withoutGV$data),
 n = n)

Infer the graph by MRPC
data.mrpc.disc.withoutGV <- MRPC(data = data_examples$simple$disc$withoutGV$data,
suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussC1test',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot the results
par(mfrow = c(1, 2))
plot the true graph
plot(data_examples$simple$disc$withoutGV$graph,
data_GEUVADIS

GEUVADIS data with 62 eQTL-gene sets

Description
The GEUVADIS (Lappalainen et al., 2013) data (i.e., gene expression) measured in Lymphoblastoid Cell Lines (LCLs) on a subset of individuals from the 1,000 Genomes Project including 373 Europeans and 89 Africans.

Details
The GEUVADIS (Genetic European Variation in Disease) project identified eQTLs across the human genome. Among these eQTLs, ~70 have more than one target gene. Additionally, we found 62 unique eQTLs which exhibit pleiotropy. We extracted the genotypes of these 62 eQTLs and the expression of the target genes for 373 Europeans and 89 Africans (see Badsha and Fu, 2019).

Value
A list that contains 62 eQTL-gene sets data for 373 Europeans and 89 Africans.
Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

Examples
Data for 373 Europeans of eQTL #1
data_GEUVADIS$Data_Q1$Data_EUR

Data for 89 Africans of eQTL #1
data_GEUVADIS$Data_Q1$Data_AFR

data_GEUVADIS_combined
Combined genotype and gene expression data from 62 eQTL-gene sets in 373 Europeans from GEUVADIS

Description
The genotype and gene expression data of 62 eQTL-gene sets in 373 Europeans from the GEUVADIS consortium (Lappalainen et al., 2013) are combined into one data matrix. Each of these eQTLs has been identified to be associated with more than one gene (see details in Badsha and Fu, 2019).

Details
The data set contains 373 samples in rows and 194 variables (62 eQTLs and 132 genes) in columns. Specifically, the columns are: eQTL1, gene1 for eQTL1, gene2 for eQTL1, eQTL2, gene1 for eQTL2, gene2 for eQTL2 and so on.

For analysis, we account for potential confounding variables as additional nodes in the graph. To do so, we first perform Principal Component Analysis (PCA) on the entire gene expression matrix from the European samples in GEUVADIS, and extract the top 10 PCs as potential confounding variables. We next examine the statistical association between each of the top PCs and the eQTL-gene sets, and identify statistically significant associations (accounting for multiple testing with the q value method). We then apply MRPC to each eQTL-gene set with its associated PCs. See details in the examples below. Also see Badsha and Fu (2019) and Badsha et al. (2018).

Value
Matrix
Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

See Also
data_GEUVADIS

Examples

Examining principal components (PCs) as potential confounders in analysis of the GEUVADIS data
library(MRPC) # MRPC

Load genomewide gene expression data in GEUVADIS
373 individuals
23722 genes
data_githubURL <- "https://github.com/audreyqyfu/mrpc_data/raw/master/data_GEUVADIS_allgenes.RData"
load(url(data_githubURL))

Run PCA
library(stats) # prcomp
PCs <- prcomp(data_GEUVADIS_allgenes,scale=TRUE)
Extract the PCs
PCs_matrix <- PCs$x

Load the 62 eQTL-gene sets
373 individuals
194 variables (eQTLs=62 and genes=132)
data("data_GEUVADIS_combined")

Identify PCs that are significantly associated with eQTL-gene sets
Compute the correlation and corresponding p values between the top PCs and the eQTLs and genes
library(psych) # to use corr.test
no_PCs <- 10
corr_PCs <- corr.test(PCs_matrix[,1:no_PCs],data_GEUVADIS_combined)
The correlation matrix
corr_matrix <- corr_PCs$r
The p values
Pvalues <- corr_PCs$p
Apply the q value method at FDR of 0.05
library(WGCNA) # qvalue
qobj <- qvalue(Pvalues, fdr.level=0.05, robust = TRUE)

Significant associations
Significant_asso <- qobj$significant
List_significant_asso <- which(Significant_asso, arr.ind = TRUE, useNames = TRUE)
 # 1st column contains the PCs
 # 2nd column contains the associated eQTLs or genes
List_significant_asso[1:10]

Examples of eQTLs or genes that are significantly associated with selected PCs
PC1
eqtl.genes_PC1 <- colnames(data_GEUVADIS_combined)[List_significant_asso
 [which(List_significant_asso[,1] == "1"),2]]
print(eqtl.genes_PC1)
PC2
eqtl.genes_PC2 <- colnames(data_GEUVADIS_combined)[List_significant_asso
 [which(List_significant_asso[,1] == "2"),2]]
print(eqtl.genes_PC2)
PC3
eqtl.genes_PC3 <- colnames(data_GEUVADIS_combined)[List_significant_asso
 [which(List_significant_asso[,1] == "3"),2]]
print(eqtl.genes_PC3)

Example 1
Gene SBF2-AS1 is significantly associated with PC2
print(eqtl.genes_PC2[24])
Gene SBF2-AS1 is in the eQTL-gene set #50 with snp rs7124238 and gene SWAP70
data_GEU_Q50 <- data_GEUVADIS$Data_Q50$Data_EUR
colnames(data_GEU_Q50) <- c("rs7124238","SBF2-AS1","SWAP70")

Analyze the eQTL-gene set without PC2
n <- nrow(data_GEU_Q50) # Number of rows
V <- colnames(data_GEU_Q50) # Column names

Calculate Pearson correlation
suffStat_C_Q50 <- list(C = cor(data_GEU_Q50, use = 'pairwise.complete.obs'),
 n = n)

Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q50 <- MRPC(data_GEU_Q50,
 suffStat = suffStat_C_Q50,
 GV = 1,
 FDR = 0.05,
 alpha = 0.05,
 indepTest = 'gaussCItest',
 labels = V,
 FDRcontrol = TRUE,
 verbose = TRUE)
Analyze the eQTL-gene set with PC2
data_withPC_Q50 <- cbind(data_GEU_Q50, PCs_matrix[,2])
colnames(data_withPC_Q50)[4] <- "PC2"

n <- nrow(data_withPC_Q50) # Number of rows
V <- colnames(data_withPC_Q50) # Column names

Calculate Pearson correlation
suffStat_C_withPC_Q50 <- list(C = cor(data_withPC_Q50, use = 'pairwise.complete.obs'),
 n = n)

Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q50 <- MRPC(data_withPC_Q50,
suffStat = suffStat_C_withPC_Q50,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q50,
 main = "Without PC")
plot(MRPC.fit_withPC_GEU_Q50,
 main = "Without PC")

Example 2
Gene LCMT2 is significantly associated with PC1
print(eqtl.genes_PC1[8])

Gene LCMT2 is in the eQTL-gene set #29 with snp rs2278858 and gene ADAL
data_GEU_Q29 <- data_GEUADIS$Data_Q29$Data_EUR
colnames(data_GEU_Q29) <- c("rs2278858", "LCMT2", "ADAL")

Analyze the eQTL-gene set without PC1
n <- nrow(data_GEU_Q29) # Number of rows
V <- colnames(data_GEU_Q29) # Column names

Calculate Pearson correlation
suffStat_C_Q29 <- list(C = cor(data_GEU_Q29, use = 'pairwise.complete.obs'),
 n = n)

Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q29 <- MRPC(data_GEU_Q29,
suffStat = suffStat_C_Q29,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)
Analyze the eQTL-gene set with PC1

data_withPC_Q29 <- cbind(data_GEU_Q29, PCs_matrix[,1])
colnames(data_withPC_Q29)[4] <- "PC1"

n <- nrow(data_withPC_Q29) # Number of rows
V <- colnames(data_withPC_Q29) # Column names

Calculate Pearson correlation
suffStat_C_withPC_Q29 <- list(C = cor(data_withPC_Q29, use = "pairwise.complete.obs"), n = n)

Infer graph by MRPC
MRPC.fit_withPC_GEU_Q29 <- MRPC(data_withPC_Q29, suffStat = suffStat_C_withPC_Q29,
 GV = 1, FDR = 0.05, alpha = 0.05, indepTest = "gaussCItest",
 labels = V, FDRcontrol = TRUE, verbose = TRUE)

Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q29, main = "Without PC")
plot(MRPC.fit_withPC_GEU_Q29, main = "With PC")

Example 3
Genes SERPINB8 and HMSD are significantly associated with PC2
print(eqtl.genes_PC2[20:21])

Genes SERPINB8 and HMSD are in the eQTL-gene set #43 with SNP rs55928920
data_GEU_Q43 <- data_GEUVADIS$Data_Q43$Data_EUR
colnames(data_GEU_Q43) <- c("rs55928920", "SERPINB8", "HMSD")

