Package ‘MachineShop’

October 12, 2022

Type Package
Title Machine Learning Models and Tools
Version 3.6.0
Date 2022-09-01
Author Brian J Smith [aut, cre]
Maintainer Brian J Smith <brian-j-smith@uiowa.edu>
Description Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.

Depends R (>= 4.0.0)
Imports abind, cli (>= 3.1.0), dials (>= 0.0.4), foreach, ggplot2 (>= 3.3.0), kernlab, magrittr, Matrix, methods, nnet, party, polspline, progress, recipes (>= 0.2.0), rlang, rsample (>= 0.1.0), Rsolnp, survival, tibble, utils
Suggests adabag, BART, bartMachine, C50, censored, cluster, doParallel, e1071, earth, elasticnet, generics, gbm, glmnet, gridExtra, Hmisc, kableExtra, kknn, knitr, lars, MASS, mboost, mda, ParBayesianOptimization, parsnip, partykit, pls, pso, randomForest, randomForestSRC, ranger, rBayesianOptimization, markdown, rms, rpart, testthat, tree, xgboost

LazyData true
License GPL-3

BugReports https://github.com/brian-j-smith/MachineShop/issues

RoxygenNote 7.2.1

VignetteBuilder knitr

Encoding UTF-8

Collate 'classes.R' 'conditions.R' 'MachineShop-package.R'
'ML_Control.R' 'MLInput.R' 'MLMetric.R' 'MLModel.R'
'MLOptimization.R' 'ML_AdaboostModel.R' 'ML_AdaboostModel.R'
'ML_BARTMachineModel.R' 'ML_BARTModel.R' 'ML_BlackboostModel.R'
'ML_C50Model.R' 'ML_CForestModel.R' 'ML_CoxModel.R'
'ML_EarthModel.R' 'ML_FDAModel.R' 'ML_GAMBoostModel.R'
'ML_GBMModel.R' 'ML_GLMBoostModel.R' 'ML_GLMModel.R'
'ML_GLMNetModel.R' 'ML_KNNModel.R' 'ML_LARSModel.R'
'ML_LDAModel.R' 'ML_LMMModel.R' 'ML_MDAModel.R' 'ML_NNetModel.R'
'ML_NaiveBayesModel.R' 'ML_ParsnipModel.R' 'ML_PLSModel.R'
'ML_POLRModel.R' 'ML_QDAModel.R' 'ML_RFSRCModel.R'
'ML_RPartModel.R' 'ML_RandomForestModel.R' 'ML_RangerModel.R'
'ML_SVMModel.R' 'ML_StackedModel.R' 'ML_SuperModel.R'
'ML_SurvRegModel.R' 'ML_TreeModel.R' 'ML_XGBModel.R'
'ModelFrame.R' 'ModelRecipe.R' 'ModelSpecification.R'
'TrainedInputs.R' 'TrainedModels.R' 'TrainingParams.R'
'append.R' 'calibration.R' 'case_comps.R' 'coerce.R'
'combine.R' 'confusion.R' 'convert.R' 'data.R' 'dependence.R'
'diff.R' 'expand.R' 'extract.R' 'fit.R' 'grid.R' 'metricinfo.R'
'metrics.R' 'metrics_factor.R' 'metrics_numeric.R'
'modelinfo.R' 'models.R' 'performance.R' 'performance_curve.R'
'plot.R' 'predict.R' 'print.R' 'recipe_roles.R' 'reexports.R'
'resample.R' 'response.R' 'rfe.R' 'settings.R' 'step_kmeans.R'
'step_kmedoids.R' 'step_lincmp.R' 'step_sbf.R' 'step_spca.R'
'summary.R' 'Survival.R' 'utils.R' 'varimp.R'

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-09-05 15:20:11 UTC

R topics documented:

- MachineShop-package 5
- AdaBagModel 7
- AdaBoostModel 8
- as.data.frame 10
- as.MLInput 10
- as.MLModel 11
- BARTMachineModel 12
- BARTModel 13
- BlackBoostModel 15
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C50Model .. 17</td>
</tr>
<tr>
<td>calibration ... 19</td>
</tr>
<tr>
<td>case_weights ... 20</td>
</tr>
<tr>
<td>CForestModel ... 21</td>
</tr>
<tr>
<td>combine .. 22</td>
</tr>
<tr>
<td>confusion .. 23</td>
</tr>
<tr>
<td>CoxModel .. 24</td>
</tr>
<tr>
<td>dependence .. 26</td>
</tr>
<tr>
<td>diff ... 27</td>
</tr>
<tr>
<td>DiscreteVariate .. 28</td>
</tr>
<tr>
<td>EarthModel ... 29</td>
</tr>
<tr>
<td>expand_model .. 30</td>
</tr>
<tr>
<td>expand_modelgrid ... 31</td>
</tr>
<tr>
<td>expand_params ... 33</td>
</tr>
<tr>
<td>expand_steps .. 34</td>
</tr>
<tr>
<td>extract ... 35</td>
</tr>
<tr>
<td>FDAModel .. 36</td>
</tr>
<tr>
<td>fit ... 37</td>
</tr>
<tr>
<td>GAMBoostModel ... 39</td>
</tr>
<tr>
<td>GBMModel .. 40</td>
</tr>
<tr>
<td>GLMBoostModel ... 42</td>
</tr>
<tr>
<td>GLMMModel .. 43</td>
</tr>
<tr>
<td>GLMNetModel ... 44</td>
</tr>
<tr>
<td>ICHomes ... 46</td>
</tr>
<tr>
<td>inputs ... 46</td>
</tr>
<tr>
<td>KNNModel .. 47</td>
</tr>
<tr>
<td>LARSModel .. 49</td>
</tr>
<tr>
<td>LDAModel ... 50</td>
</tr>
<tr>
<td>lift ... 51</td>
</tr>
<tr>
<td>LMMModel ... 52</td>
</tr>
<tr>
<td>MDAModel ... 53</td>
</tr>
<tr>
<td>metricinfo .. 54</td>
</tr>
<tr>
<td>metrics .. 55</td>
</tr>
<tr>
<td>MLControl .. 60</td>
</tr>
<tr>
<td>MLMetric ... 63</td>
</tr>
<tr>
<td>MLModel ... 64</td>
</tr>
<tr>
<td>ModelFrame .. 66</td>
</tr>
<tr>
<td>modelinfo .. 68</td>
</tr>
<tr>
<td>models ... 69</td>
</tr>
<tr>
<td>ModelSpecification 70</td>
</tr>
<tr>
<td>NaiveBayesModel .. 72</td>
</tr>
<tr>
<td>NNetModel .. 73</td>
</tr>
<tr>
<td>ParameterGrid ... 75</td>
</tr>
<tr>
<td>ParsnipModel ... 76</td>
</tr>
<tr>
<td>performance ... 77</td>
</tr>
<tr>
<td>performance_curve .. 79</td>
</tr>
<tr>
<td>plot ... 81</td>
</tr>
<tr>
<td>PLSModel ... 83</td>
</tr>
</tbody>
</table>
R topics documented:

POLRModel ... 84
predict .. 85
print .. 86
QDAModel ... 88
quote ... 89
RandomForestModel 90
RangerModel ... 91
recipe_roles .. 93
resample ... 94
response ... 96
rfe ... 97
RFSRCModel .. 99
RPartModel .. 102
SelectedInput ... 103
SelectedModel .. 105
settings ... 107
set_monitor .. 109
set_optim .. 110
set_predict .. 114
set_strata ... 115
StackedModel .. 116
step_kmeans .. 117
step_kmedoids .. 119
step_lincomp .. 121
step_sbf ... 123
step_spca ... 125
summary ... 128
SuperModel ... 129
SurvMatrix ... 131
SurvRegModel .. 131
SVMModel ... 133
t.test ... 135
TreeModel .. 136
TunedInput .. 137
TunedModel .. 139
TuningGrid ... 140
unMLModelFit .. 141
varimp .. 142
XGBModel ... 143

Index .. 148
MachineShop-package

Description

Meta-package for statistical and machine learning with a unified interface for model fitting, prediction, performance assessment, and presentation of results. Approaches for model fitting and prediction of numerical, categorical, or censored time-to-event outcomes include traditional regression models, regularization methods, tree-based methods, support vector machines, neural networks, ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics are provided for model assessment and can be estimated with independent test sets, split sampling, cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster processing and nested in cases of model tuning and selection. Modeling results can be summarized with descriptive statistics; calibration curves; variable importance; partial dependence plots; confusion matrices; and ROC, lift, and other performance curves.

Details

The following set of model fitting, prediction, and performance assessment functions are available for MachineShop models.

Training:

- `fit`
 Model fitting
- `resample`
 Resample estimation of model performance

Tuning Grids:

- `expand_model`
 Model expansion over tuning parameters
- `expand_modelgrid`
 Model tuning grid expansion
- `expand_params`
 Model parameters expansion
- `expand_steps`
 Recipe step parameters expansion

Response Values:

- `response`
 Observed
- `predict`
 Predicted

Performance Assessment:

- `calibration`
 Model calibration
- `confusion`
 Confusion matrix
- `dependence`
 Partial dependence
- `diff`
 Model performance differences
Methods for resample estimation include

- **BootControl**: Simple bootstrap
- **BootOptimismControl**: Optimism-corrected bootstrap
- **CVControl**: Repeated K-fold cross-validation
- **CVOptimismControl**: Optimism-corrected cross-validation
- **OOBControl**: Out-of-bootstrap
- **SplitControl**: Split training-testing
- **TrainControl**: Training resubstitution

Graphical and tabular summaries of modeling results can be obtained with

- `plot`
- `print`
- `summary`

Further information on package features is available with

- **metricinfo**: Performance metric information
- **modelinfo**: Model information
- **settings**: Global settings

Custom metrics and models can be created with the `MLMetric` and `MLModel` constructors.

Author(s)

Maintainer: Brian J Smith <brian-j-smith@uiowa.edu>

See Also

Useful links:

- https://brian-j-smith.github.io/MachineShop/
AdaBagModel

Bagging with Classification Trees

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classifiers.

Usage

```r
AdaBagModel(
  mfinal = 100,
  minsplit = 20,
  minbucket = round(minsplit/3),
  cp = 0.01,
  maxcompete = 4,
  maxsurrogate = 5,
  usesurrogate = 2,
  xval = 10,
  surrogestyle = 0,
  maxdepth = 30
)
```

Arguments

- `mfinal` number of trees to use.
- `minsplit` minimum number of observations that must exist in a node in order for a split to be attempted.
- `minbucket` minimum number of observations in any terminal node.
- `cp` complexity parameter.
- `maxcompete` number of competitor splits retained in the output.
- `maxsurrogate` number of surrogate splits retained in the output.
- `usesurrogate` how to use surrogates in the splitting process.
- `xval` number of cross-validations.
- `surrogestyle` controls the selection of a best surrogate.
- `maxdepth` maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

Response types: factor

Automatic tuning of grid parameters: `mfinal`, `maxdepth`

Further model details can be found in the source link below.
AdaBoostModel

Value
MLModel class object.

See Also
bagging, fit, resample

Examples

```r
## Requires prior installation of suggested package adabag to run
fit(Species ~ ., data = iris, model = AdaBagModel(mfinal = 5))
```

AdaBoostModel

Boosting with Classification Trees

Description

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms using classification trees as single classifiers.

