Package ‘MachineShop’

June 3, 2022

Type Package
Title Machine Learning Models and Tools
Version 3.5.0
Date 2022-06-02
Author Brian J Smith [aut, cre]
Maintainer Brian J Smith <brian-j-smith@uiowa.edu>
Description Meta-package for statistical and machine learning with a unified
interface for model fitting, prediction, performance assessment, and
presentation of results. Approaches for model fitting and prediction of
numerical, categorical, or censored time-to-event outcomes include
traditional regression models, regularization methods, tree-based methods,
support vector machines, neural networks, ensembles, data preprocessing,
filtering, and model tuning and selection. Performance metrics are provided
for model assessment and can be estimated with independent test sets, split
sampling, cross-validation, or bootstrap resampling. Resample estimation
can be executed in parallel for faster processing and nested in cases of
model tuning and selection. Modeling results can be summarized with
descriptive statistics; calibration curves; variable importance; partial
dependence plots; confusion matrices; and ROC, lift, and other performance
curves.
Depends R (>= 4.0.0)
Imports abind, cli (>= 3.1.0), dials (>= 0.0.4), foreach, ggplot2 (>=
3.3.0), kernlab, magrittr, Matrix, methods, nnet, party,
polspline, progress, recipes (>= 0.2.0), rlang, rsample (>=
0.1.0), Rsolnp, survival, tibble, utils
Suggests adabag, BART, bartMachine, C50, cluster, doParallel, e1071,
earth, elasticnet, generics, gbm, glmnet, gridExtra, Hmisc,
kableExtra, kknn, knitr, lars, MASS, mboost, mda,
ParBayesianOptimization, parsnip, partykit, pls, pso,
randomForest, randomForestSRC, ranger, rBayesianOptimization,
rmardown, rms, rpart, testthat, tree, xgboost
LazyData true
License GPL-3
URL: https://brian-j-smith.github.io/MachineShop/

BugReports: https://github.com/brian-j-smith/MachineShop/issues

RoxygenNote: 7.2.0

VignetteBuilder: knitr

Encoding: UTF-8

Collate:
- 'classes.R' 'conditions.R' 'MachineShop-package.R'
- 'ML_Control.R' 'MLInput.R' 'MLMetric.R' 'MLModel.R'
- 'ML_Optimization.R' 'ML_AdaBagModel.R' 'ML_AdaBoostModel.R'
- 'ML_BARTMachineModel.R' 'ML_BARTModel.R' 'ML_BlackBoostModel.R'
- 'ML_C50Model.R' 'ML_CForestModel.R' 'ML_CoxModel.R'
- 'ML_EarthModel.R' 'ML_FDAModel.R' 'ML_GAMBoostModel.R'
- 'ML_GBMModel.R' 'ML_GLMBoostModel.R' 'ML_GLMModel.R'
- 'ML_GLMNetModel.R' 'ML_KNModel.R' 'ML_LARSModel.R'
- 'ML_LDAModel.R' 'ML_LMModel.R' 'ML_MDAcropModel.R' 'ML_NNetModel.R'
- 'ML_ParsnipModel.R' 'ML_ParsnipModel.R' 'ML_PLSModel.R'
- 'ML_POLRModel.R' 'ML_QDAcropModel.R' 'ML_RFSRCModel.R'
- 'ML_RPartModel.R' 'ML_RandomForestModel.R' 'ML_RangerModel.R'
- 'ML_SVMModel.R' 'ML_StackedModel.R' 'ML_SuperModel.R'
- 'ML_SurvRegModel.R' 'ML_TreeModel.R' 'ML_XGBModel.R'
- 'ModelFrame.R' 'ModelRecipe.R' 'ModelSpecification.R'
- 'TrainedInputs.R' 'TrainedModels.R' 'TrainingParams.R'
- 'append.R' 'calibration.R' 'case_comps.R' 'coerce.R'
- 'combine.R' 'confusion.R' 'convert.R' 'data.R' 'dependence.R'
- 'diff.R' 'expand.R' 'extract.R' 'fit.R' 'grid.R' 'metricinfo.R'
- 'metrics.R' 'metrics_factor.R' 'metrics_numeric.R'
- 'modelinfo.R' 'models.R' 'performance.R' 'performance_curve.R'
- 'plot.R' 'predict.R' 'print.R' 'recipe_roles.R' 'reexports.R'
- 'resample.R' 'response.R' 'rfe.R' 'settings.R' 'step_kmeans.R'
- 'step_kmedoids.R' 'step_lincomp.R' 'step_sbf.R' 'step_spca.R'
- 'summary.R' 'survival.R' 'utils.R' 'varimp.R'

NeedsCompilation: yes

Repository: CRAN

Date/Publication: 2022-06-03 08:40:05 UTC

R topics documented:

- MachineShop-package .. 5
- AdaBagModel .. 7
- AdaBoostModel ... 8
- as.MLInput .. 10
- as.MLModel .. 10
- BARTMachineModel .. 11
- BARTModel .. 13
- BlackBoostModel ... 15
- C50Model ... 16
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>calibration</td>
<td>18</td>
</tr>
<tr>
<td>case_weights</td>
<td>19</td>
</tr>
<tr>
<td>CForestModel</td>
<td>20</td>
</tr>
<tr>
<td>combine</td>
<td>21</td>
</tr>
<tr>
<td>confusion</td>
<td>22</td>
</tr>
<tr>
<td>CoxModel</td>
<td>24</td>
</tr>
<tr>
<td>dependence</td>
<td>25</td>
</tr>
<tr>
<td>deprecated</td>
<td>26</td>
</tr>
<tr>
<td>diff</td>
<td>27</td>
</tr>
<tr>
<td>DiscreteVariate</td>
<td>28</td>
</tr>
<tr>
<td>EarthModel</td>
<td>29</td>
</tr>
<tr>
<td>expand_model</td>
<td>30</td>
</tr>
<tr>
<td>expand_modelgrid</td>
<td>31</td>
</tr>
<tr>
<td>expand_params</td>
<td>33</td>
</tr>
<tr>
<td>expand_steps</td>
<td>34</td>
</tr>
<tr>
<td>extract</td>
<td>35</td>
</tr>
<tr>
<td>FDAModel</td>
<td>36</td>
</tr>
<tr>
<td>fit</td>
<td>37</td>
</tr>
<tr>
<td>GAMBoostModel</td>
<td>39</td>
</tr>
<tr>
<td>GBMModel</td>
<td>40</td>
</tr>
<tr>
<td>GLMBoostModel</td>
<td>41</td>
</tr>
<tr>
<td>GLMModel</td>
<td>43</td>
</tr>
<tr>
<td>GLMNetModel</td>
<td>44</td>
</tr>
<tr>
<td>ICHomes</td>
<td>46</td>
</tr>
<tr>
<td>inputs</td>
<td>46</td>
</tr>
<tr>
<td>KNNModel</td>
<td>47</td>
</tr>
<tr>
<td>LARSModel</td>
<td>49</td>
</tr>
<tr>
<td>LDAModel</td>
<td>50</td>
</tr>
<tr>
<td>lift</td>
<td>51</td>
</tr>
<tr>
<td>LMMModel</td>
<td>52</td>
</tr>
<tr>
<td>MDAModel</td>
<td>53</td>
</tr>
<tr>
<td>metricinfo</td>
<td>54</td>
</tr>
<tr>
<td>metrics</td>
<td>55</td>
</tr>
<tr>
<td>MLControl</td>
<td>60</td>
</tr>
<tr>
<td>MLMetric</td>
<td>63</td>
</tr>
<tr>
<td>MLMultiModel</td>
<td>64</td>
</tr>
<tr>
<td>ModelFrame</td>
<td>66</td>
</tr>
<tr>
<td>modelinfo</td>
<td>68</td>
</tr>
<tr>
<td>models</td>
<td>69</td>
</tr>
<tr>
<td>ModelSpecification</td>
<td>70</td>
</tr>
<tr>
<td>NaiveBayesModel</td>
<td>72</td>
</tr>
<tr>
<td>NNetModel</td>
<td>73</td>
</tr>
<tr>
<td>ParameterGrid</td>
<td>74</td>
</tr>
<tr>
<td>ParsnipModel</td>
<td>75</td>
</tr>
<tr>
<td>performance</td>
<td>76</td>
</tr>
<tr>
<td>performance_curve</td>
<td>78</td>
</tr>
<tr>
<td>plot</td>
<td>80</td>
</tr>
<tr>
<td>PLSModel</td>
<td>83</td>
</tr>
</tbody>
</table>
POLRModel ... 84
predict ... 85
print ... 86
QDAModel ... 88
quote ... 89
RandomForestModel ... 90
RangerModel ... 91
recipe_roles .. 93
resample ... 94
response ... 96
rfe ... 97
RFSRCModel .. 99
RPartModel ... 102
SelectedInput .. 103
SelectedModel .. 105
settings ... 107
set_monitor .. 109
set_optim ... 110
set_predict .. 114
set_strata ... 115
StackedModel .. 116
step_kmeans ... 117
step_kmedoids .. 119
step_lincomp .. 121
step_sbf ... 123
step_spca .. 125
summary .. 128
SuperModel .. 129
SurvMatrix ... 131
SurvRegModel .. 131
SVMModel .. 133
t.test ... 135
TreeModel ... 136
TunedInput .. 137
TunedModel ... 139
TuningGrid .. 140
unMLModelFit .. 141
varimp ... 142
XGBModel .. 143

Index ... 148
Description

Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.

Details

The following set of model fitting, prediction, and performance assessment functions are available for MachineShop models.

Training:

- `fit` Model fitting
- `resample` Resample estimation of model performance

Tuning Grids:

- `expand_model` Model expansion over tuning parameters
- `expand_modelgrid` Model tuning grid expansion
- `expand_params` Model parameters expansion
- `expand_steps` Recipe step parameters expansion

Response Values:

- `response` Observed
- `predict` Predicted

Performance Assessment:

- `calibration` Model calibration
- `confusion` Confusion matrix
- `dependence` Partial dependence
- `diff` Model performance differences
Methods for resample estimation include

- `BootControl`: Simple bootstrap
- `BootOptimismControl`: Optimism-corrected bootstrap
- `CVControl`: Repeated K-fold cross-validation
- `CVOptimismControl`: Optimism-corrected cross-validation
- `OOBControl`: Out-of-bootstrap
- `SplitControl`: Split training-testing
- `TrainControl`: Training resubstitution

Graphical and tabular summaries of modeling results can be obtained with

- `plot`
- `print`
- `summary`

Further information on package features is available with

- `metricinfo`: Performance metric information
- `modelinfo`: Model information
- `settings`: Global settings

Custom metrics and models can be created with the `MLMetric` and `MLModel` constructors.

Author(s)

Maintainer: Brian J Smith <brian-j-smith@uiowa.edu>

See Also

Useful links:

- https://brian-j-smith.github.io/MachineShop/
AdaBagModel

Bagging with Classification Trees

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classifiers.

Usage

AdaBagModel(
 mfinal = 100,
 minsplit = 20,
 minbucket = round(minsplit/3),
 cp = 0.01,
 maxcompete = 4,
 maxsurrogate = 5,
 usesurrogate = 2,
 xval = 10,
 surrogatestyle = 0,
 maxdepth = 30
)

Arguments

- **mfinal**: number of trees to use.
- **minsplit**: minimum number of observations that must exist in a node in order for a split to be attempted.
- **minbucket**: minimum number of observations in any terminal node.
- **cp**: complexity parameter.
- **maxcompete**: number of competitor splits retained in the output.
- **maxsurrogate**: number of surrogate splits retained in the output.
- **usesurrogate**: how to use surrogates in the splitting process.
- **xval**: number of cross-validations.
- **surrogatestyle**: controls the selection of a best surrogate.
- **maxdepth**: maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

- **Response types**: factor
- **Automatic tuning of grid parameters**: mfinal, maxdepth

Further model details can be found in the source link below.
AdaBoostModel

Value

MLModel class object.

See Also

bagging, fit, resample

Examples

Requires prior installation of suggested package adabag to run
fit(Species ~ ., data = iris, model = AdaBagModel(mfinal = 5))

AdaBoostModel

Boosting with Classification Trees

Description

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms using classification trees as single classifiers.

Usage

AdaBoostModel(
 boos = TRUE,
 mfinal = 100,
 coeflearn = c("Breiman", "Freund", "Zhu"),
 minsplit = 20,
 minbucket = round(minsplit/3),
 cp = 0.01,
 maxcompete = 4,
 maxsurrogate = 5,
 usesurrogate = 2,
 xval = 10,
 surrogatestyle = 0,
 maxdepth = 30
)

Arguments

boos if TRUE, then bootstrap samples are drawn from the training set using the observation weights at each iteration. If FALSE, then all observations are used with their weights.

mfinal number of iterations for which boosting is run.
AdaBoostModel

coeflearn learning algorithm.
minsplits minimum number of observations that must exist in a node in order for a split to be attempted.
minbucket minimum number of observations in any terminal node.
cp complexity parameter.
maxcompete number of competitor splits retained in the output.
maxsurrogate number of surrogate splits retained in the output.
usesurrogate how to use surrogates in the splitting process.
xval number of cross-validations.
surrogatestyle controls the selection of a best surrogate.
maxdepth maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

Response types: factor

Automatic tuning of grid parameters: mfinal, maxdepth, coeflearn*

* excluded from grids by default

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

boosting, fit, resample

Examples

Requires prior installation of suggested package adabag to run

fit(Species ~ ., data = iris, model = AdaBoostModel(mfinal = 5))
as.MLInput

Coerce to an MLInput

Description

Function to coerce an object to MLInput.

Usage

```r
as.MLInput(x, ...)
```

S3 method for class 'MLModelFit'

```r
as.MLInput(x, ...)
```

S3 method for class 'ModelSpecification'

```r
as.MLInput(x, ...)
```

Arguments

- `x` model fit result or `MachineShop` model specification.
- `...` arguments passed to other methods.

Value

MLInput class object.

as.MLModel

Coerce to an MLModel

Description

Function to coerce an object to MLModel.

Usage

```r
as.MLModel(x, ...)
```

S3 method for class 'MLModelFit'

```r
as.MLModel(x, ...)
```

S3 method for class 'ModelSpecification'

```r
as.MLModel(x, ...)
```

S3 method for class 'model_spec'

```r
as.MLModel(x, ...)
```
BARTMachineModel

Arguments

- `x`: model fit result, `MachineShop` model specification, or `parsnip` model specification.
- `...`: arguments passed to other methods.

Value

MLModel class object.

See Also

- `ParsnipModel`

Description

BARTMachineModel is a Bayesian Additive Regression Trees Model.

Usage

```r
BARTMachineModel(num_trees = 50, 
num_burn = 250, 
num_iter = 1000, 
alpha = 0.95, 
beta = 2, 
k = 2, 
q = 0.9, 
nu = 3, 

mh_prob_steps = c(2.5, 2.5, 4)/9, 
verbose = FALSE, 
...
)
```

Arguments

- `num_trees`: number of trees to be grown in the sum-of-trees model.
- `num_burn`: number of MCMC samples to be discarded as "burn-in".
- `num_iter`: number of MCMC samples to draw from the posterior distribution.
- `alpha`, `beta`: base and power hyperparameters in tree prior for whether a node is nonterminal or not.
- `k`: regression prior probability that $E(Y|X)$ is contained in the interval (y_{min}, y_{max}), based on a normal distribution.
BARTMachineModel

q quantile of the prior on the error variance at which the data-based estimate is placed.

nu regression degrees of freedom for the inverse σ^2 prior.

mh_prob_steps vector of prior probabilities for proposing changes to the tree structures: (GROW, PRUNE, CHANGE).

verbose logical indicating whether to print progress information about the algorithm.

... additional arguments to bartMachine.

Details

Response types: binary factor, numeric

Automatic tuning of grid parameters: alpha, beta, k, nu

Further model details can be found in the source link below.

In calls to varimp for BARTMachineModel, argument type may be specified as "splits" (default) for the proportion of time each predictor is chosen for a splitting rule or as "trees" for the proportion of times each predictor appears in a tree. Argument num_replicates is also available to control the number of BART replicates used in estimating the inclusion proportions [default: 5]. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

bartMachine, fit, resample

Examples

```r
## Requires prior installation of suggested package bartMachine to run
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = BARTMachineModel)
varimp(model_fit, method = "model", type = "splits", num_replicates = 20,
       scale = FALSE)
```
BARTModel

Bayesian Additive Regression Trees Model

Description

Flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes.

Usage

BARTModel(
 K = integer(),
 sparse = FALSE,
 theta = 0,
 omega = 1,
 a = 0.5,
 b = 1,
 rho = numeric(),
 augment = FALSE,
 xinfo = matrix(NA, 0, 0),
 usequants = FALSE,
 sigest = NA,
 sigdf = 3,
 sigquant = 0.9,
 lambda = NA,
 k = 2,
 power = 2,
 base = 0.95,
 tau.num = numeric(),
 offset = numeric(),
 ntree = integer(),
 numcut = 100,
 ndpost = 1000,
 nskip = integer(),
 keepevery = integer(),
 printevery = 1000
)

Arguments

K if provided, then coarsen the times of survival responses per the quantiles $1/K, 2/K, ..., K/K$ to reduce computational burden.

sparse logical indicating whether to perform variable selection based on a sparse Dirichlet prior rather than simply uniform; see Linero 2016.

theta, omega theta and omega parameters; zero means random.
a, b
sparse parameters for $Beta(a, b)$ prior: $0.5 \leq a \leq 1$ where lower values induce more sparsity and typically $b = 1$.

rho
sparse parameter: typically $\rho = p$ where p is the number of covariates under consideration.

augment
whether data augmentation is to be performed in sparse variable selection.

xinfo
optimal matrix whose rows are the covariates and columns their cutpoints.

usequants
whether covariate cutpoints are defined by uniform quantiles or generated uniformly.

sigest
normal error variance prior for numeric response variables.

sigdf
degrees of freedom for error variance prior.

sigquant
quantile at which a rough estimate of the error standard deviation is placed.

lambda
scale of the prior error variance.

k
number of standard deviations $f(x)$ is away from +/-3 for categorical response variables.

power, base
power and base parameters for tree prior.

tau.num
umerator in the τ definition, i.e., $\tau = \tau_{\text{num}}/(k \ast \text{sqrt}(\text{ntree}))$.

offset
override for the default offset of $F^{-1}(\text{mean}(y))$ in the multivariate response probability $P(y[j] = 1|x) = F(f(x)[j] + \text{offset}[j])$.

ntree
number of trees in the sum.

numcut
number of possible covariate cutoff values.

ndpost
number of posterior draws returned.

tau.num
numerator in the tau definition, i.e., $\tau = \tau_{\text{num}}/(k \ast \text{sqrt}(\text{ntree}))$.

offset
override for the default offset of $F^{-1}(\text{mean}(y))$ in the multivariate response probability $P(y[j] = 1|x) = F(f(x)[j] + \text{offset}[j])$.

numcut
number of possible covariate cutoff values.

ndpost
number of posterior draws returned.

keepevery
interval at which to keep posterior draws.

printevery
interval at which to print MCMC progress.

Details

Response types: factor, numeric, Surv

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

gbart, mbart, surv.bart, fit, resample

Examples

Requires prior installation of suggested package BART to run

fit(sale_amount ~ ., data = ICHomes, model = BARTModel)
BlackBoostModel Gradient Boosting with Regression Trees

Description

Gradient boosting for optimizing arbitrary loss functions where regression trees are utilized as base-learners.

Usage

BlackBoostModel(
 family = NULL,
 mstop = 100,
 nu = 0.1,
 risk = c("inbag", "oobag", "none"),
 stopintern = FALSE,
 trace = FALSE,
 teststat = c("quadratic", "maximum"),
 testtype = c("Teststatistic", "Univariate", "Bonferroni", "MonteCarlo"),
 mincriterion = 0,
 mnsplit = 10,
 minbucket = 4,
 maxdepth = 2,
 saveinfo = FALSE,
 ...
)

Arguments

family optional Family object. Set automatically according to the class type of the response variable.

mstop number of initial boosting iterations.

nu step size or shrinkage parameter between 0 and 1.

risk method to use in computing the empirical risk for each boosting iteration.

stopintern logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.

trace logical indicating whether status information is printed during the fitting process.

teststat type of the test statistic to be applied for variable selection.

testtype how to compute the distribution of the test statistic.

mincriterion value of the test statistic or 1 - p-value that must be exceeded in order to implement a split.

mnsplit minimum sum of weights in a node in order to be considered for splitting.

minbucket minimum sum of weights in a terminal node.
C50Model

Description

Fit classification tree models or rule-based models using Quinlan’s C5.0 algorithm.

