Package ‘MTA’

January 20, 2021

Title Multiscalar Territorial Analysis
Version 0.3.0
Description Build multiscalar territorial analysis based on various contexts.
License GPL-3
URL https://github.com/riatelab/MTA/
BugReports https://github.com/riatelab/MTA/issues/
LazyData true
Depends R (>= 3.5)
Imports methods, stats, graphics, igraph, sf, cartography
Suggests knitr, rmarkdown, ineq, png, reshape2
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Author Ronan Ysebaert [aut],
Nicolas Lambert [aut],
Timothée Giraud [aut, cre]
Maintainer Timothée Giraud <timthee.giraud@cnrs.fr>
Repository CRAN
Date/Publication 2021-01-20 14:40:06 UTC

R topics documented:

bidev .. 2
cardist ... 3
com ... 4
ept ... 4
gdev ... 5
map_bidev ... 6
Multiscalar Typology (2 deviations)

Description

Compute a multiscalar typology according to two relative deviations relative.

Usage

bidev(x, dev1, dev2, breaks = c(25, 50, 100), xid = NULL)

Arguments

- **x**: a sf object including 2 deviations among gdev, tdev and sdev.
- **dev1**: column name of the first relative deviation in x.
- **dev2**: column name of the second relative deviation in x.
- **breaks**: Distance to the index 100 (average of the context), in percentage. A vector of three values. Default c(25,50,100). 25 to indexes 80 and 125. 50 and 200.
- **xid**: identifier field in x. Default the first column.

Value

A column in x including a bidev column delivering the result of the typology. Values are classified in 13 classes according to their respective position on the two selected deviations and their distance to the average.

bidev typology values:

- **ZZ**: Near the average for the two selected deviation
- **A1**: Above the average for dev1 and dev2, distance to the average : +
- **A2**: Above the average for dev1 and dev2, distance to the average : ++
- **A3**: Above the average for dev1 and dev2, distance to the average : +++
- **B1**: Above the average for dev1 and below for dev2, distance to the average : +
- **B2**: Above the average for dev1 and below for dev2, distance to the average : ++
- **B3**: Above the average for dev1 and below for dev2, distance to the average : +++
• C1: Below the average for dev1 and dev2, distance to the average: +
• C2: Below the average for dev1 and dev2, distance to the average: ++
• C3: Below the average for dev1 and dev2, distance to the average: +++
• D1: Below the average for dev1 and above for dev2, distance to the average: +
• D2: Below the average for dev1 and above for dev2, distance to the average: ++
• D3: Below the average for dev1 and above for dev2, distance to the average: +++

Examples

bidev synthesis on general and territorial deviation (income data)
load data
data("GrandParisMetropole")

Prerequisite - Compute 2 deviations
com$gdev <- gdev(x = com, var1 = "INC", var2 = "TH")
com$tdev <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT")

Compute bidev
com$bidev <- bidev(x = com, dev1 = "gdev", dev2 = "tdev")

cardist

Time Distance Matrix Between Communes

Description

Travel time between Grand Paris Metropole communes’ centroids by car, in minutes.
Row names and column names match the DEPCOM field in com.

Source

The matrix is computed using the osrm package (https://cran.r-project.org/package=osrm).
Data (c) OpenStreetMap contributors, ODbL 1.0. http://www.openstreetmap.org/copyright
Routes: OSRM. http://project-osrm.org/

Examples

data(GrandParisMetropole)
cardist[1:10,1:10]
Grand Paris Metropole Communes Data

Description
Data on the Grand Paris Metropole communes, included in a sf object.

Format
A data frame with 150 rows and 10 variables:

- **DEPCOM**: Commune identifiers
- **LIBCOM**: Commune names
- **EPT**: EPT identifiers of the commune
- **LIBEPT**: EPT names of the commune
- **DEP**: Identifiers of the department
- **INC**: Amount of income tax reference (in euros)
- **TH**: Number of tax households
- **geometry**: Commune geometry

Source
Direction générale des finances publiques, income tax 2014 (2013 incomes):
https://www.impots.gouv.fr/portail/statistiques
Atelier parisien d’urbanisme, Grand Paris communal composition (2015-12-17):
https://www.apur.org/fr/nos-travaux/composition-12-territoires-metropole-grand-paris

Examples
```r
data(GrandParisMetropole)
head(com)
```

Grand Paris Metropole EPTs

Description
sf object. Grand Paris Metropole EPTs. EPTs (Etablissements Publics Territoriaux) are groups of communes.