Usage

```r
AdaBoostModel(
  boos = TRUE,
  mfinal = 100,
  coeflearn = c("Breiman", "Freund", "Zhu"),
  minsplit = 20,
  minbucket = round(minsplit/3),
  cp = 0.01,
  maxcompete = 4,
  maxsurrogate = 5,
  usesurrogate = 2,
  xval = 10,
  surrogatetstyle = 0,
  maxdepth = 30
)
```

Arguments

- `boos` if TRUE, then bootstrap samples are drawn from the training set using the observation weights at each iteration. If FALSE, then all observations are used with their weights.
- `mfinal` number of iterations for which boosting is run.
AdaBoostModel

- coeflearn: learning algorithm.
- msplit: minimum number of observations that must exist in a node in order for a split to be attempted.
- minbucket: minimum number of observations in any terminal node.
- cp: complexity parameter.
- maxcompete: number of competitor splits retained in the output.
- maxsurrogate: number of surrogate splits retained in the output.
- usesurrogate: how to use surrogates in the splitting process.
- xval: number of cross-validations.
- surrogatetype: controls the selection of a best surrogate.
- maxdepth: maximum depth of any node of the final tree, with the root node counted as depth 0.

Details

Response types: factor

Automatic tuning of grid parameters: mfinal, maxdepth, coeflearn*

* excluded from grids by default

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

boosting, fit, resample

Examples

```r
# Requires prior installation of suggested package adabag to run
fit(Species ~ ., data = iris, model = AdaBoostModel(mfinal = 5))
```
as.data.frame

Coerce to a Data Frame

Description

Functions to coerce objects to data frames.

Usage

```r
## S3 method for class 'ModelFrame'
as.data.frame(x, ...)

## S3 method for class 'Resample'
as.data.frame(x, ...)

## S3 method for class 'TabularArray'
as.data.frame(x, ...)
```

Arguments

- `x` ModelFrame, resample results, resampled performance estimates, model performance differences, or t-test comparisons of the differences.
- `...` arguments passed to other methods.

Value

data.frame class object.

as.MLInput

Coerce to an MLInput

Description

Function to coerce an object to MLInput.

Usage

```r
as.MLInput(x, ...)

## S3 method for class 'MLModelFit'
as.MLInput(x, ...)

## S3 method for class 'ModelSpecification'
as.MLInput(x, ...)
```

S3 method for class 'MLModelFit'

as.MLInput(x, ...)

S3 method for class 'ModelSpecification'

as.MLInput(x, ...)
as.MLModel

Arguments

- **x**
 model fit result or **MachineShop** model specification.

- **...**
 arguments passed to other methods.

Value

MLInput class object.

```r
as.MLModel(x, ...)

## S3 method for class 'MLModelFit'
as.MLModel(x, ...)

## S3 method for class 'ModelSpecification'
as.MLModel(x, ...)

## S3 method for class 'model_spec'
as.MLModel(x, ...)
```

Arguments

- **x**
 model fit result, **MachineShop** model specification, or **parsnip** model specification.

- **...**
 arguments passed to other methods.

Value

MLModel class object.

See Also

- **ParsnipModel**
BARTMachineModel

Bayesian Additive Regression Trees Model

Description

Builds a BART model for regression or classification.

Usage

```
BARTMachineModel(
  num_trees = 50,
  num_burn = 250,
  num_iter = 1000,
  alpha = 0.95,
  beta = 2,
  k = 2,
  q = 0.9,
  nu = 3,
  mh_prob_steps = c(2.5, 2.5, 4)/9,
  verbose = FALSE,
  ...
)
```

Arguments

- `num_trees` - number of trees to be grown in the sum-of-trees model.
- `num_burn` - number of MCMC samples to be discarded as "burn-in".
- `num_iter` - number of MCMC samples to draw from the posterior distribution.
- `alpha, beta` - base and power hyperparameters in tree prior for whether a node is nonterminal or not.
- `k` - regression prior probability that $E(Y|X)$ is contained in the interval (y_{min}, y_{max}), based on a normal distribution.
- `q` - quantile of the prior on the error variance at which the data-based estimate is placed.
- `nu` - regression degrees of freedom for the inverse σ^2 prior.
- `mh_prob_steps` - vector of prior probabilities for proposing changes to the tree structures: (GROW, PRUNE, CHANGE).
- `verbose` - logical indicating whether to print progress information about the algorithm.
- `...` - additional arguments to `bartMachine`.
Details

Response types: binary factor, numeric

Automatic tuning of grid parameters: alpha, beta, k, nu

Further model details can be found in the source link below.

In calls to `varimp` for `BARTMachineModel`, argument `type` may be specified as "splits" (default) for the proportion of time each predictor is chosen for a splitting rule or as "trees" for the proportion of times each predictor appears in a tree. Argument `num_replicates` is also available to control the number of BART replicates used in estimating the inclusion proportions [default: 5]. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

Value

MLModel class object.

See Also

`bartMachine.fit, resample`

Examples

```r
## Requires prior installation of suggested package bartMachine to run

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = BARTMachineModel)
varimp(model_fit, method = "model", type = "splits", num_replicates = 20,
      scale = FALSE)
```

BARTModel

Bayesian Additive Regression Trees Model

Description

Flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes.

Usage

```r
BARTModel(
  K = integer(),
  sparse = FALSE,
  theta = 0,
  omega = 1,
  a = 0.5,
  b = 1,
)```
rho = numeric(),
augment = FALSE,
xinfo = matrix(NA, 0, 0),
usequants = FALSE,
sigest = NA,
sigdf = 3,
sigquant = 0.9,
lambda = NA,
k = 2,
power = 2,
base = 0.95,
tau.num = numeric(),
offset = numeric(),
ntree = integer(),
numcut = 100,
ndpost = 1000,
nskip = integer(),
keepevery = integer(),
printevery = 1000
)

Arguments

K if provided, then coarsen the times of survival responses per the quantiles 1/K, 2/K, ..., K/K to reduce computational burden.
sparse logical indicating whether to perform variable selection based on a sparse Dirichlet prior rather than simply uniform; see Linero 2016.
theta, omega theta and omega parameters; zero means random.
a, b sparse parameters for Beta(a, b) prior: 0.5 <= a <= 1 where lower values induce more sparsity and typically b = 1.
rho sparse parameter: typically rho = p where p is the number of covariates under consideration.
augment whether data augmentation is to be performed in sparse variable selection.
xinfo optional matrix whose rows are the covariates and columns their cutpoints.
usequants whether covariate cutpoints are defined by uniform quantiles or generated uniformly.
sigest normal error variance prior for numeric response variables.
sigdf degrees of freedom for error variance prior.
sigquant quantile at which a rough estimate of the error standard deviation is placed.
lambda scale of the prior error variance.
k number of standard deviations f(x) is away from +/-3 for categorical response variables.
power, base power and base parameters for tree prior.
tau.num numerator in the tau definition, i.e., tau = tau.num/(k * sqrt(ntree)).
**Offset**

override for the default offset of $F^{-1}(\text{mean}(y))$ in the multivariate response probability $P(y[j] = 1|x) = F(f(x)[j] + \text{offset}[j])$.

**ntree**

number of trees in the sum.

**numcut**

number of possible covariate cutoff values.

**ndpost**

number of posterior draws returned.

**nskip**

number of MCMC iterations to be treated as burn in.

**keepevery**

interval at which to keep posterior draws.

**printevery**

interval at which to print MCMC progress.

### Details

**Response types:** factor, numeric, Surv

Default values and further model details can be found in the source links below.

### Value

MLModel class object.

### See Also

gbart, mbart, surv.bart, fit, resample

### Examples

```r
Requires prior installation of suggested package BART to run
fit(sale_amount ~ ., data = ICHomes, model = BARTModel)
```

### Description

Gradient boosting for optimizing arbitrary loss functions where regression trees are utilized as base-learners.
Usage

BlackBoostModel(
  family = NULL,
  mstop = 100,
  nu = 0.1,
  risk = c("inbag", "oobag", "none"),
  stopintern = FALSE,
  trace = FALSE,
  teststat = c("quadratic", "maximum"),
  testtype = c("Teststatistic", "Univariate", "Bonferroni", "MonteCarlo"),
  mincriterion = 0,
  minsplit = 10,
  minbucket = 4,
  maxdepth = 2,
  saveinfo = FALSE,
  ...
)

Arguments

family    optional Family object. Set automatically according to the class type of the
          response variable.
mstop     number of initial boosting iterations.
nu         step size or shrinkage parameter between 0 and 1.
risk      method to use in computing the empirical risk for each boosting iteration.
stopintern logical indicating whether the boosting algorithm stops internally when the out-
             of-bag risk increases at a subsequent iteration.
trace     logical indicating whether status information is printed during the fitting
          process.
teststat  type of the test statistic to be applied for variable selection.
testtype  how to compute the distribution of the test statistic.
mincriterion value of the test statistic or 1 - p-value that must be exceeded in order to imple-
              ment a split.
minsplit  minimum sum of weights in a node in order to be considered for splitting.
minbucket minimum sum of weights in a terminal node.
maxdepth  maximum depth of the tree.
saveinfo  logical indicating whether to store information about variable selection in info
          slot of each partynode.
...        additional arguments to ctree_control.

Details

**Response types:** binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

**Automatic tuning of grid parameters:** mstop, maxdepth

Default values and further model details can be found in the source links below.
C50Model

Value

MLModel class object.

See Also

blackboost, Family, ctree_control, fit, resample

Examples

## Requires prior installation of suggested packages mboost and partykit to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = BlackBoostModel)

C50Model

C5.0 Decision Trees and Rule-Based Model

Description

Fit classification tree models or rule-based models using Quinlan’s C5.0 algorithm.

Usage

C50Model(
  trials = 1,
  rules = FALSE,
  subset = TRUE,
  bands = 0,
  winnow = FALSE,
  noGlobalPruning = FALSE,
  CF = 0.25,
  minCases = 2,
  fuzzyThreshold = FALSE,
  sample = 0,
  earlyStopping = TRUE
)

Arguments

  trials          integer number of boosting iterations.
  rules          logical indicating whether to decompose the tree into a rule-based model.
  subset         logical indicating whether the model should evaluate groups of discrete predictors for splits.
bands integer between 2 and 1000 specifying a number of bands into which to group rules ordered by their affect on the error rate.

winnow logical indicating use of predictor winnowing (i.e. feature selection).

noGlobalPruning logical indicating a final, global pruning step to simplify the tree.

CF number in (0, 1) for the confidence factor.

minCases integer for the smallest number of samples that must be put in at least two of the splits.

fuzzyThreshold logical indicating whether to evaluate possible advanced splits of the data.

sample value between (0, 0.999) that specifies the random proportion of data to use in training the model.

earlyStopping logical indicating whether the internal method for stopping boosting should be used.

Details

Response types: factor

Automatic tuning of grid parameters: trials, rules, winnow

Latter arguments are passed to C5.0Control. Further model details can be found in the source link below.

In calls to varimp for C50Model, argument type may be specified as "usage" (default) for the percentage of training set samples that fall into all terminal nodes after the split of each predictor or as "splits" for the percentage of splits associated with each predictor. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

C5.0, fit, resample

Examples

## Requires prior installation of suggested package C50 to run

model_fit <- fit(Species ~ ., data = iris, model = C50Model)
varimp(model_fit, method = "model", type = "splits", scale = FALSE)
Model Calibration

Description

Calculate calibration estimates from observed and predicted responses.

Usage