Usage

C50Model(
 trials = 1,
 rules = FALSE,
 subset = TRUE,
 bands = 0,
 winnow = FALSE,
 noGlobalPruning = FALSE,
 maxdepth,
 saveinfo = logical indicating whether to store information about variable selection in info slot of each partynode,
 ... additional arguments to ctree_control.
)

Details

Response types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: mstop, maxdepth

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

blackboost, Family, ctree_control, fit, resample

Examples

Requires prior installation of suggested packages mboost and partykit to run
data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = BlackBoostModel)
C50Model

CF = 0.25,
minCases = 2,
fuzzyThreshold = FALSE,
sample = 0,
earlyStopping = TRUE
)

Arguments

trials integer number of boosting iterations.
rules logical indicating whether to decompose the tree into a rule-based model.
subset logical indicating whether the model should evaluate groups of discrete predictors for splits.
bands integer between 2 and 1000 specifying a number of bands into which to group rules ordered by their affect on the error rate.
winnow logical indicating use of predictor winnowing (i.e. feature selection).
noGlobalPruning logical indicating a final, global pruning step to simplify the tree.
CF number in (0, 1) for the confidence factor.
minCases integer for the smallest number of samples that must be put in at least two of the splits.
fuzzyThreshold logical indicating whether to evaluate possible advanced splits of the data.
sample value between (0, 0.999) that specifies the random proportion of data to use in training the model.
earlyStopping logical indicating whether the internal method for stopping boosting should be used.

Details

Response types: factor

Automatic tuning of grid parameters: trials, rules, winnow

Latter arguments are passed to C5.0Control. Further model details can be found in the source link below.

In calls to varimp for C50Model, argument type may be specified as "usage" (default) for the percentage of training set samples that fall into all terminal nodes after the split of each predictor or as "splits" for the percentage of splits associated with each predictor. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

C5.0, fit, resample
Examples

```r
## Requires prior installation of suggested package C50 to run
model_fit <- fit(Species ~ ., data = iris, model = C50Model)
varimp(model_fit, method = "model", type = "splits", scale = FALSE)
```

calibration
Model Calibration

Description

Calculate calibration estimates from observed and predicted responses.

Usage

```r
calibration(
  x,
  y = NULL,
  weights = NULL,
  breaks = 10,
  span = 0.75,
  distr = character(),
  na.rm = TRUE,
  ...)
```

Arguments

- `x`
 observed responses or *resample* result containing observed and predicted responses.

- `y`
 predicted responses if not contained in `x`.

- `weights`
 numeric vector of non-negative *case weights* for the observed `x` responses [default: equal weights].

- `breaks`
 value defining the response variable bins within which to calculate observed mean values. May be specified as a number of bins, a vector of breakpoints, or `NULL` to fit smooth curves with splines for predicted survival probabilities and with *loess* for others.

- `span`
 numeric parameter controlling the degree of *loess* smoothing.

- `distr`
 character string specifying a distribution with which to estimate the observed survival mean. Possible values are "empirical" for the Kaplan-Meier estimator, "exponential", "extreme", "gaussian", "loggaussian", "logistic", "loglogistic", "lognormal", "rayleigh", "t", or "weibull". Defaults to the distribution that was used in predicting mean survival times.
na.rm logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

... arguments passed to other methods.

Value

Calibration class object that inherits from data.frame.

See Also
c, plot

Examples

Requires prior installation of suggested package gbm to run

library(survival)

control <- CVControl() %>% set_predict(times = c(0, 180, 360))
res <- resample(Surv(time, status) ~ ., data = veteran, model = GBMModel, control = control)
cal <- calibration(res)
plot(cal)
Examples

```r
## Training and test sets
inds <- sample(nrow(ICHomes), nrow(ICHomes) * 2 / 3)
trainset <- ICHomes[inds, ]
testset <- ICHomes[-inds, ]

## ModelFrame case weights
trainmf <- ModelFrame(sale_amount ~ . - built, data = trainset, weights = built)
testmf <- ModelFrame(formula(trainmf), data = testset, weights = built)
mf_fit <- fit(trainmf, model = GLMModel)
rmse(response(mf_fit, testmf), predict(mf_fit, testmf),
     case_weights(mf_fit, testmf))

## Recipe case weights
library(recipes)
rec <- recipe(sale_amount ~ ., data = trainset) %>%
    role_case(weight = built, replace = TRUE)
rec_fit <- fit(rec, model = GLMModel)
rmse(response(rec_fit, testset), predict(rec_fit, testset),
     case_weights(rec_fit, testset))
```

CForestModel
Conditional Random Forest Model

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners.

Usage

```r
CForestModel(
    teststat = c("quad", "max"),
    testtype = c("Univariate", "Teststatistic", "Bonferroni", "MonteCarlo"),
    mincriterion = 0,
    ntree = 500,
    mtry = 5,
    replace = TRUE,
    fraction = 0.632
)
```

Arguments

- **teststat**: character specifying the type of the test statistic to be applied.
- **testtype**: character specifying how to compute the distribution of the test statistic.
- **mincriterion**: value of the test statistic that must be exceeded in order to implement a split.
- **ntree**: number of trees to grow in a forest.
mtry number of input variables randomly sampled as candidates at each node for random forest like algorithms.

replace logical indicating whether sampling of observations is done with or without replacement.

fraction fraction of number of observations to draw without replacement (only relevant if replace = FALSE).

Details

Response types: factor, numeric, Surv

Automatic tuning of grid parameter: mtry

Supplied arguments are passed to `cforest_control`. Further model details can be found in the source link below.

Value

MLModel class object.

See Also

cforest, fit, resample

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = CForestModel)
```

combine

Combine MachineShop Objects

Description

Combine one or more MachineShop objects of the same class.

Usage

```r
## S3 method for class 'Calibration'
c(...)

## S3 method for class 'ConfusionList'
c(...)

## S3 method for class 'ConfusionMatrix'
c(...)

## S3 method for class 'LiftCurve'
c(...)
```
S3 method for class 'ListOf'

`c(...)`

S3 method for class 'PerformanceCurve'

`c(...)`

S3 method for class 'Resample'

`c(...)`

S4 method for signature 'SurvMatrix,SurvMatrix'

e1 + e2

Arguments

... named or unnamed calibration, confusion, lift, performance curve, summary, or resample results. Curves must have been generated with the same performance metrics and resamples with the same resampling control.

e1, e2 objects.

Value

Object of the same class as the arguments.

confusion

Confusion Matrix

Description

Calculate confusion matrices of predicted and observed responses.

Usage

```r
confusion(
  x,
  y = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  na.rm = TRUE,
  ...
)
```

ConfusionMatrix(data = NA, ordered = FALSE)
Arguments

- **x**: factor of observed responses or resample result containing observed and predicted responses.
- **y**: predicted responses if not contained in x.
- **weights**: numeric vector of non-negative case weights for the observed x responses [default: equal weights].
- **cutoff**: numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified. If NULL, then factor responses are summed directly over predicted class probabilities, whereas a default cutoff of 0.5 is used for survival probabilities. Class probability summations and survival will appear as decimal numbers that can be interpreted as expected counts.
- **na.rm**: logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.
- **...**: arguments passed to other methods.
- **data**: square matrix, or object that can be converted to one, of cross-classified predicted and observed values in the rows and columns, respectively.
- **ordered**: logical indicating whether the confusion matrix row and columns should be regarded as ordered.

Value

The return value is a ConfusionMatrix class object that inherits from table if x and y responses are specified or a ConfusionList object that inherits from list if x is a Resample object.

See Also

c, plot, summary

Examples

```
## Requires prior installation of suggested package gbm to run

res <- resample(Species ~ ., data = iris, model = GBMModel)
(conf <- confusion(res))
plot(conf)
```
CoxModel

Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata, multiple events per subject, and other extensions are incorporated using the counting process formulation of Andersen and Gill.

Usage

CoxModel(ties = c("efron", "breslow", "exact"), ...)

CoxStepAICModel(
 ties = c("efron", "breslow", "exact"),
 ...,
 direction = c("both", "backward", "forward"),
 scope = list(),
 k = 2,
 trace = FALSE,
 steps = 1000
)

Arguments

- **ties** character string specifying the method for tie handling.
- **...** arguments passed to `coxph.control`.
- **direction** mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- **scope** defines the range of models examined in the stepwise search. This should be a list containing components `upper` and `lower`, both formulae.
- **k** multiple of the number of degrees of freedom used for the penalty. Only k = 2 gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or SBC.
- **trace** if positive, information is printed during the running of stepAIC. Larger values may give more information on the fitting process.
- **steps** maximum number of steps to be considered.

Details

Response types: `Surv`

Default values and further model details can be found in the source links below.

In calls to `varimp` for CoxModel and CoxStepAICModel, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [default: exp(1)]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

CoxModel
Value

MLModel class object.

See Also

coxph, coxph.control, stepAIC, fit.resample

Examples

library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = CoxModel)

dependence Partial Dependence

Description

Calculate partial dependence of a response on select predictor variables.

Usage

dependence(
object,
data = NULL,
select = NULL,
interaction = FALSE,
n = 10,
intervals = c("uniform", "quantile"),
distr = character(),
method = character(),
stats = MachineShop::settings("stats.PartialDependence"),
na.rm = TRUE
)

Arguments

object model fit result.

data data frame containing all predictor variables. If not specified, the training data will be used by default.

select expression indicating predictor variables for which to compute partial dependence (see subset for syntax) [default: all].

interaction logical indicating whether to calculate dependence on the interacted predictors.

n number of predictor values at which to perform calculations.
intervals character string specifying whether the n values are spaced uniformly ("uniform") or according to variable quantiles ("quantile").

distr, method arguments passed to `predict`.

stats function, function name, or vector of these with which to compute response variable summary statistics over non-selected predictor variables.

na.rm logical indicating whether to exclude missing predicted response values from the calculation of summary statistics.

Value

PartialDependence class object that inherits from `data.frame`.

See Also

`plot`

Examples

```r
## Requires prior installation of suggested package gbm to run

gbm_fit <- fit(Species ~ ., data = iris, model = GBMModel)
(pd <- dependence(gbm_fit, select = c(Petal.Length, Petal.Width)))
plot(pd)
```

deprecated

Deprecated Functions

Description

Functions that have been deprecated and will be removed in a future version of the package.

Usage

`ModeledInput(...)`

`rpp(...)`

Arguments

`...` arguments passed to non-deprecated equivalent.

Details

Use `ModelSpecification()` instead of `ModeledInput()`.

Use `ppr()` instead of `rpp()`.
Model Performance Differences

Description

Pairwise model differences in resampled performance metrics.

Usage

```r
## S3 method for class 'MLModel'
diff(x, ...)

## S3 method for class 'Performance'
diff(x, ...)

## S3 method for class 'Resample'
diff(x, ...)
```

Arguments

- `x`: model performance or resample result.
- `...`: arguments passed to other methods.

Value

PerformanceDiff class object that inherits from Performance.

See Also

`t.test`, `plot`, `summary`

Examples

```r
## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)

fo <- Surv(time, status) ~ .
ccontrol <- CVControl()

gbm_res1 <- resample(fo, data = veteran, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, data = veteran, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, data = veteran, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
```
DiscreteVariate

Discrete Variate Constructors

Description
Create a variate of binomial counts, discrete numbers, negative binomial counts, or Poisson counts.

Usage
- `BinomialVariate(x = integer(), size = integer())`
- `DiscreteVariate(x = integer(), min = -Inf, max = Inf)`
- `NegBinomialVariate(x = integer())`
- `PoissonVariate(x = integer())`

Arguments
- **x**: numeric vector.
- **size**: number or numeric vector of binomial trials.
- **min, max**: minimum and maximum bounds for discrete numbers.

Value
- `BinomialVariate` object class, `DiscreteVariate` that inherits from numeric, or `NegBinomialVariate` or `PoissonVariate` that inherit from `DiscreteVariate`.

See Also
- `role_binom`

Examples
- `BinomialVariate(rbinom(25, 10, 0.5), size = 10)`
- `PoissonVariate(rpois(25, 10))`
EarthModel

Multivariate Adaptive Regression Splines Model

Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regression Splines" and "Fast MARS".

Usage

EarthModel(
 pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
 trace = 0,
 degree = 1,
 nprune = integer(),
 nfold = 0,
 ncross = 1,
 stratify = TRUE
)

Arguments

 pmethod pruning method.
 trace level of execution information to display.
 degree maximum degree of interaction.
 nprune maximum number of terms (including intercept) in the pruned model.
 nfold number of cross-validation folds.
 ncross number of cross-validations if nfold > 1.
 stratify logical indicating whether to stratify cross-validation samples by the response levels.

Details

Response types: factor, numeric

Automatic tuning of grid parameters: nprune, degree*

* excluded from grids by default

Default values and further model details can be found in the source link below.

In calls to varimp for EarthModel, argument type may be specified as "nsubsets" (default) for the number of model subsets that include each predictor, as "gcv" for the generalized cross-validation decrease over all subsets that include each predictor, or as "rss" for the residual sums of squares decrease. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.
Value

MLModel class object.

See Also

earth, fit, resample

Examples

Requires prior installation of suggested package earth to run

```r
model_fit <- fit(Species ~ ., data = iris, model = EarthModel)
varimp(model_fit, method = "model", type = "gcv", scale = FALSE)
```

expand_model

Model Expansion Over Tuning Parameters

Description

Expand a model over all combinations of a grid of tuning parameters.

Usage

```r
expand_model(object, ..., random = FALSE)
```

Arguments

- `object` model function, function name, or object; or another object that can be coerced to a model.
- `...` named vectors or factors or a list of these containing the parameter values over which to expand object.
- `random` number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

list of expanded models.

See Also

SelectedModel
Examples

```r
## Requires prior installation of suggested package gbm to run

data(Boston, package = "MASS")

models <- expand_model(GBMModel, n.trees = c(50, 100),
                       interaction.depth = 1:2)

fit(medv ~ ., data = Boston, model = SelectedModel(models))
```

expand_modelgrid
Model Tuning Grid Expansion

Description

Expand a model grid of tuning parameter values.

Usage

```r
expand_modelgrid(...)  
```

S3 method for class 'formula'
```r
expand_modelgrid(formula, data, model, info = FALSE, ...)
```

S3 method for class 'matrix'
```r
expand_modelgrid(x, y, model, info = FALSE, ...)
```

S3 method for class 'ModelFrame'
```r
expand_modelgrid(input, model, info = FALSE, ...)
```

S3 method for class 'recipe'
```r
expand_modelgrid(input, model, info = FALSE, ...)
```

S3 method for class 'ModelSpecification'
```r
expand_modelgrid(object, ...)
```

S3 method for class 'MLModel'
```r
expand_modelgrid(model, ...)
```

S3 method for class 'MLModelFunction'
```r
expand_modelgrid(model, ...)
```
Arguments

... arguments passed from the generic function to its methods and from the MLModel and MLModelFunction methods to others. The first argument of each expand_modelgrid method is positional and, as such, must be given first in calls to them.

`formula, data` formula defining the model predictor and response variables and a data frame containing them.

`model` model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications.

`info` logical indicating whether to return model-defined grid construction information rather than the grid values.

`x, y` matrix and object containing predictor and response variables.

`input` input object defining and containing the model predictor and response variables.

`object` model specification.

Details

The `expand_modelgrid` function enables manual extraction and viewing of grids created automatically when a `TunedModel` is fit.

Value

A data frame of parameter values or NULL if data are required for construction of the grid but not supplied.

See Also

`TunedModel`

Examples

```r
expand_modelgrid(TunedModel(GBMModel, grid = 5))

expand_modelgrid(TunedModel(GLMNetModel, grid = c(alpha = 5, lambda = 10)),
                 sale_amount ~ ., data = ICHomes)

gbm_grid <- ParameterGrid(
  n.trees = dials::trees(),
  interaction.depth = dials::tree_depth(),
  size = 5
)
expand_modelgrid(TunedModel(GBMModel, grid = gbm_grid))

rf_grid <- ParameterGrid(
  mtry = dials::mtry(),
  nodesize = dials::max_nodes(),
  size = c(3, 5)
)
```
expand_params

```r
expand_modelgrid(TunedModel(RandomForestModel, grid = rf_grid),
                  sale_amount ~ ., data = ICHomes)
```

Description

Create a grid of parameter values from all combinations of supplied inputs.

Usage

```r
expand_params(..., random = FALSE)
```

Arguments

- `...` named data frames or vectors or a list of these containing the parameter values over which to create the grid.
- `random` number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

A data frame containing one row for each combination of the supplied inputs.

See Also

- `TunedModel`

Examples

```r
## Requires prior installation of suggested package gbm to run

data(Boston, package = "MASS")

grid <- expand_params(
    n.trees = c(50, 100),
    interaction.depth = 1:2
)

fit(medv ~ ., data = Boston, model = TunedModel(GBMModel, grid = grid))
```
expand_steps

Recipe Step Parameters Expansion

Description

Create a grid of parameter values from all combinations of lists supplied for steps of a preprocessing recipe.

Usage

expand_steps(..., random = FALSE)

Arguments

... one or more lists containing parameter values over which to create the grid. For each list an argument name should be given as the id of the recipe step to which it corresponds.

random number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

RecipeGrid class object that inherits from data.frame.

See Also

TunedInput

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
 step_corr(all_numeric_predictors(), id = "corr") %>%
 step_pca(all_numeric_predictors(), id = "pca")

expand_steps(
 corr = list(threshold = c(0.8, 0.9),
 method = c("pearson", "spearman")),
 pca = list(num_comp = 1:3)
)
Extract Elements of an Object

Description

Operators acting on data structures to extract elements.

Usage

```r
## S3 method for class 'BinomialVariate'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'DiscreteVariate,ANY,missing,missing'
x[i]

## S4 method for signature 'ListOf,ANY,missing,missing'
x[i]

## S4 method for signature 'ModelFrame,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'ModelFrame,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'ModelFrame,missing,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'ModelFrame,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'RecipeGrid,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'Resample,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'Resample,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'Resample,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'SurvMatrix,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'SurvTimes,ANY,missing,missing'
x[i]
```
FDAModel

Flexible and Penalized Discriminant Analysis Models

Description

Performs flexible discriminant analysis.

Usage

FDAModel(
 theta = matrix(NA, 0, 0),
 dimension = integer(),
 eps = .Machine$double.eps,
 method = .(mda::polyreg),
 ...
)

PDAModel(lambda = 1, df = numeric(), ...)

Arguments

theta optional matrix of class scores, typically with number of columns less than one minus the number of classes.
dimension dimension of the discriminant subspace, less than the number of classes, to use for prediction.
eps numeric threshold for small singular values for excluding discriminant variables.
method regression function used in optimal scaling. The default of linear regression is provided by polyreg from the mda package. For penalized discriminant analysis, gen.ridge is appropriate. Other possibilities are mars for multivariate adaptive regression splines and bruto for adaptive backfitting of additive splines. Use the . operator to quote specified functions.
... additional arguments to method for FDAModel and to FDAModel for PDAModel.
lambda shrinkage penalty coefficient.
df alternative specification of lambda in terms of equivalent degrees of freedom.
Details

Response types: factor

Automatic tuning of grid parameters:
- FDAModel: nprune, degree*
- PDAModel: lambda

* excluded from grids by default

The `predict` function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.

Value

`MLModel` class object.

See Also

`fda`, `predict.fda`, `fit`, `resample`

Examples

```r
## Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = FDAModel)
```

```r
## Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = PDAModel)
```
Usage