Analyze the eQTL-gene set without PC2
n <- nrow(data_GEU_Q43) # Number of rows
V <- colnames(data_GEU_Q43) # Column names

Calculate Pearson correlation
suffStat_C_Q43 <- list(C = cor(data_GEU_Q43, use = "pairwise.complete.obs"), n = n)

Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q43 <- MRPC(data_GEU_Q43, suffStat = suffStat_C_Q43,
data_GEUVADIS_combined

GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Analyze the eQTL-gene set with PC2
data_withPC_Q43 <- cbind(data_GEU_Q43, PCs_matrix[,2])
colnames(data_withPC_Q43)[4] <- "PC2"

n <- nrow (data_withPC_Q43) # Number of rows
V <- colnames(data_withPC_Q43) # Column names

Calculate Pearson correlation
suffStat_C_withPC_Q43 <- list(C = cor(data_withPC_Q43, use = "pairwise.complete.obs"),
n = n)

Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q43 <- MRPC(data_withPC_Q43,
suffStat = suffStat_C_withPC_Q43,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q43,
main = "Without PC")
plot(MRPC.fit_withPC_GEU_Q43,
main = "With PC")

Example 4
Gene PLAC8 is significantly associated with PC2 and PC3
print(eqtl.genes_PC2[17])
print(eqtl.genes_PC3[12])

Gene PLAC8 is in the eQTL-gene set #34 with snp rs28718968 and gene COQ2
data_GEU_Q34 <- data_GEUVADIS$Data_Q34$Data_EUR
colnames(data_GEU_Q34) <- c("rs28718968", "COQ2", "PLAC8")

Analyze the eQTL-gene set without PC2 and PC3
n <- nrow (data_GEU_Q34) # Number of rows
V <- colnames(data_GEU_Q34) # Column names

Calculate Pearson correlation
suffStat_C_Q34 <- list(C = cor(data_GEU_Q34, use = 'pairwise.complete.obs'),
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)
data_GEUVADIS_combined

n = n)

Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q34 <- MRPC(data_GEU_Q34,
suffStat = suffStat_C_Q34,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Analyze the eQTL-gene set with PC2 and PC3
data_withPC_Q34 <- cbind(data_GEU_Q34,PCs_matrix[,c(2,3)])
colnames(data_withPC_Q34)[4:5] <- c("PC2", "PC3")
n <- nrow(data_withPC_Q34) # Number of rows
V <- colnames(data_withPC_Q34) # Column names

Calculate Pearson correlation
suffStat_C_withPC_Q34 <- list(C = cor(data_withPC_Q34, use = "pairwise.complete.obs"),
n = n)

Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q34 <- MRPC(data_withPC_Q34,
suffStat = suffStat_C_withPC_Q34,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q34,
main = "Without PC")
plot(MRPC.fit_withPC_GEU_Q34,
main = "With PC")

Example 5
Genes PIP4P1 and PNP are significantly associated with PC1 and PC3, respectively.
print(eqtl.genes_PC1[1])
print(eqtl.genes_PC3[7])

Genes PIP4P1 and PNP are in the eQTL-gene set #8 with snp rs11305802 and gene AL355075.3
data_GEU_Q8 <- data_GEUVADIS$Data_Q8$Data_EUR
colnames(data_GEU_Q8) <- c("rs11305802","PIP4P1", "AL355075.3", "PNP")

Analyze the eQTL-gene set without PC1 and PC3
n <- nrow(data_GEU_Q8) # Number of rows
V <- colnames(data_GEU_Q8) # Column names

Calculate Pearson correlation
suffStat_C_Q8 <- list(C = cor(data_GEU_Q8, use = 'pairwise.complete.obs'),
 n = n)

Infer the graph by MRPC
MRPC.fit_withoutPC_GEU_Q8 <- MRPC(data_GEU_Q8,
 suffStat = suffStat_C_Q8,
 GV = 1,
 FDR = 0.05,
 alpha = 0.05,
 indepTest = 'gaussCItest',
 labels = V,
 FDRcontrol = TRUE,
 verbose = TRUE)

Analyze the eQTL-gene set with PC1 and PC3
data_withPC_Q8 <- cbind(data_GEU_Q8,PCs_matrix[,c(1,3)])
colnames(data_withPC_Q8)[5:6] <- c("PC1","PC3")

n <- nrow(data_withPC_Q8) # Number of rows
V <- colnames(data_withPC_Q8) # Column names

Calculate Pearson correlation
suffStat_C_withPC_Q8 <- list(C = cor(data_withPC_Q8, use = 'pairwise.complete.obs'),
 n = n)

Infer the graph by MRPC
MRPC.fit_withPC_GEU_Q8 <- MRPC(data_withPC_Q8,
 suffStat = suffStat_C_withPC_Q8,
 GV = 1,
 FDR = 0.05,
 alpha = 0.05,
 indepTest = 'gaussCItest',
 labels = V,
 FDRcontrol = TRUE,
 verbose = TRUE)

Plot inferred graphs
par(mfrow=c(1,2))
plot(MRPC.fit_withoutPC_GEU_Q8,
 main = "Without PC")
plot(MRPC.fit_withPC_GEU_Q8,
 main = "With PC")

data_without_outliers Example data without outliers (noises)
Description

The data contain two genotype nodes, V1 and V2, and three phenotype nodes, T1, T2 and T3. The code below compares the performance of MRPC, mmhc and pc on this data set.

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

Load packages
library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # mmhc

Truth without outlier
tarmat <- matrix(0,
 nrow = ncol(data_with_outliers),
 ncol = ncol(data_with_outliers))

colnames(tarmat) <- colnames(data_with_outliers)
rownames(tarmat) <- colnames(data_with_outliers)

tarmat[1,2] <- 1
tarmat[2,1] <- 1
tarmat[1,3] <- 1
tarmat[4,3] <- 1
tarmat[4,5] <- 1

Truth <- as(tarmat,
 "graphNEL")

Data without outliers
n <- nrow(data_without_outliers) # Number of rows
V <- colnames(data_without_outliers) # Column names

Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_without_outliers),
 n = n)

Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_without_outliers,
 Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,
 n = n)
Infer the graph by MRPC with robust correlation
MRPC.fit_withoutoutlier <- MRPC(data_without_outliers,
suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Infer the graph by pc with Pearson correlation
pc.fit_withoutoutlier <- pc(suffStat = suffStat_C1,
indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

Infer the graph by mmhc
mmhc_withoutoutlier <- mmhc(data)

Data with outliers
n <- nrow(data_with_outliers) # Number of rows
V <- colnames(data_with_outliers) # Column names

Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_with_outliers),
n = n)

Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_with_outliers,
Beta = 0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,
n = n)

Infer the graph by MRPC with robust correlation
MRPC.fit_withoutoutlier <- MRPC(data_with_outliers,
suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Infer the graph by pc with Pearson correlation
pc.fit_withoutoutlier <- pc(suffStat = suffStat_C1,
indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

Infer the graph by mmhc
```r
# Example data with outliers (noises)
data_with_outliers <- data.frame(data_with_outliers)
mmhc_withoutoutlier <- mmhc(data)

# Plot the inferred graphs
par(mfrow = c(2, 4))
plot(Truth, main = "Truth")
plot(MRPC.fit_withoutoutlier, main = "MRPC")
plot(pc.fit_withoutoutlier, main = "pc")
graphviz.plot(mmhc_withoutoutlier, main = "mmhc")
plot(Truth, main = " ")
plot(MRPC.fit_withoutoutlier, main = " ")
plot(pc.fit_withoutoutlier, main = " ")
graphviz.plot(mmhc_withoutoutlier, main = " ")
```

Description

The data contain two genotype nodes, V1 and V2, and three phenotype nodes, T1, T2 and T3. The genotype nodes are discrete, whereas the phenotype nodes are continuous. The data matrix includes 10 outliers (noises) generated from a uniform distribution. The code below compares the performance of MRPC, mmhc and pc on this data set.