```
calibration(
 x,
 y = NULL,
 weights = NULL,
 breaks = 10,
 span = 0.75,
 distr = character(),
 na.rm = TRUE,
 ...
)
```

Arguments

- **x**: observed responses or resample result containing observed and predicted responses.
- **y**: predicted responses if not contained in `x`.
- **weights**: numeric vector of non-negative case weights for the observed `x` responses [default: equal weights].
- **breaks**: value defining the response variable bins within which to calculate observed mean values. May be specified as a number of bins, a vector of breakpoints, or NULL to fit smooth curves with splines for predicted survival probabilities and with loess for others.
- **span**: numeric parameter controlling the degree of loess smoothing.
- **distr**: character string specifying a distribution with which to estimate the observed survival mean. Possible values are "empirical" for the Kaplan-Meier estimator, "exponential", "extreme", "gaussian", "loggaussian", "logistic", "loglogistic", "lognormal", "rayleigh", "t", or "weibull". Defaults to the distribution that was used in predicting mean survival times.
- **na.rm**: logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.
- **...**: arguments passed to other methods.

Value

Calibration class object that inherits from `data.frame`. 
## case_weights

### Extract Case Weights

#### Description

Extract the case weights from an object.

#### Usage

```r
case_weights(object, newdata = NULL)
```

#### Arguments

- `object`: model fit result, `ModelFrame`, or `recipe`.
- `newdata`: dataset from which to extract the weights if given; otherwise, `object` is used. The dataset should be given as a `ModelFrame` or as a `data frame` if `object` contains a `ModelFrame` or a `recipe`, respectively.

#### Examples

```r
Training and test sets
inds <- sample(nrow(ICHomes), nrow(ICHomes) * 2 / 3)
trainset <- ICHomes[ind,]
testset <- ICHomes[-inds,]

ModelFrame case weights
trainmf <- ModelFrame(sale_amount ~ . - built, data = trainset, weights = built)
testmf <- ModelFrame(formula(trainmf), data = testset, weights = built)
mf_fit <- fit(trainmf, model = GLMModel)
rmse(response(mf_fit, testmf), predict(mf_fit, testmf),
 case_weights(mf_fit, testmf))
```
## Recipe case weights
library(recipes)
rec <- recipe(sale_amount ~ ., data = trainset) %>%
  role_case(weight = built, replace = TRUE)
rec_fit <- fit(rec, model = GLMModel)
rmse(response(rec_fit, testset), predict(rec_fit, testset),
  case_weights(rec_fit, testset))

---

### CForestModel

**Conditional Random Forest Model**

**Description**

An implementation of the random forest and bagging ensemble algorithms utilizing conditional inference trees as base learners.

**Usage**

```r
CForestModel(
 teststat = c("quad", "max"),
 testtype = c("Univariate", "Teststatistic", "Bonferroni", "MonteCarlo"),
 mincriterion = 0,
 ntree = 500,
 mtry = 5,
 replace = TRUE,
 fraction = 0.632
)
```

**Arguments**

- `teststat`: character specifying the type of the test statistic to be applied.
- `testtype`: character specifying how to compute the distribution of the test statistic.
- `mincriterion`: value of the test statistic that must be exceeded in order to implement a split.
- `ntree`: number of trees to grow in a forest.
- `mtry`: number of input variables randomly sampled as candidates at each node for random forest like algorithms.
- `replace`: logical indicating whether sampling of observations is done with or without replacement.
- `fraction`: fraction of number of observations to draw without replacement (only relevant if replace = FALSE).
Details

**Response types:** factor, numeric, Surv

**Automatic tuning of grid parameter:** mtry

Supplied arguments are passed to `cforest_control`. Further model details can be found in the source link below.

Value

MLModel class object.

See Also

cforest, fit, resample

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = CForestModel)
```

---

**Description**

Combine one or more `MachineShop` objects of the same class.

**Usage**

```r
S3 method for class 'Calibration'
c(...)

S3 method for class 'ConfusionList'
c(...)

S3 method for class 'ConfusionMatrix'
c(...)

S3 method for class 'LiftCurve'
c(...)

S3 method for class 'ListOf'
c(...)

S3 method for class 'PerformanceCurve'
c(...)

S3 method for class 'Resample'
```
confusion

\begin{verbatim}
c(...)

## S4 method for signature 'SurvMatrix,SurvMatrix'
e1 + e2

Arguments

... named or unnamed \texttt{calibration}, \texttt{confusion}, \texttt{lift}, \texttt{performance curve}, \texttt{summary}, or \texttt{resample} results. Curves must have been generated with the same performance metrics and resamples with the same resampling \texttt{control}.

e1, e2 objects.

Value

Object of the same class as the arguments.
\end{verbatim}

---

<table>
<thead>
<tr>
<th>confusion</th>
<th>Confusion Matrix</th>
</tr>
</thead>
</table>

Description

Calculate confusion matrices of predicted and observed responses.

Usage

```r
confusion(
 x,
 y = NULL,
 weights = NULL,
 cutoff = MachineShop::settings("cutoff"),
 na.rm = TRUE,
 ...
)
```

ConfusionMatrix(data = NA, ordered = FALSE)

Arguments

\begin{itemize}
\item [x] factor of \texttt{observed responses} or \texttt{resample} result containing observed and predicted responses.
\item [y] \texttt{predicted responses} if not contained in \texttt{x}.
\item [weights] numeric vector of non-negative \texttt{case weights} for the observed \texttt{x} responses [default: equal weights].
\end{itemize}
cutoff

numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified. If NULL, then factor responses are summed directly over predicted class probabilities, whereas a default cutoff of 0.5 is used for survival probabilities. Class probability summations and survival will appear as decimal numbers that can be interpreted as expected counts.

na.rm

logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

... arguments passed to other methods.

data

square matrix, or object that can be converted to one, of cross-classified predicted and observed values in the rows and columns, respectively.

ordered

logical indicating whether the confusion matrix row and columns should be regarded as ordered.

Value

The return value is a ConfusionMatrix class object that inherits from table if x and y responses are specified or a ConfusionList object that inherits from list if x is a Resample object.

See Also

c, plot, summary

Examples

## Requires prior installation of suggested package gbm to run

res <- resample(Species ~ ., data = iris, model = GBMModel)
(conf <- confusion(res))
plot(conf)

CoxModel

Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata, multiple events per subject, and other extensions are incorporated using the counting process formulation of Andersen and Gill.
Usage

CoxModel(ties = c("efron", "breslow", "exact"), ...)

CoxStepAICModel(
  ties = c("efron", "breslow", "exact"),
  ...,
  direction = c("both", "backward", "forward"),
  scope = list(),
  k = 2,
  trace = FALSE,
  steps = 1000
)

Arguments

- **ties**: character string specifying the method for tie handling.
- **...**: arguments passed to `coxph.control`.
- **direction**: mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- **scope**: defines the range of models examined in the stepwise search. This should be a list containing components `upper` and `lower`, both formulae.
- **k**: multiple of the number of degrees of freedom used for the penalty. Only k = 2 gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or SBC.
- **trace**: if positive, information is printed during the running of stepAIC. Larger values may give more information on the fitting process.
- **steps**: maximum number of steps to be considered.

Details

**Response types**: Surv

Default values and further model details can be found in the source links below.

In calls to `varImp` for CoxModel and CoxStepAICModel, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [defaul: `exp(1)`]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

Value

- **MLModel class object**.

See Also

- `coxph`, `coxph.control`, `stepAIC`, `fit`, `resample`
Examples

```r
library(survival)
fit(Surv(time, status) ~ ., data = veteran, model = CoxModel)
```

## Description

Calculate partial dependence of a response on select predictor variables.

## Usage

```r
dependence(
 object,
 data = NULL,
 select = NULL,
 interaction = FALSE,
 n = 10,
 intervals = c("uniform", "quantile"),
 distr = character(),
 method = character(),
 stats = MachineShop::settings("stats.PartialDependence"),
 na.rm = TRUE
)
```

## Arguments

- `object` model fit result.
- `data` data frame containing all predictor variables. If not specified, the training data will be used by default.
- `select` expression indicating predictor variables for which to compute partial dependence (see `subset` for syntax) [default: all].
- `interaction` logical indicating whether to calculate dependence on the interacted predictors.
- `n` number of predictor values at which to perform calculations.
- `intervals` character string specifying whether the `n` values are spaced uniformly ("uniform") or according to variable quantiles ("quantile").
- `distr`, `method` arguments passed to `predict`.
- `stats` function, function name, or vector of these with which to compute response variable summary statistics over non-selected predictor variables.
- `na.rm` logical indicating whether to exclude missing predicted response values from the calculation of summary statistics.
Value

PartialDependence class object that inherits from data.frame.

See Also

plot

Examples

```r
Requires prior installation of suggested package gbm to run

gbm_fit <- fit(Species ~ ., data = iris, model = GBMModel)
(pd <- dependence(gbm_fit, select = c(Petal.Length, Petal.Width)))
plot(pd)
```

---

## Model Performance Differences

**Description**

Pairwise model differences in resampled performance metrics.

**Usage**

```r
S3 method for class 'MLModel'

diff(x, ...)
```

```r
S3 method for class 'Performance'

diff(x, ...)
```

```r
S3 method for class 'Resample'

diff(x, ...)
```

**Arguments**

- `x` model performance or resample result.
- `...` arguments passed to other methods.

**Value**

PerformanceDiff class object that inherits from Performance.

**See Also**

t.test, plot, summary
## DiscreteVariate

### Examples

```r
Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

fo <- Surv(time, status) ~ .
control <- CVControl()

gbm_res1 <- resample(fo, data = veteran, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, data = veteran, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, data = veteran, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
summary(res_diff)
plot(res_diff)
```

---

### DiscreteVariate

#### Discrete Variate Constructors

**Description**
Create a variate of binomial counts, discrete numbers, negative binomial counts, or Poisson counts.

**Usage**

- `BinomialVariate(x = integer(), size = integer())`
- `DiscreteVariate(x = integer(), min = -Inf, max = Inf)`
- `NegBinomialVariate(x = integer())`
- `PoissonVariate(x = integer())`

**Arguments**

- `x` numeric vector.
- `size` number or numeric vector of binomial trials.
- `min, max` minimum and maximum bounds for discrete numbers.

**Value**

BinomialVariate object class, DiscreteVariate that inherits from numeric, or NegBinomialVariate or PoissonVariate that inherit from DiscreteVariate.
EarthModel

See Also

role_binom

Examples

BinomialVariate(rbinom(25, 10, 0.5), size = 10)
PoissonVariate(rpois(25, 10))

EarthModel  Multivariate Adaptive Regression Splines Model

Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regression Splines" and "Fast MARS".

Usage

EarthModel(
  pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
  trace = 0,
  degree = 1,
  nprune = integer(),
  nfold = 0,
  ncross = 1,
  stratify = TRUE
)

Arguments

  pmethod  pruning method.
  trace    level of execution information to display.
  degree   maximum degree of interaction.
  nprune   maximum number of terms (including intercept) in the pruned model.
  nfold    number of cross-validation folds.
  ncross   number of cross-validations if nfold > 1.
  stratify logical indicating whether to stratify cross-validation samples by the response levels.
Details

**Response types:** factor, numeric

**Automatic tuning of grid parameters:** nprune, degree*

* excluded from grids by default

Default values and further model details can be found in the source link below.

In calls to `varimp` for `EarthModel`, argument type may be specified as "nsubsets" (default) for the number of model subsets that include each predictor, as "gcv" for the generalized cross-validation decrease over all subsets that include each predictor, or as "rss" for the residual sums of squares decrease. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

`earth, fit, resample`

Examples

```r
Requires prior installation of suggested package earth to run
model_fit <- fit(Species ~ ., data = iris, model = EarthModel)
varimp(model_fit, method = "model", type = "gcv", scale = FALSE)
```

Description

Expand a model over all combinations of a grid of tuning parameters.

Usage

```
expand_model(object, ..., random = FALSE)
```

Arguments

- **object**: model function, function name, or object; or another object that can be coerced to a model.
- **...**: named vectors or factors or a list of these containing the parameter values over which to expand object.
- **random**: number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.
Value

list of expanded models.