Format

- **EPT**: EPT identifiers
- **LIBEPT**: EPT names
gdev

Source
Atelier parisien d’urbanisme, Grand Paris communal composition (2015-12-17):
https://www.apur.org/fr/nos-travaux/composition-12-territoires-metropole-grand-paris

Examples
library(sf)
data(GrandParisMetropole)
plot(st_geometry(ept))

gdev

General Deviation

Description
Compute the deviation of each territorial unit as regards to all the study area (or a reference value).

Usage
gdev(x, var1, var2, type = "rel", ref)

Arguments
x a data.frame or a sf object including var1 and var2.
var1 name of the numerator variable in x.
var2 name of the denominator variable in x.
type type of deviation; "rel" for relative deviation, "abs" for absolute deviation (see Details).
ref ratio of reference; if missing, the ratio of reference is the one of the whole study area (sum(var1) / sum(var2)).

Details
The relative global deviation is the ratio between var1/var2 and ref (100 * (var1 / var2) / ref). Values greater than 100 indicate that the unit ratio is greater than the ratio of reference. Values lower than 100 indicate that the unit ratio is lower than the ratio of reference. The absolute global deviation is the amount of numerator that could be moved to obtain the ratio of reference on all units. ((var1 - (ref * var2))).

Value
A vector is returned.
Examples

library(sf)
library(cartography)
load data
data("GrandParisMetropole")

compute absolute global deviation
com$gdevabs <- gdev(x = com, var1 = "INC", var2 = "TH", type = "abs")
compute relative global deviation
com$gdevrel <- gdev(x = com, var1 = "INC", var2 = "TH", type = "rel")

relative deviation map
par(mar = c(0,0,1.2,0))
set breaks
bks <- c(min(com$gdevrel), 50, 75, 100, 125, 150, max(com$gdevrel))
plot a choropleth map of the relative global deviation
choroLayer(x = com, var = "gdevrel", legend.pos = "topleft",
legend.title.txt = "Relative Deviation\n(100 = general average)",
breaks = bks, border = NA,
col = carto.pal(pal1 = "blue.pal", n1 = 3, pal2 = "wine.pal", n2 = 3))
add EPT boundaries
plot(st_geometry(ept), add = TRUE)
layout
layoutLayer(title = "General Deviation (reference: Grand Paris Metropole)",
sources = "GEOFLA® 2015 v2.1, Apur, impots.gouv.fr",
scale = 5, frame = FALSE, author = "MTA", col = "white",
coltitle = "black")

absolute deviation map
com$sign <- ifelse(test = com$gdevabs < 0, yes = "Under-Income", no = "Over-Income")
plot(st_geometry(ept))
propSymbolsTypoLayer(x = com, var = "gdevabs", var2 = "sign", inches = 0.2,
legend.var.title.txt = "Absolute Deviation\n(Income redistribution, euros)",
legend.var.pos = "topleft",legend.values.rnd = -2, legend.var.style = "e",
legend.var2.title.txt = "Redistribution direction",
legend.var2.values.order = c("Under-Income", "Over-Income"),
legend.var2.pos = "topright", col = c("ff0000","#0000ff"))
layout
layoutLayer(title = "General Deviation (reference: Grand Paris Metropole)",
sources = "GEOFLA® 2015 v2.1, Apur, impots.gouv.fr",
scale = 5, frame = FALSE, author = "MTA", col = "white",
coltitle = "black")
Description

Compute the multiscalar typology (2 deviations) and propose colors for mapping the results.

Usage

map_bidev(x, dev1, dev2, breaks = c(25, 50, 100), xid = NULL)

Arguments

- **x**: A sf object including a variable resulting from the mst function.
- **dev1**: column name of the first relative deviation in x.
- **dev2**: column name of the second relative deviation in x.
- **breaks**: Distance to the index 100 (average of the context), in percentage. A vector of three values. Default c(25,50,100). 25 to indexes 80 and 125. 50 and 200.
- **xid**: identifier field in x. Default the first column.