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

```r
# Load packages
library(MRPC)  # MRPC
library(pcalg) # pc
library(bnlearn) # mmhc

# Truth without outlier
tarmat <- matrix(0,
```

```r
```
nrow = ncol(data_with_outliers),
ncol = ncol(data_with_outliers))

colnames(tarmat) <- colnames(data_with_outliers)

rownames(tarmat) <- colnames(data_with_outliers)

tarmat[1,2] <- 1
tarmat[2,1] <- 1
tarmat[1,3] <- 1
tarmat[4,3] <- 1
tarmat[4,5] <- 1

Truth <- as(tarmat, "graphNEL")

Data without outliers
n <- nrow(data_without_outliers) # Number of rows
V <- colnames(data_without_outliers) # Column names

Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_without_outliers),
n = n)

Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_without_outliers,
Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,
n = n)

Infer the graph by MRPC robust correlation
MRPC.fit_withoutoutlier <- MRPC(data_without_outliers,
suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Infer the graph by pc with Pearson correlation
pc.fit_withoutoutlier <- pc(suffStat = suffStat_C1,
indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

Infer the graph by mmhc
data <- data.frame(data_without_outliers)
mmhc_withoutoutlier <- mmhc(data)

Data with outliers
n <- nrow(data_with_outliers) # Number of rows
V <- colnames(data_with_outliers) # Column names

Calculate Pearson correlation
suffStat_C1 <- list(C = cor(data_with_outliers),
 n = n)

Calculate robust correlation (Beta = 0.005)
Rcor_R1 <- RobustCor(data_with_outliers,
 Beta=0.005)
suffStat_R1 <- list(C = Rcor_R1$RR,
 n = n)

Infer the graph by MRPC with robust correlation
MRPC.fit_withoutlier <- MRPC(data_with_outliers,
suffStat = suffStat_R1,
GV = 2,
FDR = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Infer the graph by pc with Pearson correlation
pc.fit_withoutlier <- pc(suffStat = suffStat_C1,
indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

Infer the graph by mmhc
data <- data.frame(data_with_outliers)
mmhc_withoutlier <- mmhc(data)

Plot the inferred graphs
par(mfrow = c(2, 4))
plot(Truth,
 main = "Truth")
plot(MRPC.fit_withoutlier,
 main = "MRPC")
plot(pc.fit_withoutlier,
 main = "pc")
graphviz.plot(mmhc_withoutlier,
 main = "mmhc")
plot(Truth,
 main = "")
plot(MRPC.fit_withoutlier,
 main = "")
plot(pc.fit_withoutlier,
 main = "")
graphviz.plot(mmhc_withoutlier,
 main = "")
EdgeOrientation

Perform edge orientation under the MRPC algorithm

Description

This function performs the second step of the MRPC algorithm where it determines the edge direction in the graph skeleton inferred by the function `ModiSkeleton`. If the data contain genetic variants, this function first determines the edges between genetic variants and phenotype nodes based on the principle of Mendelian randomization. Next it identifies potential v-structures and orients the edges in them. For the remaining edges, it examines triplets in turn to see whether a triplet is compatible with one of the basic models. See the references for details.

Usage

```r
EdgeOrientation(gInput, GV, suffStat, FDR, alpha, indepTest, 
    FDRcontrol, verbose = FALSE)
```

Arguments

- `gInput`: Object containing the skeleton and marginal and conditional independence information.
- `GV`: The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data matrix. For example, if the data has one genetic variant, first column, then GV = 1, if 2, 1st and 2nd Column, then GV = 2, and so on.
- `suffStat`: A list of sufficient statistics containing all necessary elements for the conditional independence tests in the function `indepTest` for `gaussCItest`. The sufficient statistics consist of the correlation matrix of the data and the sample size.
- `FDR`: False discovery rate (number between 0 and 1). If FDR = 0.05, this ensures that the FDR and mFDR remains below 0.05.
- `alpha`: Significance level (number in (0,1) for the individual tests.
- `indepTest`: A function for testing conditional independence. It is used to test the conditional independence of x and y given S, called as `indepTest(x, y, S, suffStat)`. Where, x and y are variables, and S is a vector, possibly empty, of variables. `suffStat` is a list, see the argument above. The return value of `indepTest` is the p-value of the test for conditional independence. There are three options for different data types, for example, Gaussian data = `gaussCItest`, discrete data = `disCItest` and Binary data = `binCItest`. See `help(gaussCItest)`
- `FDRcontrol`: (optional) The default is TRUE which implements a sequential FDR control method, otherwise used fixed significance level for the individual tests.
- `verbose`: (optional) 1: detailed output is provided; 0: No output is provided
Details

The orientation of the edge directions based on the principle of Mendelian randomization involves four cases, which are four of the five basic models in Badsha and Fu, 2019 and Badsha et al., 2018. For example, we consider x to be a genetic variant, y and z the phenotype nodes.

The four cases are as follows:

Case-1: Relation between x, genetic variant, and the other nodes. Then genetic variant will regulate the other node, genes, and direction will be genetic variant \rightarrow other node. Note that if the data has more than one genetic variant and there is an edge between two genetic variants, then direction will be genetic variant \leftrightarrow genetic variant, which indicates that there is evidence that the two genetic variants are not independent, but we do not have enough information to determine which genetic variant is the regulator and which is the target.

Case-2: If y and z are adjacent and, x and z are conditionally independent given y, then gene y will regulate the expression of gene z and the edge direction will be y \rightarrow z.

Case-3: If y and z are adjacent and, x and z are conditionally dependent given y, then gene z will regulate the expression of gene y and the edge direction will be z \rightarrow y.

Case-4: If y and z are adjacent and x and y are conditionally dependent given z and x and z are conditionally dependent given y, then the edge direction will be y \leftrightarrow z.

Value

An object that contains an estimate of the equivalence class of the underlying DAG.

call: A call object: the original function call.
n: The sample size used to estimate the graph.
max. ord: The maximum size of the conditioning set used in the conditional independence tests of the first part of the algorithm.
n.edge tests: The number of conditional independence tests performed by the first part of the algorithm.
sepset: Separation sets.
pMax: A square matrix , where the (i, j)th entry contains the maximal p-value of all conditional independence tests for edge i–j.
graph: An object of class "graph": The undirected or partially directed graph that was estimated.
zMin: Deprecated.
test: The number of tests that have been performed.
alpha: The level of significance for the current test.
R: A vector of all the decisions made so far from the tests that have been performed.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
References

See Also

MRPC; ModiSkeleton; SimulateData.

Examples

Load predefined data
Data pre-processing

The 1st column of the input matrix will be the
genetic variant and the remaining columns are the gene expression data.

Model 1
Truth <- MRPCtruth$M1 # Truth for model 1
data <- simu_data_M1 # data load for model 1
n <- nrow (data) # Number of row
V <- colnames(data) # Column names

Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
 n = n)

Infer a graph skeleton
Skel.fit <- ModiSkeleton(data,
suffStat = suffStat_C,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Edge Orientation
Edge_orientation <- EdgeOrientation(Skel.fit,
suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
FDRcontrol = TRUE,
verbose = TRUE)

Plot the results
par(mfrow = c(1, 2))
plot(Truth,
```r
main = "(A) Truth")
plot(Edge_orientation,
    main = "(B) MRPC ")

# Other models are available and may be called as follows:
# Model 0
# Truth <- MRPCtruth$M0
# data <- simu.data_M0

# Model 2
# Truth <- MRPCtruth$M2
# data <- simu.data_M2

# Model 3
# Truth <- MRPCtruth$M3
# data <- simu.data_M3

# Model 4
# Truth <- MRPCtruth$M4
# data <- simu.data_M4

# Model Multiparent
# Truth <- MRPCtruth$Multiparent
# data <- simu.data_multiparent

# Model Star
# Truth <- MRPCtruth$Star
# data <- simu.data_starshaped

# Model Layered
# Truth <- MRPCtruth$Layered
# data <- simu.data_layered
```

empty
Check empty matrix

Description

Need for check empty matrix.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
ModiSkeleton

Infer a graph skeleton (undirected graph)

Description

This function infers a graph skeleton (i.e., an undirected graph). It is based on the function skeleton from the pcalg package. Both functions perform marginal and conditional independence tests. However, ModiSkeleton implements an online false discovery rate (FDR) control method in order to control the overall FDR, whereas skeleton controls only the type I error rate for each individual test. See details below.

Usage

ModiSkeleton(data, suffStat, FDR, alpha, indepTest, labels, p,
method = c("stable", "original", "stable.fast"),
m.max = Inf, fixedGaps = NULL, fixedEdges = NULL,
NAdelete = TRUE, FDRcontrol = TRUE, verbose = FALSE)

Arguments

Many arguments are similar to those in skeleton and pc in the pcalg package. Several arguments here are also arguments for the function MRPC.

Data matrix, where the rows are samples and the columns are features (e.g., genetic variants (GVs) and phenotypes). Columns are for GVs, if available, appear before other columns for phenotypes (e.g., gene expression). For example, if there is one GV, then the first column of the data matrix is the GV and the remaining columns are the gene expression data.

\textbf{data suffStat} A list consisting of the correlation matrix of the data and the sample size.

\textbf{FDR} Desired overall FDR level.

\textbf{alpha} Significance level (number in (0,1) for the individual tests).

\textbf{indepTest} Name of the statistical test. It is used to test the independence of x and y given S, where x and y are variables and S is a vector, possibly empty, of variables. The return value of indepTest is the p-value of the test for conditional independence. Different tests may used for different data types. For example, indepTest='gaussCItest' for Gaussian data, indepTest='disCItest' for discrete data, and indepTest='binCItest' for binary data. See additional details in help(gaussCItest).