See Also

SelectedModel

Examples

```r
Requires prior installation of suggested package gbm to run
data(Boston, package = "MASS")
models <- expand_model(GBMModel, n.trees = c(50, 100),
 interaction.depth = 1:2)
fit(medv ~ ., data = Boston, model = SelectedModel(models))
```

Description

Expand a model grid of tuning parameter values.

Usage

```r
expand_modelgrid(....)
```

## S3 method for class 'formula'
expand_modelgrid(formula, data, model, info = FALSE, ...)

## S3 method for class 'matrix'
expand_modelgrid(x, y, model, info = FALSE, ...)

## S3 method for class 'ModelFrame'
expand_modelgrid(input, model, info = FALSE, ...)

## S3 method for class 'recipe'
expand_modelgrid(input, model, info = FALSE, ...)

## S3 method for class 'ModelSpecification'
expand_modelgrid(object, ...)

## S3 method for class 'MLModel'
expand_modelgrid(model, ...)  

## S3 method for class 'MLModelFunction'
expand_modelgrid(model, ...)  

Arguments

... arguments passed from the generic function to its methods and from the MLModel and MLModelFunction methods to others. The first argument of each expand_modelgrid method is positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame containing them.

model model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications.

info logical indicating whether to return model-defined grid construction information rather than the grid values.

x, y matrix and object containing predictor and response variables.

input input object defining and containing the model predictor and response variables.

object model specification.

Details

The expand_modelgrid function enables manual extraction and viewing of grids created automatically when a TunedModel is fit.

Value

A data frame of parameter values or NULL if data are required for construction of the grid but not supplied.

See Also

TunedModel

Examples

expand_modelgrid(TunedModel(GBMModel, grid = 5))

expand_modelgrid(TunedModel(GLMNetModel, grid = c(alpha = 5, lambda = 10)),  
sale_amount ~ ., data = ICHomes)

gbm_grid <- ParameterGrid(
  n.trees = dials::trees(),
  interaction.depth = dials::tree_depth(),
  size = 5
)
expand_modelgrid(TunedModel(GBMModel, grid = gbm_grid))
expand_params

rf_grid <- ParameterGrid(
  mtry = dials::mtry(),
  nodesize = dials::max_nodes(),
  size = c(3, 5)
)  
expand_modelgrid(TunedModel(RandomForestModel, grid = rf_grid),
                 sale_amount ~ ., data = ICHomes)

expand_params  Model Parameters Expansion

Description

Create a grid of parameter values from all combinations of supplied inputs.

Usage

expand_params(..., random = FALSE)

Arguments

...  named data frames or vectors or a list of these containing the parameter values
      over which to create the grid.
random  number of points to be randomly sampled from the parameter grid or FALSE if
        all points are to be returned.

Value

A data frame containing one row for each combination of the supplied inputs.

See Also

TunedModel

Examples

## Requires prior installation of suggested package gbm to run

data(Boston, package = "MASS")

grid <- expand_params(
  n.trees = c(50, 100),
  interaction.depth = 1:2
)

fit(medv ~ ., data = Boston, model = TunedModel(GBMModel, grid = grid))
Recipe Step Parameters Expansion

Description

Create a grid of parameter values from all combinations of lists supplied for steps of a preprocessing recipe.

Usage

expand_steps(..., random = FALSE)

Arguments

... one or more lists containing parameter values over which to create the grid. For each list an argument name should be given as the id of the recipe step to which it corresponds.

random number of points to be randomly sampled from the parameter grid or FALSE if all points are to be returned.

Value

RecipeGrid class object that inherits from data.frame.

See Also

TunedInput

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
  step_corr(all_numeric_predictors(), id = "corr") %>%
  step_pca(all_numeric_predictors(), id = "pca")

expand_steps(
  corr = list(threshold = c(0.8, 0.9),
               method = c("pearson", "spearman")),
  pca = list(num_comp = 1:3)
)
Extract Elements of an Object

Description

Operators acting on data structures to extract elements.

Usage

```r
S3 method for class 'BinomialVariate'
x[i, j, ..., drop = FALSE]

S4 method for signature 'DiscreteVariate,ANY,missing,missing'
x[i]

S4 method for signature 'ListOf,ANY,missing,missing'
x[i]

S4 method for signature 'ModelFrame,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ModelFrame,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ModelFrame,missing,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ModelFrame,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'RecipeGrid,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'Resample,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'Resample,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'Resample,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'SurvMatrix,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'SurvTimes,ANY,missing,missing'
x[i]
```
**FDAModel**

*Flexible and Penalized Discriminant Analysis Models*

**Description**

Performs flexible discriminant analysis.

**Usage**

```r
FDAModel(
 theta = matrix(NA, 0, 0),
 dimension = integer(),
 eps = .Machine$double.eps,
 method = .(mda::polyreg),
 ...
)
```

```r
PDAModel(lambda = 1, df = numeric(), ...)
```

**Arguments**

- **theta**: optional matrix of class scores, typically with number of columns less than one minus the number of classes.
- **dimension**: dimension of the discriminant subspace, less than the number of classes, to use for prediction.
- **eps**: numeric threshold for small singular values for excluding discriminant variables.
- **method**: regression function used in optimal scaling. The default of linear regression is provided by `polyreg` from the `mda` package. For penalized discriminant analysis, `gen.ridge` is appropriate. Other possibilities are `mars` for multivariate adaptive regression splines and `bruto` for adaptive backfitting of additive splines. Use the . operator to quote specified functions.
- **...**: additional arguments to method for `FDAModel` and to `FDAModel` for `PDAModel`.
- **lambda**: shrinkage penalty coefficient.
- **df**: alternative specification of lambda in terms of equivalent degrees of freedom.
Details

Response types: factor

Automatic tuning of grid parameters:
- FDAModel: nprune, degree*
- PDAModel: lambda

* excluded from grids by default

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

fda, predict.fda, fit, resample

Examples

## Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = FDAModel)

## Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = PDAModel)

Description

Fit a model to estimate its parameters from a data set.
Usage

fit(...)

## S3 method for class 'formula'
fit(formula, data, model, ...)

## S3 method for class 'matrix'
fit(x, y, model, ...)

## S3 method for class 'ModelFrame'
fit(input, model = NULL, ...)

## S3 method for class 'recipe'
fit(input, model = NULL, ...)

## S3 method for class 'ModelSpecification'
fit(object, verbose = FALSE, ...)

## S3 method for class 'MLModel'
fit(model, ...)

## S3 method for class 'MLModelFunction'
fit(model, ...)

Arguments

... arguments passed from the generic function to its methods, from the MLModel and MLModelFunction methods to first arguments of others, and from others to the ModelSpecification method. The first argument of each fit method is positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame containing them.

model model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications.

x, y matrix and object containing predictor and response variables.

input input object defining and containing the model predictor and response variables.

object model specification.

verbose logical indicating whether to display printed output generated by some modelspecific fit functions to aid in monitoring progress and diagnosing errors.

Details

User-specified case weights may be specified for ModelFrames upon creation with the weights argument in its constructor.

Variables in recipe specifications may be designated as case weights with the role_case function.

GAMBoostModel

Value

MLModelFit class object.

See Also

as.MLModel, response, predict, varimp

Examples

## Requires prior installation of suggested package gbm to run
## Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
varimp(gbm_fit)

GAMBoostModel

Gradient Boosting with Additive Models

Description

Gradient boosting for optimizing arbitrary loss functions, where component-wise arbitrary base-learners, e.g., smoothing procedures, are utilized as additive base-learners.

Usage

GAMBoostModel(
  family = NULL,
  baselearner = c("bbs", "bols", "btree", "bss", "bns"),
  dfbase = 4,
  mstop = 100,
  nu = 0.1,
  risk = c("inbag", "oobag", "none"),
  stopintern = FALSE,
  trace = FALSE
)

Arguments

family optional Family object. Set automatically according to the class type of the response variable.
baselearner character specifying the component-wise base learner to be used.
dfbase global degrees of freedom for P-spline base learners ("bbs").
GBMModel

**Description**

Fits generalized boosted regression models.

### Details

- **mstop**: number of initial boosting iterations.
- **nu**: step size or shrinkage parameter between 0 and 1.
- **risk**: method to use in computing the empirical risk for each boosting iteration.
- **stopintern**: logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.
- **trace**: logical indicating whether status information is printed during the fitting process.

### Response types:
- binary factor
- BinomialVariate
- NegBinomialVariate
- numeric
- PoissonVariate
- Surv

**Automatic tuning of grid parameter**: mstop

Default values and further model details can be found in the source links below.

### Value

MLModel class object.

### See Also

- gamboost
- Family
- baselearners
- fit
- resample

### Examples

```r
Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GAMBoostModel)
```

---

**GBMModel**

*Generalized Boosted Regression Model*
GBMMModel

Usage

```r
GBMMModel(
 distribution = character(),
 n.trees = 100,
 interaction.depth = 1,
 n.minobsinnode = 10,
 shrinkage = 0.1,
 bag.fraction = 0.5
)
```

Arguments

distribution   optional character string specifying the name of the distribution to use or list with a component name specifying the distribution and any additional parameters needed. Set automatically according to the class type of the response variable.
n.trees      total number of trees to fit.
interaction.depth maximum depth of variable interactions.
n.minobsinnode minimum number of observations in the trees terminal nodes.
shrinkage shrinkage parameter applied to each tree in the expansion.
bag.fraction fraction of the training set observations randomly selected to propose the next tree in the expansion.

Details

Response types: factor, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: n.trees, interaction.depth, shrinkage*, n.minobsinnode*

* excluded from grids by default

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

gbm, fit, resample

Examples

```r
Requires prior installation of suggested package gbm to run
fit(Species ~ ., data = iris, model = GBMMModel)
```
GLMBoostModel

Gradient Boosting with Linear Models

Description

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are utilized as base-learners.

Usage

GLMBoostModel(
  family = NULL,
  mstop = 100,
  nu = 0.1,
  risk = c("inbag", "oobag", "none"),
  stopintern = FALSE,
  trace = FALSE
)

Arguments

family optional Family object. Set automatically according to the class type of the response variable.
mstop number of initial boosting iterations.
nu step size or shrinkage parameter between 0 and 1.
risk method to use in computing the empirical risk for each boosting iteration.
stopintern logical indicating whether the boosting algorithm stops internally when the out-of-bag risk increases at a subsequent iteration.
trace logical indicating whether status information is printed during the fitting process.

Details

Response types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate, Surv

Automatic tuning of grid parameter: mstop

Default values and further model details can be found in the source links below.

Value

MLModel class object.

See Also

glmboost, Family, fit, resample
Examples

```r
Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GLMBoostModel)
```

---

**GLMModel**  
*Generalized Linear Model*

**Description**

Fits generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

**Usage**

```r
GLMModel(family = NULL, quasi = FALSE, ...)

GLMStepAICModel(
 family = NULL,
 quasi = FALSE,
 ...,
 direction = c("both", "backward", "forward"),
 scope = list(),
 k = 2,
 trace = FALSE,
 steps = 1000
)
```

**Arguments**

- `family`: optional error distribution and link function to be used in the model. Set automatically according to the class type of the response variable.
- `quasi`: logical indicator for over-dispersion of binomial and Poisson families; i.e., dispersion parameters not fixed at one.
- `...`: arguments passed to `glm.control`.
- `direction`: mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- `scope`: defines the range of models examined in the stepwise search. This should be a list containing components upper and lower, both formulae.
- `k`: multiple of the number of degrees of freedom used for the penalty. Only $k = 2$ gives the genuine AIC; $k = .(\log(nobs))$ is sometimes referred to as BIC or SBC.
GLMNetModel

Details

GLMModel Response types: BinomialVariate, factor, matrix, NegBinomialVariate, numeric, PoissonVariate

GLMStepAICModel Response types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate

Default values and further model details can be found in the source links below.