```r
fit(...)  
## S3 method for class 'formula'
fit(formula, data, model, ...)  
## S3 method for class 'matrix'
fit(x, y, model, ...)  
## S3 method for class 'ModelFrame'
fit(input, model = NULL, ...)  
## S3 method for class 'recipe'
fit(input, model = NULL, ...)  
## S3 method for class 'ModelSpecification'
fit(object, ...)  
## S3 method for class 'MLModel'
fit(model, ...)  
## S3 method for class 'MLModelFunction'
fit(model, ...)  
```

Arguments

- `...`: arguments passed from the generic function to its methods and from the `MLModel` and `MLModelFunction` methods to others. The first argument of each `fit` method is positional and, as such, must be given first in calls to them.
- `formula, data`: formula defining the model predictor and response variables and a data frame containing them.
- `model`: model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications, and the argument can be omitted altogether in the case of modeled inputs.
- `x, y`: matrix and object containing predictor and response variables.
- `input`: input object defining and containing the model predictor and response variables.
- `object`: model specification.

Details

User-specified case weights may be specified for `ModelFrames` upon creation with the `weights` argument in its constructor.

Variables in `recipe` specifications may be designated as case weights with the `role_case` function.

Value

`MLModelFit` class object.
See Also

\texttt{as.MLModel, response, predict, varimp}

Examples

Requires prior installation of suggested package gbm to run

Survival response example

library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)

varimp(gbm_fit)

GAMBoostModel

\textit{Gradient Boosting with Additive Models}

Description

Gradient boosting for optimizing arbitrary loss functions, where component-wise arbitrary base-learners, e.g., smoothing procedures, are utilized as additive base-learners.

Usage

GAMBoostModel(
 family = NULL,
 baselearner = c("bbs", "bols", "btree", "bss", "bns"),
 dfbase = 4,
 mstop = 100,
 nu = 0.1,
 risk = c("inbag", "oobag", "none"),
 stopintern = FALSE,
 trace = FALSE
)

Arguments

family optional \texttt{Family} object. Set automatically according to the class type of the response variable.

baselearner character specifying the component-wise \texttt{base learner} to be used.

dfbase global degrees of freedom for P-spline base learners ("bbs").

mstop number of initial boosting iterations.

nu step size or shrinkage parameter between 0 and 1.

risk method to use in computing the empirical risk for each boosting iteration.
stopintern logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.

trace logical indicating whether status information is printed during the fitting process.

Details

Response types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic tuning of grid parameter: mstop

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

gamboost, Family, baselearners, fit, resample

Examples

```r
## Requires prior installation of suggested package mboost to run
data(Pima.tr, package = "MASS")
fit(type ~ ., data = Pima.tr, model = GAMBoostModel)
```

GBMModel

Generalized Boosted Regression Model

Description

Fits generalized boosted regression models.

Usage

```r
GBMModel(
  distribution = character(),
  n.trees = 100,
  interaction.depth = 1,
  n.minobsinnode = 10,
  shrinkage = 0.1,
  bag.fraction = 0.5
)
```
Arguments

distribution optional character string specifying the name of the distribution to use or list with a component name specifying the distribution and any additional parameters needed. Set automatically according to the class type of the response variable.
n.trees total number of trees to fit.
interaction.depth maximum depth of variable interactions.
n.minobsinnode minimum number of observations in the trees terminal nodes.
shrinkage shrinkage parameter applied to each tree in the expansion.
bag.fraction fraction of the training set observations randomly selected to propose the next tree in the expansion.

Details

Response types: factor, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: n.trees, interaction.depth, shrinkage*, n.minobsinnode*
* excluded from grids by default

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

gbm, fit, resample

Examples

Requires prior installation of suggested package gbm to run

fit(Species ~ ., data = iris, model = GBMModel)

GLMBoostModel Gradient Boosting with Linear Models

Description

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are utilized as base-learners.
GLMBoostModel

Usage

GLMBoostModel(
 family = NULL,
 mstop = 100,
 nu = 0.1,
 risk = c("inbag", "oobag", "none"),
 stopintern = FALSE,
 trace = FALSE
)

Arguments

family optional Family object. Set automatically according to the class type of the response variable.
mstop number of initial boosting iterations.
nu step size or shrinkage parameter between 0 and 1.
risk method to use in computing the empirical risk for each boosting iteration.
stopintern logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.
trace logical indicating whether status information is printed during the fitting process.

Details

Response types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic tuning of grid parameter: mstop

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

glmboost, Family, fit, resample

Examples

Requires prior installation of suggested package mboost to run
data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GLMBoostModel)
GLMModel

Generalized Linear Model

Description

Fits generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

Usage

GLMModel(family = NULL, quasi = FALSE, ...)

GLMStepAICModel(
 family = NULL,
 quasi = FALSE,
 ...,
 direction = c("both", "backward", "forward"),
 scope = list(),
 k = 2,
 trace = FALSE,
 steps = 1000
)

Arguments

- **family**: optional error distribution and link function to be used in the model. Set automatically according to the class type of the response variable.
- **quasi**: logical indicator for over-dispersion of binomial and Poisson families; i.e., dispersion parameters not fixed at one.
- **...**: arguments passed to `glm.control`.
- **direction**: mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- **scope**: defines the range of models examined in the stepwise search. This should be a list containing components `upper` and `lower`, both formulae.
- **k**: multiple of the number of degrees of freedom used for the penalty. Only \(k = 2 \) gives the genuine AIC; \(k = \log(\text{nobs}) \) is sometimes referred to as BIC or SBC.
- **trace**: if positive, information is printed during the running of `stepAIC`. Larger values may give more information on the fitting process.
- **steps**: maximum number of steps to be considered.

Details

GLMModel **Response types**: BinomialVariate, factor, matrix, NegBinomialVariate, numeric, PoissonVariate
GLMNetModel **Response types:** binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate

Default values and further model details can be found in the source links below.

In calls to `varimp` for GLMModel and GLMStepAICModel, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [default: \(\exp(1)\)]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

Value

MLModel class object.

See Also

`glm, glm.control, stepAIC, fit, resample`

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = GLMModel)
```

GLMNetModel

Description

Fit a generalized linear model via penalized maximum likelihood.

Usage

```r
GLMNetModel(
  family = NULL,
  alpha = 1,
  lambda = 0,
  standardize = TRUE,
  intercept = logical(),
  penalty.factor = .(rep(1, nvars)),
  standardize.response = FALSE,
  thresh = 1e-07,
  maxit = 1e+05,
  type.gaussian = .(if (nvars < 500) "covariance" else "naive"),
  type.logistic = c("Newton", "modified.Newton"),
  type.multinomial = c("ungrouped", "grouped")
)
```
GLMNetModel

Arguments

- **family**: optional response type. Set automatically according to the class type of the response variable.
- **alpha**: elasticnet mixing parameter.
- **lambda**: regularization parameter. The default value $\lambda = 0$ performs no regularization and should be increased to avoid model fitting issues if the number of predictor variables is greater than the number of observations.
- **standardize**: logical flag for predictor variable standardization, prior to model fitting.
- **intercept**: logical indicating whether to fit intercepts.
- **penalty.factor**: vector of penalty factors to be applied to each coefficient.
- **standardize.response**: logical indicating whether to standardize "mgaussian" response variables.
- **thresh**: convergence threshold for coordinate descent.
- **maxit**: maximum number of passes over the data for all lambda values.
- **type.gaussian**: algorithm type for guassian models.
- **type.logistic**: algorithm type for logistic models.
- **type.multinomial**: algorithm type for multinomial models.

Details

Response types: BinomialVariate, factor, matrix, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: lambda, alpha

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

- glmnet, fit, resample

Examples

```r
## Requires prior installation of suggested package glmnet to run
fit(sale_amount ~ ., data = ICHomes, model = GLMNetModel(lambda = 0.01))
```
ICHomes

Iowa City Home Sales Dataset

Description

Characteristics of homes sold in Iowa City, IA from 2005 to 2008 as reported by the county assessor’s office.

Usage

ICHomes

Format

A data frame with 753 observations of 17 variables:

- **sale_amount**: sale amount in dollars.
- **sale_year**: sale year.
- **sale_month**: sale month.
- **built**: year in which the home was built.
- **style**: home style (Home/Condo)
- **construction**: home construction type.
- **base_size**: base foundation size in sq ft.
- **add_size**: size of additions made to the base foundation in sq ft.
- **garage1_size**: attached garage size in sq ft.
- **garage2_size**: detached garage size in sq ft.
- **lot_size**: total lot size in sq ft.
- **bedrooms**: number of bedrooms.
- **basement**: presence of a basement (No/Yes).
- **ac**: presence of central air conditioning (No/Yes).
- **attic**: presence of a finished attic (No/Yes).
- **lon,lat**: home longitude/latitude coordinates.

Description

Model inputs are the predictor and response variables whose relationship is determined by a model fit. Input specifications supported by MachineShop are summarized in the table below.
Response variable types in the input specifications are defined by the user with the functions and recipe roles:

Response Functions
- BinomialVariate
- DiscreteVariate
- factor
- matrix
- NegBinomialVariate
- numeric
- ordered
- PoissonVariate
- Surv

Recipe Roles
- role_binom
- role_surv

Inputs may be combined, selected, or tuned with the following meta-input functions.

- ModelSpecification: Model specification
- ModeledInput: Input with a prespecified model
- SelectedInput: Input selection from a candidate set
- TunedInput: Input tuning over a parameter grid

See Also
- fit, resample

Description

Fit a k-nearest neighbor model for which the k nearest training set vectors (according to Minkowski distance) are found for each row of the test set, and prediction is done via the maximum of summed kernel densities.
Usage

KNNModel(
 k = 7,
 distance = 2,
 scale = TRUE,
 kernel = c("optimal", "biweight", "cos", "epanechnikov", "gaussian", "inv", "rank",
 "rectangular", "triangular", "triweight")
)

Arguments

 k numer of neighbors considered.
 distance Minkowski distance parameter.
 scale logical indicating whether to scale predictors to have equal standard deviations.
 kernel kernel to use.

Details

 Response types: factor, numeric, ordinal

 Automatic tuning of grid parameters: k, distance*, kernel*

 * excluded from grids by default

 Further model details can be found in the source link below.

Value

 MLModel class object.

See Also

 kknn, fit, resample

Examples

 ## Requires prior installation of suggested package kknn to run

 fit(Species ~ ., data = iris, model = KNNModel)
LARSModel

Least Angle Regression, Lasso and Infinitesimal Forward Stagewise Models

Description

Fit variants of Lasso, and provide the entire sequence of coefficients and fits, starting from zero to the least squares fit.

Usage

LARSModel(
 type = c("lasso", "lar", "forward.stagewise", "stepwise"),
 trace = FALSE,
 normalize = TRUE,
 intercept = TRUE,
 step = numeric(),
 use.Gram = TRUE
)

Arguments

type model type.
trace logical indicating whether status information is printed during the fitting process.
normalize whether to standardize each variable to have unit L2 norm.
intercept whether to include an intercept in the model.
step algorithm step number to use for prediction. May be a decimal number indicating a fractional distance between steps. If specified, the maximum number of algorithm steps will be ceiling(step); otherwise, step will be set equal to the source package default maximum [default: max.steps].
use.Gram whether to precompute the Gram matrix.

Details

Response types: numeric

Automatic tuning of grid parameter: step

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

lars, fit, resample
Examples

```r
## Requires prior installation of suggested package lars to run
fit(sale_amount ~ ., data = ICHomes, model = LARSModel)
```

LDAModel

Linear Discriminant Analysis Model

Description

Performs linear discriminant analysis.

Usage

```r
LDAModel(
  prior = numeric(),
  tol = 1e-04,
  method = c("moment", "mle", "mve", "t"),
  nu = 5,
  dimen = integer(),
  use = c("plug-in", "debiased", "predictive")
)
```

Arguments

- `prior`: prior probabilities of class membership if specified or the class proportions in the training set otherwise.
- `tol`: tolerance for the determination of singular matrices.
- `method`: type of mean and variance estimator.
- `nu`: degrees of freedom for method = "t".
- `dimen`: dimension of the space to use for prediction.
- `use`: type of parameter estimation to use for prediction.

Details

- **Response types**: factor
- **Automatic tuning of grid parameter**: `dimen`

The `predict` function for this model additionally accepts the following argument:

- `prior`: prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.
Value

MLModel class object.

See Also

lda, predict.lda, fit, resample

Examples

fit(Species ~ ., data = iris, model = LDAModel)

Description

Calculate lift curves from observed and predicted responses.

Usage

lift(x, y = NULL, weights = NULL, na.rm = TRUE, ...)

Arguments

x observed responses or resample result containing observed and predicted responses.

y predicted responses if not contained in x.

weights numeric vector of non-negative case weights for the observed x responses [default: equal weights].

na.rm logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

... arguments passed to other methods.

Value

LiftCurve class object that inherits from PerformanceCurve.

See Also

c, plot, summary
Examples

```r
## Requires prior installation of suggested package gbm to run

data(Pima.tr, package = "MASS")

res <- resample(type ~ ., data = Pima.tr, model = GBMModel)
lf <- lift(res)
plot(lf)
```

LMModel

Linear Models

Description

Fits linear models.

Usage

```r
LMModel()
```

Details

Response types: factor, matrix, numeric

Further model details can be found in the source link below.

In calls to `varimp` for `LModel`, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [default: `exp(1)`. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

Value

`MLModel` class object.

See Also

`lm, fit, resample`

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = LMModel)
```
MDA Model

Mixture Discriminant Analysis Model

Description
Performs mixture discriminant analysis.

Usage
MDAModel(
 subclasses = 3,
 sub.df = numeric(),
 tot.df = numeric(),
 dimension = sum(subclasses) - 1,
 eps = .Machine$double.eps,
 iter = 5,
 method = .(mda::polyreg),
 trace = FALSE,
 ...
)

Arguments
subclasses numeric value or vector of subclasses per class.
sub.df effective degrees of freedom of the centroids per class if subclass centroid shrinkage is performed.
tot.df specification of the total degrees of freedom as an alternative to sub.df.
dimension dimension of the discriminant subspace to use for prediction.
eps numeric threshold for automatically truncating the dimension.
iter limit on the total number of iterations.
method regression function used in optimal scaling. The default of linear regression is provided by polyreg from the mda package. For penalized mixture discriminant models, gen.ridge is appropriate. Other possibilities are mars for multivariate adaptive regression splines and bruto for adaptive backfitting of additive splines. Use the . operator to quote specified functions.
trace logical indicating whether iteration information is printed.
... additional arguments to mda.start and method.

Details
Response types: factor
Automatic tuning of grid parameter: subclasses
The predict function for this model additionally accepts the following argument.
prior prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.
Value
MLModel class object.

See Also
mda, predict.mda, fit, resample

Examples

Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = MDAModel)
All metrics

```r
metricinfo()
```

Metrics by observed and predicted response types

```r
names(metricinfo(factor(0)))

names(metricinfo(factor(0), factor(0)))

names(metricinfo(factor(0), matrix(0)))

names(metricinfo(factor(0), numeric(0)))
```

Metric-specific information

```r
metricinfo(auc)
```

Performance Metrics

Description

Compute measures of agreement between observed and predicted responses.

Usage

```r
accuracy(
  observed,
  predicted = NULL,
  weights = NULL,
  cutoff = MachineShop::settings("cutoff"),
  ...
)
```

```r
auc(
  observed,
  predicted = NULL,
  weights = NULL,
  multiclass = c("pairs", "all"),
  metrics = c(MachineShop::tpr, MachineShop::fpr),
  stat = MachineShop::settings("stat.Curve"),
  ...
)
```

```r
brier(observed, predicted = NULL, weights = NULL, ...)
```

```r
cindex(observed, predicted = NULL, weights = NULL, ...)
```

```r
cross_entropy(observed, predicted = NULL, weights = NULL, ...)
```
f_score(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 beta = 1,
 ...
)

fnr(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

fpr(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

kappa2(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

npv(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

ppr(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)
ppv(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

pr_auc(
 observed,
 predicted = NULL,
 weights = NULL,
 multiclass = c("pairs", "all"),
 ...
)

precision(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

recall(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

roc_auc(
 observed,
 predicted = NULL,
 weights = NULL,
 multiclass = c("pairs", "all"),
 ...
)

roc_index(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 fun = function(sensitivity, specificity) (sensitivity + specificity)/2,
 ...
)
metrics

sensitivity(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

specificity(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

tnr(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

tpr(
 observed,
 predicted = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 ...
)

weighted_kappa2(
 observed,
 predicted = NULL,
 weights = NULL,
 power = 1, ...
)

gini(
 observed,
 predicted = NULL,
 weights = NULL, ...
)

mae(
 observed,
 predicted = NULL,
 weights = NULL, ...
)

mse(
 observed,
 predicted = NULL,
 weights = NULL, ...
)

msle(
 observed,
 predicted = NULL,
 weights = NULL, ...
)

r2(
 observed,
 predicted = NULL,
 weights = NULL,
method = c("mse", "pearson", "spearman"),
distr = character(),
...
)

rmse(observed, predicted = NULL, weights = NULL, ...)

rmsle(observed, predicted = NULL, weights = NULL, ...)

Arguments

observed observed responses; or confusion, performance curve, or resample result containing observed and predicted responses.
predicted predicted responses if not contained in observed.
weights numeric vector of non-negative case weights for the observed responses [default: equal weights].
cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified. If NULL, then confusion matrix-based metrics are computed on predicted class probabilities if given.
...
arguments passed to or from other methods.
multiclass character string specifying the method for computing generalized area under the performance curve for multiclass factor responses. Options are to average over areas for each pair of classes ("pairs") or for each class versus all others ("all").
metrics vector of two metric functions or function names that define a curve under which to calculate area [default: ROC metrics].
stat function or character string naming a function to compute a summary statistic at each cutoff value of resampled metrics in performance curves, or NULL for resample-specific metrics.
beta relative importance of recall to precision in the calculation of f_score [default: F1 score].
fun function to calculate a desired sensitivity-specificity tradeoff.
power power to which positional distances of off-diagonals from the main diagonal in confusion matrices are raised to calculate weighted_kappa2.
method character string specifying whether to compute r2 as the coefficient of determination ("mse") or as the square of "pearson" or "spearman" correlation.
distr character string specifying a distribution with which to estimate the observed survival mean in the total sum of square component of r2. Possible values are "empirical" for the Kaplan-Meier estimator, "exponential", "extreme", "gaussian", "loggaussian", "logistic", "loglogistic", "lognormal", "rayleigh", "t", or "weibull". Defaults to the distribution that was used in predicting mean survival times.
References

See Also
metricinfo, performance

MLControl

Resampling Controls

Description
Structures to define and control sampling methods for estimation of model predictive performance in the *MachineShop* package.

Usage

```r
BootControl(
  samples = 25,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1)
)

BootOptimismControl(
  samples = 25,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1)
)

CVControl(
  folds = 10,
  repeats = 1,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1)
)

CVOptimismControl(
  folds = 10,
  repeats = 1,
  weights = TRUE,
  seed = sample(.Machine$integer.max, 1)
)

OOBControl(
  samples = 25,
  weights = TRUE,
)```
MLControl

```
seed = sample(.Machine$integer.max, 1)
)

SplitControl(
 prop = 2/3,
 weights = TRUE,
 seed = sample(.Machine$integer.max, 1)
)

TrainControl(weights = TRUE, seed = sample(.Machine$integer.max, 1))
```

**Arguments**

- **samples**: number of bootstrap samples.
- **weights**: logical indicating whether to return case weights in resampled output for the calculation of performance metrics.
- **seed**: integer to set the seed at the start of resampling.
- **folds**: number of cross-validation folds (K).
- **repeats**: number of repeats of the K-fold partitioning.
- **prop**: proportion of cases to include in the training set ($0 < \text{prop} < 1$).

**Details**

BootControl constructs an MLControl object for simple bootstrap resampling in which models are fit with bootstrap resampled training sets and used to predict the full data set (Efron and Tibshirani 1993).


CVControl constructs an MLControl object for repeated K-fold cross-validation (Kohavi 1995). In this procedure, the full data set is repeatedly partitioned into K-folds. Within a partitioning, prediction is performed on each of the K folds with models fit on all remaining folds.

CVOptimismControl constructs an MLControl object for optimism-corrected cross-validation resampling (Davison and Hinkley 1997, eq. 6.48).

OOBControl constructs an MLControl object for out-of-bootstrap resampling in which models are fit with bootstrap resampled training sets and used to predict the unsampled cases.

SplitControl constructs an MLControl object for splitting data into a separate training and test set (Hastie et al. 2009).

TrainControl constructs an MLControl object for training and performance evaluation to be performed on the same training set (Efron 1986).