\textbf{ci.test} in the bnlearn package (Marco Scutari, 2010) may also be used for testing conditional independence and return a p-value. The default test statistic is the mutual information for categorical variables, the Jonckheere-Terpstra test for ordered factors and the linear correlation for continuous variables. See help(ci.test).

\textbf{labels} A character vector of names of variables (nodes). These are typically the column names of the data matrix.
ModiSkeleton

- \(p \) (optional) The number of variables (nodes). Need to be specified if the labels are not provided, in which case the labels are set to 1:p.

- method (optional) Character string specifying method. The default, "stable" provides an order-independent skeleton.

- m.max (optional) Maximum size of the conditioning sets that are considered in the conditional independence tests.

- fixedGaps (optional) A logical matrix of dimension p*p. If entry \([x, y]\), \([y, x]\), or both are TRUE, the edge \(x—y\) is removed before starting the algorithm. Therefore, this edge is guaranteed to be absent in the resulting graph.

- fixedEdges (optional) A logical matrix of dimension p*p. If entry \([x, y]\), \([y, x]\), or both are TRUE, the edge \(x—y\) is never considered for removal. Therefore, this edge is guaranteed to be present in the resulting graph.

- NAdelete (optional) If indepTest returns NA and this option is TRUE, the corresponding edge is deleted. If this option is FALSE, the edge is not deleted.

- FDRcontrol (optional) The default is TRUE which is used sequential FDR control method, otherwise used fixed significance level for the individual tests.

- verbose (optional) If TRUE, detailed output is provided. Default is FALSE for no output.

Details

The ModiSkeleton function incorporates sequential hypothesis testing to infer the graph skeleton. This function starts with a complete graph (all nodes are connected with undirected edges) and performs a series of marginal and conditional independence tests, removing the corresponding edge if the test is not rejected.

First, all pairs of nodes are tested for marginal independence. If two nodes \(x\) and \(y\) are judged to be marginally independent at a type I error rate alpha, the edge between them is deleted and the empty set is saved as separation sets \(S[x, y]\) and \(S[y, x]\). After all pairs have been tested for marginal independence, some edges may be removed.

Second, nodes \((x, y)\) with an edge are tested for conditional independence given all subsets of the neighboring nodes. If there is any node \(z\) such that \(x\) and \(y\) are conditionally independent given \(z\), the edge between \(x\) and \(y\) is removed and node \(z\) is saved as separation set, sepset, \(S[x, y]\) and \(S[y, x]\). The algorithm continues in this way by increasing the size of the conditioning set step by step. The algorithm stops if all adjacency sets in the current graph are smaller than the size of the conditioning set. The result is the skeleton in which every edge is still undirected.

Unlike existing algorithms, which control only the type I error rate for each individual test, MRPC implements the LOND (Level On the Number of Discoveries) method (Javanmard and Montanari, 2015), which is a sequential hypothesis testing procedure and sets value of alpha for each test based on the number of discoveries (i.e., rejections), to control the overall false discovery rate.

Value

An object containing an estimate of the skeleton of the underlying DAG as follow:

- call: A call object: the original function call.
- n: The sample size used to estimate the graph.
max. ord: The maximum size of the conditioning set used in the conditional independence tests of the first part of the algorithm.
n.edgetests: The number of conditional independence tests performed by the first part of the algorithm.
sepset: Separation sets.
pMax: A square matrix, where the (i, j)th entry contains the maximum p-value of all conditional independence tests for edge i–j.
graph: Object of class "graph": The undirected or partially directed graph that was estimated.
zMin: Deprecated.
test: The number of tests that have been performed.
alpha: The level of significance for the current test.
R: All of the decisions made so far from tests that have been performed.

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

See Also
MRPC; EdgeOrientation; SimulateData.

Examples

```r
# Load predefined simulated data
# Data pre-processing
# The 1st column of the input matrix will be the
```
genotype of the expression quantitative trait loci
(eQTL)/Copy number variation (CNVs) and the remaining
columns are the gene expression data.
We used pre-assigned level alpha = 0.05 that ensures
FDR and mFDR remains below 0.05.

Model 1
data <- simu_data_M1 # load data for model 1
n <- nrow(data) # Number of row
V <- colnames(data) # Column names

Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
 n = n)

Infer a graph skeleton
Skel.fit <- ModiSkeleton(data,
suffStat = suffStat_C,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Plot the results
plot(Skel.fit@graph,
 main = "Estimated Skeleton")

Other models are available and may be called as follows:
Model 0
data <- simu_data_M0

Model 2
data <- simu_data_M2

Model 3
data <- simu_data_M3

Model 4
data <- simu_data_M4

Model Multiparent
data <- simu_data_multiparent

Model Star
data <- simu_data_starshaped

Model Layered
data <- simu_data_layered
Description

This function calculates the inverse of the non-square matrix as part of the calculation of the robust correlation matrix.

Usage

```r
mpinv(X)
```

Arguments

- `X` Data Matrix

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

```r
InverseMatrix <- mpinv(simu_data_M0)
```

Description

This function is used to infer a causal network (or a causal graph) with directed and undirected edges from observational data. It implements the MRPC (PC with the principle of Mendelian randomization) algorithm described in Badsha and Fu, 2019 and Badsha et al., 2018, and the implementation is based on the `pcalg` package. The MRPC algorithm contains four major updates over the `pc` algorithm: (i) incorporating a sequential testing method to control the False Discovery Rate (FDR), (ii) improved v-structure identification; (iii) allowing for calculation of robust correlation to reduce the impact of outliers, and (iv) a new procedure for edge orientation based on the principle of Mendelian randomization (PMR) (Badsha and Fu, 2019 and Badsha et al., 2018). See details below.
Usage

MRPC(data, suffStat, GV, FDR = 0.05, alpha = 0.05, indepTest, labels, p,
fixedGaps = NULL, fixedEdges = NULL,
NAdelete = TRUE, m.max = Inf,
u2pd = c("relaxed", "rand", "retry"),
skel.method = c("stable", "original", "stable.fast"),
conservative = FALSE,
maj.rule = FALSE, solve.conf1 = FALSE, FDRcontrol = TRUE,
verbose = FALSE)

Arguments

This function is based on the pc function in the pcalg package. Therefore, many arguments are similar to those in pc.

Data matrix, where the rows are observations and the columns are features (i.e., variables, or nodes). If genetic variants (GVs) are included, then the columns start from GV(s) (e.g., single-nucleotide polymorphisms, or SNPs; insertions and deletions, or indels; copy number variation, or CNVs; and expression quantitative trait loci, or eQTLs to genes), and followed by phenotypes (e.g., gene expression). For example, if the data contains one GV, then the first column of the input matrix is the GV and the remaining columns are the gene expression data.

data suffStat
A list of sufficient statistics, containing all necessary elements for the conditional independence tests in the function indepTest for gaussCItest. The sufficient statistics consist of the correlation matrix of the data and the sample size.

GV
The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data matrix. For example, if the data has one SNPs/indels/CNV/eQTL, first column, then GV = 1, if 2 SNPs/indels/CNV/eQTL, 1st and 2nd Column, then GV = 2, if no GV then GV = 0, and so on.

FDR
Need to specify the desired level of the overall false discovery rate.

alpha
significance level (number in (0,1) for the individual tests.

indepTest
A function for testing conditional independence. It is used to test the conditional independence of x and y given S, called as indepTest(x, y, S, suffStat). Where, x and y are variables, and S is a vector, possibly empty, of variables. suffStat is a list, see the argument above. The return value of indepTest is the p-value of the test for conditional independence. The different indepTest is used for different data types, for example, Gaussian data = gaussCItest, Discrete data = disCItest and Binary data = binCItest. See help(gaussCItest)

The ci.test (Marco Scutari, 2010) is also used for testing conditional independence and return value of indepTest is the p-value. If none is specified, the default test statistic is the mutual information for categorical variables, the Jonckheere-Terpstra test for ordered factors and the linear correlation for continuous variables. See help(ci.test)

Remember that need to specify the which indepTest would like for independence testing. For example, if you would like to use gaussCItest you would type indepTest = 'gaussCItest' into the function otherwise indepTest = 'citest'. Note
that, we used gaussCItest to compare our MRPC with the existing pc, because of ci.test is not robust. See details in example.

labels A character vector of variable, or node, names. All variables are denoted in column in the input matrix.

p (optional) The number of variables, or nodes. May be specified if the labels are not provided, in which case the labels are set to 1:p.

fixedGaps (optional) A logical matrix of dimension p*p. If entry [x, y], [y, x], or both are TRUE, the edge x—y is removed before starting the algorithm. Therefore, this edge is guaranteed to be absent in the resulting graph.

fixedEdges (optional) A logical matrix of dimension p*p. If entry [x, y], [y, x], or both are TRUE, the edge x—y is never considered for removal. Therefore, this edge is guaranteed to be present in the resulting graph.

