Package ‘MSbox’

February 24, 2022

Type Package

Title Mass Spectrometry Tools

Version 1.4.6

Author Yonghui Dong

Maintainer Yonghui Dong <yonghui.dong@gmail.com>

Description Common mass spectrometry tools described in John Roboz (2013) <doi:10.1201/b15436>. It allows checking element isotopes, calculating (isotope labelled) exact monoisotopic mass, m/z values and mass accuracy, and inspecting possible contaminant mass peaks, examining possible adducts in electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) ion sources.

Depends R (>= 3.5.0)

Imports stringr, crayon, xml2, stats, reshape2, ggplot2, ggfortify, plotly

License GPL-2

URL https://github.com/YonghuiDong/MSbox

BugReports https://github.com/YonghuiDong/MSbox/issues/new

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2022-02-24 21:10:05 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>adduct</td>
<td>2</td>
</tr>
<tr>
<td>contam</td>
<td>3</td>
</tr>
<tr>
<td>describe</td>
<td>3</td>
</tr>
<tr>
<td>doNormalization</td>
<td>4</td>
</tr>
</tbody>
</table>
adduct

Common adducts

<table>
<thead>
<tr>
<th>Description</th>
<th>calculate common adduct ions in positive or negative ion mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>adduct(F, mode = c("+", "-"))</td>
</tr>
<tr>
<td>Arguments</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>chemical formula, case insensitive</td>
</tr>
<tr>
<td>mode</td>
<td>ionization mode, either positive '+' or negative '-'</td>
</tr>
<tr>
<td>Author(s)</td>
<td></td>
</tr>
<tr>
<td>Yonghui Dong</td>
<td></td>
</tr>
<tr>
<td>Examples</td>
<td></td>
</tr>
<tr>
<td>adduct('C1H4', mode = '"-"')</td>
<td></td>
</tr>
<tr>
<td>adduct('C1h4', mode = '"+')</td>
<td></td>
</tr>
</tbody>
</table>
contam

Contaminants in MS

Description
check the possible contaminants

Usage
```r
contam(mz, mode = NULL, ppm = 10)
```

Arguments
- `mz`: suspected m/z value
- `mode`: ionization mode, either positive '+' or negative '-'
- `ppm`: mass tolerance, default value = 10

Author(s)
Yonghui Dong

Examples
```r
contam(33.0335, ppm = 10, mode = '+'
contam(44.998, ppm = 10, mode = '-')
```

describe

Get the compound information

Description
get compound formula and structure from https://cactus.nci.nih.gov/chemical/structure

Usage
```r
describe(chem, representation = "formula", info = FALSE)
```

Arguments
- `chem`: chemical name of the compound
- `representation`: representation methods, formula is default
- `info`: extra molecular information that users can query
doNormalization

Author(s)

Yonghui Dong

Examples

```r
## Not run:
describe("Var malic acid", "formula")
describe(c("malic acid", 'citric acid', 'tartaric acid'), "smiles")
## End(Not run)
```

doNormalization perform normalization

Description

perform normalization

Usage

doNormalization(x, method = NULL)

Arguments

- `x`: sample ion intensity matrix
- `method`: normalization method: (1) LBME: linear baseline normalization based on mean values; (2) LBMD: linear baseline normalization based on median values; (3) PQN: probabilistic quotient normalization; (4) QT: quantile normalization; (5) TIC: total ion current normalization.

Value

normalized data matrix

Examples

dat <- matrix(runif(100*10), ncol = 100, nrow = 10)
out <- doNormalization(dat, method = "PQN")
doStat

Performing statistics

Description
performing statistics, including calculating fold change, p-values and VIP values

Usage
doStat(x, Group = NULL)

Arguments

x sample ion intensity matrix, row sample, column feature.
Group sample group information

Value
a dataframe with statistical information

Examples

dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
rownames(dat) <- 1:dim(dat)[1]
myGroup <- rep_len(LETTERS[1:3], 300)
ret <- doStat(dat, Group = myGroup)

E_iso

Element isotopes

Description
check element isotope information

Usage
E_iso(S)

Arguments

S element, can be element symbol (i.e. C) or full name (i.e. Carbon). Both Element symbol and full name are case insensitive.

Author(s)
Yonghui Dong
Examples

\[E_{\text{iso}}('Na') \] # element symbol
\[E_{\text{iso}}('nA') \] # element symbol, case insensitive
\[E_{\text{iso}}('Carbon') \] # element full name
\[E_{\text{iso}}('carBon') \] # element full name, case insensitive

getCV

Calculate coefficient of variation (CV)

Description

Calculate coefficient of variation (CV), also known as relative standard deviation (RSD) among different sample groups.

