Package ‘MRReg’

October 12, 2022

Title MDL Multiresolution Linear Regression Framework

Version 0.1.5

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Description We provide the framework to analyze multiresolution partitions (e.g. country, provinces, subdistrict) where each individual data point belongs to only one partition in each layer (e.g. i belongs to subdistrict A, province P, and country Q). We assume that a partition in a higher layer subsumes lower-layer partitions (e.g. a nation is at the 1st layer subsumes all provinces at the 2nd layer). Given N individuals that have a pair of real values (x,y) that generated from independent variable X and dependent variable Y. Each individual i belongs to one partition per layer. Our goal is to find which partitions at which highest level that all individuals in the these partitions share the same linear model Y=f(X) where f is a linear function. The framework deploys the Minimum Description Length principle (MDL) to infer solutions. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2021) <doi:10.1145/3424670>.

License MIT + file LICENSE

URL https://github.com/DarkEyes/MRReg

BugReports https://github.com/DarkEyes/MRReg/issues

Encoding UTF-8

Depends R (>= 3.5.0), caret

Imports igraph

Suggests knitr, rmarkdown, markdown

VignetteBuilder knitr

RoxygenNote 7.1.2

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]

 (<https://orcid.org/0000-0003-3131-0370>)

Repository CRAN

Date/Publication 2022-08-19 15:30:02 UTC
FindMaxHomoOptimalPartitions

Description

FindMaxHomoOptimalPartitions is a main function for inferring optimal homogeneous clusters from a multiresolution dataset DataT.

Usage

FindMaxHomoOptimalPartitions(
 DataT,
 gamma = 0.05,
 insigThs = 1e-08,
 alpha = 0.05,
 minInvs = 99,
 polyDegree = 1,
 expFlag = FALSE,
 messageFlag = FALSE
)

Arguments

DataT contains a multiresolution dataset s.t. DataT$X[i,d] is a value of feature d of individual i, DataT$Y[i] is value of target variable of individual i that we want to fit DataT$Y ~ DataT$X in linear model, and clsLayer[i,j] is a cluster ID of individual i at layer j; clsLayer[i,1] is the first layer that everyone typically belongs to a single cluster.

gamma is a threshold to ...

insigThs is a threshold to determine whether a magnitude of a feature coefficient is enough so that the feature is designated as a selected feature.

alpha is a significance level to determine whether a magnitude of a feature coefficient is enough so that the feature is designated as a selected feature.

minInvs is a minimum number of individuals for a cluster to be considered for inferring eta(C)cv, otherwise, eta(C)cv=0.
polyDegree is a degree of polynomial function that is used to fit the data. If it is greater than 1, the polynomial formula is used in \(\text{lm}() \) instead of \(y = . \).

expFlag is an exponential flag to control the formula for data fitting. If it is true, then the \(\exp() \) formula is used in \(\text{lm}() \) instead of \(y = . \).

messageFlag is a flag. If it is true, the function shows the text regarding the progress of computing.

Value

This function returns \(\text{Copt} \), \(\text{models} \), \(nNodes \), \(\text{invOptCls} \), and \(\text{minR2cv} \).

\(\text{Copt} \)

\(\text{Copt}[p,1] \) is equal to \(k \) implies a cluster that is a \(p \)th member of the maximal homogeneous partition is at \(k \)th layer and the cluster name in \(k \)th layer is \(\text{Copt}[p,2] \) \(\text{Copt}[p,3] \) is "Model Information Reduction Ratio" \(I(\{C\},H_0,H_{\text{lin}}) \) of \(p \)th member of the maximal homogeneous partition: positive means the linear model is better than the null model. Lastly, \(\text{Copt}[p,4] \) is the squared correlation between predicted and real \(Y \) in CV step (\(\text{eta}(C)_{\text{cv}} \)) of \(p \)th member of the maximal homogeneous partition. The greater \(\text{Copt}[p,4] \), the higher homogeneous degree of this cluster.

\(\text{clustInfoRecRatio} \)

\(\text{models}[[k]][[j]]$\text{clustInfoRecRatio} \) is the "Cluster Information Reduction Ratio" \(I(C_j,C_{jchildren},H) \) between the \(j \)th cluster in \(k \)th layer and its children clusters in \((k+1) \)th layer: positive means current cluster is better than its children clusters. Hence, we should keep this cluster at the member of maximal homogeneous partition instead of its children.

\(\text{models} \)

\(\text{models}[[j]][[k]] \) is a linear model of a cluster ID \(k \) at the layer \(j \). The \(\text{models}[[j]][[k]]$\text{selFeatureSet} \) represents a set of selected-feature indices of the model where the feature index 1 is the intercept, and the feature index \(d \) is the (\(d-1 \))th variable \(\text{DataT}$X[,d-1] \).

\(\text{invOptCls} \)

\(\text{invOptCls}[i,1] \) is the layer of optimal cluster of individual \(i \). The optimal cluster of \(i \) is \(\text{invOptCls}[i,2] \).

\(\text{minR2cv} \)

is the value of \(\text{eta}(C)_{\text{cv}} \) from the cluster that has the lowest \(\text{eta}(C)_{\text{cv}} \).

\(\text{DataT} \)

is an updated \(\text{DataT} \) with the helper variables for plotting and printing results.