Value

A list including a ordered sf object for mapping mst column (geom) and a vector of suggested colors (cols).

bidev typology values :

- ZZ: Near the average for the two selected deviation
- A1: Above the average for dev1 and dev2, distance to the avarage : +
- A2: Above the average for dev1 and dev2, distance to the avarage : ++
- A3: Above the average for dev1 and dev2, distance to the avarage : +++
- B1: Above the average for dev1 and below for dev2, distance to the avarage : +
- B2: Above the average for dev1 and below for dev2, distance to the avarage : ++
- B3: Above the average for dev1 and below for dev2, distance to the avarage : +++
- C1: Below the average for dev1 and dev2, distance to the avarage : +
- C2: Below the average for dev1 and dev2, distance to the avarage : ++
- C3: Below the average for dev1 and dev2, distance to the avarage : +++
- D1: Below the average for dev1 and above for dev2, distance to the avarage : +
- D2: Below the average for dev1 and above for dev2, distance to the avarage : ++
- D3: Below the average for dev1 and above for dev2, distance to the avarage : +++

Examples

Focus on exceptional values (50, 100 and 200 % above-under the average)
load data
data("GrandParisMetropole")

Prerequisite - Compute 2 deviations
com$gdev <- gdev(x = com, var1 = "INC", var2 = "TH")
com$tdev <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT")
Compute map_bidev
bidev <- map_bidev(x = com, dev1 = "gdev", dev2 = "tdev", breaks = c(50, 100, 200))

Unlist resulting function
com <- bidev$geom
cols <- bidev$cols

Visualization
library(cartography)
library(sf)

One side for the map, another for the plot
par(mfrow = c(1,2), mar = c(0,4,0,0))

Cartography
typoLayer(x = com, var = "bidev", border = "grey50", col = cols, lwd = 0.2,
legend.pos = "n")
plot(ept$geometry, col = NA, lwd = 1, add = TRUE)

Label territories in the C3 category
labellayer(x = com[com$bidev == "C3",], txt = "LIBCOM", halo = TRUE)

layoutLayer(title = "2-Deviations synthesis : general and territorial contexts",
author = "MTA, 2020", scale = 5, col = "white", coltitle = "black")

Add plot_bidev on the right side of the map
plot_bidev(x = com, dev1 = "gdev", dev2 = "tdev",
dev1.lab = "General deviation (MGP Area)",
dev2.lab = "Territorial deviation (EPT of belonging)",
breaks = c(50, 100, 200),
lib.var = "LIBCOM", lib.val = "Clichy-sous-Bois", cex.lab = 0.8)

map_mst

Map Multiscalar Typology (3 deviations)

Description

Compute the multiscalar typology (3 deviations) and propose labels and colours for mapping the results.

Usage

```r
map_mst(x, gdevrel, tdevrel, sdevrel, threshold, superior = FALSE, xid = NULL)
```

Arguments

- **x**
 - a sf object or a dataframe including 3 pre-calculated deviations.
- **gdevrel**
 - name of the general relative deviation variable in x.
map_mst

tdevrel name of the territorial relative deviation variable in x.
sdevrel name of the spatial relative deviation variable in x.
threshold defined to build the typology (100 is considered as the average)
superior if TRUE, deviation values must be greater than threshold. If FALSE, deviation values must be lower than threshold.
xid identifier field in x. Default the first column.

Value

A list including a ordered sf object for mapping mst column (geom), a vector of suggested colors (cols) and a vector of adapted labels for the legend (leg_labels).

Typology labels (which deviation is above/under the threshold):
• 0: none (mst value = 0)
• G: general only (mst value = 1)
• T: territorial only (mst value = 2)
• G-T: general and Territorial (mst value = 3)
• S: spatial only (mst value = 4)
• G-S: general and Spatial (mst value = 5)
• T-S: territorial and Spatial (mst value = 6)
• G-T-S: all deviations (mst value = 7)

Examples

Prerequisites - Compute the 3 deviations
com$gdev <- gdev(x = com, var1 = "INC", var2 = "TH")
com$tdev <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT")
com$sdev <- sdev(x = com, var1 = "INC", var2 = "TH", order = 1)