NAdelete (optional) If indepTest returns NA and this option is TRUE, the corresponding edge is deleted. If this option is FALSE, the edge is not deleted.

m.max (optional) Maximum size of the conditioning sets that are considered in the conditional independence tests.

u2pd (optional) Character string specifying the method for dealing with conflicting information.

skel.method (optional) Character string specifying method; the default, "stable" provides an order-independent skeleton.

conservative (optional) Logical. Indicates if the conservative PC algorithm is used. In this case, only option u2pd = "relaxed" is supported. Note that the resulting object might not be extendable to a DAG. See details for more information.

maj.rule (optional) Logical. Indicates that the triplets will be checked for ambiguity using a majority rule idea, which is less strict than the conservative PC algorithm. For more information, see details.

solve.conf1 (optional) If TRUE, the orientation of the v-structures and the orientation rules work with lists for candidate sets and allow bi-directed edges to resolve conflicting edge orientations. In this case, only option u2pd = "relaxed" is supported. Note that the resulting object might not be a CPDAG because bi-directed edges might be present. See details for more information.

FDRcontrol (optional) The default is TRUE which is used sequential FDR control method, otherwise used fixed significance level for the individual tests.

verbose (optional) If TRUE, detailed output is provided. The default is FALSE which does not print output details.

Details

The PC algorithm is computationally efficient for learning a directed acyclic graph (Spirtes et al., 2000). Several variants of the original PC algorithms are available (Kalisch and Buhlmann, 2007; Kalisch et al., 2012). Similar to these PC-like algorithms, our MRPC algorithm also contains two main steps:

Step-1: Inference of the graph skeleton. A graph skeleton is an undirected graph with edges that are supported by the data. Similar to existing PC-like algorithms, we perform statistical tests for
marginal and conditional independence tests. If the null hypothesis of independence is not rejected, then the corresponding edge is removed and never tested again.

However, unlike existing algorithms, which control only the type I error rate for each individual test, MRPC implements the LOND (Level On the Number of Discoveries) method (Javanmard and Montanari, 2015), which is a sequential hypothesis testing procedure and sets the significance level for each test based on the number of discoveries (i.e., rejections), to control the overall false discovery rate (FDR). See ModiSkeleton.

Genome data may have outliers that drastically alter the topology of the inferred graph. MRPC allows for the estimate of robust correlation, which may be the substitute of the Pearson correlation as the input to graph inference (Badsha et al., 2013).

Step-2: Edge orientation. With the graph skeleton inferred from Step 1, we orient each edge that is present in the graph. MRPC is fundamentally different from algorithms in the pcalg (Kalisch and Buhlmann, 2007; Kalisch et al., 2012) and bnlearn (Scutari, 2010) packages in the following ways (see EdgeOrientation):

(i) When analyzing genomic data, genetic variants provide additional information that helps distinguish the casual direction between two genes. Our MRPC algorithm incorporates the principle of Mendelian randomization in graph inference, which greatly reduces the space of possible graphs and increases the inference efficiency.

(ii) Next or if the input is not genomic data, we search for possible triplets that may form a v-structure (e.g., X→Y←Z). We check conditional test results from step I to see whether X and Z are independent given Y. If they are, then this is not a v-structure; alternative models for the triplet may be any of the following three Markov equivalent graphs: X→Y→Z, X←Y←Z, and X←Y→Z. If this test is not performed in the first step, we conduct it in this step. This step improves the accuracy of the v-structure identification over existing methods.

(iii) If there are undirected edges after steps (i) and (ii), we examine iteratively triplets of nodes with at least one directed edge and no more than one undirected edge. We check the marginal and conditional test results from Step I to determine which of the basic models is consistent with the test results. It is plausible that some undirected edges cannot be oriented, and we leave them as undirected.

Value

An object of class that contains an estimate of the equivalence class of the underlying DAG.

- **call**: a call object: the original function call.
- **n**: The sample size used to estimate the graph.
- **max. ord**: The maximum size of the conditioning set used in the conditional independence tests in the first part of the algorithm.
- **n.edgetests**: The number of conditional independence tests performed by the first part of the algorithm.
- **sepset**: Separation sets.
- **pmat**: A numeric square matrix, where the (i, j)th entry contains the maximal p-value of all conditional independence tests for edge i→j.
- **graph**: Object of class "graph": the undirected or partially directed graph that was estimated.
- **zMin**: Deprecated.
test: The number of tests that have been performed.
alpha: The level of significance for the current test.
R: All of the decisions made so far from tests that have been performed.

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

See Also
ModiSkeleton for inferring a graph skeleton (i.e., an undirected graph); EdgeOrientation for edge orientation in the inferred graph skeleton; SimulateData for generating data under a topology.

Examples
Load packages
We compare different simulated data across five methods: MRPC,
PC in pcalg (Kalisch et al., 2012), and pc.stable, mmpc and mmhc in
bnlearn (Marco Scutari, 2010)
library(MRPC) # MRPC
library(pcalg) # pc
library(bnlearn) # pc.stable, mmpc and mmhc

Data pre-processing
The 1st column of the input matrix will be the genotype of the
expression quantitative trait loci (eQTL)/Copy number variation (CNV)
and the remaining columns are the gene expression data.
We used pre-assigned level alpha = 0.05 that ensures FDR and mFDR
will remain below 0.05.

Load predefined simulated data
Model 1
Truth <- MRPCtruth$M1 # Truth for model 1
data <- simu_data_M1 # load data for model 1
n <- nrow (data) # Number of rows
V <- colnames(data) # Column names

Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
 n = n)

Infer the graph by MRPC
MRPC.fit <- MRPC(data,
suffStat = suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

Infer the graph by PC
pc.fit <- pc(suffStat = suffStat_C,
indepTest = gaussCItest,
alpha = 0.05,
labels = V,
verbose = TRUE)

arcs not to be included from gene expression to genotype used in pc.stable, mmpc
bl <- data.frame (from=colnames (data)[-1], to="V1")

Infer the graph by pc.stable
pc.stable.fit <- pc.stable(data.frame(data),blacklist=bl,undirected = FALSE)

Infer the graph by mmpc
mmpc.fit <- mmpc(data.frame(data),blacklist=bl,undirected = FALSE)

Infer the graph by mmhc
mmhc.fit <- mmhc(data.frame(data),blacklist=bl)

Plot the inferred graphs
par(mfrow = c(2, 3))
plot(Truth,
 main = "(A) Truth")
plot(MRPC.fit,
 main = "(B) MRPC")
plot(pc.fit,
 main ="(C) pc")
graphviz.plot(pc.stable.fit,
 main = "(D) pc.stable")
graphviz.plot(mmpc.fit,
 main = "(E) mmpc")
graphviz.plot(mmhc.fit,
 main = "(F) mmhc")

Another option for plot of the results. First fig is the nodes
dendrogram with colored modules. Second fig is the plot of the graph
with color based on modules.
To identify modules and complex graph (Suitable if you have many nodes)
Adjacency matrix from directed graph
Adj_directed <- as(MRPC.fit@graph,
 "matrix")

Plot of dendrogram with modules colors of nodes
PlotDendrogramObj <- PlotDendrogram(Adj_directed,
 minModuleSize = 2)

Visualization of inferred graph with modules colors
PlotGraphWithModulesObj <- PlotGraphWithModules(Adj_directed,
 PlotDendrogramObj,
 GV=1,
 node.size=8,
 arrow.size = 5,
 label.size = 3,
 alpha = 1)

Plot
plot(PlotGraphWithModulesObj)

Other models are available and may be called as follows:
Model 0
Truth <- MRPCtruth$M0
data <- simu_data_M0

Model 2
Truth <- MRPCtruth$M2
data <- simu_data_M2

Model 3
Truth <- MRPCtruth$M3
data <- simu_data_M3

Model 4
Truth <- MRPCtruth$M4
data <- simu_data_M4

Model Multiparent
Truth <- MRPCtruth$Multiparent
data <- simu_data_multiparent
MRPCclass-class

Class of MRPC algorithm results

Description

This class of objects is returned by the functions ModiSkeleton and MRPC to represent the (ModiSkeleton) of an estimated DAG similarly from pcAlgo-class. Objects of this class have methods for the functions plot, show and summary.