**Value**

Object that inherits from the MLControl class.
References


See Also

`set_monitor`, `set_predict`, `set_strata`, `resample`, `SelectedInput`, `SelectedModel`, `TunedInput`, `TunedModel`

Examples

```r
Bootstrapping with 100 samples
BootControl(samples = 100)

Optimism-corrected bootstrapping with 100 samples
BootOptimismControl(samples = 100)

Cross-validation with 5 repeats of 10 folds
CVControl(folds = 10, repeats = 5)

Optimism-corrected cross-validation with 5 repeats of 10 folds
CVOptimismControl(folds = 10, repeats = 5)

Out-of-bootstrap validation with 100 samples
OOBControl(samples = 100)

Split sample validation with 2/3 training and 1/3 testing
SplitControl(prop = 2/3)

Training set evaluation
TrainControl()
```
MLMetric

**MLMetric Class Constructor**

**Description**

Create a performance metric for use with the MachineShop package.

**Usage**

```r
MLMetric(object, name = "MLMetric", label = name, maximize = TRUE)
MLMetric(object) <- value
```

**Arguments**

- **object**: function to compute the metric, defined to accept observed and predicted as the first two arguments and with an ellipsis (...) to accommodate others.
- **name**: character name of the object to which the metric is assigned.
- **label**: optional character descriptor for the model.
- **maximize**: logical indicating whether higher values of the metric correspond to better predictive performance.
- **value**: list of arguments to pass to the MLMetric constructor.

**Value**

MLMetric class object.

**See Also**

metrics

**Examples**

```r
f2_score <- MLMetric(
 function(observed, predicted, ...) {
 f_score(observed, predicted, beta = 2, ...)
 },
 name = "f2_score",
 label = "F Score (beta = 2)",
 maximize = TRUE
)
```
MLModel and MLModelFunction Class Constructors

Description

Create a model or model function for use with the MachineShop package.

Usage

MLModel(
  name = "MLModel",
  label = name,
  packages = character(),
  response_types = character(),
  weights = FALSE,
  predictor_encoding = c(NA, "model.frame", "model.matrix"),
  params = list(),
  gridinfo = tibble::tibble(param = character(), get_values = list(), default = logical()),
  fit = function(formula, data, weights, ...) stop("No fit function."),
  predict = function(object, newdata, times, ...) stop("No predict function."),
  varimp = function(object, ...) NULL,
  ...
)

MLModelFunction(object, ...)

Arguments

name character name of the object to which the model is assigned.
label optional character descriptor for the model.
packages character vector of package names upon which the model depends. Each name may be optionally followed by a comment in parentheses specifying a version requirement. The comment should contain a comparison operator, whitespace and a valid version number, e.g. "xgboost (>= 1.3.0)".
response_types character vector of response variable types to which the model can be fit. Supported types are "binary", "BinomialVariate", "DiscreteVariate", "factor", "matrix", "NegBinomialVariate", "numeric", "ordered", "PoissonVariate", and "Surv".
weights logical value or vector of the same length as response_types indicating whether case weights are supported for the responses.
predictor_encoding character string indicating whether the model is fit with predictor variables encoded as a "model.frame", a "model.matrix", or unspecified (default).
params list of user-specified model parameters to be passed to the fit function.
gridinfo: tibble of information for construction of tuning grids consisting of a character column `param` with the names of parameters in the grid, a list column `get_values` with functions to generate grid points for the corresponding parameters, and an optional logical column `default` indicating which parameters to include by default in regular grids. Values functions may optionally include arguments `n` and `data` for the number of grid points to generate and a `ModelFrame` of the model fit data and formula, respectively; and must include an ellipsis (...).

fit: model fitting function whose arguments are a formula, a `ModelFrame` named `data`, case weights, and an ellipsis.

predict: model prediction function whose arguments are the object returned by `fit`, a `ModelFrame` named `newdata` of predictor variables, optional vector of `times` at which to predict survival, and an ellipsis.

varimp: variable importance function whose arguments are the object returned by `fit`, optional arguments passed from calls to `varimp`, and an ellipsis.

...: arguments passed to other methods.

object: function that returns an `MLModel` object when called without any supplied argument values.

Details

If supplied, the `grid` function should return a list whose elements are named after and contain values of parameters to include in a tuning grid to be constructed automatically by the package.

Arguments `data` and `newdata` in the `fit` and `predict` functions may be converted to data frames with `as.data.frame()` if needed for their operation. The `fit` function should return the object resulting from the model fit. Values returned by the `predict` functions should be formatted according to the response variable types below.

- `factor`: matrix whose columns contain the probabilities for multi-level factors or vector of probabilities for the second level of binary factors.
- `matrix`: matrix of predicted responses.
- `numeric`: vector or column matrix of predicted responses.
- `Surv`: matrix whose columns contain survival probabilities at `times` if supplied or a vector of predicted survival means otherwise.

The `varimp` function should return a vector of importance values named after the predictor variables or a matrix or data frame whose rows are named after the predictors.

The `predict` and `varimp` functions are additionally passed a list named `.MachineShop` containing the `input` and `model` from `fit`. This argument may be included in the function definitions as needed for their implementations. Otherwise, it will be captured by the ellipsis.

Value

An `MLModel` or `MLModelFunction` class object.

See Also

`models`, `fit`, `resample`
Examples

```r
Logistic regression model
LogisticModel <- MLModel(
 name = "LogisticModel",
 response_types = "binary",
 weights = TRUE,
 fit = function(formula, data, weights, ...) {
 glm(formula, data = as.data.frame(data), weights = weights,
 family = binomial, ...)
 },
 predict = function(object, newdata, ...) {
 predict(object, newdata = as.data.frame(newdata), type = "response")
 },
 varimp = function(object, ...) {
 pchisq(coef(object)^2 / diag(vcov(object)), 1)
 }
)

data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = LogisticModel)
summary(res)
```
Arguments

... arguments passed from the generic function to its methods. The first argument of each ModelFrame method is positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame containing them. In the associated method, arguments groups, strata, and weights will be evaluated as expressions, whose objects are searched for first in the accompanying data environment and, if not found there, next in the calling environment.

groups vector of values defining groupings of cases to keep together when folds are constructed for cross-validation [default: none].

strata vector of values to use in conducting stratified resample estimation of model performance [default: none].

weights numeric vector of non-negative case weights for the y response variable [default: equal weights].

na.rm logical indicating whether to remove cases with NA values for any of the model variables.

x, y matrix and object containing predictor and response variables.

offsets numeric vector, matrix, or data frame of values to be added with a fixed coefficient of 1 to linear predictors in compatible regression models.

Value

ModelFrame class object that inherits from data.frame.

See Also

fit, resample, response, SelectedInput

Examples

## Requires prior installation of suggested package gbm to run

mf <- ModelFrame(ncases / (ncases + ncontrols) ~ agegp + tobgp + alcgp,
                 data = esoph, weights = ncases + ncontrols)
gbm_fit <- fit(mf, model = GBMModel)
varimp(gbm_fit)
Display Model Information

Description
Display information about models supplied by the MachineShop package.

Usage
modelinfo(...)

Arguments
... model functions, function names, or objects; observed responses for which to display information. If none are specified, information is returned on all available models by default.

Value
List of named model elements each containing the following components:

- **label** character descriptor for the model.
- **packages** character vector of source packages required to use the model. These need only be installed with the `install.packages` function or by equivalent means; but need not be loaded with, for example, the `library` function.
- **response_types** character vector of response variable types supported by the model.
- **weights** logical value or vector of the same length as `response_types` indicating whether case weights are supported for the responses.
- **arguments** closure with the argument names and corresponding default values of the model function.
- **grid** logical indicating whether automatic generation of tuning parameter grids is implemented for the model.
- **varimp** logical indicating whether model-specific variable importance is defined.

Examples
```r
All models
modelinfo()

Models by response types
names(modelinfo(factor(0)))
names(modelinfo(factor(0), numeric(0)))

Model-specific information
modelinfo(GBMModel)
```
Description

Model constructor functions supplied by **MachineShop** are summarized in the table below according to the types of response variables with which each can be used.

<table>
<thead>
<tr>
<th>Function</th>
<th>Categorical</th>
<th>Continuous</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBagModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdaBoostModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARTModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>BARTMachineModel</td>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>BlackBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>C50Model</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CForestModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>CoxModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>CoxStepAICModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>EarthModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>FDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GBMModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GLMBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GLMModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLMStepAICModel</td>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>GLMNetModel</td>
<td>f</td>
<td>m,n</td>
<td></td>
</tr>
<tr>
<td>KNNModel</td>
<td>f,o</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>LARSModel</td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>LDAModel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMMModel</td>
<td>f</td>
<td>m,n</td>
<td></td>
</tr>
<tr>
<td>MDAModel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaiveBayesModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNetModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ParsnipModel</td>
<td>f</td>
<td>m,n</td>
<td>S</td>
</tr>
<tr>
<td>PDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLSModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>POLRModel</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RandomForestModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>RangerModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>RFSRCModel</td>
<td>f</td>
<td>m,n</td>
<td>S</td>
</tr>
<tr>
<td>RFSRCFastModel</td>
<td>f</td>
<td>m,n</td>
<td>S</td>
</tr>
<tr>
<td>RPartModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>SurvRegModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>SurvRegStepAICModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>SVMModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>SVMANOVAModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>
Model Specification

Models may be combined, tuned, or selected with the following meta-model functions.

- **ModelSpecification**: Model specification
- **StackedModel**: Stacked regression
- **SuperModel**: Super learner
- **SelectedModel**: Model selection from a candidate set
- **TunedModel**: Model tuning over a parameter grid

See Also

- `modelinfo`, `fit`, `resample`

Description

Specification of a relationship between response and predictor variables and a model to define a relationship between them.

Usage

```r
ModelSpecification(...)
```

## Default S3 method:
```r
ModelSpecification(
 input,
 model = NULL,
)```
control = MachineShop::settings("control"),
metrics = NULL,
cutoff = MachineShop::settings("cutoff"),
stat = MachineShop::settings("stat.TrainingParams"),
...
)

S3 method for class 'formula'
ModelSpecification(formula, data, model, ...)

S3 method for class 'matrix'
ModelSpecification(x, y, model, ...)

S3 method for class 'ModelFrame'
ModelSpecification(input, model = NULL, ...)

S3 method for class 'recipe'
ModelSpecification(input, model = NULL, ...)

Arguments

... arguments passed from the generic function to its methods. The first argument of each ModelSpecification method is positional and, as such, must be given first in calls to them.

input input object defining and containing the model predictor and response variables.

model model function, function name, or object; or another object that can be coerced to a model. The argument can be omitted altogether in the case of modeled inputs.

control control function, function name, or object defining the resampling method to be employed. If NULL or if the model specification contains any ModeledInput, SelectedInput, or SelectedModel objects, then object-specific control structures and training parameters are used for selection and tuning, as usual, and objects are trained sequentially with nested resampling. Otherwise,

• tuning of input and model objects is performed simultaneously over a global grid of their parameter values, and

• the specified control method and training parameters below override those of any included TunedInput or TunedModel.

metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.

cutoff argument passed to the metrics functions.

stat function or character string naming a function to compute a summary statistic on resampled metric values for model tuning.

formula, data formula defining the model predictor and response variables and a data frame containing them.

x, y matrix and object containing predictor and response variables.
NaiveBayesModel

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent predictor variables using Bayes rule.

Usage

NaiveBayesModel(laplace = 0)

Arguments

laplace positive numeric controlling Laplace smoothing.

Details

Response types: factor

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

naiveBayes, fit, resample
Examples

```r
## Requires prior installation of suggested package e1071 to run
fit(Species ~ ., data = iris, model = NaiveBayesModel)
```

Neural Network Model

Description

Fit single-hidden-layer neural network, possibly with skip-layer connections.

Usage

```r
NNetModel(
  size = 1,
  linout = logical(),
  entropy = logical(),
  softmax = logical(),
  censored = FALSE,
  skip = FALSE,
  rang = 0.7,
  decay = 0,
  maxit = 100,
  trace = FALSE,
  MaxNWts = 1000,
  abstol = 1e-04,
  reltol = 1e-08
)
```

Arguments

- `size`: number of units in the hidden layer.
- `linout`: switch for linear output units. Set automatically according to the class type of the response variable [numeric: TRUE, other: FALSE].
- `entropy`: switch for entropy (= maximum conditional likelihood) fitting.
- `softmax`: switch for softmax (log-linear model) and maximum conditional likelihood fitting.
- `censored`: a variant on softmax, in which non-zero targets mean possible classes.
- `skip`: switch to add skip-layer connections from input to output.
- `rang`: Initial random weights on [-rang, rang].
- `decay`: parameter for weight decay.
ParameterGrid

maxit maximum number of iterations.
trace switch for tracing optimization.
MaxNWts maximum allowable number of weights.
abstol stop if the fit criterion falls below abstol, indicating an essentially perfect fit.
reltol stop if the optimizer is unable to reduce the fit criterion by a factor of at least $1 - \text{reltol}$.

Details

Response types: factor, numeric

Automatic tuning of grid parameters: size, decay

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

nnet, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = NNetModel)

ParameterGrid Tuning Parameters Grid

Description

Defines a tuning grid from a set of parameters.

Usage

ParameterGrid(...)

S3 method for class 'param'
ParameterGrid(..., size = 3, random = FALSE)

S3 method for class 'list'
ParameterGrid(object, size = 3, random = FALSE, ...)

S3 method for class 'parameters'
ParameterGrid(object, size = 3, random = FALSE, ...)
ParsnipModel

Arguments

... named param objects as defined in the dials package.
size single integer or vector of integers whose positions or names match the given parameters and which specify the number of values used to construct the grid.
random number of unique points to sample at random from the grid defined by size, or FALSE for all points.
object list of named param objects or a parameters object. This is a positional argument that must be given first in calls to its methods.

Value

ParameterGrid class object that inherits from parameters and TuningGrid.

See Also

TunedModel

Examples

GBMModel tuning parameters
grid <- ParameterGrid(
 n.trees = dials::trees(),
 interaction.depth = dials::tree_depth(),
 random = 5
)
TunedModel(GBMModel, grid = grid)

ParsnipModel

Description

Convert a model specification from the parsnip package to one that can be used with the MachineShop package.

Usage

ParsnipModel(object, ...)

Arguments

object model specification from the parsnip package.
... tuning parameters with which to update object.

Value

ParsnipModel class object that inherits from MLModel.
See Also

as.MLModel, fit, resample

Examples

Requires prior installation of suggested package parsnip to run

```r
prsp_model <- parsnip::linear_reg(engine = "glmnet")

model <- ParsnipModel(prsp_model, penalty = 1, mixture = 1)

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit)
```

performance

Model Performance Metrics

Description

Compute measures of model performance.

Usage

```r
performance(x, ...)
```

S3 method for class 'BinomialVariate'

```r
performance(
  x,
  y,
  weights = NULL,
  metrics = MachineShop::settings("metrics.numeric"),
  na.rm = TRUE,
  ...
)
```

S3 method for class 'factor'

```r
performance(
  x,
  y,
  weights = NULL,
  metrics = MachineShop::settings("metrics.factor"),
  cutoff = MachineShop::settings("cutoff"),
  na.rm = TRUE,
  ...
)
```r
S3 method for class 'matrix'
performance(
 x,
 y,
 weights = NULL,
 metrics = MachineShop::settings("metrics.matrix"),
 na.rm = TRUE,
 ...
)

S3 method for class 'numeric'
performance(
 x,
 y,
 weights = NULL,
 metrics = MachineShop::settings("metrics.numeric"),
 na.rm = TRUE,
 ...
)

S3 method for class 'Surv'
performance(
 x,
 y,
 weights = NULL,
 metrics = MachineShop::settings("metrics.Surv"),
 cutoff = MachineShop::settings("cutoff"),
 na.rm = TRUE,
 ...
)

S3 method for class 'ConfusionList'
performance(x, ...)

S3 method for class 'ConfusionMatrix'
performance(x, metrics = MachineShop::settings("metrics.ConfusionMatrix"), ...)

S3 method for class 'MLModel'
performance(x, ...)

S3 method for class 'Resample'
performance(x, ...)

S3 method for class 'TrainingStep'
performance(x, ...)
```
performance_curve

Model Performance Curves

Arguments

- **x**: observed responses; or confusion, trained model fit, resample, or rfe result.
- **...**: arguments passed from the Resample method to the response type-specific methods or from the method for ConfusionList to ConfusionMatrix. Elliptical arguments in the response type-specific methods are passed to metrics supplied as a single `MLMetric` function and are ignored otherwise.
- **y**: predicted responses if not contained in x.
- **weights**: numeric vector of non-negative case weights for the observed x responses [default: equal weights].
- **metrics**: metric function, function name, or vector of these with which to calculate performance.
- **na.rm**: logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.
- **cutoff**: numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.

See Also

- `plot`, `summary`

Examples

```r
Requires prior installation of suggested package gbm to run
res <- resample(Species ~ ., data = iris, model = GBMModel)
(perf <- performance(res))
summary(perf)
plot(perf)

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)

obs <- response(gbm_fit, newdata = veteran)
pred <- predict(gbm_fit, newdata = veteran)
performance(obs, pred)
```
Description

Calculate curves for the analysis of tradeoffs between metrics for assessing performance in classifying binary outcomes over the range of possible cutoff probabilities. Available curves include receiver operating characteristic (ROC) and precision recall.

Usage

performance_curve(x, ...)

## Default S3 method:
performance_curve(
  x,
  y,
  weights = NULL,
  metrics = c(MachineShop::tpr, MachineShop::fpr),
  na.rm = TRUE,
  ...
)

## S3 method for class 'Resample'
performance_curve(
  x,
  metrics = c(MachineShop::tpr, MachineShop::fpr),
  na.rm = TRUE,
  ...
)

Arguments

x observed responses or resample result containing observed and predicted responses.

... arguments passed to other methods.

y predicted responses if not contained in x.

weights numeric vector of non-negative case weights for the observed x responses [default: equal weights].

metrics list of two performance metrics for the analysis [default: ROC metrics]. Precision recall curves can be obtained with c(precision, recall).

na.rm logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

Value

PerformanceCurve class object that inherits from data.frame.

See Also

auc, c.plot, summary
Examples

```r
Requires prior installation of suggested package gbm to run
data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = GBMModel)

ROC curve
roc <- performance_curve(res)
plot(roc)
auc(roc)
```

---

plot Model Performance Plots

Description

Plot measures of model performance and predictor variable importance.