Example 1 - Wealthiest territorial units
Compute map_mst
mst <- map_mst(x = com, gdevrel = "gdev", tdevrel = "tdev", sdevrel = "sdev",
threshold = 125, superior = TRUE)

Unlist outputs of the function
com <- mst$geom
cols <- mst$cols
leg_val <- mst$leg_val

Cartography
library(cartography)
par(mar = c(0,0,1.2,0))
typoLayer(x = com, var = "mst", border = "grey50",
col = cols, lwd = 0.2, legend.pos = "n")
plot(ept$geometry, col = NA, lwd = 1, add = TRUE)

legendTypo(col = cols, categ = leg_val,
title.txt = "Situation on General (G)\nTerritorial (T) and\nSpatial (S) contexts",

...
multiscalar absolute synthesis

Description

This function sums the total amount of redistributions according to the three absolute deviations (global, territorial, spatial).

Usage

```
mas(x, gdevabs, tdevabs, sdevabs, num)
```
Arguments

- `x`: a sf object or a dataframe including `gdevabs`, `tdevabs`, `sdevabs` and `num` columns.
- `gdevabs`: name of the general absolute deviation variable in `x`.
- `tdevabs`: name of the territorial absolute deviation variable in `x`.
- `sdevabs`: name of the spatial absolute deviation variable in `x`.
- `num`: name of the numerator used for computing the 3 absolute deviations in `x`.

Value

A dataframe including the mass of numerator to redistribute to reach a perfect equilibrium according to the 3 contexts, expressed in numerator measure unit and as a share of the numerator mass.

Examples

data("GrandParisMetropole")
general absolute deviation
com$gdevabs <- gdev(x = com, var1 = "INC", var2 = "TH", type = "abs")

Territorial absolute deviation calculation
com$tdevabs <- tdev(x = com, var1 = "INC", var2 = "TH", type = "abs",
 key = "LIBEPT")

Local absolute deviation calculation redistribution
com$sdevabs <- sdev(x = com, xid = "DEPCOM", var1 = "INC", var2 = "TH",
 order = 1, type = "abs")

Compute the synthesis DataFrame (absolute deviations)
mas(x = com,
 gdevabs = "gdevabs",
 tdevabs = "tdevabs",
 sdevabs = "sdevabs",
 num = "INC")

mst

Multiscalar Typology (3 deviations)

Description

Compute a multiscalar typology according to the three relative deviations (general: G, territorial: T and spatial: S). The elementary units are classified in eight classes according to their three relative positions.

Usage

`mst(x, gdevrel, tdevrel, sdevrel, threshold, superior = FALSE)`
Arguments

- **x**: a sf object or a dataframe including gdev, tdev and sdev columns.
- **gdevrel**: name of the general relative deviation variable in x.
- **tdevrel**: name of the territorial relative deviation variable in x.
- **sdevrel**: name of the spatial relative deviation variable in x.
- **threshold**: defined to build the typology (100 is considered as the average).
- **superior**: if TRUE, deviation values must be greater than threshold. If FALSE, deviation values must be lower than threshold.

Value

A vector in x including the mst typology. Values are classified in 8 classes following their respective position above/under the threshold:

Typology (which deviation is above/under the threshold):

- 0: none
- 1: G
- 2: T
- 3: G and T
- 4: S
- 5: G and S
- 6: T and S
- 7: G, T and S

Examples

```r
# mst synthesis on general, territorial and spatial deviations (income data)
# load data
data("GrandParisMetropole")
# Prerequisite - Compute the 3 deviations
com$gdev <- gdev(x = com, var1 = "INC", var2 = "TH")
com$tdev <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT")
com$sdev <- sdev(x = com, var1 = "INC", var2 = "TH", order = 1)

# Multiscalar typology - wealthiest territorial units
# Compute mst
com$mstW <- mst(x = com, gdevrel = "gdev", tdevrel = "tdev", sdevrel = "sdev",
threshold = 125, superior = TRUE)

# Multiscalar typology - lagging territorial units
# Compute mst
com$mstP <- mst(x = com, gdevrel = "gdev", tdevrel = "tdev", sdevrel = "sdev",
threshold = 75, superior = FALSE)
```
MTA
Multiscalar Territorial Analysis

Description

Build multiscalar territorial analysis based on various contexts for a given ratio defined by a numerator and a denominator.