In calls to varimp for GLMModel and GLMStepAICModel, numeric argument base may be specified for the (negative) logarithmic transformation of p-values [default: exp(1)]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE.

Value

MLModel class object.

See Also

glm, glm.control, stepAIC, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = GLMModel)

GLMNetModel

GLM Lasso or Elasticnet Model

Description

Fit a generalized linear model via penalized maximum likelihood.

Usage

GLMNetModel(
  family = NULL,
  alpha = 1,
  lambda = 0,
  standardize = TRUE,
  intercept = logical(),
  penalty.factor = .(rep(1, nvars)),
  standardize.response = FALSE,
  thresh = 1e-07,
)
maxit = 1e+05,
  type.gaussian = .(if (nvars < 500) "covariance" else "naive"),
  type.logistic = c("Newton", "modified.Newton"),
  type.multinomial = c("ungrouped", "grouped")
)

Arguments

family optional response type. Set automatically according to the class type of the response variable.
alpha elasticnet mixing parameter.
lambda regularization parameter. The default value lambda = 0 performs no regularization and should be increased to avoid model fitting issues if the number of predictor variables is greater than the number of observations.
standardize logical flag for predictor variable standardization, prior to model fitting.
intercept logical indicating whether to fit intercepts.
penalty.factor vector of penalty factors to be applied to each coefficient.
standardize.response logical indicating whether to standardize "mgaussian" response variables.
thresh convergence threshold for coordinate descent.
maxit maximum number of passes over the data for all lambda values.
type.gaussian algorithm type for guassian models.
type.logistic algorithm type for logistic models.
type.multinomial algorithm type for multinomial models.

Details

Response types: BinomialVariate, factor, matrix, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: lambda, alpha

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

glmnet_fit, resample

Examples

## Requires prior installation of suggested package glmnet to run

fit(sale_amount ~ ., data = ICHomes, model = GLMNetModel(lambda = 0.01))
### ICHomes

#### Iowa City Home Sales Dataset

**Description**

Characteristics of homes sold in Iowa City, IA from 2005 to 2008 as reported by the county assessor’s office.

**Usage**

ICHomes

**Format**

A data frame with 753 observations of 17 variables:

- **sale_amount**: sale amount in dollars.
- **sale_year**: sale year.
- **sale_month**: sale month.
- **built**: year in which the home was built.
- **style**: home style (Home/Condo)
- **construction**: home construction type.
- **base_size**: base foundation size in sq ft.
- **add_size**: size of additions made to the base foundation in sq ft.
- **garage1_size**: attached garage size in sq ft.
- **garage2_size**: detached garage size in sq ft.
- **lot_size**: total lot size in sq ft.
- **bedrooms**: number of bedrooms.
- **basement**: presence of a basement (No/Yes).
- **ac**: presence of central air conditioning (No/Yes).
- **attic**: presence of a finished attic (No/Yes).
- **lon, lat**: home longitude/latitude coordinates.

### inputs

#### Model Inputs

**Description**

Model inputs are the predictor and response variables whose relationship is determined by a model fit. Input specifications supported by **MachineShop** are summarized in the table below.
KNNModel

`KNNModel`

**Description**

Fit a k-nearest neighbor model for which the k nearest training set vectors (according to Minkowski distance) are found for each row of the test set, and prediction is done via the maximum of summed kernel densities.
Usage

KNNModel(
  k = 7,
  distance = 2,
  scale = TRUE,
  kernel = c("optimal", "biweight", "cos", "epanechnikov", "gaussian", "inv", "rank",
             "rectangular", "triangular", "triweight")
)

Arguments

k numer of neighbors considered.
distance Minkowski distance parameter.
scale logical indicating whether to scale predictors to have equal standard deviations.
kernel kernel to use.

Details

Response types: factor, numeric, ordinal

Automatic tuning of grid parameters: k, distance*, kernel*

* excluded from grids by default

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

kknn, fit, resample

Examples

## Requires prior installation of suggested package kknn to run

fit(Species ~ ., data = iris, model = KNNModel)
LARSModel

**Description**

Fit variants of Lasso, and provide the entire sequence of coefficients and fits, starting from zero to the least squares fit.

**Usage**

LARSModel(
  type = c("lasso", "lar", "forward.stagewise", "stepwise"),
  trace = FALSE,
  normalize = TRUE,
  intercept = TRUE,
  step = numeric(),
  use.Gram = TRUE
)

**Arguments**

- **type**  
  model type.
- **trace**  
  logical indicating whether status information is printed during the fitting process.
- **normalize**  
  whether to standardize each variable to have unit L2 norm.
- **intercept**  
  whether to include an intercept in the model.
- **step**  
  algorithm step number to use for prediction. May be a decimal number indicating a fractional distance between steps. If specified, the maximum number of algorithm steps will be ceiling(step); otherwise, step will be set equal to the source package default maximum [default: max.steps].
- **use.Gram**  
  whether to precompute the Gram matrix.

**Details**

- **Response types:** numeric
  **Automatic tuning of grid parameter:** step

Default values and further model details can be found in the source link below.

**Value**

MLModel class object.

**See Also**

lars, fit, resample
## LDAModel

### Examples

```r
Requires prior installation of suggested package lars to run
fit(sale_amount ~ ., data = ICHomes, model = LARSModel)
```

### LDAModel

#### Linear Discriminant Analysis Model

**Description**

Performs linear discriminant analysis.

**Usage**

```r
LDAModel(
 prior = numeric(),
 tol = 1e-04,
 method = c("moment", "mle", "mve", "t"),
 nu = 5,
 dimen = integer(),
 use = c("plug-in", "debiased", "predictive")
)
```

**Arguments**

- **prior**: prior probabilities of class membership if specified or the class proportions in the training set otherwise.
- **tol**: tolerance for the determination of singular matrices.
- **method**: type of mean and variance estimator.
- **nu**: degrees of freedom for method = "t".
- **dimen**: dimension of the space to use for prediction.
- **use**: type of parameter estimation to use for prediction.

**Details**

**Response types**: factor

**Automatic tuning of grid parameter**: dimen

The `predict` function for this model additionally accepts the following argument.

- **prior**: prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.
Value
MLModel class object.

See Also
lda, predict.lda, fit, resample

Examples
fit(Species ~ ., data = iris, model = LDAModel)

lift
Model Lift Curves

Description
Calculate lift curves from observed and predicted responses.

Usage
lift(x, y = NULL, weights = NULL, na.rm = TRUE, ...)

Arguments
x observed responses or resample result containing observed and predicted responses.

y predicted responses if not contained in x.

weights numeric vector of non-negative case weights for the observed x responses [default: equal weights].

na.rm logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

... arguments passed to other methods.

Value
LiftCurve class object that inherits from PerformanceCurve.

See Also
c, plot, summary
Example

```r
Requires prior installation of suggested package gbm to run
data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = GBMModel)
lf <- lift(res)
plot(lf)
```

---

**LMMModel**

### Linear Models

**Description**

Fits linear models.

**Usage**

```r
LMMModel()
```

**Details**

**Response types:** factor, matrix, numeric

Further model details can be found in the source link below.

In calls to `varimp` for LModel, numeric argument `base` may be specified for the (negative) logarithmic transformation of p-values [default: `exp(1)`]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`.

**Value**

LModel class object.

**See Also**

`lm, fit, resample`

**Examples**

```r
fit(sale_amount ~ ., data = ICHomes, model = LMMModel)
```
MDA Model

Mixture Discriminant Analysis Model

Description

Performs mixture discriminant analysis.

Usage

MDA Model(
  subclasses = 3,
  sub.df = numeric(),
  tot.df = numeric(),
  dimension = sum(subclasses) - 1,
  eps = .Machine$double.eps,
  iter = 5,
  method = .(mda::polyreg),
  trace = FALSE,
  ...
)

Arguments

  subclasses  numeric value or vector of subclasses per class.
  sub.df     effective degrees of freedom of the centroids per class if subclass centroid shrink-age is performed.
  tot.df     specification of the total degrees of freedom as an alternative to sub.df.
  dimension  dimension of the discriminant subspace to use for prediction.
  eps        numeric threshold for automatically truncating the dimension.
  iter       limit on the total number of iterations.
  method     regression function used in optimal scaling. The default of linear regression is provided by polyreg from the mda package. For penalized mixture discriminant models, gen.ridge is appropriate. Other possibilities are mars for multivariate adaptive regression splines and bruto for adaptive backfitting of additive splines. Use the . operator to quote specified functions.
  trace      logical indicating whether iteration information is printed.
  ...

Details

Response types: factor

Automatic tuning of grid parameter: subclasses

The predict function for this model additionally accepts the following argument.

prior  prior class membership probabilities for prediction data if different from the training set.

Default values and further model details can be found in the source links below.
**Value**

MLModel class object.

**See Also**

mda, predict.mda, fit, resample

**Examples**

```r
Requires prior installation of suggested package mda to run
fit(Species ~ ., data = iris, model = MDAModel)
```

---

**metricinfo**

Display Performance Metric Information

**Description**

Display information about metrics provided by the MachineShop package.

**Usage**

```r
metricinfo(...)
```

**Arguments**

```r
... metric functions or function names; observed responses; observed and predicted responses; confusion or resample results for which to display information. If none are specified, information is returned on all available metrics by default.
```

**Value**

List of named metric elements each containing the following components:

- **label** character descriptor for the metric.
- **maximize** logical indicating whether higher values of the metric correspond to better predictive performance.
- **arguments** closure with the argument names and corresponding default values of the metric function.
- **response_types** data frame of the observed and predicted response variable types supported by the metric.
Examples

## All metrics
metricinfo()

## Metrics by observed and predicted response types
names(metricinfo(factor(0)))
names(metricinfo(factor(0), factor(0)))
names(metricinfo(factor(0), matrix(0)))
names(metricinfo(factor(0), numeric(0)))

## Metric-specific information
metricinfo(auc)

metrics Performance Metrics

### Description

Compute measures of agreement between observed and predicted responses.