Usage

```r
S3 method for class 'Calibration'
plot(x, type = c("line", "point"), se = FALSE, ...)

S3 method for class 'ConfusionList'
plot(x, ...)

S3 method for class 'ConfusionMatrix'
plot(x, ...)

S3 method for class 'LiftCurve'
plot(
 x,
 find = numeric(),
 diagonal = TRUE,
 stat = MachineShop::settings("stat.Curve"),
 ...
)

S3 method for class 'MLModel'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.TrainingParams"),
 ...,
)
type = c("boxplot", "density", "errorbar", "line", "violin"),
...

S3 method for class 'PartialDependence'
plot(x, stats = NULL, ...)

S3 method for class 'Performance'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.Resample"),
 type = c("boxplot", "density", "errorbar", "violin"),
 ...
)

S3 method for class 'PerformanceCurve'
plot(
 x,
 type = c("tradeoffs", "cutoffs"),
 diagonal = FALSE,
 stat = MachineShop::settings("stat.Curve"),
 ...
)

S3 method for class 'Resample'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.Resample"),
 type = c("boxplot", "density", "errorbar", "violin"),
 ...
)

S3 method for class 'TrainingStep'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.TrainingParams"),
 type = c("boxplot", "density", "errorbar", "line", "violin"),
 ...
)

S3 method for class 'VariableImportance'
plot(x, n = Inf, ...)
Arguments

- `x`: calibration, confusion, lift, trained model fit, partial dependence, performance, performance curve, resample, rfe, or variable importance result.
- `type`: type of plot to construct.
- `se`: logical indicating whether to include standard error bars.
- `...`: arguments passed to other methods.
- `find`: numeric true positive rate at which to display reference lines identifying the corresponding rates of positive predictions.
- `diagonal`: logical indicating whether to include a diagonal reference line.
- `stat`: function or character string naming a function to compute a summary statistic on resampled metrics for trained MLModel line plots and Resample model ordering. The original ordering is preserved if a value of NULL is given. For LiftCurve and PerformanceCurve classes, plots are of resampled metrics aggregated by the statistic if given or of resample-specific metrics if NULL.
- `metrics`: vector of numeric indexes or character names of performance metrics to plot.
- `stats`: vector of numeric indexes or character names of partial dependence summary statistics to plot.
- `n`: number of most important variables to include in the plot.

Examples

```r
## Requires prior installation of suggested package gbm to run
## Factor response example
fo <- Species ~ .
control <- CVControl()

gbm_fit <- fit(fo, data = iris, model = GBMModel, control = control)
plot(varimp(gbm_fit))

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
plot(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
plot(res)
```
PLSModel

Partial Least Squares Model

Description

Function to perform partial least squares regression.

Usage

PLSModel(ncomp = 1, scale = FALSE)

Arguments

ncomp number of components to include in the model.
scale logical indicating whether to scale the predictors by the sample standard deviation.

Details

Response types: factor, numeric

Automatic tuning of grid parameters: ncomp

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

mvr, fit, resample

Examples

Requires prior installation of suggested package pls to run

fit(sale_amount ~ ., data = ICHomes, model = PLSModel)
POLRModel

Ordered Logistic or Probit Regression Model

Description

Fit a logistic or probit regression model to an ordered factor response.

Usage

`POLRModel(method = c("logistic", "probit", "loglog", "cloglog", "cauchit"))`

Arguments

- `method` : logistic or probit or (complementary) log-log or cauchit (corresponding to a Cauchy latent variable).

Details

Response types: ordered

Further model details can be found in the source link below.

In calls to `varimp` for POLRModel, numeric argument base may be specified for the (negative) logarithmic transformation of p-values [default: \(\exp(1)\)]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

Value

MLModel class object.

See Also

`polr`, `fit`, `resample`

Examples

```r
data(Boston, package = "MASS")

df <- within(Boston,
  medv <- cut(medv,
    breaks = c(0, 10, 15, 20, 25, 50),
    ordered = TRUE))

fit(medv ~ ., data = df, model = POLRModel)
```
predict

Model Prediction

Description

Predict outcomes with a fitted model.

Usage

```r
## S3 method for class 'MLModelFit'
predict(
  object,
  newdata = NULL,
  times = numeric(),
  type = c("response", "default", "numeric", "prob"),
  cutoff = MachineShop::settings("cutoff"),
  distr = character(),
  method = character(),
  ...
)
## S4 method for signature 'MLModelFit'
predict(object, ...)
```

Arguments

- `object` model fit result.
- `newdata` optional data frame with which to obtain predictions. If not specified, the training data will be used by default.
- `times` numeric vector of follow-up times at which to predict survival events/probabilities or NULL for predicted survival means.
- `type` specifies prediction on the original outcome ("response"), numeric ("numeric"), or probability ("prob") scale; or model-specific default predictions ("default").
- `cutoff` numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.
- `distr` character string specifying distributional approximations to estimated survival curves. Possible values are "empirical", "exponential", "rayleigh", or "weibull"; with defaults of "empirical" for predicted survival events/probabilities and "weibull" for predicted survival means.
- `method` character string specifying the empirical method of estimating baseline survival curves for Cox proportional hazards-based models. Choices are "breslow" or "efron" (default).
- `...` arguments passed from the S4 to the S3 method.
See Also

confusion, performance, metrics

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
predict(gbm_fit, newdata = veteran, times = c(90, 180, 360), type = "prob")

print

Print MachineShop Objects

Description

Print methods for objects defined in the MachineShop package.

Usage

S3 method for class 'BinomialVariate'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'Calibration'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'DiscreteVariate'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'ListOf'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'MLControl'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'MLMetric'
print(x, ...)

S3 method for class 'MLModel'
print(x, n = MachineShop::settings("print_max"), id = FALSE, ...)

S3 method for class 'MLModelFunction'
print(x, ...)

S3 method for class 'ModelFrame'
print(x, n = MachineShop::settings("print_max"), id = FALSE, data = TRUE, ...)

S3 method for class 'ModelRecipe'
print(x, n = MachineShop::settings("print_max"), id = FALSE, data = TRUE, ...)

S3 method for class 'ModelSpecification'
print(x, n = MachineShop::settings("print_max"), id = FALSE, ...)

S3 method for class 'Performance'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'PerformanceCurve'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'RecipeGrid'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'Resample'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'SurvMatrix'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'SurvTimes'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'TrainingStep'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'VariableImportance'
print(x, n = MachineShop::settings("print_max"), ...)

Arguments

`x` object to print.

`n` integer number of models or data frame rows to show.

`...` arguments passed to other methods, including the one described below.

`level = 0` current nesting level of the corresponding object in recursive calls to `print`. The amount of information displayed decreases and increases with positive and negative levels, respectively.

`id` logical indicating whether to show object identifiers.

`data` logical indicating whether to show model data.
QDAModel

Quadratic Discriminant Analysis Model

Description

Performs quadratic discriminant analysis.

Usage

QDAModel(
 prior = numeric(),
 method = c("moment", "mle", "mve", "t"),
 nu = 5,
 use = c("plug-in", "predictive", "debiased", "looCV")
)

Arguments

prior prior probabilities of class membership if specified or the class proportions in
the training set otherwise.

method type of mean and variance estimator.

nu degrees of freedom for method = "t".

use type of parameter estimation to use for prediction.

Details

Response types: factor

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

qda, predict.qda, fit, resample

Examples

fit(Species ~ ., data = iris, model = QDAModel)
quote

quote Quote Operator

Description

Shorthand notation for the quote function. The quote operator simply returns its argument unevaluated and can be applied to any R expression.

Usage

.(expr)

Arguments

expr any syntactically valid R expression.

Details

Useful for calling model functions with quoted parameter values defined in terms of one or more of the following variables.

nobs number of observations in data to be fit.
nvars number of predictor variables.
y the response variable.

Value

The quoted (unevaluated) expression.

See Also

quote

Examples

Stepwise variable selection with BIC
glm_fit <- fit(sale_amount ~ ., ICHomes, GLMStepAICModel(k = .(log(nobs))))
varimp(glm_fit)
RandomForestModel

Description

Implementation of Breiman’s random forest algorithm (based on Breiman and Cutler’s original Fortran code) for classification and regression.

Usage

RandomForestModel(
 ntree = 500,
 mtry = .(if (is.factor(y)) floor(sqrt(nvars)) else max(floor(nvars/3), 1)),
 replace = TRUE,
 nodesize = .(if (is.factor(y)) 1 else 5),
 maxnodes = integer()
)

Arguments

- **ntree**: number of trees to grow.
- **mtry**: number of variables randomly sampled as candidates at each split.
- **replace**: should sampling of cases be done with or without replacement?
- **nodesize**: minimum size of terminal nodes.
- **maxnodes**: maximum number of terminal nodes trees in the forest can have.

Details

Response types: factor, numeric

Automatic tuning of grid parameters: mtry, nodesize*

* excluded from grids by default

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

randomForest, fit, resample
Requires prior installation of suggested package randomForest to run

```r
fit(sale_amount ~ ., data = ICHomes, model = RandomForestModel)
```

RangerModel
Fast Random Forest Model

Description

Fast implementation of random forests or recursive partitioning.

Usage

```r
RangerModel(
  num.trees = 500,
  mtry = integer(),
  importance = c("impurity", "impurity_corrected", "permutation"),
  min.node.size = integer(),
  replace = TRUE,
  sample.fraction = if (replace) 1 else 0.632,
  splitrule = character(),
  num.random.splits = 1,
  alpha = 0.5,
  minprop = 0.1,
  split.select.weights = numeric(),
  always.split.variables = character(),
  respect.unordered.factors = character(),
  scale.permutation.importance = FALSE,
  verbose = FALSE
)
```

Arguments

- `num.trees`: number of trees.
- `mtry`: number of variables to possibly split at in each node.
- `importance`: variable importance mode.
- `min.node.size`: minimum node size.
- `replace`: logical indicating whether to sample with replacement.
- `sample.fraction`: fraction of observations to sample.
- `splitrule`: splitting rule.
num.random.splits
 number of random splits to consider for each candidate splitting variable in the
 "extratrees" rule.

alpha
 significance threshold to allow splitting in the "maxstat" rule.

minprop
 lower quantile of covariate distribution to be considered for splitting in the
 "maxstat" rule.

split.select.weights
 numeric vector with weights between 0 and 1, representing the probability to
 select variables for splitting.

always.split.variables
 character vector with variable names to be always selected in addition to the
 mtry variables tried for splitting.

respect.unordered.factors
 handling of unordered factor covariates.

scale.permutation.importance
 scale permutation importance by standard error.

verbose
 show computation status and estimated runtime.

Details

 Response types: factor, numeric, Surv

 Automatic tuning of grid parameters: mtry, min.node.size*, splitrule*

 * excluded from grids by default

 Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

ranger, fit, resample

Examples

Requires prior installation of suggested package ranger to run

fit(Species ~ ., data = iris, model = RangerModel)
Set Recipe Roles

Description

Add to or replace the roles of variables in a preprocessing recipe.

Usage

role_binom(recipe, x, size)

role_case(recipe, group, stratum, weight, replace = FALSE)

role_pred(recipe, offset, replace = FALSE)

role_surv(recipe, time, event)

Arguments

recipe existing recipe object.

x, size number of counts and trials for the specification of a BinomialVariate outcome.

group variable defining groupings of cases to keep together when folds are constructed for cross-validation [default: none].

stratum variable to use in conducting stratified resample estimation of model performance.

weight numeric variable of case weights for model fitting.

replace logical indicating whether to replace existing roles.

offset numeric variable to be added to a linear predictor, such as in a generalized linear model, with known coefficient 1 rather than an estimated coefficient.

time, event numeric follow up time and 0-1 numeric or logical event indicator for specification of a Surv outcome. If the event indicator is omitted, all cases are assumed to have events.

Value

An updated recipe object.

See Also

recipe
Examples

```r
library(survival)
library(recipes)

df <- within(veteran, {
  y <- Surv(time, status)
  remove(time, status)
})
rec <- recipe(y ~ ., data = df) %>%
  role_case(stratum = y)

(res <- resample(rec, model = CoxModel))
summary(res)
```

resample
Resample Estimation of Model Performance

Description

Estimation of the predictive performance of a model estimated and evaluated on training and test samples generated from an observed data set.

Usage

```r
resample(...)
```

S3 method for class 'formula'
```
resample(formula, data, model, ...)
```

S3 method for class 'matrix'
```
resample(x, y, model, ...)
```

S3 method for class 'ModelFrame'
```
resample(input, model = NULL, ...)
```

S3 method for class 'recipe'
```
resample(input, model = NULL, ...)
```

S3 method for class 'ModelSpecification'
```
resample(object, control = MachineShop::settings("control"), ...)
```

S3 method for class 'MLModel'
```
resample(model, ...)
```

S3 method for class 'MLModelFunction'
```
resample(model, ...)
```
Arguments

... arguments passed from the MLModel and MLModelFunction methods to others and from the others to ModelSpecification. The first argument of each resample method is positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame containing them.

model model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications, and the argument can be omitted altogether in the case of modeled inputs.

x, y matrix and object containing predictor and response variables.

input input object defining and containing the model predictor and response variables.

object model input or specification.

control control function, function name, or object defining the resampling method to be employed.

Details

Stratified resampling is performed automatically for the formula and matrix methods according to the type of response variable. In general, strata are constructed from numeric proportions for BinomialVariate; original values for character, factor, logical, and ordered; first columns of values for matrix; original values for numeric; and numeric times within event statuses for Surv. Numeric values are stratified into quantile bins and categorical values into factor levels defined by MLControl.

Resampling stratification variables may be specified manually for ModelFrames upon creation with the strata argument in their constructor. Resampling of this class is unstratified by default.

Stratification variables may be designated in recipe specifications with the role_case function. Resampling will be unstratified otherwise.

Value

Resample class object.

See Also

c, metrics, performance, plot, summary

Examples

Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
control <- CVControl()
gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)

summary(gbm_res1)
plot(gbm_res1)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
plot(res)

response

Extract Response Variable

Description

Extract the response variable from an object.

Usage

response(object, ...)

S3 method for class 'MLModelFit'
response(object, newdata = NULL, ...)

S3 method for class 'ModelFrame'
response(object, newdata = NULL, ...)

S3 method for class 'ModelSpecification'
response(object, newdata = NULL, ...)

S3 method for class 'recipe'
response(object, newdata = NULL, ...)

Arguments

object model fit, input, or specification containing predictor and response variables.

... arguments passed to other methods.

newdata data frame from which to extract the response variable values if given; otherwise, object is used.
Examples

```r
## Survival response example
library(survival)

mf <- ModelFrame(Surv(time, status) ~ ., data = veteran)
response(mf)
```

Recursive Feature Elimination

Description

A wrapper method of backward feature selection in which a given model is fit to nested subsets of most important predictor variables in order to select the subset whose resampled predictive performance is optimal.

Usage

```r
rfe(...)  
```

`rfe(formula, data, model, ...)`

`rfe(x, y, model, ...)`

`rfe(input, model = NULL, ...)`

`rfe(input, model = NULL, ...)`

`rfe(object, select = NULL, control = MachineShop::settings("control"), props = 4, sizes = integer(), random = FALSE, recompute = TRUE, optimize = c("global", "local"), samples = c(rfe = 1, varimp = 1), metrics = NULL, stat = c(resample = MachineShop::settings("stat.Resample"), permute = MachineShop::settings("stat.TrainingParams")))`,

progress = FALSE,
...)

S3 method for class 'MLModel'
rfef(model, ...)

S3 method for class 'MLModelFunction'
rfef(model, ...)

Arguments

... arguments passed from the MLModel and MLModelFunction methods to others and from the others to ModelSpecification. The first argument of each rfe method is positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame containing them.

model model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications, and the argument can be omitted altogether in the case of modeled inputs.

x, y matrix and object containing predictor and response variables.

input input object defining and containing the model predictor and response variables.

object model input or specification.

select expression indicating predictor variables that can be eliminated (see subset for syntax) [default: all].

control control function, function name, or object defining the resampling method to be employed.

props numeric vector of the proportions of most important predictor variables to retain in fitted models or an integer number of equal spaced proportions to generate automatically; ignored if sizes are given.

sizes integer vector of the set sizes of most important predictor variables to retain.

random logical indicating whether to eliminate variables at random with probabilities proportional to their importance.

recompute logical indicating whether to recompute variable importance after eliminating each set of variables.

optimize character string specifying a search through all props to identify the globally optimal model ("global") or a search that stops after identifying the first locally optimal model ("local").

samples numeric vector or list giving the number of permutation samples for each of the rfe and varimp algorithms. One or both of the values may be specified as named arguments or in the order in which their defaults appear. Larger numbers of samples decrease variability in estimated model performances and variable importances at the expense of increased computation time. Samples are more expensive computationally for rfe than for varimp.
metrics: metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used.

stat: functions or character strings naming functions to compute summary statistics on resampled metric values and permuted samples. One or both of the values may be specified as named arguments or in the order in which their defaults appear.

progress: logical indicating whether to display iterative progress during elimination.

Value
TrainingStep class object containing a summary of the numbers of predictor variables retained (size), their names (terms), logical indicators for the optimal model selected (selected), and associated performance metrics (metrics).

See Also
performance, plot, summary, varimp

Examples

```r
## Requires prior installation of suggested package gbm to run
(res <- rfe(sale_amount ~ ., data = ICHomes, model = GBMModel))
summary(res)
summary(performance(res))
plot(res, type = "line")
```

RFSRCModel

Fast Random Forest (SRC) Model

Description
Fast OpenMP computing of Breiman’s random forest for a variety of data settings including right-censored survival, regression, and classification.

Usage

```r
RFSRCModel(
  ntree = 1000,
  mtry = integer(),
  nodesize = integer(),
  nodedepth = integer(),
  splitrule = character(),
  nsplit = 10,
)```
block.size = integer(),
samptype = c("swor", "swr"),
membership = FALSE,
sampsize = if (samptype == "swor") function(x) 0.632 * x else function(x) x,
nimpute = 1,
ntime = integer(),
proximity = c(FALSE, TRUE, "inbag", "oob", "all"),
distance = c(FALSE, TRUE, "inbag", "oob", "all"),
forest.wt = c(FALSE, TRUE, "inbag", "oob", "all"),
xvar.wt = numeric(),
split.wt = numeric(),
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
do.trace = FALSE,
statistics = FALSE
)

RFSRCFastModel(
  ntree = 500,
  sampsize = function(x) min(0.632 * x, max(x^0.75, 150)),
  ntime = 50,
  terminal.qualts = FALSE,
  ...
)

Arguments

ntree number of trees.
mtry number of variables randomly selected as candidates for splitting a node.
nodesize minimum size of terminal nodes.
nodedepth maximum depth to which a tree should be grown.
splitrule splitting rule (see rfsr).
nsplit non-negative integer value for number of random splits to consider for each candidate splitting variable.
block.size interval number of trees at which to compute the cumulative error rate.
samptype whether bootstrap sampling is with or without replacement.
membership logical indicating whether to return terminal node membership.
sampsize function specifying the bootstrap size.
nimpute number of iterations of the missing data imputation algorithm.
ntime integer number of time points to constrain ensemble calculations for survival outcomes.
proximity whether and how to return proximity of cases as measured by the frequency of sharing the same terminal nodes.
distance whether and how to return distance between cases as measured by the ratio of the sum of edges from each case to the root node.
forest.wt  whether and how to return the forest weight matrix.
xvar.wt  vector of non-negative weights representing the probability of selecting a variable for splitting.
split.wt  vector of non-negative weights used for multiplying the split statistic for a variable.
var.used  whether and how to return variables used for splitting.
split.depth  whether and how to return minimal depth for each variable.
do.trace  number of seconds between updates to the user on approximate time to completion.
statistics  logical indicating whether to return split statistics.
terminal.qualts  logical indicating whether to return terminal node membership information.
...  arguments passed to RFSRCModel.

Details

**Response types:** factor, matrix, numeric, Surv

**Automatic tuning of grid parameters:** mtry, nodesize

Default values and further model details can be found in the source links below.

In calls to `varimp` for RFSRCModel, argument type may be specified as "permute" (default) for permutation of OOB cases, as "random" for permutation replaced with random assignment, or as "anit" for cases assigned to the split opposite of the random assignments. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

Value

MLModel class object.

See Also

`rfsrc`, `rfsrc.fast`, `fit`, `resample`

Examples

```r
Requires prior installation of suggested package randomForestSRC to run
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = RFSRCModel)
varimp(model_fit, method = "model", type = "random", scale = TRUE)
```
RPartModel  

Description

Fit an rpart model.

Usage

RPartModel(
  minsplit = 20,
  minbucket = round(minsplit/3),
  cp = 0.01,
  maxcompete = 4,
  maxsurrogate = 5,
  usesurrogate = 2,
  xval = 10,
  surrogatestyle = 0,
  maxdepth = 30
)

Arguments

minsplitsplint minimum number of observations that must exist in a node in order for a split to be attempted.

minbucket minimum number of observations in any terminal node.

cp complexity parameter.

maxcompete number of competitor splits retained in the output.

maxsurrogate number of surrogate splits retained in the output.

usesurrogate how to use surrogates in the splitting process.

xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

Response types: factor, numeric, Surv

Automatic tuning of grid parameter: cp

Further model details can be found in the source link below.

Value

MLModel class object.
See Also

rpart, fit, resample

Examples

## Requires prior installation of suggested packages rpart and partykit to run

fit(Species ~ ., data = iris, model = RPartModel)
metrics = NULL,
cutoff = MachineShop::settings("cutoff"),
stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'recipe'
SelectedInput(
  ..., 
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'ModelSpecification'
SelectedInput(
  ..., 
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'list'
SelectedInput(x, ...)

Arguments

...  inputs defining relationships between model predictor and response variables. Supplied inputs must all be of the same type and may be named or unnamed.

data  data frame containing predictor and response variables.

control  control function, function name, or object defining the resampling method to be employed.

metrics  metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Recipe selection is based on the first calculated metric.

cutoff  argument passed to the metrics functions.

stat  function or character string naming a function to compute a summary statistic on resampled metric values for recipe selection.

y  response variable.

x  list of inputs followed by arguments passed to their method function.