Usage

```r
## S4 method for signature 'MRPCclass,ANY'
plot(x, y, main = NULL,
     zvalue.lwd = FALSE, lwd.max = 7, labels = NULL, ...)
## S3 method for class 'MRPCclass'
print(x, amat = FALSE, zero.print = ".", ...)
## S4 method for signature 'MRPCclass'
summary(object, amat = TRUE, zero.print = ".", ...)
## S4 method for signature 'MRPCclass'
show(object)
```

Arguments

- `x, object` a "MRPCclass" object.
- `y` (generic plot() argument; unused).
- `main` main title for the plot (with an automatic default).
- `zvalue.lwd` logical indicating if the line width (lwd) of the edges should be made proportional to the entries of matrix zMin (originally) or derived from matrix pMax.
- `lwd.max` maximal lwd to be used, if `zvalue.lwd` is true.
- `labels` if non-NULL, these are used to define node attributes nodeAttrs and attrs, passed to `agopen()` from package `Rgraphviz`.
- `amat` logical indicating if the adjacency matrix should be printed as well.
- `zero.print` String for printing 0 ('zero') entries in the adjacency matrix.
- `...` (optional) Further arguments passed from and to methods.
Creation of objects

Objects are typically created as result from `skeleton()` or `pc()`, but could be be created by calls of the form `new("MRPCclass",...)`.

Slots

The slots `call, n, max.ord, n.edgetests, sepset, pMax, graph, zMin, test, alpha` and `R` are inherited class.

In addition, "MRPCclass" has slots

- `call`: a `call` object: the original function call.
- `n`: The sample size used to estimate the graph.
- `max.ord`: The maximum size of the conditioning set used in the conditional independence tests of the first part of the algorithm.
- `n.edgetests`: The number of conditional independence tests performed by the first part of the algorithm.
- `sepset`: Separation sets.
- `pMax`: A square matrix, where the (i, j)th entry contains the maximum p-value of all conditional independence tests for edge i–j.
- `graph`: Object of class "graph": The undirected or partially directed graph that was estimated.
- `zMin`: Deprecated.
- `test`: The number of tests that have been performed.
- `alpha`: The level of significance for the current test.
- `R`: All of the decisions made so far from tests that have been performed.

Methods

- `plot` signature(`x = "MRPCclass"`): Plot the resulting graph. If argument "zvalue.lwd" is true, the linewidth an edge reflects `zMin`, so that thicker lines indicate more reliable dependencies. The argument "lwd.max" controls the maximum linewidth.
- `show` signature(`object = "MRPCclass"`): Show basic properties of the fitted object
- `summary` signature(`object = "MRPCclass"`): Show details of the fitted object

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

- `MRPC`, `ModiSkeleton`
Examples

showClass("MRPCclass")

Generate a MRPCclass object
data <- simu_data_M1 # load data for model 1
n <- nrow(data) # Number of rows
V <- colnames(data) # Column names

Calculate Pearson correlation
suffStat_C <- list(C = cor(data),
n = n)

Infer the graph by MRPC
MRPC.fit <- MRPC(data,
suffStat_C,
GV = 1,
FDR = 0.05,
alpha = 0.05,
indepTest = 'gaussCItest',
labels = V,
FDRcontrol = TRUE,
verbose = TRUE)

MRPCtruth

Graphs used as truth in simulation

Description

Topologies of the five basic models and three common graphs in biology: namely the multi-parent graph, the star graph and the layered graph. See details in Badsha and Fu, 2019.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

Examples

```r
data("MRPCtruth")  # load data

# Plots
par(mfrow = c(2, 4))
plot(MRPCtruth$M0,
    main = "Model0")
plot(MRPCtruth$M1,
    main = "Model1")
plot(MRPCtruth$M2,
    main = "Model2")
plot(MRPCtruth$M3,
    main = "Model3")
plot(MRPCtruth$M4,
    main = "Model4")
plot(MRPCtruth$Multiparent,
    main = "Multiparent")
plot(MRPCtruth$Star,
    main = "Star")
plot(MRPCtruth$Layered,
    main = "Layered")
```

PlotDendrogram

Plot a dendrogram and display node groups in colored modules

Description

Generate a dendrogram of nodes with dissimilarity based on topological overlap, and group nodes into modules indicated by colors.

Usage

```r
PlotDendrogram(Adj_directed, minModuleSize, groupLabels = " ",
    dendroLabels = FALSE, hclustHang = 0.03,
    dendroAddGuide = FALSE, dendroGuideHang = 0.05,
    dendroMain = "Dendrogram with modules of nodes in colors", ...)
```

Arguments

- **Adj_directed**: Adjacency matrix from directed graph
- **minModuleSize**: Minimum module size.
- **groupLabels**: Argument for `plotDendroAndColors`. Labels for the colorings given in colors. The labels will be printed to the left of the color rows in the plot.
- **dendroLabels**: Argument for `plotDendroAndColors`. Dendrogram labels.
- **hclustHang**: Argument hang for `plot.hclust`. The fraction of the plot height by which labels should hang below the rest of the plot.
PlotGraphWithModules

dendroAddGuide Argument addGuide for plotDendroAndColors. Logical: should vertical "guide lines" be added to the dendrogram plot? The lines make it easier to identify color codes with individual samples.

dendroGuideHang Argument guideHang for plotDendroAndColors. The fraction of the dendrogram height to leave between the top end of the guide line and the dendrogram merge height.

dendroMain Argument main for plot.hclust. Title of the plot.

Additional plotting arguments for plotDendroAndColors and plot.hclust.

Value

A list containing the graph objects as follows:

- PlotDendrogramObj: An object of class "graph" of the estimated graph.
- dynamicColors: A list of colors with corresponding nodes.
- GroupMods: Dynamic tree cut to identify modules whose phenotype profiles are very similar.
- GroupModsColors: A table for number of nodes with corresponding colors.
- Adj_symmetric_matrix: A symmetric matrix from adjacency matrix of directed graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

MRPC.

Examples

Adjacency matrix from directed example graph
Adj_directed <- as(data_examples$complex$cont$withGV$graph,
"matrix")

Plot of dendrogram with modules colors of nodes
PlotDendrogramObj <- PlotDendrogram(Adj_directed,
 minModuleSize = 5)

PlotGraphWithModules Plot a graph with nodes in modules indicated by colors

Description

Visualization of a graph with nodes in modules inferred from the clustering dendrogram by PlotDendrogram.
PlotGraphWithModules

Usage

PlotGraphWithModules(Adj_directed, PlotDendrogramObj,
 GV = GV, node.size = 8, arrow.size = 5,
 label.size = 3, alpha = 1,...)

Arguments

Adj_directed Adjacency matrix of a graph.
PlotDendrogramObj The graphical objects from PlotDendrogram.
GV The number of genetic variants (SNPs/indels/CNVs/eQTL) in the input data matrix. For example, if the data has one SNPs/indels/CNV/eQTL in the first column, then GV = 1, if 2 SNPs/indels/CNVs/eQTL in the 1st and 2nd Column, then GV = 2, and so on. If no GV then GV = 0.
node.size The size of the nodes in the graph. Defaults to 8.
arrow.size The size of the arrows for directed network edges, in points. Defaults to 5.
label.size The size of the node labels in points, as a numeric value, a vector of numeric values, or as a vertex attribute containing numeric values. Defaults to 3.
alpha The level of transparency of the edges and nodes. Defaults to 1 (no transparency).
... Other arguments passed to ggnet2.

Value

• PlotGraphWithModulesObj: An object of class "graph" of the graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

PlotDendrogram

Examples

Adjacency matrix from a graph in the example
Adj_directed <- as(data_examples$complex$cont$withGV$graph,
 "matrix")

A clustering dendrogram with nodes grouped in colored modules
PlotDendrogramObj <- PlotDendrogram(Adj_directed,
 minModuleSize = 5)

A graph object with nodes in modules
PlotGraphWithModulesObj <- PlotGraphWithModules(Adj_directed,
 PlotDendrogramObj,
 ...
RecallPrecision

GV=14,
node.size=8,
arrow.size = 5,
label.size = 3,
alpha = 1)

Plot the graph with nodes in different colors
plot(PlotGraphWithModulesObj)

RecallPrecision Calculate recall and precision for two graphs

Description

This function counts the number of true and false positives, and calculates recall and precision, which are defined as follows:

Recall = (# edges correctly identified in inferred graph) / (# edges in true graph).

Precision = (# edges correctly identified in inferred graph) / (# edges in inferred graph).