### Usage

accuracy(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

auc(
    observed,
    predicted = NULL,
    weights = NULL,
    multiclass = c("pairs", "all"),
    metrics = c(MachineShop::tpr, MachineShop::fpr),
    stat = MachineShop::settings("stat.Curve"),
    ...
)

brier( observed, predicted = NULL, weights = NULL, ...)

cindex( observed, predicted = NULL, weights = NULL, ...)

cross_entropy( observed, predicted = NULL, weights = NULL, ...)

f_score(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    beta = 1,
    ...
)

fnr(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

fpr(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

kappa2(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

npv(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

ppr(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
ppv(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

pr_auc(
    observed,
    predicted = NULL,
    weights = NULL,
    multiclass = c("pairs", "all"),
    ...
)

precision(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

recall(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    ...
)

roc_auc(
    observed,
    predicted = NULL,
    weights = NULL,
    multiclass = c("pairs", "all"),
    ...
)

roc_index(
    observed,
    predicted = NULL,
    weights = NULL,
    cutoff = MachineShop::settings("cutoff"),
    fun = function(sensitivity, specificity) (sensitivity + specificity)/2,
    ...
)
sensitivity(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

specificity(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

tnr(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

tpr(
observed,
predicted = NULL,
weights = NULL,
cutoff = MachineShop::settings("cutoff"),
...
)

weighted_kappa2(observed, predicted = NULL, weights = NULL, power = 1, ...)
gini(observed, predicted = NULL, weights = NULL, ...)
mae(observed, predicted = NULL, weights = NULL, ...)
mse(observed, predicted = NULL, weights = NULL, ...)
msle(observed, predicted = NULL, weights = NULL, ...)
r2(
observed,
predicted = NULL,
weights = NULL,
metrics

```r
method = c("mse", "pearson", "spearman"),
 distr = character(),
 ...
)

rmse(observed, predicted = NULL, weights = NULL, ...)
rmsle(observed, predicted = NULL, weights = NULL, ...)
```

**Arguments**

- **observed**: observed responses; or confusion, performance curve, or resample result containing observed and predicted responses.
- **predicted**: predicted responses if not contained in observed.
- **weights**: numeric vector of non-negative case weights for the observed responses [default: equal weights].
- **cutoff**: numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified. If NULL, then confusion matrix-based metrics are computed on predicted class probabilities if given.
- **...**: arguments passed to or from other methods.
- **multiclass**: character string specifying the method for computing generalized area under the performance curve for multiclass factor responses. Options are to average over areas for each pair of classes ("pairs") or for each class versus all others ("all").
- **metrics**: vector of two metric functions or function names that define a curve under which to calculate area [default: ROC metrics].
- **stat**: function or character string naming a function to compute a summary statistic at each cutoff value of resampled metrics in performance curves, or NULL for resample-specific metrics.
- **beta**: relative importance of recall to precision in the calculation of f_score [default: F1 score].
- **fun**: function to calculate a desired sensitivity-specificity tradeoff.
- **power**: power to which positional distances of off-diagonals from the main diagonal in confusion matrices are raised to calculate weighted_kappa2.
- **method**: character string specifying whether to compute $r^2$ as the coefficient of determination ("mse") or as the square of "pearson" or "spearman" correlation.
- **distr**: character string specifying a distribution with which to estimate the observed survival mean in the total sum of square component of $r^2$. Possible values are "empirical" for the Kaplan-Meier estimator, "exponential", "extreme", "gaussian", "loggaussian", "logistic", "loglogistic", "lognormal", "rayleigh", "t", or "weibull". Defaults to the distribution that was used in predicting mean survival times.
References

See Also
metricinfo, performance

MLControl  Resampling Controls

Description
Structures to define and control sampling methods for estimation of model predictive performance in the *MachineShop* package.

Usage

```r
BootControl(
 samples = 25,
 weights = TRUE,
 seed = sample(.Machine$integer.max, 1)
)
```

```r
BootOptimismControl(
 samples = 25,
 weights = TRUE,
 seed = sample(.Machine$integer.max, 1)
)
```

```r
CVControl(
 folds = 10,
 repeats = 1,
 weights = TRUE,
 seed = sample(.Machine$integer.max, 1)
)
```

```r
CVOptimismControl(
 folds = 10,
 repeats = 1,
 weights = TRUE,
 seed = sample(.Machine$integer.max, 1)
)
```

```r
OOBControl(
 samples = 25,
 weights = TRUE,
)
MLControl

seed = sample(.Machine$integer.max, 1)

SplitControl(
 prop = 2/3,
 weights = TRUE,
 seed = sample(.Machine$integer.max, 1)
)

TrainControl(weights = TRUE, seed = sample(.Machine$integer.max, 1))

Arguments

- **samples**: number of bootstrap samples.
- **weights**: logical indicating whether to return case weights in resampled output for the calculation of performance metrics.
- **seed**: integer to set the seed at the start of resampling.
- **folds**: number of cross-validation folds (K).
- **repeats**: number of repeats of the K-fold partitioning.
- **prop**: proportion of cases to include in the training set (0 < prop < 1).

Details

BootControl constructs an MLControl object for simple bootstrap resampling in which models are fit with bootstrap resampled training sets and used to predict the full data set (Efron and Tibshirani 1993).

CVControl constructs an MLControl object for repeated K-fold cross-validation (Kohavi 1995). In this procedure, the full data set is repeatedly partitioned into K-folds. Within a partitioning, prediction is performed on each of the K folds with models fit on all remaining folds.

CVOptimismControl constructs an MLControl object for optimism-corrected cross-validation resampling (Davison and Hinkley 1997, eq. 6.48).

OOBControl constructs an MLControl object for out-of-bootstrap resampling in which models are fit with bootstrap resampled training sets and used to predict the unsampled cases.

SplitControl constructs an MLControl object for splitting data into a separate training and test set (Hastie et al. 2009).

TrainControl constructs an MLControl object for training and performance evaluation to be performed on the same training set (Efron 1986).

Value

Object that inherits from the MLControl class.
References

See Also

set_monitor, set_predict, set_strata, resample, SelectedInput, SelectedModel, TunedInput, TunedModel

Examples

```r
## Bootstrapping with 100 samples
BootControl(samples = 100)

## Optimism-corrected bootstrapping with 100 samples
BootOptimismControl(samples = 100)

## Cross-validation with 5 repeats of 10 folds
CVControl(folds = 10, repeats = 5)

## Optimism-corrected cross-validation with 5 repeats of 10 folds
CVOptimismControl(folds = 10, repeats = 5)

## Out-of-bootstrap validation with 100 samples
OOBControl(samples = 100)

## Split sample validation with 2/3 training and 1/3 testing
SplitControl(prop = 2/3)

## Training set evaluation
TrainControl()
```
MLMetric

MLMetric Class Constructor

Description

Create a performance metric for use with the **MachineShop** package.

Usage

```r
MLMetric(object, name = "MLMetric", label = name, maximize = TRUE)
MLMetric(object) <- value
```

Arguments

- **object**: function to compute the metric, defined to accept observed and predicted as the first two arguments and with an ellipsis (...) to accommodate others.
- **name**: character name of the object to which the metric is assigned.
- **label**: optional character descriptor for the model.
- **maximize**: logical indicating whether higher values of the metric correspond to better predictive performance.
- **value**: list of arguments to pass to the `MLMetric` constructor.

Value

`MLMetric` class object.

See Also

`metrics`

Examples

```r
f2_score <- MLMetric(
  function(observed, predicted, ...) {
    f_score(observed, predicted, beta = 2, ...)
  },
  name = "f2_score",
  label = "F Score (beta = 2)",
  maximize = TRUE
)
```
MLModel and MLModelFunction Class Constructors

Description

Create a model or model function for use with the MachineShop package.

Usage

MLModel(
 name = "MLModel",
 label = name,
 packages = character(),
 response_types = character(),
 weights = FALSE,
 predictor_encoding = c(NA, "model.frame", "model.matrix"),
 na.rm = FALSE,
 params = list(),
 gridinfo = tibble::tibble(param = character(), get_values = list(), default = logical()),
 fit = function(formula, data, weights, ...) stop("No fit function.")
 predict = function(object, newdata, times, ...) stop("No predict function.")
 varimp = function(object, ...) NULL
 ...
)

MLModelFunction(object, ...)

Arguments

count character name of the object to which the model is assigned.
label optional character descriptor for the model.
packages character vector of package names upon which the model depends. Each name
may be optionally followed by a comment in parentheses specifying a version
requirement. The comment should contain a comparison operator, whitespace
and a valid version number, e.g. "xgboost (>= 1.3.0)".
response_types character vector of response variable types to which the model can be fit. Sup-
ported types are "binary", "BinomialVariate", "DiscreteVariate", "factor",
"matrix", "NegBinomialVariate", "numeric", "ordered", "PoissonVariate", and "Surv".
weights logical value or vector of the same length as response_types indicating whether
case weights are supported for the responses.
predictor_encoding character string indicating whether the model is fit with predictor variables en-
coded as a "model.frame", a "model.matrix", or unspecified (default).
MLModel

na.rm character string or logical specifying removal of "all" (TRUE) cases with missing values from model fitting and prediction, "none" (FALSE), or only those whose missing values are in the "response" variable.

params list of user-specified model parameters to be passed to the fit function.

gridinfo tibble of information for construction of tuning grids consisting of a character column param with the names of parameters in the grid, a list column get_values with functions to generate grid points for the corresponding parameters, and an optional logical column default indicating which parameters to include by default in regular grids. Values functions may optionally include arguments n and data for the number of grid points to generate and a ModelFrame of the model fit data and formula, respectively; and must include an ellipsis (...).

fit model fitting function whose arguments are a formula, a ModelFrame named data, case weights, and an ellipsis.

predict model prediction function whose arguments are the object returned by fit, a ModelFrame named newdata of predictor variables, optional vector of times at which to predict survival, and an ellipsis.

varimp variable importance function whose arguments are the object returned by fit, optional arguments passed from calls to varimp, and an ellipsis.

... arguments passed to other methods.

object function that returns an MLModel object when called without any supplied argument values.

Details

If supplied, the grid function should return a list whose elements are named after and contain values of parameters to include in a tuning grid to be constructed automatically by the package.

Arguments data and newdata in the fit and predict functions may be converted to data frames with as.data.frame() if needed for their operation. The fit function should return the object resulting from the model fit. Values returned by the predict functions should be formatted according to the response variable types below.

factor matrix whose columns contain the probabilities for multi-level factors or vector of probabilities for the second level of binary factors.

matrix matrix of predicted responses.

numeric vector or column matrix of predicted responses.

Surv matrix whose columns contain survival probabilities at times if supplied or a vector of predicted survival means otherwise.

The varimp function should return a vector of importance values named after the predictor variables or a matrix or data frame whose rows are named after the predictors.

The predict and varimp functions are additionally passed a list named .MachineShop containing the input and model from fit. This argument may be included in the function definitions as needed for their implementations. Otherwise, it will be captured by the ellipsis.

Value

An MLModel or MLModelFunction class object.
See Also

models, fit, resample

Examples

Logistic regression model
LogisticModel <- MLModel(
 name = "LogisticModel",
 response_types = "binary",
 weights = TRUE,
 fit = function(formula, data, weights, ...) {
 glm(formula, data = as.data.frame(data), weights = weights,
 family = binomial, ...)
 },
 predict = function(object, newdata, ...) {
 predict(object, newdata = as.data.frame(newdata), type = "response")
 },
 varimp = function(object, ...) {
 pchisq(coef(object)^2 / diag(vcov(object)), 1)
 }
)

data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = LogisticModel)
summary(res)

ModelFrame

ModelFrame Class

Description

Class for storing data, formulas, and other attributes for MachineShop model fitting.

Usage

ModelFrame(...)

S3 method for class 'formula'
ModelFrame(
 formula,
 data,
 groups = NULL,
 strata = NULL,
 weights = NULL,
 na.rm = TRUE,
 ...
)
S3 method for class 'matrix'
ModelFrame(
 x,
 y = NULL,
 offsets = NULL,
 groups = NULL,
 strata = NULL,
 weights = NULL,
 na.rm = TRUE,
 ...
)

Arguments

... arguments passed from the generic function to its methods. The first argument of each ModelFrame method is positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame containing them. In the associated method, arguments groups, strata, and weights will be evaluated as expressions, whose objects are searched for first in the accompanying data environment and, if not found there, next in the calling environment.

groups vector of values defining groupings of cases to keep together when folds are constructed for cross-validation [default: none].

strata vector of values to use in conducting stratified resample estimation of model performance [default: none].

weights numeric vector of non-negative case weights for the y response variable [default: equal weights].

na.rm character string or logical specifying removal of "all" (TRUE) cases with missing values, "none" (FALSE), or only those whose missing values are in the "response" variable.

x, y matrix and object containing predictor and response variables.

offsets numeric vector, matrix, or data frame of values to be added with a fixed coefficient of 1 to linear predictors in compatible regression models.

Value

ModelFrame class object that inherits from data.frame.

See Also

fit, resample, response, SelectedInput

Examples

Requires prior installation of suggested package gbm to run
mf <- ModelFrame(ncases / (ncases + ncontrols) ~ agegp + tobgp + alcgp,
 data = esoph, weights = ncases + ncontrols)

gbm_fit <- fit(mf, model = GBMModel)

varimp(gbm_fit)

modelinfo

Display Model Information

Description
Display information about models supplied by the MachineShop package.

Usage
modelinfo(...)

Arguments
...

model functions, function names, or objects; observed responses for which to display information. If none are specified, information is returned on all available models by default.

Value
List of named model elements each containing the following components:

label character descriptor for the model.

packages character vector of source packages required to use the model. These need only be installed with the install.packages function or by equivalent means; but need not be loaded with, for example, the library function.

response_types character vector of response variable types supported by the model.

weights logical value or vector of the same length as response_types indicating whether case weights are supported for the responses.

arguments closure with the argument names and corresponding default values of the model function.

grid logical indicating whether automatic generation of tuning parameter grids is implemented for the model.

varimp logical indicating whether model-specific variable importance is defined.
Examples