Usage

\[\text{getCV}(x, \text{Group} = \text{NULL}) \]

Arguments

- \(x \): sample ion intensity matrix, row sample, column feature.
- \(\text{Group} \): sample group information

Value

a dataframe with mean values and cv

Examples

\[
\text{dat} \leftarrow \text{matrix} (\text{runif}(2*300), \text{ncol} = 2, \text{nrow} = 300)
\]
\[
\text{myGroup} \leftarrow \text{rep_len} (\text{LETTERS}[1:2], 300)
\]
\[
\text{ret} \leftarrow \text{getCV} (\text{dat}, \text{Group} = \text{myGroup})
\]

getFC

calculate fold change

Description

calculate fold change among different samples.

Usage

\[\text{getFC}(x, \text{Group} = \text{NULL}) \]
getMax

Arguments
 x sample ion intensity matrix, row sample, column feature.
 Group sample group information

Value
 a dataframe with mean values and fold changes

Examples
 dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
 myGroup <- rep_len(LETTERS[1:2], 300)
 ret <- getFC(dat, Group = myGroup)

getMax Get the sample name which has the max ion intensity

Description
 get the sample name which has the max ion intensity

Usage
 getMax(x)

Arguments
 x sample ion intensity matrix, row sample, column feature.

Value
 a data frame

Examples
 dat <- cbind.data.frame(mz = c(100, 101, 300), mz2 = c(0, 0, 1), mz3 = c(1, 9, 1))
 rownames(dat) <- c("A", "B", "C")
 out <- getMax(dat)
Iso_mass

Description

Calculate isotope labelled molecular mass

Usage

```r
Iso_mass(F, iso)
```

Arguments

- `F`, chemical formula, case insensitive
- `iso`, labelled elements, case insensitive

Author(s)

Yonghui Dong

getP

Description

get p-values from Post Hoc analysis

Usage

```r
getP(x, Group = NULL)
```

Arguments

- `x`, sample ion intensity matrix, row sample, column feature.
- `Group`, sample group information

Value

A data frame

Examples

```r
dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
myGroup <- rep_len(LETTERS[1:3], 300)
out <- getP(dat, Group = myGroup)
```
Iso_mz

Examples

```r
Iso_mz(F = 'C7H6O4', iso = '[13]C2[2]H3') # Two 13C and three 2H are labeled
```

Iso_mz

Isotope labelled molecular mass

Description

Calculate isotope labelled m/z

Usage

```r
Iso_mz(F, iso, z)
```

Arguments

- `F`, chemical formula, case insensitive
- `iso`, labelled elements, case insensitive
- `z`, charge

Author(s)

Yonghui Dong

Examples

```r
Iso_mz(F = 'C7H6O4', iso = '[13]C2[2]H3', z = -1) # Two 13C and three 2H are labeled
```

mass

molecular mass

Description

Calculate accurate molecular mass

Usage

```r
mass(F, caseSensitive = FALSE)
```
Arguments

m chemical formula of an ion, case insensitive
z charge
caseSensitive if case sensitive is ‘FALSE’ (default), the elements are separated by numbers. for instance, Carbon dioxyde can be written as ‘c1o2’ or any combination of the two elements in lower or upper cases. However, the number of elements should be clearly stated in the chemical formula. if case sensitive is ‘TRUE’, the elements are separated by upper case letters. For instance, Carbon dioxyde must be written as ‘C1O2’ or ‘CO2’. You don’t need to write the number of the element if it is 1.

Author(s)

Yonghui Dong

Examples

mass('C7h7o1')
mass('C7H7O', caseSensitive = TRUE)
mass(c('C7H7O4', 'C'), caseSensitive = TRUE) # vector input
mass(c('c7h7o4', 'cl'))

mz Calculate accurate mass-to-charge ratio

Description

Calculate accurate mass-to-charge ratio (m/z)

Usage

mz(m, z, caseSensitive = FALSE)

Arguments

m chemical formula of an ion, case insensitive
z charge
caseSensitive if case sensitive is ‘FALSE’ (default), the elements are separated by numbers. for instance, Carbon dioxyde can be written as ‘c1o2’ or any combination of the two elements in lower or upper cases. However, the number of elements should be clearly stated in the chemical formula. if case sensitive is ‘TRUE’, the elements are separated by upper case letters. For instance, Carbon dioxyde must be written as ‘C1O2’ or ‘CO2’. You don’t need to write the number of the element if it is 1.