Main functions:

- **gdev**: general deviation of each territorial unit as regards to all the study area (or a reference value).
- **tdev**: territorial deviation of each territorial unit as regards to an intermediate territorial level of reference.
- **sdev**: spatial deviation of each territorial unit as regards to its geographical neighborhood.
- **bidev**: multiscalar typology based on 2 deviations.
- **mst**: multiscalar typology based on the 3 deviations.
- **mas**: multiscalar absolute synthesis, total amount of redistributions based on the three deviations.
- **map_bidev**: creating bidev and parameters for producing a map based on it.
- **map_mst**: creating mst and parameters for producing a map based on it.
- **plot_bidev**: creating a plot for visualizing bidev results.
- **plot_mst**: creating a plot adapted for visualizing mst results.

References

plot_bidev
Plot Multiscalar Typology (2 deviations)

Description

Vizualizing bidev and select some territorial units on it.
Usage

plot_bidev(
 x,
 dev1,
 dev2,
 breaks = c(25, 50, 100),
 dev1.lab = NULL,
 dev2.lab = NULL,
 lib.var = NULL,
 lib.val = NULL,
 cex.lab = 1,
 cex.axis = 0.7,
 cex.pt = 0.5,
 cex.names = 0.8,
 pos.names = 4
)

Arguments

x a sf object or a dataframe including 2 pre-calculated deviations.
dev1 column name of the first relative deviation in x.
dev2 column name of the second relative deviation in x.
breaks distance to the index 100 (average of the context), in percentage. A vector of three values. Default c(25,50,100). 25 to indexes 80 and 125. 50 and 200.
dev1.lab label to be put in x-axis of the scatter plot (default: NULL).
dev2.lab label to be put in y-axis of the scatter plot (default: NULL).
lib.var column name of x including territorial units name/code we want to display on the plot.
lib.val a vector of territorial units included in lib.label we want to display on the plot.
cex.lab size of the axis label text (default = 1).
cex.axis size of the tick label numbers (default = 0.7).
cex.pt size of the dot used for extract specific territorial units (default 0.5).
cex.names size of the territorial units labels if selected (default 0.8).
pos.names position of territorial units labels (default 4, to the right).

Value

A scatter-plot displaying the 13 bidev categories, which are the synthesis of the position of territorial units according to 2 deviations and their respective distance to the average. X-Y axis are expressed in logarithm (25 being index 80).

bidev typology values :

• ZZ: Near the average for the two selected deviation, in grey
• A1: Above the average for dev1 and dev2, distance to the average : +, in light red
• A2: Above the average for dev1 and dev2, distance to the average : ++, in red
A3: Above the average for dev1 and dev2, distance to the average: ++++, in dark red
B1: Above the average for dev1 and below for dev2, distance to the average: +, in light yellow
B2: Above the average for dev1 and below for dev2, distance to the average: ++, in yellow
B3: Above the average for dev1 and below for dev2, distance to the average: ++++, in dark yellow
C1: Below the average for dev1 and dev2, distance to the average: +, in light blue
C2: Below the average for dev1 and dev2, distance to the average: ++, in blue
C3: Below the average for dev1 and dev2, distance to the average: ++++, in dark blue
D1: Below the average for dev1 and above for dev2, distance to the average: +, in light green
D2: Below the average for dev1 and above for dev2, distance to the average: ++, in green
D3: Below the average for dev1 and above for dev2, distance to the average: ++++, in dark green

Examples

```r
# Load data
data("GrandParisMetropole")

# Prerequisite - Compute 2 deviations
com$gdev <- gdev(x = com, var1 = "INC", var2 = "TH")
com$tdev <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT")

# EX1 standard breaks with four labels
plot_bidev(x = com,
    dev1 = "gdev",
    dev2 = "tdev",
    dev1.lab = "General deviation (MGP Area)",
    dev2.lab = "Territorial deviation (EPT of belonging)",
    lib.var = "LIBCOM",

# EX2, change breaks, enlarge breaks
plot_bidev(x = com,
    breaks = c(75, 150, 300),
    dev1 = "gdev",
    dev2 = "tdev",
    dev1.lab = "General deviation (MGP Area)",
    dev2.lab = "Territorial deviation (EPT of belonging)")
```

plot_mst

Plot Multiscalar Typology (3 deviations)