```r
## All models
modelinfo()

## Models by response types
names(modelinfo(factor(0)))
names(modelinfo(factor(0), numeric(0)))

## Model-specific information
modelinfo(GBMModel)
```

<table>
<thead>
<tr>
<th>models</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Model constructor functions supplied by `MachineShop` are summarized in the table below according to the types of response variables with which each can be used.

<table>
<thead>
<tr>
<th>Function</th>
<th>Categorical</th>
<th>Continuous</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBagModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdaBoostModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARTModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>BARTMachineModel</td>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>BlackBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>C50Model</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CForestModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>CoxModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>CoxStepAICModel</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>EarthModel</td>
<td>f</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>FDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAMBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GBMModel</td>
<td>f</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GLMBoostModel</td>
<td>b</td>
<td>n</td>
<td>S</td>
</tr>
<tr>
<td>GLMMmodel</td>
<td>f</td>
<td>m,n</td>
<td></td>
</tr>
<tr>
<td>GLMStepAICModel</td>
<td>b</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>GLMNetModel</td>
<td>f</td>
<td>m,n</td>
<td>S</td>
</tr>
<tr>
<td>KNNModel</td>
<td>f,o</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>LARSMModel</td>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>LDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMMModel</td>
<td>f</td>
<td>m,n</td>
<td></td>
</tr>
<tr>
<td>MDAModel</td>
<td>f</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>NaiveBayesModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNetModel</td>
<td>f</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td>ParsnipModel</td>
<td>f</td>
<td>m,n</td>
<td>S</td>
</tr>
<tr>
<td>PDAModel</td>
<td>f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PLSModel f n
POLRModel o
QDAModel f
RandomForestModel f n
RangerModel f n S
RFSRCModel f m,n S
RFSRCFastModel f m,n S
RPartModel f n S
SurvRegModel S
SurvRegStepAICModel S
SVMModel f n
SVMANOVAModel f n
SVMBesselModel f n
SVMLaplaceModel f n
SVMLinearModel f n
SVMPolyModel f n
SVMRadialModel f n
SVMSplineModel f n
SVMTanhModel f n
TreeModel f n
XGBModel f n S
XGBDARTModel f n S
XGBLinearModel f n S
XGBTreeModel f n S

Categorical: b = binary, f = factor, o = ordered
Continuous: m = matrix, n = numeric
Survival: S = Surv

Models may be combined, tuned, or selected with the following meta-model functions.

- **ModelSpecification**: Model specification
- **StackedModel**: Stacked regression
- **SuperModel**: Super learner
- **SelectedModel**: Model selection from a candidate set
- **TunedModel**: Model tuning over a parameter grid

See Also

- `modelinfo`, `fit`, `resample`
Description

Specification of a relationship between response and predictor variables and a model to define a relationship between them.

Usage

ModelSpecification(...)

Default S3 method:
ModelSpecification(
 input,
 model = NULL,
 control = MachineShop::settings("control"),
 metrics = NULL,
 cutoff = MachineShop::settings("cutoff"),
 stat = MachineShop::settings("stat.TrainingParams"),
 ...
)

S3 method for class 'formula'
ModelSpecification(formula, data, model, ...)

S3 method for class 'matrix'
ModelSpecification(x, y, model, ...)

S3 method for class 'ModelFrame'
ModelSpecification(input, model = NULL, ...)

S3 method for class 'recipe'
ModelSpecification(input, model = NULL, ...)

Arguments

... arguments passed from the generic function to its methods. The first argument of each ModelSpecification method is positional and, as such, must be given first in calls to them.

input input object defining and containing the model predictor and response variables.
model model function, function name, or object; or another object that can be coerced to a model.
control control function, function name, or object defining the resampling method to be employed. If NULL or if the model specification contains any SelectedInput or SelectedModel objects, then object-specific control structures and training parameters are used for selection and tuning, as usual, and objects are trained sequentially with nested resampling. Otherwise,

- tuning of input and model objects is performed simultaneously over a global grid of their parameter values, and
the specified control method and training parameters below override those of any included TunedInput or TunedModel.

metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.

cutoff argument passed to the metrics functions.

stat function or character string naming a function to compute a summary statistic on resampled metric values for model tuning.

formula, data formula defining the model predictor and response variables and a data frame containing them.

x, y matrix and object containing predictor and response variables.

Value
ModelSpecification class object.

See Also
fit, resample, set_monitor, set_optim

Examples

Requires prior installation of suggested package gbm to run

modelspec <- ModelSpecification(
 sale_amount ~ ., data = ICHomes, model = GBMModel
)
fit(modelspec)
NNetModel

Details

Response types: factor

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

naiveBayes, fit, resample

Examples

Requires prior installation of suggested package e1071 to run

fit(Species ~ ., data = iris, model = NaiveBayesModel)
Arguments

- **size**: number of units in the hidden layer.
- **linout**: switch for linear output units. Set automatically according to the class type of the response variable [numeric: TRUE, other: FALSE].
- **entropy**: switch for entropy (= maximum conditional likelihood) fitting.
- **softmax**: switch for softmax (log-linear model) and maximum conditional likelihood fitting.
- **censored**: a variant on softmax, in which non-zero targets mean possible classes.
- **skip**: switch to add skip-layer connections from input to output.
- **rang**: Initial random weights on \([-\text{rang}, \text{rang}]\).
- **decay**: parameter for weight decay.
- **maxit**: maximum number of iterations.
- **trace**: switch for tracing optimization.
- **MaxNWts**: maximum allowable number of weights.
- **abstol**: stop if the fit criterion falls below \(\text{abstol}\), indicating an essentially perfect fit.
- **reltol**: stop if the optimizer is unable to reduce the fit criterion by a factor of at least \(1 - \text{reltol}\).

Details

Response types: factor, numeric

Automatic tuning of grid parameters: size, decay

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

nnet, fit, resample

Examples

```r
fit(sale_amount ~ ., data = ICHomes, model = NNetModel)
```
ParameterGrid

Description

Defines a tuning grid from a set of parameters.

Usage

ParameterGrid(...)

S3 method for class 'param'
ParameterGrid(..., size = 3, random = FALSE)

S3 method for class 'list'
ParameterGrid(object, size = 3, random = FALSE, ...)

S3 method for class 'parameters'
ParameterGrid(object, size = 3, random = FALSE, ...)

Arguments

... named param objects as defined in the dials package.

size single integer or vector of integers whose positions or names match the given parameters and which specify the number of values used to construct the grid.

random number of unique points to sample at random from the grid defined by size, or FALSE for all points.

object list of named param objects or a parameters object. This is a positional argument that must be given first in calls to its methods.

Value

ParameterGrid class object that inherits from parameters and TuningGrid.

See Also

TunedModel

Examples

GBMModel tuning parameters
grid <- ParameterGrid(
 n.trees = dials::trees(),
 interaction.depth = dials::tree_depth(),
 random = 5
)
TunedModel(GBMModel, grid = grid)
Description

Convert a model specification from the \texttt{parsnip} package to one that can be used with the \texttt{MachineShop} package.

Usage

\texttt{ParsnipModel(object, \ldots)}

Arguments

- \texttt{object} \texttt{model specification} from the \texttt{parsnip} package.
- \texttt{\ldots} \texttt{tuning parameters with which to update object}.

Value

\texttt{ParsnipModel} class object that inherits from \texttt{MLModel}.

See Also

- \texttt{as.MLModel}, \texttt{fit}, \texttt{resample}

Examples

```r
## Requires prior installation of suggested package parsnip to run

prsp_model <- parsnip::linear_reg(engine = "glmnet")
model <- ParsnipModel(prsp_model, penalty = 1, mixture = 1)
model

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit)
```
Model Performance Metrics

Description

Compute measures of model performance.

Usage

```r
performance(x, ...) 
```

The `performance()` function computes measures of model performance. Arguments include:

- `x`: A model object.
- `y`: A vector of observed values.
- `weights`: A vector of weights.
- `metrics`: A vector of metrics to compute.
- `na.rm`: A logical value indicating whether to remove `NA` values.

The function supports different classes:

- For `BinomialVariate`:
  ```r
  performance(x, y, weights = NULL, metrics = MachineShop::settings("metrics.numeric"), na.rm = TRUE, ...)
  ```

- For `factor`:
  ```r
  performance(x, y, weights = NULL, metrics = MachineShop::settings("metrics.factor"), cutoff = MachineShop::settings("cutoff"), na.rm = TRUE, ...)
  ```

- For `matrix`:
  ```r
  performance(x, y, weights = NULL, metrics = MachineShop::settings("metrics.matrix"), na.rm = TRUE, ...)
  ```

- For `numeric`:
  ```r
  performance(x, y, weights = NULL, ...)
  ```
```r
metrics = MachineShop::settings("metrics.numeric"),
na.rm = TRUE,
...)
```

```r
## S3 method for class 'Surv'
performance(
x,
y,
weights = NULL,
metrics = MachineShop::settings("metrics.Surv"),
cutoff = MachineShop::settings("cutoff"),
a.rm = TRUE,
...
)
```

```r
## S3 method for class 'ConfusionList'
performance(x, ...)
```

```r
## S3 method for class 'ConfusionMatrix'
performance(x, metrics = MachineShop::settings("metrics.ConfusionMatrix"), ...)
```

```r
## S3 method for class 'MLModel'
performance(x, ...)
```

```r
## S3 method for class 'Resample'
performance(x, ...)
```

```r
## S3 method for class 'TrainingStep'
performance(x, ...)
```

Arguments

- **x**: observed responses; or confusion, trained model fit, resample, or rfe result.
- **...**: arguments passed from the Resample method to the response type-specific methods or from the method for ConfusionList to ConfusionMatrix. Elliptical arguments in the response type-specific methods are passed to metrics supplied as a single `MLMetric` function and are ignored otherwise.
- **y**: predicted responses if not contained in x.
- **weights**: numeric vector of non-negative case weights for the observed x responses [default: equal weights].
- **metrics**: metric function, function name, or vector of these with which to calculate performance.
- **na.rm**: logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.
- **cutoff**: numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.
See Also

plot, summary

Examples

Requires prior installation of suggested package gbm to run

res <- resample(Species ~ ., data = iris, model = GBMModel)
(resf <- performance(res))
summary(resf)
plot(resf)

Survival response example

library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)

obs <- response(gbm_fit, newdata = veteran)
pred <- predict(gbm_fit, newdata = veteran)

performance(obs, pred)

performance_curve

Model Performance Curves

Description

Calculate curves for the analysis of tradeoffs between metrics for assessing performance in classifying binary outcomes over the range of possible cutoff probabilities. Available curves include receiver operating characteristic (ROC) and precision recall.

Usage

performance_curve(x, ...)

Default S3 method:

performance_curve(x,
 y,
 weights = NULL,
 metrics = c(MachineShop::tpr, MachineShop::fpr),
 na.rm = TRUE,
 ...
)

S3 method for class 'Resample'
performance_curve(
 x,
 metrics = c(MachineShop::tpr, MachineShop::fpr),
 na.rm = TRUE,
 ...
)

Arguments

- **x**: observed responses or resample result containing observed and predicted responses.
- **...**: arguments passed to other methods.
- **y**: predicted responses if not contained in x.
- **weights**: numeric vector of non-negative case weights for the observed x responses [default: equal weights].
- **metrics**: list of two performance metrics for the analysis [default: ROC metrics]. Precision recall curves can be obtained with c(precision, recall).
- **na.rm**: logical indicating whether to remove observed or predicted responses that are NA when calculating metrics.

Value

PerformanceCurve class object that inherits from data.frame.

See Also

auc, c, plot, summary

Examples

```r
## Requires prior installation of suggested package gbm to run
data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = GBMModel)

## ROC curve
roc <- performance_curve(res)
plot(roc)
 auc(roc)
```
Model Performance Plots

Description
Plot measures of model performance and predictor variable importance.

Usage
```r
## S3 method for class 'Calibration'
plot(x, type = c("line", "point"), se = FALSE, ...)