Value

SelectedModelFrame, SelectedModelRecipe, or SelectedModelSpecification class object that inherits from SelectedInput and ModelFrame, recipe, or ModelSpecification, respectively.
## Selected model frame

```r
sel_mf <- SelectedInput(
 sale_amount ~ sale_year + built + style + construction,
 sale_amount ~ sale_year + base_size + bedrooms + basement,
 data = ICHomes
)
fit(sel_mf, model = GLMModel)
```

## Selected recipe

```r
library(recipes)
data(Boston, package = "MASS")

rec1 <- recipe(medv ~ crim + zn + indus + chas + nox + rm, data = Boston)
rec2 <- recipe(medv ~ chas + nox + rm + age + dis + rad + tax, data = Boston)

sel_rec <- SelectedInput(rec1, rec2)
fit(sel_rec, model = GLMModel)
```

---

**Description**

Model selection from a candidate set.

**Usage**

```r
SelectedModel(...)
```

## Default S3 method:

```r
SelectedModel(
 ..., control = MachineShop::settings("control"),
 metrics = NULL,
 cutoff = MachineShop::settings("cutoff"),
 stat = MachineShop::settings("stat.TrainingParams")
)
```

## S3 method for class 'ModelSpecification'

```r
SelectedModel(
 ...,
)
control = MachineShop::settings("control"),
metrics = NULL,
cutoff = MachineShop::settings("cutoff"),
stat = MachineShop::settings("stat.TrainingParams")
)

S3 method for class 'list'
SelectedModel(x, ...)

Arguments

... model functions, function names, objects; other objects that can be coerced to
to models; vectors of these to serve as the candidate set from which to select, such
as that returned by expand_model; or model specifications.
control control function, function name, or object defining the resampling method to be
employed.
metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Model selection is based on the first calculated metric.
cutoff argument passed to the metrics functions.
stat function or character string naming a function to compute a summary statistic
on resampled metric values for model selection.
x list of models followed by arguments passed to their method function.

Details

Response types: factor, numeric, ordered, Surv

Value

SelectedModel or SelectedModelSpecification class object that inherits from MLModel or ModelSpecification, respectively.

See Also

fit, resample

Examples

Requires prior installation of suggested package gbm and glmnet to run

model_fit <- fit(
 sale_amount ~ ., data = ICHomes,
 model = SelectedModel(GBMModel, GLMNetModel, SVMRadialModel)
)

(selected_model <- as.MLModel(model_fit))

summary(selected_model)
MachineShop Settings

Description

Allow the user to view or change global settings which affect default behaviors of functions in the MachineShop package.

Usage

```r
settings(...)
```

Arguments

- `...` character names of settings to view, `name = value` pairs giving the values of settings to change, a vector of these, "reset" to restore all package defaults, or no arguments to view all settings. Partial matching of setting names is supported.

Value

The setting value if only one is specified to view. Otherwise, a list of the values of specified settings as they existed prior to any requested changes. Such a list can be passed as an argument to `settings` to restore their values.

Settings

- **control** function, function name, or object defining a default resampling method [default: "CVControl"].
- **cutoff** numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified [default: 0.5].
- **distr.SurvMeans** character string specifying distributional approximations to estimated survival curves for predicting survival means. Choices are "empirical" for the Kaplan-Meier estimator, "exponential", "rayleigh", or "weibull" (default).
- **distr.SurvProbs** character string specifying distributional approximations to estimated survival curves for predicting survival events/probabilities. Choices are "empirical" (default) for the Kaplan-Meier estimator, "exponential", "rayleigh", or "weibull".
- **grid** size argument to `TuningGrid` indicating the number of parameter-specific values to generate automatically for tuning of models that have pre-defined grids or a `TuningGrid` function, function name, or object [default: 3].
- **method.EmpiricalSurv** character string specifying the empirical method of estimating baseline survival curves for Cox proportional hazards-based models. Choices are "breslow" or "efron" (default).
- **metrics.ConfusionMatrix** function, function name, or vector of these with which to calculate performance metrics for confusion matrices [default: c(Accuracy = "accuracy", Kappa = "kappa2", 'Weighted Kappa' = "weighted_kappa2", Sensitivity = "sensitivity", Specificity = "specificity")].
metrics.factor function, function name, or vector of these with which to calculate performance metrics for factor responses [default: c(Brier = "brier", Accuracy = "accuracy", Kappa = "kappa2", Weighted Kappa = "weighted_kappa2", ROC AUC = "roc_auc", Sensitivity = "sensitivity", Specificity = "specificity").]

metrics.matrix function, function name, or vector of these with which to calculate performance metrics for matrix responses [default: c(RMSE = "rmse", R2 = "r2", MAE = "mae").]

metrics.numeric function, function name, or vector of these with which to calculate performance metrics for numeric responses [default: c(RMSE = "rmse", R2 = "r2", MAE = "mae").]

metrics.Surv function, function name, or vector of these with which to calculate performance metrics for survival responses [default: c(C-Index = "cindex", Brier = "brier", ROC AUC = "roc_auc", Accuracy = "accuracy").]

print_max number of models or data rows to show with print methods or Inf to show all [default: 10].

require names of installed packages to load during parallel execution of resampling algorithms [default: "MachineShop"].

reset character names of settings to reset to their default values.

RHS.formula non-modifiable character vector of operators and functions allowed in traditional formula specifications.

stat.Curve function or character string naming a function to compute one summary statistic at each cutoff value of resampled metrics in performance curves, or NULL for resample-specific metrics [default: "base::mean"].

stat.Resample function or character string naming a function to compute one summary statistic to control the ordering of models in plots [default: "base::mean"].

stat.TrainingParams function or character string naming a function to compute one summary statistic on resampled performance metrics for input selection or tuning or for model selection or tuning [default: "base::mean"].

stats.PartialDependence function, function name, or vector of these with which to compute partial dependence summary statistics [default: c(Mean = "base::mean").]

stats.Resample function, function name, or vector of these with which to compute summary statistics on resampled performance metrics [default: c(Mean = "base::mean", Median = "stats::median", SD = "stats::sd", Min = "base::min", Max = "base::max")].

Examples

View all current settings
settings()

Change settings
presets <- settings(control = "BootControl", grid = 10)

View one setting
settings("control")

View multiple settings
settings("control", "grid")
Restore the previous settings

```
settings(presets)
```

Description

Set parameters that control the monitoring of resample estimation of model performance and of tuning parameter optimization.

Usage

```
set_monitor(object, ...)  
```

S3 method for class 'MLControl'

```
set_monitor(object, progress = TRUE, verbose = FALSE, ...)
```

S3 method for class 'MLOptimization'

```
set_monitor(object, progress = FALSE, verbose = FALSE, ...)
```

S3 method for class 'ModelSpecification'

```
set_monitor(object, which = c("all", "control", "optim"), ...)
```

Arguments

- **object**: resampling control, tuning parameter optimization, or model specification object.
- **...**: arguments passed from the ModelSpecification method to the others.
- **progress**: logical indicating whether to display iterative progress during resampling or optimization. In the case of resampling, a progress bar will be displayed if a computing cluster is not registered or is registered with the `doSNOW` package.
- **verbose**: numeric or logical value specifying the level of progress detail to print, with 0 (FALSE) indicating none and 1 (TRUE) or higher indicating increasing amounts of detail.
- **which**: character string specifying the monitoring parameters to set as "all", "control", or optimization ("optim").

Value

Argument object updated with the supplied parameters.

See Also

`resample`, `set_optim`, `set_predict`, `set_strata`
Examples

CVControl() %>% set_monitor(verbos=TRUE)

set_optim

Tuning Parameter Optimization

Description

Set the optimization method and control parameters for tuning of model parameters.

Usage

set_optim_bayes(object, ...)

S3 method for class 'ModelSpecification'
set_optim_bayes(
 object,
 num_init = 5,
 times = 10,
 each = 1,
 acquisition = c("ucb", "ei", "eips", "poi"),
 kappa = stats::qnorm(conf),
 conf = 0.995,
 epsilon = 0,
 control = list(),
 packages = c("ParBayesianOptimization", "rBayesianOptimization"),
 random = FALSE,
 progress = verbose,
 verbose = 0,
 ...
)

set_optim_bfgs(object, ...)

S3 method for class 'ModelSpecification'
set_optim_bfgs(
 object,
 times = 10,
 control = list(),
 random = FALSE,
 progress = FALSE,
 verbose = 0,
 ...
)

set_optim_grid(object, ...)
S3 method for class 'TrainingParams'
set_optim_grid(object, random = FALSE, progress = FALSE, ...)

S3 method for class 'ModelSpecification'
set_optim_grid(object, ...)

S3 method for class 'TunedInput'
set_optim_grid(object, ...)

S3 method for class 'TunedModel'
set_optim_grid(object, ...)

set_optim_pso(object, ...)

S3 method for class 'ModelSpecification'
set_optim_pso(object,
 times = 10,
 each = NULL,
 control = list(),
 random = FALSE,
 progress = FALSE,
 verbose = 0,
 ...)

set_optim_sann(object, ...)

S3 method for class 'ModelSpecification'
set_optim_sann(object,
 times = 10,
 control = list(),
 random = FALSE,
 progress = FALSE,
 verbose = 0,
 ...)

set_optim_method(object, ...)

S3 method for class 'ModelSpecification'
set_optim_method(object,
 fun,
 label = "Optimization Function",
 packages = character(),
 ...)

```r
def set_optim(params = list(),
             random = FALSE,
             progress = FALSE,
             verbose = FALSE,
             ...)
```

Arguments

- **object**: `input` or `model` object.
- **...**: arguments passed to the `TrainingParams` method of `set_optim_grid` from its other methods.
- **num_init**: number of grid points to sample for the initialization of Bayesian optimization.
- **times**: maximum number of times to repeat the optimization step. Multiple sets of model parameters are evaluated automatically at each step of the BFGS algorithm to compute a finite-difference approximation to the gradient.
- **each**: number of times to sample and evaluate model parameters at each optimization step. This is the swarm size in particle swarm optimization, which defaults to `floor(10 + 2 * sqrt(length(bounds)))`.
- **acquisition**: character string specifying the acquisition function as "ucb" (upper confidence bound), "ei" (expected improvement), "eips" (expected improvement per second), or "poi" (probability of improvement).
- **kappa, conf**: upper confidence bound ("ucb") quantile or its probability to balance exploitation against exploration. Argument `kappa` takes precedence if both are given and multiplies the predictive standard deviation added to the predictive mean in the acquisition function. Larger values encourage exploration of the model parameter space.
- **epsilon**: improvement methods ("ei", "eips", and "poi") parameter to balance exploitation against exploration. Values should be between -0.1 and 0.1 with larger ones encouraging exploration.
- **control**: list of control parameters passed to `bayesOpt` by `set_optim_bayes` with package "ParBayesianOptimization", to `BayesianOptimization` by `set_optim_bayes` with package "rBayesianOptimization", to `optim` by `set_optim_bfgs` and `set_optim_sann`, and to `psoptim` by `set_optim_pso`.
- **packages**: R package or packages to use for the optimization method, or an empty vector if none are needed. The first package in `set_optim_bayes` is used unless otherwise specified by the user.
- **random**: number of points to sample for a random grid search, or `FALSE` for an exhaustive grid search. Used when a grid search is specified or as the fallback method for non-numeric model parameters present during other optimization methods.
- **progress**: logical indicating whether to display iterative progress during optimization.
- **verbose**: numeric or logical value specifying the level of progress detail to print, with 0 (FALSE) indicating none and 1 (TRUE) or higher indicating increasing amounts of detail.
user-defined optimization function to which the arguments below are passed in order. An ellipsis can be included in the function definition when using only a subset of the arguments and ignoring others. A tibble returned by the function with the same number of rows as model evaluations will be included in a TrainingStep summary of optimization results; other types of return values will be ignored.

optim function that takes a numeric vector or list of named model parameters as the first argument, optionally accepts the maximum number of iterations as argument `max_iter`, and returns a scalar measure of performance to be maximized. Parameter names are available from the `grid` and `bounds` arguments described below. If the function cannot be evaluated at a given set of parameter values, then `-Inf` is returned.

grid data frame containing a tuning grid of all model parameters.

bounds named list of lower and upper bounds for each finite numeric model parameter in `grid`. The types (integer or double) of the original parameter values are preserved in the bounds.

params list of optimization parameters as supplied to `set_optim_method`.

monitor list of the progress and verbose values.

label character descriptor for the optimization method.

params list of user-specified model parameters to be passed to `fun`.

Details

The optimization functions implement the following methods.

- **set_optim_bayes** Bayesian optimization with a Gaussian process model (Snoek et al. 2012).
- **set_optim_bfgs** limited-memory modification of quasi-Newton BFGS optimization (Byrd et al. 1995).
- **set_optim_grid** exhaustive or random grid search.
- **set_optim_sann** simulated annealing (Belisle 1992). This method depends critically on the control parameter settings. It is not a general-purpose method but can be very useful in getting to good parameter values on a very rough optimization surface.
- **set_optim_method** user-defined optimization function.

The package-defined optimization functions evaluate and return values of the tuning parameters that are of same type (e.g. integer, double, character) as given in the object `grid`. Sequential optimization of numeric tuning parameters is performed over a hypercube defined by their minimum and maximum grid values. Non-numeric parameters are optimized with grid searches.

Value

Argument object updated with the specified optimization method and control parameters.
References

See Also

BayesianOptimization, bayesOpt, optim, psoptim, set_monitor, set_predict, set_strata

Examples

```r
ModelSpecification(
  sale_amount ~ ., data = ICHomes,
  model = TunedModel(GBMModel)
) %>% set_optim_bayes
```

Description

Set parameters that control prediction during resample estimation of model performance.

Usage

```r
set_predict(
  object,
  times = numeric(),
  distr = character(),
  method = character(),
  ...
)
```

Arguments

- `object` control object.
- `times`, `distr`, `method` arguments passed to `predict`.
- `...` arguments passed to other methods.
Value

Argument object updated with the supplied parameters.

See Also

resample, set_monitor, set_optim, set_strata

Examples

CVControl() %>% set_predict(times = 1:3)

set_strata

Resampling Stratification Control

Description

Set parameters that control the construction of strata during resample estimation of model performance.

Usage

set_strata(object, breaks = 4, nunique = 5, prop = 0.1, size = 20, ...)

Arguments

- **object**: control object.
- **breaks**: number of quantile bins desired for stratification of numeric data during resampling.
- **nunique**: number of unique values at or below which numeric data are stratified as categorical.
- **prop**: minimum proportion of data in each strata.
- **size**: minimum number of values in each strata.
- **...**: arguments passed to other methods.

Details

The arguments control resampling strata which are constructed from numeric proportions for `BinomialVariate`; original values for character, factor, logical, numeric, and ordered; first columns of values for matrix; and numeric times within event statuses for Surv. Stratification of survival data by event status only can be achieved by setting breaks = 1. Numeric values are stratified into quantile bins and categorical values into factor levels. The number of bins will be the largest integer less than or equal to breaks satisfying the prop and size control argument thresholds. Categorical levels below the thresholds will be pooled iteratively by reassigning values in the smallest nominal level to the remaining ones at random and by combining the smallest adjacent ordinal levels. Missing values are replaced with non-missing values sampled at random with replacement.
StackedModel

Value

Argument object updated with the supplied parameters.

See Also

resample, set_monitor, set_optim, set_predict

Examples

CVControl() %>% set_strata(breaks = 3)

StackedModel (Stacked Regression Model)

Description

Fit a stacked regression model from multiple base learners.

Usage

StackedModel(
 ...,
 control = MachineShop::settings("control"),
 weights = numeric()
)

Arguments

... model functions, function names, objects; other objects that can be coerced to models; or vector of these to serve as base learners.

control control function, function name, or object defining the resampling method to be employed for the estimation of base learner weights.

weights optional fixed base learner weights.

Details

Response types: factor, numeric, ordered, Surv

Value

StackedModel class object that inherits from MLModel.

References

step_kmeans

Description

Creates a specification of a recipe step that will convert numeric variables into one or more by averaging within k-means clusters.

Usage

```r
step_kmeans(
  recipe,
  ..., k = 5,
  center = TRUE,
  scale = TRUE,
  algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
  max_iter = 10,
  num_start = 1,
  replace = TRUE,
  prefix = "KMeans",
  role = "predictor",
  skip = FALSE,
  id = recipes::rand_id("kmeans")
)
```

S3 method for class 'step_kmeans'

```r
tidy(x, ...)
```

S3 method for class 'step_kmeans'

```r
tunable(x, ...)
```

Examples

```r
## Requires prior installation of suggested packages gbm and glmnet to run

model <- StackedModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)
```

See Also

`fit`, `resample`

step_kmeans

K-Means Clustering Variable Reduction
Arguments

```

recipe

... one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

k number of k-means clusterings of the variables. The value of k is constrained to
be between 1 and one less than the number of original variables.

center, scale

logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

algorithm character string specifying the clustering algorithm to use.

max_iter maximum number of algorithm iterations allowed.

num_start number of random cluster centers generated for starting the Hartigan-Wong al-

algorithm.

replace logical indicating whether to replace the original variables.

prefix character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

role analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_kmeans object.
```

Details

K-means clustering partitions variables into k groups such that the sum of squares between the
variables and their assigned cluster means is minimized. Variables within each cluster are then
averaged to derive a new set of k variables.

Value

Function step_kmeans creates a new step whose class is of the same name and inherits from
step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the
updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected),
cluster assignments, sqdist (squared distance from cluster centers), and name of the new variable
names.

References

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of

See Also

`kmeans`, `recipe`, `prep`, `bake`

Examples

```r
library(recipes)

rec <- recipe(rating ~ ., data = attitude)
kmeans_rec <- rec %>%
  step_kmeans(all_predictors(), k = 3)
kmeans_prep <- prep(kmeans_rec, training = attitude)
kmeans_data <- bake(kmeans_prep, attitude)

pairs(kmeans_data, lower.panel = NULL)

tidy(kmeans_rec, number = 1)
tidy(kmeans_prep, number = 1)
```

`step_kmedoids`

K-Medoids Clustering Variable Selection

Description

Creates a specification of a recipe step that will partition numeric variables according to k-medoids clustering and select the cluster medoids.

Usage

```r
step_kmedoids(
  recipe,
  ...,  
  k = 5,
  center = TRUE,
  scale = TRUE,
  method = c("pam", "clara"),
  metric = "euclidean",
  optimize = FALSE,
  num_samp = 50,
)```
samp.size = 40 + 2 * k,
replace = TRUE,
prefix = "KMedoids",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("kmedoids")
)

## S3 method for class 'step_kmedoids'
tunable(x, ...)

### Arguments

- **recipe**: recipe object to which the step will be added.
- **...**: one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the tidy method.
- **k**: number of k-medoids clusterings of the variables. The value of k is constrained to be between 1 and one less than the number of original variables.
- **center, scale**: logicals indicating whether to mean center and median absolute deviation scale the original variables prior to cluster partitioning, or functions or names of functions for the centering and scaling; not applied to selected variables.
- **method**: character string specifying one of the clustering methods provided by the `cluster` package. The `clara` (clustering large applications) method is an extension of `pam` (partitioning around medoids) designed to handle large datasets.
- **metric**: character string specifying the distance metric for calculating dissimilarities between observations as "euclidean", "manhattan", or "jaccard" (clara only).
- **optimize**: logical indicator or 0:5 integer level specifying optimization for the `pam` clustering method.
- **num_samp**: number of sub-datasets to sample for the `clara` clustering method.
- **samp.size**: number of cases to include in each sub-dataset.
- **replace**: logical indicating whether to replace the original variables.
- **prefix**: if the original variables are not replaced, the selected variables are added to the dataset with the character string prefix added to their names; otherwise, the original variable names are retained.
- **role**: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
- **skip**: logical indicating whether to skip the step when the recipe is baked. While all operations are baked when `prep` is run, some operations may not be applicable to new data (e.g., processing outcome variables). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- **id**: unique character string to identify the step.
- **x**: step_kmedoids object.
step_lincomp

Details

K-medoids clustering partitions variables into k groups such that the dissimilarity between the variables and their assigned cluster medoids is minimized. Cluster medoids are then returned as a set of k variables.

Value

Function step_kmedoids creates a new step whose class is of the same name and inherits from step_sbf, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), cluster assignments, selected (logical indicator of selected cluster medoids), silhouette (silhouette values), and name of the selected variable names.