Description

Visualizing mst for selected territorial units.
Usage

```r
plot_mst(
  x,  
  gdevrel, 
  tdevrel, 
  sdevrel, 
  legend.lab = NULL, 
  lib.var, 
  lib.val, 
  cex.lab = 1, 
  cex.axis = 0.8, 
  cex.names = 0.8
)
```

Arguments

- `x` a sf object or a dataframe including 3 pre-calculated deviations.
- `gdevrel` name of the general relative deviation variable in x.
- `tdevrel` name of the territorial relative deviation variable in x.
- `sdevrel` name of the the spatial relative deviation variable in x.
- `legend.lab` label for explaining the plot (default = "G: general, T: territorial, S: spatial (relative deviations, average = 100)").
- `lib.var` column name of x including territorial units name/code we want to display on the plot.
- `lib.val` a vector of territorial units included in lib.label we want to display on the plot.
- `cex.lab` size of the axis legend label text (default = 1).
- `cex.axis` size of the tick label numbers (default = 0.8).
- `cex.names` size of the territorial units labels if selected (default 0.8).

Value

A barplot displaying the position for selected territorial units on three territorial deviation. Y axis is expressed in logarithm (25 being index 80).

Examples

```r
# Load data
data("GrandParisMetropole")

# Prerequisite - Compute the 3 relative deviations
com$gdev <- gdev(x = com, var1 = "INC", var2 = "TH")
com$tdev <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT")
com$sdev <- sdev(x = com, var1 = "INC", var2 = "TH", order = 1)

# Synthesis barplot (3 territorial units)
plot_mst(x = com, gdevrel = "gdev", tdevrel = "tdev", sdevrel = "sdev", lib.var = "LIBCOM", 
         lib.val = c("Neuilly-sur-Seine", "Clichy-sous-Bois", "Les Lilas"))
```
sdev Spatial Deviation

Description

Compute the deviation of each territorial unit as regards to its geographical neighborhood. Neighborhood is defined either by contiguity order, by a distance value or by a personal matrix (travel time...)

Usage

sdev(x, var1, var2, type = "rel", xid, order, dist, mat)

Arguments

x
a sf object including var1 and var2.

var1
name of the numerator variable in x.

var2
name of the denominator variable in x.

type
type of deviation; "rel" for relative deviation, "abs" for absolute deviation (see Details).

xid
identifier field in x (to be used for importing a personal distance matrix). Default to the first column of x. (optional)

order
contiguity order.

dist
distance threshold defining the contiguity. The cartesian distance between units centroids is used by default; use mat to apply different metrics.

mat
a distance matrix (road distance, travel time...) between x units. Row and column names must fit xid identifiers. (optional)

Details

The relative spatial deviation is the ratio between var1/var2 and var1/var2 in the specified neighborhood. Values greater than 100 indicate that the unit ratio is greater than the ratio in its neighborhood. Values lower than 100 indicate that the unit ratio is lower than the ratio in its neighborhood.
The absolute spatial deviation is the amount of numerator that could be moved to obtain the same ratio in all units of its neighborhood.

Value

A vector is returned.
Examples

```r
library(sf)
library(cartography)
# load data
data("GrandParisMetropole")

# compute absolute spatial deviation in a neighborhood defined by a contiguity
# order of 1.
com$sdevabs <- sdev(x = com, var1 = "INC", var2 = "TH", order = 1, type = "abs")

# compute relative spatial deviation in a neighborhood defined within a distance
# of 5km between communes' centroids
com$sdevrel <- sdev(x = com, var1 = "INC", var2 = "TH", type = "rel", dist = 5000)

# compute absolute spatial deviation in a neighborhood defined within a road
# travel time of 10 minutes by car
com$scardevabs <- sdev(x = com, var1 = "INC", var2 = "TH", type = "abs", dist = 10, mat = cardist)

# compute relative spatial deviation in a neighborhood defined within a road
# travel time of 10 minutes by car
com$scardevrel <- sdev(x = com, var1 = "INC", var2 = "TH", type = "rel", dist = 10, mat = cardist)

# relative deviation map
par(mar = c(0,0,1.2,0))
# set breaks
bks <- c(min(com$scardevrel), 75, 100, 125, 150, max(com$scardevrel))
# plot a choropleth map of the relative spatial deviation
choroLayer(x = com, var = "scardevrel", legend.pos = "topleft",
legend.title.txt = "Relative Deviation\n(100 = spatial average)",
breaks = bks, border = NA,
col = carto.pal(pal1 = "blue.pal", n1 = 2, pal2 = "wine.pal", n2 = 3))

# add EPT boundaries
plot(st_geometry(ept), add = TRUE)

# layout
layoutLayer(title = "Spatial Deviation (neighborhood : 10 minutes by car)",
sources = "GEOFLA® 2015 v2.1, Apur, impots.gouv.fr",
scale = 5, frame = FALSE, author = "MTA", col = "white",
coltitle = "black")
```