Author(s)

Yonghui Dong
Examples

mz("C7H7O1", z = 1)
mz("C7H7O", z = 1, caseSensitive = TRUE)
mz(c("C7H7O4", 'C'), z = -1, caseSensitive = TRUE) # vector input
mz(c("c7h7O4", 'c1'), z = -1)

ppm

mass accuracy

Description

calculate the mass accuracy of measured m/z. lazy input allowed

Usage

```r
ppm(m, t, lazy = TRUE)
```

Arguments

- `m` measured m/z
- `t` theoretical m/z
- `lazy` if lazy input is allowed

Author(s)

Yonghui Dong

Examples

```
ppm(155.03383, 155.03388) # with m/z value
ppm(155.03383, .03388) # lazy input when the integer parts of m and t are the same
ppm(155.03384, mz("C7H7O4", z = 1)) # with ion formula
```

searchDB

Search in customized database

Description

search in customized database based on accurate m/z and RT

Usage

```r
searchDB(DF, DB, ppm = 5, RT = 0.2, useRT = FALSE)
```
Arguments

- **DF**: input file, should contain at least a column named `mz`
- **DB**: database, should contain at least a column named `mz`
- **ppm**: mass tolerance, default 5ppm
- **RT**: retention time tolerance, default 0.2 min
- **useRT**: should RT be considered during database search?

Author(s)

Yonghui Dong

Examples

```r
DF <- cbind.data.frame(mz = c(100.001, 100.1), RT = c(10, 11))
DB <- cbind.data.frame(mz = c(100.001, 100.1), RT = c(10, 12.1))
searchDB(DF, DB, ppm = 5, RT = 0.2, useRT = TRUE)
```

viewPCA (fast PCA)

Description

perform PCA from xcms object

Usage

```r
viewPCA(
  dat,
  Group = NULL,
  centering = T,
  scaling = "none",
  x = 1,
  y = 2,
  size = 1.5,
  exclude = NULL,
  scale_group = NULL,
  scale_factor = 1,
  interactive = T,
  ...
)
```
viewTIC

Arguments

- **dat**: sample ion intensity matrix, row sample, column feature.
- **Group**: sample group information
- **centering**: centering, default = TRUE
- **scaling**: scaling method, default is scaling = "none". You can choose "auto" or "pareto"
- **x**: PCA X axis, default is PC1
- **y**: PCA Y axis, default is PC2
- **size**: dot size
- **exclude**: exclude some classes of samples
- **scale_group**: select groups needs to be scaled.
- **scale_factor**: the scale factor, default = 1.
- **interactive**: should interactive figure be plotted? default = TRUE. If you want to save the result in high resolution, use non interactive plot.
- **...**: other parameters

Author(s)

Yonghui Dong

Examples

```r
dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
Group <- rep_len(LETTERS[1:3], 300)
out <- viewPCA(dat, Group = Group)
```

Description

View variations of TIC among samples

Usage

```r
viewTIC(
  x,
  Seq = NULL,
  Batch = NULL,
  Group = NULL,
  Trans = "none",
  resultBy = "Group"
)
```
Arguments

- **x** sample ion intensity matrix, row sample, column feature.
- **Seq** sample sequence with each batch. If missing, the Seq will be automatically assigned according to sample order.
- **Batch** sample batch information. If missing, all the samples will be considered from the same batch.
- **Group** sample group information.
- **Trans** How should data be transformed, "LOG2", "LOG10", or NULL transformation?
- **resultBy** show the result by Batch or by Group (default).

Value

- a box plot

Examples

```r
dat <- matrix(runif(100*9), ncol = 100, nrow = 27)
myGroup <- rep_len(LETTERS[1:3], 27)
myBatch <- rep(1:3, each = 9, times = 1)
mySeq <- c(1:27)
out <- viewTIC(dat, Group = myGroup, Batch = myBatch, resultBy = "Batch")
```

Description

View volcano plot.

Usage

```
viewVolcano(result, compare_group, FC = 2, p = 0.05)
```

Arguments

- **result** result from doStat() function
- **compare_group** which groups you want to compare, i.e. c("WT", "Treat1"), only two groups are allowed
- **FC** select fold change values, default = 2
- **p** select p value, default = 0.05

Author(s)

Yonghui Dong
Examples

```r
## Not run:
viewVolcano(result, compare_group = c("WT", "JA"))

## End(Not run)
```

Description

tentative metabolite identification based on m/z value search

Usage

```r
what(myMZ, mode = NULL, ppm = 5, useDB = "HMDB")
```

Arguments

- `myMZ` : m/z values
- `mode` : ionization mode, either positive `+'` or negative `-`
- `ppm` : mass tolerance, default value = 10
- `useDB` : which database to use, HMDB or KEGG? default is HMDB

Author(s)

Yonghui Dong

Examples

```r
a = what(133.014, mode = '-' , ppm = 10)
```
Index

adduct, 2
contam, 3
describe, 3
doNormalization, 4
doStat, 5
E_iso, 5
getCV, 6
getFC, 6
getMax, 7
getP, 8
Iso_mass, 8
Iso_mz, 9
mass, 9
mz, 10
ppm, 11
searchDB, 11
viewPCA, 12
viewTIC, 13
viewVolcano, 14
what, 15