References


See Also

pam, clara, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)

kmedoids_rec <- rec %>%
  step_kmedoids(all_predictors(), k = 3)

kmedoids_prep <- prep(kmedoids_rec, training = attitude)

kmedoids_data <- bake(kmedoids_prep, attitude)
	pairs(kmedoids_data, lower.panel = NULL)

tidy(kmedoids_rec, number = 1)

tidy(kmedoids_prep, number = 1)

step_lincomp

Description

Creates a specification of a recipe step that will compute one or more linear combinations of a set of numeric variables according to a user-specified transformation matrix.
Usage

```r
step_lincomp(
 recipe,
 ...,
 transform,
 num_comp = 5,
 options = list(),
 center = TRUE,
 scale = TRUE,
 replace = TRUE,
 prefix = "LinComp",
 role = "predictor",
 skip = FALSE,
 id = recipes::rand_id("lincomp")
)
```

```r
S3 method for class 'step_lincomp'
tidy(x, ...)

S3 method for class 'step_lincomp'
tunable(x, ...)
```  

Arguments

- **recipe**: `recipe` object to which the step will be added.
- **...**: one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the `tidy` method.
- **transform**: function whose first argument `x` is a matrix of variables with which to compute linear combinations and second argument `step` is the current step. The function should return a transformation `matrix` or `Matrix` of variable weights in its columns, or return a list with element `weights` containing the transformation matrix and possibly with other elements to be included as attributes in output from the `tidy` method.
- **num_comp**: number of components to derive. The value of `num_comp` will be constrained to a minimum of 1 and maximum of the number of original variables when `prep` is run.
- **options**: list of elements to be added to the step object for use in the `transform` function.
- **center, scale**: logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.
- **replace**: logical indicating whether to replace the original variables.
- **prefix**: character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.
- **role**: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
step_sbf

skip  logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.

id     unique character string to identify the step.

x      step_lincomp object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (selectors or variables selected), weight of each variable in the linear transformations, and name of the new variable names.

See Also

recipe, prep, bake

Examples

```r
library(recipes)

cpa_mat <- function(x, step) {
 prcomp(x)$rotation[, 1:step$num_comp, drop = FALSE]
}

rec <- recipe(rating ~ ., data = attitude)
lincomp_rec <- rec %>%
 step_lincomp(all_numeric_predictors(),
 transform = pca_mat, num_comp = 3, prefix = "PCA")

lincomp_prep <- prep(lincomp_rec, training = attitude)
lincomp_data <- bake(lincomp_prep, attitude)

pairs(lincomp_data, lower.panel = NULL)

tidy(lincomp_rec, number = 1)
tidy(lincomp_prep, number = 1)
```

---

**Variable Selection by Filtering**

**Description**

Creates a specification of a recipe step that will select variables from a candidate set according to a user-specified filtering function.
Usage

```r
step_sbf(
 recipe,
 ...,
 filter,
 multivariate = FALSE,
 options = list(),
 replace = TRUE,
 prefix = "SBF",
 role = "predictor",
 skip = FALSE,
 id = recipes::rand_id("sbf")
)
```

```r
S3 method for class 'step_sbf'
tidy(x, ...)
```

Arguments

- `recipe` recipe object to which the step will be added.
- `...` one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the `tidy` method.
- `filter` function whose first argument `x` is a univariate vector or a multivariate data frame of candidate variables from which to select, second argument `y` is the response variable as defined in preceding recipe steps, and third argument `step` is the current step. The function should return a logical value or vector of length equal the number of variables in `x` indicating whether to select the corresponding variable, or return a list or data frame with element `selected` containing the logical(s) and possibly with other elements of the same length to be included in output from the `tidy` method.
- `multivariate` logical indicating that candidate variables be passed to the `x` argument of the `filter` function separately as univariate vectors if `FALSE`, or altogether in one multivariate data frame if `TRUE`.
- `options` list of elements to be added to the step object for use in the `filter` function.
- `replace` logical indicating whether to replace the original variables.
- `prefix` if the original variables are not replaced, the selected variables are added to the dataset with the character string `prefix` added to their names; otherwise, the original variable names are retained.
- `role` analysis role that added step variables should be assigned. By default, they are designated as model predictors.
- `skip` logical indicating whether to skip the step when the recipe is baked. While all operations are baked when `prep` is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- `id` unique character string to identify the step.
**step_spca**

x step_sbf object.

**Value**

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (selectors or variables selected), selected (logical indicator of selected variables), and name of the selected variable names.

**See Also**

recipe, prep, bake

**Examples**

```r
library(recipes)

glm_filter <- function(x, y, step) {
 model_fit <- glm(y ~ ., data = data.frame(y, x))
 p_value <- drop1(model_fit, test = "F")[-1, "Pr(>F)"
 p_value < step$threshold
}

rec <- recipe(rating ~ ., data = attitude)
sbf_rec <- rec %>%
 step_sbf(all_numeric_predictors(),
 filter = glm_filter, options = list(threshold = 0.05))

sbf_prep <- prep(sbf_rec, training = attitude)
sbf_data <- bake(sbf_prep, attitude)
pairs(sbf_data, lower.panel = NULL)
tidy(sbf_rec, number = 1)
tidy(sbf_prep, number = 1)
```

---

**Description**

Creates a specification of a recipe step that will derive sparse principal components from one or more numeric variables.

**Usage**

```r
step_spca(
 recipe,
 ...,
```
```r
num_comp = 5,
sparsity = 0,
um_var = integer(),
shrinkage = 1e-06,
center = TRUE,
scale = TRUE,
max_iter = 200,
tol = 0.001,
replace = TRUE,
prefix = "SPCA",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("spca")
)

S3 method for class 'step_spca'
tunable(x, ...)
```

**Arguments**

- `recipe`: recipe object to which the step will be added.
- `...`: one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the tidy method.
- `num_comp`: number of components to derive. The value of `num_comp` will be constrained to a minimum of 1 and maximum of the number of original variables when `prep` is run.
- `sparsity`, `num_var`: sparsity (L1 norm) penalty for each component or number of variables with non-zero component loadings. Larger sparsity values produce more zero loadings. Argument `sparsity` is ignored if `num_var` is given. The argument value may be a single number applied to all components or a vector of component-specific numbers.
- `shrinkage`: numeric shrinkage (quadratic) penalty for the components to improve conditioning; larger values produce more shrinkage of component loadings toward zero.
- `center`, `scale`: logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.
- `max_iter`: maximum number of algorithm iterations allowed.
- `tol`: numeric tolerance for the convergence criterion.
- `replace`: logical indicating whether to replace the original variables.
- `prefix`: character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.
- `role`: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
step_spca

skip    logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id      unique character string to identify the step.

x       step_spca object.

Details

Sparse principal components analysis (SPCA) is a variant of PCA in which the original variables may have zero loadings in the linear combinations that form the components.

Value

Function step_spca creates a new step whose class is of the same name and inherits from step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), weight of each variable loading in the components, and name of the new variable names; and with attribute pev containing the proportions of explained variation.

References


See Also

spca, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)
spca_rec <- rec %>%
  step_spca(all_predictors(), num_comp = 5, sparsity = 1)
spca_prep <- prep(spca_rec, training = attitude)
spca_data <- bake(spca_prep, attitude)

pairs(spca_data, lower.panel = NULL)

tidy(spca_rec, number = 1)
tidy(spca_prep, number = 1)
summary

Model Performance Summaries

Description

Summary statistics for resampled model performance metrics.

Usage

```r
S3 method for class 'ConfusionList'
summary(object, ...)

S3 method for class 'ConfusionMatrix'
summary(object, ...)

S3 method for class 'MLModel'
summary(
 object,
 stats = MachineShop::settings("stats.Resample"),
 na.rm = TRUE,
 ...
)

S3 method for class 'MLModelFit'
summary(object, .type = c("default", "glance", "tidy"), ...)

S3 method for class 'Performance'
summary(
 object,
 stats = MachineShop::settings("stats.Resample"),
 na.rm = TRUE,
 ...
)

S3 method for class 'PerformanceCurve'
summary(object, stat = MachineShop::settings("stat.Curve"), ...)

S3 method for class 'Resample'
summary(
 object,
 stats = MachineShop::settings("stats.Resample"),
 na.rm = TRUE,
 ...
)

S3 method for class 'TrainingStep'
summary(object, ...)
```
SuperModel

Arguments

- **object**: confusion, lift, trained model fit, performance, performance curve, resample, or rfe result.
- **...**: arguments passed to other methods.
- **stats**: function, function name, or vector of these with which to compute summary statistics.
- **na.rm**: logical indicating whether to exclude missing values.
- **.type**: character string specifying that `unMLModelFit(object)` be passed to `summary` ("default"), `glance`, or `tidy`.
- **stat**: function or character string naming a function to compute a summary statistic at each cutoff value of resampled metrics in `PerformanceCurve`, or NULL for resample-specific metrics.

Value

An object of summary statistics.

Examples

```r
Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
summary(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
```

SuperModel

**Super Learner Model**

Description

Fit a super learner model to predictions from multiple base learners.
Usage

SuperModel(
  ..., 
  model = GBMModel, 
  control = MachineShop::settings("control"), 
  all_vars = FALSE 
)

Arguments

...  model functions, function names, objects; other objects that can be coerced to models; or vector of these to serve as base learners.
model  model function, function name, or object defining the super model; or another object that can be coerced to the model.
control  control function, function name, or object defining the resampling method to be employed for the estimation of base learner weights.
all_vars  logical indicating whether to include the original predictor variables in the super model.

Details

Response types: factor, numeric, ordered, Surv

Value

SuperModel class object that inherits from MLModel.

References


See Also

fit, resample

Examples

## Requires prior installation of suggested packages gbm and glmnet to run

model <- SuperModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)
SurvMatrix

SurvMatrix Class Constructors

Description
Create a matrix of survival events or probabilities.

Usage

SurvEvents(data = NA, times = numeric(), distr = character())
SurvProbs(data = NA, times = numeric(), distr = character())

Arguments

data     matrix, or object that can be coerced to one, with survival events or probabilities at points in time in the columns and cases in the rows.
times    numeric vector of survival times for the columns.
distr    character string specifying the survival distribution from which the matrix values were derived.

Value
Object that is of the same class as the constructor name and inherits from SurvMatrix. Examples of these are predicted survival events and probabilities returned by the predict function.

See Also

performance.metrics

SurvRegModel

Parametric Survival Model

Description
Fits the accelerated failure time family of parametric survival models.

Usage

SurvRegModel(
  dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal", "logloglogistic"),
  scale = 0,
  parms = list(),
  ...
SurvRegModel

SurvRegStepAICModel(
  dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal",
          "logloglogistic"),
  scale = 0,
  parms = list(),
  ...,
  direction = c("both", "backward", "forward"),
  scope = list(),
  k = 2,
  trace = FALSE,
  steps = 1000
)

Arguments

dist  assumed distribution for y variable.
scale optional fixed value for the scale.
parms list of fixed parameters.
...  arguments passed to survreg.control.
direction mode of stepwise search, can be one of "both" (default), "backward", or "forward".
scope defines the range of models examined in the stepwise search. This should be a
    list containing components upper and lower, both formulae.
k  multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or SBC.
trace if positive, information is printed during the running of stepAIC. Larger values
    may give more information on the fitting process.
steps maximum number of steps to be considered.

Details

Response types: Surv
Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

psm, survreg, survreg.control, stepAIC, fit, resample
stepAIC, fit, resample
Examples

```r
Requires prior installation of suggested packages rms and Hmisc to run
library(survival)
fit(Surv(time, status) ~ ., data = veteran, model = SurvRegModel)
```

---

### SVMModel: Support Vector Machine Models

**Description**

Fits the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr (regression) formulations along with native multi-class classification formulations and the bound-constraint SVM formulations.

**Usage**

```r
SVMModel(
 scaled = TRUE,
 type = character(),
 kernel = c("rbfdot", "polydot", "vanilladot", "tanhdot", "laplacedot", "besseldot",
 "anovadot", "splinedot"),
 kpar = "automatic",
 C = 1,
 nu = 0.2,
 epsilon = 0.1,
 cache = 40,
 tol = 0.001,
 shrinking = TRUE
)
```

SVMANOVAModel(sigma = 1, degree = 1, ...)

SVMBesselModel(sigma = 1, order = 1, degree = 1, ...)

SVMLaplaceModel(sigma = numeric(), ...)

SVMLinearModel(...)

SVMPolyModel(degree = 1, scale = 1, offset = 1, ...)

SVMRadialModel(sigma = numeric(), ...)
SVMSplineModel(...)  
SVMTanhModel(scale = 1, offset = 1, ...)  

Arguments  
  scaled   logical vector indicating the variables to be scaled.  
  type     type of support vector machine.  
  kernel   kernel function used in training and predicting.  
  kpar     list of hyper-parameters (kernel parameters).  
  C        cost of constraints violation defined as the regularization term in the Lagrange formulation.  
  nu       parameter needed for nu-svc, one-svc, and nu-svr.  
  epsilon  parameter in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm.  
  cache    cache memory in MB.  
  tol      tolerance of termination criterion.  
  shrinking whether to use the shrinking-heuristics.  
  sigma    inverse kernel width used by the ANOVA, Bessel, and Laplacian kernels.  
  degree   degree of the ANOVA, Bessel, and polynomial kernel functions.  
  ...      arguments passed to SVMModel from the other constructors.  
  order    order of the Bessel function to be used as a kernel.  
  scale    scaling parameter of the polynomial and hyperbolic tangent kernels as a convenient way of normalizing patterns without the need to modify the data itself.  
  offset   offset used in polynomial and hyperbolic tangent kernels.  

Details  
  Response types: factor, numeric  
  Automatic tuning of grid parameters:  
    • SVMANOVAModel: C, degree  
    • SVMBesselModel: C, order, degree  
    • SVMLaplaceModel: C, sigma  
    • SVMLinearModel: C  
    • SVMPolyModel: C, degree, scale  
    • SVMRadialModel: C, sigma  

Arguments kernel and kpar are automatically set by the kernel-specific constructor functions. Default values and further model details can be found in the source link below.

Value  
  MLModel class object.

See Also  
  ksvm, fit, resample
**t.test**

**Examples**

`fit(sale_amount ~ ., data = ICHomes, model = SVMRadialModel)`

---

**t.test**  
*Paired t-Tests for Model Comparisons*

---

**Description**

Paired t-test comparisons of resampled performance metrics from different models.

**Usage**

```r
S3 method for class 'PerformanceDiff'

```

```r
t.test(x, adjust = "holm", ...)
```

**Arguments**

- `x`: performance difference result.
- `adjust`: p-value adjustment for multiple statistical comparisons as implemented by `p.adjust`.
- `...`: arguments passed to other methods.

**Details**

The t-test statistic for pairwise model differences of $R$ resampled performance metric values is calculated as

$$ t = \frac{\bar{x}_R}{\sqrt{Fs^2/R}} $$

where $\bar{x}_R$ and $s^2_R$ are the sample mean and variance. Statistical testing for a mean difference is then performed by comparing $t$ to a $t_{R-1}$ null distribution. The sample variance in the t statistic is known to underestimate the true variances of cross-validation mean estimators. Underestimation of these variances will lead to increased probabilities of false-positive statistical conclusions. Thus, an additional factor $F$ is included in the t statistic to allow for variance corrections. A correction of $F = 1 + K/(K - 1)$ was found by Nadeau and Bengio (2003) to be a good choice for cross-validation with $K$ folds and is thus used for that resampling method. The extension of this correction by Bouchaert and Frank (2004) to $F = 1 + TK/(K - 1)$ is used for cross-validation with $K$ folds repeated $T$ times. For other resampling methods $F = 1$.

**Value**

`PerformanceDiffTest` class object that inherits from `array`. p-values and mean differences are contained in the lower and upper triangular portions, respectively, of the first two dimensions. Model pairs are contained in the third dimension.
References


Examples

```r
Requires prior installation of suggested package gbm to run
Numeric response example
fo <- sale_amount ~ .
ccontrol <- CVControl()

gbm_res1 <- resample(fo, ICHomes, GBMModel(n.trees = 25), ccontrol)
gbm_res2 <- resample(fo, ICHomes, GBMModel(n.trees = 50), ccontrol)
gbm_res3 <- resample(fo, ICHomes, GBMModel(n.trees = 100), ccontrol)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
t.test(res_diff)
```

TreeModel  
*Classification and Regression Tree Models*

Description

A tree is grown by binary recursive partitioning using the response in the specified formula and choosing splits from the terms of the right-hand-side.

Usage

```r
TreeModel(
 mincut = 5,
 minsize = 10,
 mindev = 0.01,
 split = c("deviance", "gini"),
 k = numeric(),
 best = integer(),
 method = c("deviance", "misclass")
)
```
Arguments

- **mincut**: minimum number of observations to include in either child node.
- **minsize**: smallest allowed node size: a weighted quantity.
- **mindev**: within-node deviance must be at least this times that of the root node for the node to be split.
- **split**: splitting criterion to use.
- **k**: scalar cost-complexity parameter defining a subtree to return.
- **best**: integer alternative to k requesting the number of terminal nodes of a subtree in the cost-complexity sequence to return.
- **method**: character string denoting the measure of node heterogeneity used to guide cost-complexity pruning.

Details

**Response types**: factor, numeric

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

- tree, prune.tree, fit, resample

Examples

```r
Requires prior installation of suggested package tree to run
fit(Species ~ ., data = iris, model = TreeModel)
```

TunedInput

**Tuned Model Inputs**

Description

Recipe tuning over a grid of parameter values.
Usage

TunedInput(object, 
## S3 method for class 'recipe'
TunedInput(
   object,
   grid = expand_steps(),
   control = MachineShop::settings("control"),
   metrics = NULL,
   cutoff = MachineShop::settings("cutoff"),
   stat = MachineShop::settings("stat.TrainingParams"),
   ...
)

Arguments

object untrained recipe.
... arguments passed to other methods.
grid RecipeGrid containing parameter values at which to evaluate a recipe, such as those returned by expand_steps.
control control function, function name, or object defining the resampling method to be employed.
metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Recipe selection is based on the first calculated metric.
cutoff argument passed to the metrics functions.
stat function or character string naming a function to compute a summary statistic on resampled metric values for recipe tuning.

Value

TunedModelRecipe class object that inherits from TunedInput and recipe.

See Also

fit.resample, set_optim

Examples

library(recipes)
data(Boston, package = "MASS")
rec <- recipe(medv ~ ., data = Boston) %>%
   step_pca(all_numeric_predictors(), id = "pca")

grid <- expand_steps(
   pca = list(num_comp = 1:2)
)
TunedModel


tunedModel(rec, grid = grid), model = GLMModel

---

**TunedModel**

**Tuned Model**

---

### Description

Model tuning over a grid of parameter values.

### Usage

```r
TunedModel(
 object,
 grid = MachineShop::settings("grid"),
 control = MachineShop::settings("control"),
 metrics = NULL,
 cutoff = MachineShop::settings("cutoff"),
 stat = MachineShop::settings("stat.TrainingParams")
)
```

### Arguments

- **object**: model function, function name, or object defining the model to be tuned.
- **grid**: single integer or vector of integers whose positions or names match the parameters in the model’s pre-defined tuning grid if one exists and which specify the number of values used to construct the grid; TuningGrid function, function name, or object; ParameterGrid object; or data frame containing parameter values at which to evaluate the model, such as that returned by expand_params.
- **control**: control function, function name, or object defining the resampling method to be employed.
- **metrics**: metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.
- **cutoff**: argument passed to the metrics functions.
- **stat**: function or character string naming a function to compute a summary statistic on resampled metric values for model tuning.

### Details

The `expand_modelgrid` function enables manual extraction and viewing of grids created automatically when a TunedModel is fit.

**Response types**: factor, numeric, ordered, Surv
TuningGrid

Description

Defines control parameters for a tuning grid.

Value

TunedModel class object that inherits from MLMeta.