tdev

Territorial Deviation

Description

Compute the deviation of each territorial unit as regards to an intermediate territorial level of reference.
tdev

Usage

tdev(x, var1, var2, type = "rel", key)

Arguments

x a dataframe or a sf object including var1 and var2 and an aggregation key field (territorial belonging).

var1 name of the numerator variable in x.

var2 name of the denominator variable in x.

type type of deviation; "rel" for relative deviation, "abs" for absolute deviation (see Details).

key aggregation key field for measuring the deviation (intermediate territorial level).

Details

The relative territorial deviation is the ratio between var1/var2 and var1/var2 at the aggregated level. Values greater than 100 indicate that the unit ratio is greater than the ratio at the aggregated level. Values lower than 100 indicate that the unit ratio is lower than the ratio of the aggregated level. The absolute territorial deviation is the amount of numerator that could be moved to obtain the ratio of the aggregated level on all belonging units.

Value

A vector is returned.

Examples

library(sf)
library(cartography)
load data
data("GrandParisMetropole")

compute absolute territorial deviation
com$tdevabs <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT", type = "abs")

compute relative territorial deviation
com$tdevrel <- tdev(x = com, var1 = "INC", var2 = "TH", key = "EPT", type = "rel")

relative deviation map
par(mar = c(0,0,1.2,0))
set breaks
bks <- c(min(com$tdevrel), 80, 91, 100, 110, 125, max(com$tdevrel))
plot a choropleth map of the relative territorial deviation
chorolayer(x = com, var = "tdevrel", legend.pos = "topleft",
legend.title.txt = "Relative Deviation\n(100 = territorial average)",
breaks = bks, border = NA,
col = carto.pal(pal1 = "blue.pal", n1 = 3, pal2 = "wine.pal", n2 = 3))
add EPT boundaries
plot(st_geometry(ept), add = TRUE)

layout
layoutLayer(title = "Territorial Deviation (reference: EPT of belonging)",
 sources = "GEOFLA® 2015 v2.1, Apur, impots.gouv.fr",
 scale = 5, frame = FALSE, author = "MTA", col = "white",
 coltitle = "black")

absolute deviation map
com$sign <- ifelse(test = com$tdevabs < 0, yes = "Under-Income", no = "Over-Income")
plot(st_geometry(ept))
propSymbolsTypoLayer(x = com, var = "tdevabs", var2 = "sign", inches = 0.2,
 legend.var.title.txt = "Absolute Deviation\n(Income redistribution, euros)",
 legend.var.pos = "topleft", legend.values.rnd = -2, legend.var.style = "e",
 legend.var2.title.txt = "Redistribution direction",
 legend.var2.values.order = c("Under-Income", "Over-Income"),
 legend.var2.pos = "topright", col = c("#ff0000","#0000ff"))

layout
layoutLayer(title = "Territorial Deviation (reference: EPT of belonging)",
 sources = "GEOFLA® 2015 v2.1, Apur, impots.gouv.fr",
 scale = 5, frame = FALSE, author = "MTA", col = "white",
 coltitle = "black")
Index

bidev, 2, 13

cardist, 3
com, 3, 4

ept, 4

gdev, 5, 13

map_bidev, 6, 13
map_mst, 8, 13
mas, 10, 13
mst, 11, 13
MTA, 13

plot_bidev, 13, 13
plot_mst, 13, 15

sdev, 13, 17

tdev, 13, 18