Usage

RecallPrecision(g1, g2, GV, includeGV, edge.presence = 1.0, edge.direction = 0.5)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>First graph object, from the true graph</td>
</tr>
<tr>
<td>g2</td>
<td>Second graph object, from the inferred graph</td>
</tr>
<tr>
<td>GV</td>
<td>The number of genetic variants (SNPs/indels/CNV/eQTL) in the input data. For example, if the data has one genetic variant, first column, then GV = 1, if 2, 1st and 2nd Column, then GV = 2, and so on.</td>
</tr>
<tr>
<td>includeGV</td>
<td>If TRUE, include edges involving genetic variants (GV) when calculating recall and precision. If FALSE, excluded edges involving genetic variants (GV) when calculating recall and precision.</td>
</tr>
<tr>
<td>edge.presence</td>
<td>The weight for an edge being present.</td>
</tr>
<tr>
<td>edge.direction</td>
<td>The weight for the edge direction.</td>
</tr>
</tbody>
</table>

Details

We consider it more important to be able to identify the presence of an edge than to also get the direct correct. Therefore, we assign 1 as the default to an edge with the correct direction and 0.5 to an edge with the wrong direction or no direction (Badsha and Fu, 2019; Badsha et al., 2018).
Value

A list of object that containing the following:

- **Matrix**: Results store for TP and FP
- **TP**: Total found edges in the inferred graph and edge exists in the true graph.
- **FP**: Total found edges in the inferred graph but no edge exists in the true graph.
- **NTE**: Total number of edges in the true graph.
- **NIE**: Total number of edges in the inferred graph.
- **Recall**: Power, or sensitivity measures how many edges from the true graph a method can recover.
- **Precision**: Measures how many correct edges are recovered in the inferred graph.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

See Also

- aSHD: adjusted Structural Hamming Distance (aSHD)

Examples

```r
# True model
# True graph (V1 --> T1 --> T2 --> T3)
# Where V1 is a genetic variant (GV) and T1, T2, and T3 are phenotypes
tarmat_s1 <- matrix(0,
                     nrow = 4,
                     ncol = 4)

colnames(tarmat_s1) <- c("V1", "T1", "T2", "T3")
rownames(tarmat_s1) <- colnames(tarmat_s1)

# Create an adjacency matrix for the true graph
tarmat_s1[1, 2] <- 1
tarmat_s1[2, 3] <- 1
tarmat_s1[3, 4] <- 1

# Graph object of the true graph
Truth <- as(tarmat_s1, "graphNEL")
```
Inferred graph (V1 --> T1 <-- T2 --> T3)
Where V1 is a genetic variant (GV) and T1, T2, and T3 are phenotypes
tarmat_s2 <- matrix(0,
 nrow = 4,
 ncol = 4)

colnames(tarmat_s2) <- c("V1", "T1", "T2", "T3")
rownames(tarmat_s2) <- colnames(tarmat_s2)

Create an adjacency matrix for the inferred graph
tarmat_s2[1, 2] <- 1
tarmat_s2[3, 2] <- 1
tarmat_s2[3, 4] <- 1

Graph objects for the inferred graph
Inferred <- as(tarmat_s2, "graphNEL")

Recall and Precision
Recall_Precision <- RecallPrecision(Truth, Inferred, GV = 1, includeGV = TRUE, edge.presence = 1.0, edge.direction = 0.5)

RobustCor

Calculate robust correlation matrix

Description

Calculate robust correlation matrix based on beta value. The value of beta plays a key role in the performance of the robust method, which controls the tradeoff between the robustness and efficiency of the estimators.

Usage

RobustCor(xx, Beta, plot = FALSE)

Arguments

- **xx**: Data matrix
- **Beta**: Tuning parameter, between 0 and 1, if 0 then equal to nonrobust, classical method. We suggest using, Beta = 0.005 in both without and with outliers in simulation study. This value should reflect the amount of outliers in the data. Whereas a large value increases robustness, it reduces sensitivity of identifying an edge. We need a more principled way to determine this value.
- **plot**: To set no plotting as the default for weight vs gene index.
Details

We take a robust approach and calculate the robust correlation matrix (Badsha et al., 2013) on which the series of hypothesis testing is performed. The performance of the robust correlation method depends on the values of the tuning parameter beta. It controls the tradeoff between robustness and efficiency of estimators. This method shows high performance for a wide range of beta. The values of beta lies between 0 and 1, such that a large value of beta decreases the efficiency, while it increases the robustness of an estimator, and vice-versa for a small value of beta. Thus, we need to select an optimal beta to obtain both high robustness and efficiency, while it depends on the initialization of model parameters, data contamination rates, types of data contamination, types of datasets, and so on. We used the beta value from Badsha et al., 2013. The robust method reduces to the classical method (Biased estimator) with the tuning parameter beta ->0. When the data matrix contains missing values, we perform imputation using the R package mice (Buuren and Groothuis-Oudshoorn, 2011).

Value

list of objects as follows:

- **RR**: Robust correlation matrix.
- **M**: Robust mean vector.
- **V**: Robust covariance matrix.
- **Wt**: Weight for each observation.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

Examples

```r
RobustCor_objects <- RobustCor(simu_data_M0,  
    Beta = 0.005,  
    plot = FALSE)  
Rcorr <- RobustCor_objects $RR  # Correlation matrix
```
seqDiff

Deviation between two graphs represented by two sequences

Description

This function evaluates whether two graphs are identical. Each graph is represented first by a binary vector, which is the vectorized adjacency matrix, and then converted to a decimal number. The difference in the decimal numbers is the deviation between the two graphs.

Usage

seqDiff(g1, g2)

Arguments

- **g1**: Adjacency matrix from the first graph object.
- **g2**: Adjacency matrix from the second graph object.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

Examples

```r
# True model
# True graph (V1 --> T1 --> T2 --> T3)
tarmat_s1 <- matrix(0,
                   nrow = 4,
                   ncol = 4)

colnames(tarmat_s1) <- c("V1", "T1", "T2", "T3")
rownames(tarmat_s1) <- colnames(tarmat_s1)

# Create an adjacency matrix for the true graph
tarmat_s1[1, 2] <- 1
tarmat_s1[2, 3] <- 1
tarmat_s1[3, 4] <- 1

# Inferred graph (V1 --> T1 <-- T2 --> T3)
tarmat_s2 <- matrix(0,
                   nrow = 4,
                   ncol = 4)

colnames(tarmat_s2) <- c("V1", "T1", "T2", "T3")
rownames(tarmat_s2) <- colnames(tarmat_s2)
```
Create an adjacency matrix for the inferred graph
	tarmat_s2[, 2] <- 1
	tarmat_s2[3, 2] <- 1
	tarmat_s2[3, 4] <- 1

Deviation of the inferred graph from the true graph.
	Results <- seqDiff(tarmat_s2,
	 tarmat_s1)

SeqFDR

Sequential FDR

Description

Sequential FDR method that controls the FDR and mFDR in an online manner.

Usage

```
SeqFDR(m, FDR, a=2, R)
```

Arguments

- `m`: The number of current the test.
- `FDR`: FDR level.
- `a`: A constant.
- `R`: All of the decisions from the tests that have already been performed.

Details

We used the LOND (significance Levels based On Number of Discoveries) algorithm that controls FDR and mFDR in an online manner (Javanmard and Montanari, 2015). Where the significance level, alpha, is based on the total number of discoveries made so far. Which is similar to the algorithm called alpha-investing rules introduced by (Foster and Staine, 2007) to control only mFDR in an online manner.

Value

The value of alpha.

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)
References

See Also

MRPC for estimating a DAG using the Mendelian Randomization (MR) based (MRPC) algorithm; ModiSkeleton for estimating a skeleton using modified skeleton function.

SimulateData

Simulate data under certain graphs

Description

This function simulates data using linear models for several graphs: the five basic topologies and three topologies that are common in biology, namely the multi-parent graph, the star graph and the layered graph. See references for details.

Usage

SimulateData(N, p, model, b0.1, b1.1, b1.2, b1.3, sd.1)

Arguments

N The number of observations.

p Population frequency of the reference allele. Real number between 0 to 1, which is the number of a particular allele is present.

model The model for which data will be simulated. For example, if you want to generate data for model 0 you would type 'model0' into the function.

b0.1 Intercept of b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are the parents of the corresponding node.

b1.1 Slope of P1 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are the parents of the corresponding node.

b1.2 Slope of P2 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are the parents of the corresponding node.

b1.3 Slope of P3 for b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3, where P1, P2, and P3 are the parents of the corresponding node.

sd.1 Standard deviation for corresponding data generated nodes.

Details

The first column of the input matrix is the genotype of the expression quantitative trait loci (eQTL)/Copy number variation (CNVs) and the remaining columns are the node expression data.
Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

References

See Also

MRPC; SimulateDataNP, which simulates data for a node with no parent; SimulateData1P for a node with one parent; SimulateData2P for a node with two parents.