See Also

fit, resample, set_optim

Examples

## Requires prior installation of suggested package gbm to run
## May require a long runtime

# Automatically generated grid
model_fit <- fit(sale_amount ~ ., data = ICHomes,
                 model = TunedModel(GBMModel))
varimp(model_fit)
(tuned_model <- as.MLModel(model_fit))
summary(tuned_model)
plot(tuned_model, type = "l")

# Randomly sampled grid points
fit(sale_amount ~ ., data = ICHomes,
    model = TunedModel(
        GBMModel,
        grid = TuningGrid(size = 1000, random = 5)
    ))

# User-specified grid
fit(sale_amount ~ ., data = ICHomes,
    model = TunedModel(
        GBMModel,
        grid = expand_params(
            n.trees = c(50, 100),
            interaction.depth = 1:2,
            n.minobsinnode = c(5, 10)
        )
    ))
Usage

TuningGrid(size = 3, random = FALSE)

Arguments

size

single integer or vector of integers whose positions or names match the parameters in a model’s tuning grid and which specify the number of values used to construct the grid.

random

number of unique points to sample at random from the grid defined by size. If size is a single unnamed integer, then random = Inf will include all values of all grid parameters in the constructed grid, whereas random = FALSE will include all values of default grid parameters.

Details

Returned TuningGrid objects may be supplied to TunedModel for automated construction of model tuning grids. These grids can be extracted manually and viewed with the expand_modelgrid function.

Value

TuningGrid class object.

See Also

TunedModel, expand_modelgrid

Examples

TunedModel(XGBTreeModel, grid = TuningGrid(10, random = 5))

unMLModelFit

Revert an MLModelFit Object

Description

Function to revert an MLModelFit object to its original class.

Usage

unMLModelFit(object)

Arguments

object

model fit result.
Value

The supplied object with its MLModelFit classes and fields removed.

---

**varimp**  
**Variable Importance**

Description

Calculate measures of the relative importance of predictors in a model.

Usage

```r
varimp(object, method = c("permute", "model"), scale = TRUE, ...)
```

Arguments

- **object**: model fit result.
- **method**: character string specifying the calculation of variable importance as permutation-based ("permute") or model-specific ("model"). If model-specific importance is specified but not defined, the permutation-based method will be used instead with its default values (below). Permutation-based variable importance is defined as the relative change in model predictive performances between datasets with and without permuted values for the associated variable (Fisher et al. 2019).
- **scale**: logical indicating whether importance values should be scaled to a maximum of 100.
- **...**: arguments passed to model-specific or permutation-based variable importance functions. These include the following arguments and default values for method = "permute".
  - **select**: NULL expression indicating predictor variables for which to compute variable importance (see `subset` for syntax) [default: all].
  - **samples**: integer number of times to permute the values of each variable. Larger numbers of samples decrease variability in the estimates at the expense of increased computation time.
  - **prop**: numeric proportion of observations to sample without replacement at each round of variable permutations [default: all]. Subsampling of observations can decrease computation time.
  - **size**: integer number of observations to sample at each round of permutations [default: all].
  - **times**: numeric vector of follow-up times at which to predict survival probabilities or NULL for predicted survival means.
  - **metric**: NULL metric function or function name with which to calculate performance. If not specified, the first applicable default metric from the performance functions is used.
compare = c("-", "/") character specifying the relative change to compute in comparing model predictive performances between datasets with and without permuted values. The choices are difference ("-" ) and ratio ("/" ).

stats = MachineShop::settings("stat.TrainingParams") function, function name, or vector of these with which to compute summary statistics on the set of variable importance values from the permuted datasets.

na.rm = TRUE logical indicating whether to exclude missing variable importance values from the calculation of summary statistics.

progress = TRUE logical indicating whether to display iterative progress during computation.

Value

VariableImportance class object.

References


See Also

plot

Examples

## Requires prior installation of suggested package gbm to run

## Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
(vi <- varimp(gbm_fit))
plot(vi)
Usage

XGBModel(
    nrounds = 100,
    ...,  
    objective = character(),
    aft_loss_distribution = "normal",
    aft_loss_distribution_scale = 1,
    base_score = 0.5,
    verbose = 0,
    print_every_n = 1
)

XGBDARTModel(
    eta = 0.3,
    gamma = 0,
    max_depth = 6,
    min_child_weight = 1,
    max_delta_step = 0.7 * is(y, "PoissonVariate"),
    subsample = 1,
    colsample_bytree = 1,
    colsample_bylevel = 1,
    colsample_bynode = 1,
    alpha = 0,
    lambda = 1,
    tree_method = "auto",
    sketch_eps = 0.03,
    scale_pos_weight = 1,
    refresh_leaf = 1,
    process_type = "default",
    grow_policy = "depthwise",
    max_leaves = 0,
    max_bin = 256,
    num_parallel_tree = 1,
    sample_type = "uniform",
    normalize_type = "tree",
    rate_drop = 0,
    one_drop = 0,
    skip_drop = 0,
    ...
)

XGBLinearModel(
    alpha = 0,
    lambda = 0,
    updater = "shotgun",
    feature_selector = "cyclic",
    top_k = 0,
    ...
)
XGBModel

)

XGBTreeModel(
  eta = 0.3,
  gamma = 0,
  max_depth = 6,
  min_child_weight = 1,
  max_delta_step = .(0.7 * is(y, "PoissonVariate")),
  subsample = 1,
  colsample_bytree = 1,
  colsample_bylevel = 1,
  colsample_bynode = 1,
  alpha = 0,
  lambda = 1,
  tree_method = "auto",
  sketch_eps = 0.03,
  scale_pos_weight = 1,
  refresh_leaf = 1,
  process_type = "default",
  grow_policy = "depthwise",
  max_leaves = 0,
  max_bin = 256,
  num_parallel_tree = 1,
...
)

Arguments

nrounds  number of boosting iterations.

...  model parameters as described below and in the XGBoost documentation and arguments passed to XGBModel from the other constructors.

objective  optional character string defining the learning task and objective. Set automatically if not specified according to the following values available for supported response variable types.

  factor: "multi:softprob", "binary:logistic" (2 levels only)
    "rank:pairwise", "rank:ndcg", "rank:map"
  PoissonVariate: "count:poisson"
  Surv: "survival:aft", "survival:cox"

The first values listed are the defaults for the corresponding response types.

aft_loss_distribution  character string specifying a distribution for the accelerated failure time objective ("survival:aft") as "extreme", "logistic", or "normal".

aft_loss_distribution_scale  numeric scaling parameter for the accelerated failure time distribution.

base_score  initial prediction score of all observations, global bias.
verbose

numeric value controlling the amount of output printed during model fitting, such that 0 = none, 1 = performance information, and 2 = additional information.

print_every_n

numeric value designating the fitting iterations at which to print output when verbose > 0.

eta

shrinkage of variable weights at each iteration to prevent overfitting.

gamma

minimum loss reduction required to split a tree node.

max_depth

maximum tree depth.

min_child_weight

minimum sum of observation weights required of nodes.

max_delta_step, tree_method, sketch_eps, scale_pos_weight, updater, refresh_leaf, process_type, grow_policy, max_leaves, max_bin, num_parallel_tree

other tree booster parameters.

subsample

subsample ratio of the training observations.

colsample_bytree, colsample_bylevel, colsample_bynode

subsample ratio of variables for each tree, level, or split.

alpha, lambda

L1 and L2 regularization terms for variable weights.

sample_type, normalize_type

type of sampling and normalization algorithms.

rate_drop

rate at which to drop trees during the dropout procedure.

one_drop

integer indicating whether to drop at least one tree during the dropout procedure.

skip_drop

probability of skipping the dropout procedure during a boosting iteration.

feature_selector, top_k

character string specifying the feature selection and ordering method, and number of top variables to select in the "greedy" and "thrifty" feature selectors.

Details

Response types: factor, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: • XGBDARTModel: nrounds, eta*, gamma*, max_depth, min_child_weight*, subsample*, colsample_bytree*, rate_drop*, skip_drop*

• XGBLinearModel: nrounds, alpha, lambda

• XGBTreeModel: nrounds, eta*, gamma*, max_depth, min_child_weight*, subsample*, colsample_bytree*

* excluded from grids by default

Default values and further model details can be found in the source link below.

In calls to varimp for XGBTreeModel, argument type may be specified as "Gain" (default) for the fractional contribution of each predictor to the total gain of its splits, as "Cover" for the number of observations related to each predictor, or as "Frequency" for the percentage of times each predictor is used in the trees. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.
See Also

xgboost.fit.resample

Examples

## Requires prior installation of suggested package xgboost to run

```r
model_fit <- fit(Species ~ ., data = iris, model = XGBTreeModel)
varimp(model_fit, method = "model", type = "Frequency", scale = FALSE)
```
Index

* datasets
  ICHomes, 46
  +SurvMatrix, SurvMatrix-method (combine), 21
  .. 36, 53
  . (quote), 89
  [,DiscreteVariate, ANY, missing, missing-method (extract), 35
  [,Listof, ANY, missing, missing-method (extract), 35
  [,ModelFrame, ANY, ANY, method (extract), 35
  [,ModelFrame, ANY, missing, ANY-method (extract), 35
  [,ModelFrame, missing, ANY, ANY-method (extract), 35
  [,RecipeGrid, ANY, ANY, ANY-method (extract), 35
  [,Resample, ANY, ANY, ANY-method (extract), 35
  [,Resample, ANY, missing, ANY-method (extract), 35
  [,Resample, missing, missing, ANY-method (extract), 35
  [,SurvMatrix, ANY, ANY, ANY-method (extract), 35
  [,SurvTimes, ANY, missing, missing-method (extract), 35
  [,BinomialVariate (extract), 35

accuracy (metrics), 55
AdaBagModel, 7, 69
AdaBoostModel, 8, 69
as.MLInput, 10
as.MLModel, 10, 39, 76
auc, 79
auc (metrics), 55
Automatic tuning, 7, 9, 12, 16, 17, 21, 29, 37, 40–42, 45, 48–50, 53, 74, 83, 90, 92, 101, 102, 134, 146
bagging, 8
bake, 119, 121, 123, 125, 127
bartMachine, 12
BARTMachineModel, 11, 69
BARTModel, 13, 69
baselearners, 40
BayesianOptimization, 112, 114
bayesOpt, 112, 114
BinomialVariate, 47, 93, 95, 115
BinomialVariate (DiscreteVariate), 28
blackboost, 16
BlackBoostModel, 15, 69
boosting, 9
BootControl, 6
BootControl (MLControl), 60
BootOptimismControl, 6
BootOptimismControl (MLControl), 60
brier (metrics), 55
bruto, 36, 53
c. 19, 23, 51, 79, 95
c.Calibration (combine), 21
c.ConfusionList (combine), 21
c.ConfusionMatrix (combine), 21
c.LiftCurve (combine), 21
c.ListOf (combine), 21
c.PerformanceCurve (combine), 21
c.Resample (combine), 21
C5.0, 17
C5.0Control, 17
C50Model, 16, 69
calibration, 5, 18, 22, 82
case weights, 18, 23, 51, 59, 78, 79
case_weights, 19
cforest, 21
cforest_control, 21
INDEX

CForestModel, 20, 69
clara, 120, 121
cindex (metrics), 55
correlated, 30, 32, 38, 71, 95, 98, 106, 116, 130
combine, 21
correlation, 4, 5, 32, 38, 54, 59, 78, 82, 86, 129
core (metrics), 22
cross-entropy (metrics), 55
cross-validation, 67, 93
cross_entropy (metrics), 55
cVcontrol, 6
cVcontrol (MLControl), 60
cVoptimismControl, 6
cVoptimismControl (MLControl), 60
data frame, 19, 25, 32, 38, 67, 71, 85, 95, 96, 98, 104, 139
degraded, 5, 25, 82
deprecated, 26
diff, 5, 27
difference, 135
DiscreteVariate, 28, 47
dependence, 5, 25, 82
dependent, 95, 96
earth, 30
EarthModel, 29, 69
expand_model, 5, 30, 106
expand_modelgrid, 5, 31, 139, 141
expand_params, 5, 33, 139
expand_steps, 5, 34, 138
extract, 35
f_score (metrics), 55
factor, 47
Family, 15, 16, 39, 40, 42
fda, 37
FDAModel, 36, 69
fit, 5, 8–12, 14, 16, 17, 19, 21, 25, 30, 37, 37, 40–42, 44, 45, 47–49, 51, 52, 54, 65, 67, 70, 72, 74, 76, 78, 82–85, 88–90, 92, 96, 101, 103, 105, 106, 117, 129,
130, 132, 134, 137, 138, 140–142, 147
fitting, 93
fnr (metrics), 55
formula, 32, 38, 47, 67, 71, 95, 98
fpr (metrics), 55
gamboost, 40
GAMBoostModel, 39, 69
gbart, 14
gbm, 41
GBMModel, 40, 69
gen.ridge, 36, 53
gini (metrics), 55
glance, 129
glm, 44
glm.control, 43, 44
glmboost, 42
GLMBoostModel, 41, 69
GLMModel, 43, 69
glmnet, 45
GLMNetModel, 44, 69
GLMStepAICModel, 69
GLMStepAICModel (GLMModel), 43
ICHomes, 46
input, 32, 38, 65, 71, 95, 96, 98, 112
inputs, 46, 104
install.packages, 68
kappa2 (metrics), 55
kknn, 48
kmeans, 119
KNNModel, 47, 69
ksvm, 134
lars, 49
LARSModel, 49, 69
lda, 51
LDAModel, 50, 69
library, 68
lift, 6, 22, 51, 82, 129
lm, 52
LMModel, 52, 69
loess, 18
MachineShop (MachineShop-package), 5
MachineShop-package, 5
mae (metrics), 55
Index

mars, 36, 53
Matrix, 122
matrix, 32, 38, 47, 67, 71, 95, 98, 122
mbart, 14
mda, 54
MDAModel, 53, 69
metric, 54, 71, 78, 99, 104, 106, 138, 139, 142
metricinfo, 6, 54, 60
metrics, 6, 22, 55, 61, 63, 79, 86, 95, 107, 108, 131
MLControl, 60, 95
MLMetric, 6, 63, 78
MLMetric<-(MLMetric), 63
MLModel, 6, 64
MLModelFunction (MLModel), 64
model, 30, 32, 38, 65, 68, 71, 95, 98, 106, 112, 116, 130, 139
model functions, 89
model specification, 10, 11, 75
model.frame, 64
model.matrix, 64
modeled inputs, 38, 71, 95, 98
ModeledInput, 47
ModeledInput (deprecated), 26
ModelFrame, 19, 47, 65, 66
modelinfo, 6, 68, 70
models, 5, 65, 69
ModelSpecification, 47, 70, 70
ModelSpecification(), 26
mse (metrics), 55
msle (metrics), 55
mvr, 83
naiveBayes, 72
NaiveBayesModel, 69, 72
NegBinomialVariate, 47
NegBinomialVariate (DiscreteVariate), 28
nnet, 74
NNetModel, 69, 73
npv (metrics), 55
numeric, 47
observed, 54
observed responses, 18, 23, 51, 54, 59, 68, 78, 79
OOBControl, 6
OOBControl (MLControl), 60
optim, 112, 114
optimization, 109
ordered, 47
p.adjust, 135
pam, 120, 121
ParameterGrid, 74, 139
parameters, 75
ParsnipModel, 11, 69, 75
partial dependence, 108
PDAModel, 69
PDAModel (FDAModel), 36
performance_curve, 22, 59, 82, 129
performance_curve, 6, 78
plot, 6, 19, 23, 26, 27, 51, 78, 79, 80, 95, 99, 143
plots, 108
PLSModel, 69, 83
PoissonVariate, 47
PoissonVariate (DiscreteVariate), 28
polr, 84
POLRModel, 69, 84
polyreg, 36, 53
ppr (metrics), 55
ppr(), 26
ppv (metrics), 55
pr_auc (metrics), 55
precision (metrics), 55
predict, 5, 26, 37, 39, 50, 53, 85, 88, 114, 131
predict, MLModelFit-method (predict), 85
predict.fda, 37
predict.lda, 51
predict.mda, 54
predict.MLModelFit (predict), 85
predict.qda, 88
predicted, 54
predicted responses, 18, 23, 51, 59, 78, 79
prep, 118–127
print, 6, 86
prune.tree, 137
psm, 132
psoptim, 112, 114
qda, 88
QDAModel, 69, 88
quote, 89, 89
r2 (metrics), 55
randomForest, 90
RandomForestModel, 69, 90
ranger, 92
RangerModel, 69, 91
recall (metrics), 55
recipe, 19, 34, 47, 93, 118–127, 138
recipe_roles, 93
response, 5, 39, 67, 96
rfe, 6, 78, 82, 97, 129
rfsr, 100, 101
rfsrFast, 101
RFSRCFastModel, 69
RFSRCFastModel (RFSRCModel), 99
RFSRCModel, 69, 99
rmse (metrics), 55
rmsle (metrics), 55
roc_auc (metrics), 55
roc_index (metrics), 55
role_binom, 28, 47
role_binom (recipe_roles), 93
role_case, 38, 95
role_case (recipe_roles), 93
role_pred (recipe_roles), 93
role_surv, 47
role_surv (recipe_roles), 93
rpart, 103
RPartModel, 69, 102
rpp (deprecated), 26
SelectedInput, 47, 62, 67, 103
SelectedModel, 30, 62, 70, 105
SelectedModelFrame (SelectedInput), 103
SelectedModelRecipe (SelectedInput), 103
SelectedModelSpecification (SelectedInput), 103
selection, 108
selections, 118, 120, 122, 124, 126
sensitivity (metrics), 55
set_monitor, 62, 72, 109, 114–116
set_optim, 72, 109, 110, 115, 116, 138, 140
set_optim_bayes (set_optim), 110
set_optim_bfgs (set_optim), 110
set_optim Grid (set_optim), 110
set_optim_method (set_optim), 110
set_optim_pso (set_optim), 110
set_optim_sann (set_optim), 110
set_predict, 62, 109, 114, 115, 116
set_strata, 62, 109, 114, 115
settings, 6, 107
spca, 127
specification, 32, 38, 95, 96, 98, 109
specifications, 106
specificity (metrics), 55
SplitControl, 6
SplitControl (MLControl), 60
StackedModel, 70, 116
step_kmeans, 117
step_kmedoids, 119
step_lincomp, 118, 121, 127
step_sbf, 121, 123
step_spca, 125
stepAIC, 25, 44, 132
strata, 95
subset, 25, 98, 142
SuperModel, 70, 129
Surv, 47, 93
surv.bart, 14
SurvEvents (SurvMatrix), 131
SurvMatrix, 131
SurvProbs (SurvMatrix), 131
survreg, 132
survreg.control, 132
SurvRegModel, 69, 131
SurvRegStepAICModel, 69
SurvRegStepAICModel (SurvRegModel), 131
SVMANOVAModel, 69
SVMANOVAModel (SVMMModel), 133
SVMBesselModel, 70
SVMBesselModel (SVMMModel), 133
SVMLaplaceModel, 70
SVMLaplaceModel (SVMMModel), 133
SVMLinearModel, 70
SVMLinearModel (SVMMModel), 133
SVMMModel, 69, 133
SVMPolynomialModel, 70
SVMPolynomialModel (SVMMModel), 133
SVMRadialModel, 70
SVMRadialModel (SVMMModel), 133
SVMSplineModel, 70
SVMSplineModel (SVMModel), 133
SVMTanhModel, 70
SVMTanhModel (SVMModel), 133

t.test, 27, 135
tidy, 129
tidy.step_kmeans (step_kmeans), 117
tidy.step_lincomp (step_lincomp), 121
tidy.step_sbf (step_sbf), 123
tnr (metrics), 55
tpr (metrics), 55
TrainControl, 6
TrainControl (MLControl), 60
tree, 137
TreeModel, 70, 136
tunable.step_kmeans (step_kmeans), 117
tunable.step_kmedoids (step_kmedoids), 119
tunable.step_lincomp (step_lincomp), 121
tunable.step_spca (step_spca), 125
TunedInput, 34, 47, 62, 137
TunedModel, 32, 33, 62, 70, 75, 139, 141
TunedModelRecipe (TunedInput), 137
tuning, 107, 108
TuningGrid, 107, 139, 140

unMLModelFit, 141
unMLModelFit (object), 129

variable importance, 82
varimp, 6, 12, 17, 24, 29, 39, 44, 52, 65, 84, 98, 99, 101, 142, 146

weighted_kappa2 (metrics), 55
weights, 38

XGBDARTModel, 70
XGBDARTModel (XGBModel), 143
XGBLinearModel, 70
XGBLinearModel (XGBModel), 143
XGBModel, 70, 143
xgboost, 147
XGBTreeModel, 70
XGBTreeModel (XGBModel), 143