Examples

Running FindMaxHomoOptimalPartitions using simulation data
\n\text{DataT}<-\text{SimpleSimulation}(100,\text{type}=1)
\text{obj}<-\text{FindMaxHomoOptimalPartitions}(\text{DataT},\text{gamma}=0.05)
linearModelTraining

Description

linearModelTraining is a support function for training linear models for partitions in all layers.

Usage

linearModelTraining(
 DataT,
 insigThs = 1e-08,
 alpha = 0.05,
 messageFlag = FALSE,
 polyDegree = 1,
 expFlag = FALSE
)

Arguments

DataT contains a multiresolution dataset s.t. DataT$X[i,d] is a value of feature d of individual i, DataT$Y[i] is value of target variable of individual i that we want to fit DataT$Y ~ DataT$X in linear model, and clsLayer[i,j] is a cluster ID of individual i at layer j; clsLayer[i,1] is the first layer that everyone typically belongs to a single cluster.

insigThs is a threshold to determine whether a magnitude of a feature coefficient is enough so that the feature is designated as a selected feature.

alpha is a significance level to determine whether a magnitude of a feature coefficient is enough so that the feature is designated as a selected feature.

messageFlag is a flag. If it is true, the function shows the text regarding the progress of computing.

polyDegree is a degree of polynomial function that is used to fit the data. If it is greater than 1, the polynomial formula is used in lm() instead of "y=.".

expFlag is an exponential flag to control the formula for data fitting. If it is true, then the exp() formula is used in lm() instead of "y=.".

Value

This function returns models and DataT.

models[[j]][[k]] is a linear model of a cluster ID k at the layer j. The models[[j]][[k]]$selFeatureSet represents a set of selected-feature indices of the model where the feature index 1 is the intercept, and the feature index d is the (d-1)th variable DataT$X[,d-1].

DataT is a DataT with DataT$nNodes, which is a number of total models from all layers.
plotOptimalClustersTree

Examples

Running linearModelTraining using simulation data
DataT<-SimpleSimulation(100,type=1)
obj<-linearModelTraining(DataT)

plotOptimalClustersTree

Description

plotOptimalClustersTree is a support function for plotting the hierarchical tree of optimal clusters from FindMaxHomoOptimalPartitions function.

The red node(s) are the optimal homogeneous clusters while the gray nodes are non-optimal clusters.

Usage

plotOptimalClustersTree(resObj)

Arguments

resObj is an object list, which is the output of FindMaxHomoOptimalPartitions function

Value

No return value, called for plotting the hierarchical tree of optimal clusters.

Examples

Running FindMaxHomoOptimalPartitions using simulation data
DataT<-SimpleSimulation(100,type=1)
obj<-FindMaxHomoOptimalPartitions(DataT,gamma=0.05)
Plotting the result
plotOptimalClustersTree(obj)
PrintOptimalClustersResult

Description
PrintOptimalClustersResult is a support function for printing the optimal clusters from FindMaxHomoOptimalPartitions function.

Usage
PrintOptimalClustersResult(resObj, selFeature = FALSE)

Arguments
resObj is an object list, which is the output of FindMaxHomoOptimalPartitions function
selFeature is a flag. If it is true, then the function shows the selected feature(s) of each optimal cluster.

Value
No return value, called for printing optimal clusters.

Examples
Running FindMaxHomoOptimalPartitions using simulation data
DataT<-SimpleSimulation(100,type=1)
obj<-FindMaxHomoOptimalPartitions(DataT,gamma=0.05)
Printing the result
PrintOptimalClustersResult(obj)

SimpleSimulation

Description
SimpleSimulation is a support function for generating multiresolution datasets.
All simulation types have three layers except the type 6 has four layers.
The type-1 simulation has all individuals belong to the same homogeneous partition in the first layer.
The type-2 simulation has four homogeneous partitions in a second layer. Each partition has its own models.
The type-3 simulation has eight homogeneous partitions in a third layer. Each partition has its own models.
SimpleSimulation

The type-4 simulation has one homogeneous partition in a second layer, four homogeneous partitions in a third layer, and eight homogeneous partitions in a fourth layer. Each partition has its own model.

The type-5 simulation is similar to type-4 simulation but $Y = h(X)$ is an exponential function.

The type-6 simulation is similar to type-4 simulation but $Y = h(X)$ is a polynomial function with degree parameter.

Usage

```
SimpleSimulation(indvN = 10000, type = 1, degree = 2)
```

Arguments

- **indvN** is a number of individuals per homogeneous partition.
- **type** is a type of simulation dataset. There are four types.
- **degree** is a degree parameter of a polynomial function for type-5 simulation

Value

The function returns a multiresolution dataset.

- **DataT$X[i,d]** is a value of feature d of individual i.
- **DataT$Y[i]** is value of target variable of individual i that we want to fit $DataT$Y $\sim DataT$X in linear model.
- **clsLayer[i,j]** is a cluster ID of individual i at layer j; $clsLayer[i,1]$ is the first layer that everyone typically belongs to a single cluster.
- **DataT$TrueFeature[i]** is equal to d if a true feature is $DataT$X$[i,d-1]$ that $DataT$Y$[i]$ is dependent with. Note that $d = 1$ is reserved for the intercept value in a linear model.

Examples

```
# Running SimpleSimulation to generate a dataset.
DataT<-SimpleSimulation(100,type=1)
```
Index

FindMaxHomoOptimalPartitions, 2
linearModelTraining, 4
plotOptimalClustersTree, 5
PrintOptimalClustersResult, 6
SimpleSimulation, 6