Examples

```r
# Data pre-processing

# If you use only one genotype of the expression quantitative trait loci (eQTL)/Copy number variation (CNV), the 1st column of
# the input matrix will be eQTL/CNV and the remaining
# columns are the gene expression data.

## Model 0
simu_data_M0 <- SimulateData(N = 10^3, p = 0.45, 'model0', b0.1 = 0, b1.1 = 1, b1.2 = 1, b1.3 = 1, sd.1 = 1)

## Model 1
simu_data_M1 <- SimulateData(N = 10^3, p = 0.45, 'model1', b0.1 = 0, b1.1 = 1, b1.2 = 1, b1.3 = 1, sd.1 = 1)

## Model 2
```

SimulateData
The code snippet provided simulates data for various models using the `SimulateData` function. Here is a breakdown of the models and their implementations:

Model 2
```
simu_data_M2 <- SimulateData(N = 10^3, 
  p = 0.45, 
  'model2', 
  b0.1 = 0, 
  b1.1 = 1, 
  b1.2 = 1, 
  b1.3 = 1, 
  sd.1 = 1)
```

Model 3
```
simu_data_M3 <- SimulateData(N = 10^3, 
  p = 0.45, 
  'model3', 
  b0.1 = 0, 
  b1.1 = 1, 
  b1.2 = 1, 
  b1.3 = 1, 
  sd.1 = 1)
```

Model 4
```
simu_data_M4 <- SimulateData(N = 10^3, 
  p = 0.45, 
  'model4', 
  b0.1 = 0, 
  b1.1 = 1, 
  b1.2 = 1, 
  b1.3 = 1, 
  sd.1 = 1)
```

Multiple Parent Model
```
simu_data_multiparent <- SimulateData(N = 10^3, 
  p = 0.45, 
  'multiparent', 
  b0.1 = 0, 
  b1.1 = 1, 
  b1.2 = 1, 
  b1.3 = 1, 
  sd.1 = 1)
```

Star Model
```
simu_data_starshaped <- SimulateData(N = 10^3, 
  p = 0.45, 
  'starshaped', 
  b0.1 = 0, 
  b1.1 = 1, 
  b1.2 = 1, 
  b1.3 = 1, 
  sd.1 = 1)
```

Layered Model
```
simu_data_layered <- SimulateData(N = 10^3, 
  p = 0.45, 
  'layered',
```
Simulate data for a node with one parent

Description

Simulate data for a node with one parent

Usage

```
SimulateData1P(N, P1, b0.1, b1.1, sd.1)
```

Arguments

- **N**
 Number of observations
- **P1**
 Data vector of the parent node P1.
- **b0.1**
 Intercept of b0.1 + b1.1*P1, where P1 is the parent of the corresponding node.
- **b1.1**
 Slope of P1 for b0.1 + b1.1*P1, where P1 is the parent of the corresponding node.
- **sd.1**
 Standard deviation for corresponding data generated nodes.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.

Examples

```
Data1P <- SimulateData1P(N = 10^3,
P1 = 1,
b0.1 = 0,
b1.1 = 1,
sd.1 = 1)
```
Simulate data for a node with two parents

Description

Simulate data for a node with two parents

Usage

SimulateData2P(N, P1, P2, b0.1, b1.1, b1.2, sd.1)

Arguments

- **N**: Number of observations
- **P1**: Data vector of the parent node, P1.
- **P2**: Data vector of the parent node, P2.
- **b0.1**: Intercept of b0.1 + b1.1*P1 + b1.2*P2, where P1 and P2 are the parents of the corresponding node.
- **b1.1**: Slope of P1 for b0.1 + b1.1*P1 + b1.2*P2, where P1 and P2 are the parents of the corresponding node.
- **b1.2**: Slope of P2 for b0.1 + b1.1*P1 + b1.2*P2, where P1 and P2 are the parents of the corresponding node.
- **sd.1**: Standard deviation for corresponding data generated nodes.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

- SimulateData for simulated data generating function.

Examples

```r
Data2P <- SimulateData2P(N = 10^3, 
P1 = 1, 
P2 = 1, 
b0.1 = 0, 
b1.1 = 1, 
b1.2 = 1, 
sd.1 = 1)
```
Simulate data for a node with three parents

Description

Simulate data for a node with three parents

Usage

```r
SimulateData3P(N, P1, P2, P3, b0.1, b1.1, b1.2, b1.3, sd.1)
```

Arguments

- **N**: Number of observations.
- **P1**: Data vector of the parent node, P1.
- **P2**: Data vector of the parent node, P2.
- **P3**: Data vector of the parent node, P3.
- **b0.1**: Intercept of \(b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3 \), where P1, P2, and P3 are the parents of the corresponding node.
- **b1.1**: Slope of P1 for \(b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3 \), where P1, P2, and P3 are the parents of the corresponding node.
- **b1.2**: Slope of P2 for \(b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3 \), where P1, P2, and P3 are the parents of the corresponding node.
- **b1.3**: Slope of P3 for \(b0.1 + b1.1*P1 + b1.2*P2 + b1.3*P3 \), where P1, P2, and P3 are the parents of the corresponding node.
- **sd.1**: Standard deviation for corresponding data generated node.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.
Simulate data for a node with no parent

Description

Simulate data for a node with no parent

Usage

SimulateDataNP(N, b0.1, sd.1)

Arguments

N Number of observations
b0.1 Intercept of the corresponding simulated node.
sd.1 Standard deviation for corresponding data generated node.

Value

Vector

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData for simulated data generating function.

Examples

DataNP <- SimulateDataNP(N = 10^3,
 b0.1 = 0,
 sd.1 = 1)
simu_data_layered

Data for the layered model

Description
Data simulated under the layered Model.

Details
The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value
Matrix

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also
SimulateData.

simu_data_M0

Data for Model 0

Description
Data simulated under Model 0.

Details
The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value
Matrix

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also
SimulateData.
simu_data_M1

Data for Model 1

Description

Data simulated under Model 1.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.

simu_data_M2

Data for Model 2

Description

Data simulated under Model 2.

Details

The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value

Matrix

Author(s)

Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also

SimulateData.
simu_data_M3

Data for Model 3

Description
Data simulated under Model 3.

Details
The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value
Matrix

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also
SimulateData.

simu_data_M4

Data for Model 4

Description
Data simulated under Model 4.

Details
The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value
Matrix

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also
SimulateData.
simu_data_multiparent Data for the multiple-parent model

Description
Data simulated under the multiple-parent model, where a phenotype node has multiple parent nodes.

Details
The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value
Matrix

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also
SimulateData.

simu_data_starshaped Data for the star model

Description
Data simulated under the star model, where one gene has more than two children.

Details
The columns of the data matrix are the genetic variant (V node) and phenotype nodes (T nodes).

Value
Matrix

Author(s)
Md Bahadur Badsha (mdbadsha@uidaho.edu)

See Also
SimulateData.
Index

*Topic classes
 MRPCclass-class, 41

agopen, 41
aSHD, 2, 48

call, 27, 31, 37, 42
ci.test, 30, 35, 36
class, 37
CompareMethodsNodeOrdering, 4
CompareMethodsVStructure, 6
cut2, 7
CutModules, 7

data_examples, 8
data_GEUVADIS, 12, 14
data_GEUVADIS_combined, 13
data_with_outliers, 23
data_without_outliers, 20

EdgeOrientation, 26, 32, 37, 38
empty, 29

function, 26, 35
gaussCItest, 36
ggnet2, 46
graph, 27, 32, 37, 42

list, 26, 35, 48, 50
logical, 41

mmhc, 4, 6, 21, 23
mmpc, 4, 6
ModiSkeleton, 26, 28, 30, 31, 37, 38, 41, 42, 53
mpinv, 34
MRPC, 4, 6, 21, 23, 26, 28, 30, 32, 34, 36, 41, 42, 45, 53, 54
MRPCclass-class, 41
MRPCtruth, 43

pc, 4, 6, 21, 23, 30, 34–36, 42
pc.stable, 4, 6
plot, MRPCclass, ANY-method
 (MRPCclass-class), 41
plot.hclust, 44, 45
plotDendrogramAndColors, 44, 45
PlotDendrogram, 44, 45, 46
PlotGraphWithModules, 45
print.MRPCclass (MRPCclass-class), 41

RecallPrecision, 7, 47
RobustCor, 49
seqDiff, 51
SeqFDR, 52
show, MRPCclass-method
 (MRPCclass-class), 41
simu_data_layered, 60
simu_data_M0, 60
simu_data_M1, 61
simu_data_M2, 61
simu_data_M3, 62
simu_data_M4, 62
simu_data_multiparent, 63
simu_data_starshaped, 63
SimulateData, 28, 32, 38, 53, 56–63
SimulateData1P, 54, 56
SimulateData2P, 54, 57
SimulateData3P, 58
SimulateDataNP, 54, 59
skeleton, 30, 42
summary, MRPCclass-method
 (MRPCclass-class), 41