## S3 method for class 'ConfusionList'
plot(x, ...)

## S3 method for class 'ConfusionMatrix'
plot(x, ...)

## S3 method for class 'LiftCurve'
plot(
  x,
  find = numeric(),
  diagonal = TRUE,
  stat = MachineShop::settings("stat.Curve"),
  ...
)

## S3 method for class 'MLModel'
plot(
  x,
  metrics = NULL,
  stat = MachineShop::settings("stat.TrainingParams"),
  type = c("boxplot", "density", "errorbar", "line", "violin"),
  ...
)

## S3 method for class 'PartialDependence'
plot(x, stats = NULL, ...)

## S3 method for class 'Performance'
plot(
  x,
  metrics = NULL,
  stat = MachineShop::settings("stat.Resample"),
  type = c("boxplot", "density", "errorbar", "violin"),
  ...
)
```
S3 method for class 'PerformanceCurve'
plot(
 x,
 type = c("tradeoffs", "cutoffs"),
 diagonal = FALSE,
 stat = MachineShop::settings("stat.Curve"),
 ...
)

S3 method for class 'Resample'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.Resample"),
 type = c("boxplot", "density", "errorbar", "violin"),
 ...
)

S3 method for class 'TrainingStep'
plot(
 x,
 metrics = NULL,
 stat = MachineShop::settings("stat.TrainingParams"),
 type = c("boxplot", "density", "errorbar", "line", "violin"),
 ...
)

S3 method for class 'VariableImportance'
plot(x, n = Inf, ...)

Arguments

- **x**
 - calibration, confusion, lift, trained model fit, partial dependence, performance, performance curve, resample, rfe, or variable importance result.

- **type**
 - type of plot to construct.

- **se**
 - logical indicating whether to include standard error bars.

- **...**
 - arguments passed to other methods.

- **find**
 - numeric true positive rate at which to display reference lines identifying the corresponding rates of positive predictions.

- **diagonal**
 - logical indicating whether to include a diagonal reference line.

- **stat**
 - function or character string naming a function to compute a summary statistic on resampled metrics for trained MlModel line plots and Resample model ordering. The original ordering is preserved if a value of NULL is given. For LiftCurve and PerformanceCurve classes, plots are of resampled metrics aggregated by the statistic if given or of resample-specific metrics if NULL.

- **metrics**
 - vector of numeric indexes or character names of performance metrics to plot.
PLSModel

Description

Function to perform partial least squares regression.

Usage

PLSModel(ncomp = 1, scale = FALSE)

Arguments

ncompnumber of components to include in the model.
scale logical indicating whether to scale the predictors by the sample standard deviation.

Details

Response types: factor, numeric

Automatic tuning of grid parameters: ncomp

Further model details can be found in the source link below.
POLRModel

Ordered Logistic or Probit Regression Model

Description

Fit a logistic or probit regression model to an ordered factor response.

Usage

POLRModel(method = c("logistic", "probit", "loglog", "cloglog", "cauchit"))

Arguments

method logistic or probit or (complementary) log-log or cauchit (corresponding to a Cauchy latent variable).

Details

Response types: ordered

Further model details can be found in the source link below.

In calls to \texttt{varimp} for POLRModel, numeric argument base may be specified for the (negative) logarithmic transformation of p-values [default: \texttt{exp(1)}]. Transformed p-values are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance values, set \texttt{scale = FALSE}.

Value

MLModel class object.

See Also

\texttt{polr}, \texttt{fit}, \texttt{resample}
Examples

```r
data(Boston, package = "MASS")

df <- within(Boston, 
  medv <- cut(medv, 
    breaks = c(0, 10, 15, 20, 25, 50), 
    ordered = TRUE))

fit(medv ~ ., data = df, model = POLRModel)
```

predict

Model Prediction

Description

Predict outcomes with a fitted model.

Usage

```r
## S3 method for class 'MLModelFit'
predict( 
  object, 
  newdata = NULL, 
  times = numeric(), 
  type = c("response", "default", "numeric", "prob"), 
  cutoff = MachineShop::settings("cutoff"), 
  distr = character(), 
  method = character(), 
  verbose = FALSE, 
  ... 
)
```

```r
## S4 method for signature 'MLModelFit'
predict(object, ...)
```

Arguments

- `object`:
 model fit result.

- `newdata`:
 optional data frame with which to obtain predictions. If not specified, the training data will be used by default.

- `times`:
 numeric vector of follow-up times at which to predict survival events/odds or NULL for predicted survival means.

- `type`:
 specifies prediction on the original outcome ("response"), numeric ("numeric"), or probability ("prob") scale; or model-specific default predictions ("default").

- `cutoff`:
 numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified.
distr character string specifying distributional approximations to estimated survival curves. Possible values are "empirical", "exponential", "rayleigh", or "weibull"; with defaults of "empirical" for predicted survival events/probabilities and "weibull" for predicted survival means.

method character string specifying the empirical method of estimating baseline survival curves for Cox proportional hazards-based models. Choices are "breslow" or "efron" (default).

verbose logical indicating whether to display printed output generated by some model-specific predict functions to aid in monitoring progress and diagnosing errors.

... arguments passed from the S4 to the S3 method.

See Also
confusion, performance, metrics

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
predict(gbm_fit, newdata = veteran, times = c(90, 180, 360), type = "prob")

print

Print MachineShop Objects

Description
Print methods for objects defined in the MachineShop package.

Usage

S3 method for class 'BinomialVariate'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'Calibration'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'DiscreteVariate'
print(x, n = MachineShop::settings("print_max"), ...)

S3 method for class 'List0f'

print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'MLControl'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'MLMetric'
print(x, ...)
S3 method for class 'MLModel'
print(x, n = MachineShop::settings("print_max"), id = FALSE, ...)
S3 method for class 'MLModelFunction'
print(x, ...)
S3 method for class 'ModelFrame'
print(x, n = MachineShop::settings("print_max"), id = FALSE, data = TRUE, ...)
S3 method for class 'ModelRecipe'
print(x, n = MachineShop::settings("print_max"), id = FALSE, data = TRUE, ...)
S3 method for class 'ModelSpecification'
print(x, n = MachineShop::settings("print_max"), id = FALSE, ...)
S3 method for class 'Performance'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'PerformanceCurve'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'RecipeGrid'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'Resample'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'SurvMatrix'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'SurvTimes'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'TrainingStep'
print(x, n = MachineShop::settings("print_max"), ...)
S3 method for class 'VariableImportance'
print(x, n = MachineShop::settings("print_max"), ...)
Arguments

- `x` object to print.
- `n` integer number of models or data frame rows to show.
- `...` arguments passed to other methods, including the one described below.
- `level = 0` current nesting level of the corresponding object in recursive calls to print. The amount of information displayed decreases and increases with positive and negative levels, respectively.
- `id` logical indicating whether to show object identifiers.
- `data` logical indicating whether to show model data.

QDAModel Quadratic Discriminant Analysis Model

Description

Performs quadratic discriminant analysis.

Usage

```r
QDAModel(
  prior = numeric(),
  method = c("moment", "mle", "mve", "t"),
  nu = 5,
  use = c("plug-in", "predictive", "debiased", "looCV")
)
```

Arguments

- `prior` prior probabilities of class membership if specified or the class proportions in the training set otherwise.
- `method` type of mean and variance estimator.
- `nu` degrees of freedom for method = "t".
- `use` type of parameter estimation to use for prediction.

Details

Response types: factor

The `predict` function for this model additionally accepts the following argument.

- `prior` prior class membership probabilities for prediction data if different from the training set.

Value

MLModel class object.
See Also

qda, predict.qda, fit, resample

Examples

fit(Species ~ ., data = iris, model = QDAModel)

Stepwise variable selection with BIC
glm_fit <- fit(sale_amount ~ ., ICHomes, GLMStepAICModel(k = .(log(nobs))))
varimp(glm_fit)
RandomForestModel

Description

Implementation of Breiman’s random forest algorithm (based on Breiman and Cutler’s original Fortran code) for classification and regression.

Usage

```r
RandomForestModel(
  ntree = 500,
  mtry = .(if (is.factor(y)) floor(sqrt(nvars)) else max(floor(nvars/3), 1)),
  replace = TRUE,
  nodesize = .(if (is.factor(y)) 1 else 5),
  maxnodes = integer()
)
```

Arguments

- `ntree`: number of trees to grow.
- `mtry`: number of variables randomly sampled as candidates at each split.
- `replace`: should sampling of cases be done with or without replacement?
- `nodesize`: minimum size of terminal nodes.
- `maxnodes`: maximum number of terminal nodes trees in the forest can have.

Details

Response types: factor, numeric

Automatic tuning of grid parameters: `mtry`, `nodesize`

* excluded from grids by default

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

`randomForest`, `fit`, `resample`
RangerModel

Examples

Requires prior installation of suggested package randomForest to run

```r
fit(sale_amount ~ ., data = ICHomes, model = RandomForestModel)
```

RangerModel
Fast Random Forest Model

Description

Fast implementation of random forests or recursive partitioning.

Usage

```r
RangerModel(
  num.trees = 500,
  mtry = integer(),
  importance = c("impurity", "impurity_corrected", "permutation"),
  min.node.size = integer(),
  replace = TRUE,
  sample.fraction = if (replace) 1 else 0.632,
  splitrule = character(),
  num.random.splits = 1,
  alpha = 0.5,
  minprop = 0.1,
  split.select.weights = numeric(),
  always.split.variables = character(),
  respect.unordered.factors = character(),
  scale.permutation.importance = FALSE,
  verbose = FALSE
)
```

Arguments

- `num.trees`: number of trees.
- `mtry`: number of variables to possibly split at in each node.
- `importance`: variable importance mode.
- `min.node.size`: minimum node size.
- `replace`: logical indicating whether to sample with replacement.
- `sample.fraction`: fraction of observations to sample.
- `splitrule`: splitting rule.

num.random.splits

number of random splits to consider for each candidate splitting variable in the "extratrees" rule.

alpha

significance threshold to allow splitting in the "maxstat" rule.

minprop

lower quantile of covariate distribution to be considered for splitting in the "maxstat" rule.

split.select.weights

numeric vector with weights between 0 and 1, representing the probability to select variables for splitting.

always.split.variables

character vector with variable names to be always selected in addition to the mtry variables tried for splitting.

respect.unordered.factors

handling of unordered factor covariates.

scale.permutation.importance

scale permutation importance by standard error.

verbose

show computation status and estimated runtime.

Details

Response types: factor, numeric, Surv

Automatic tuning of grid parameters: mtry, min.node.size*, splitrule*

* excluded from grids by default

Default values and further model details can be found in the source link below.

Value

MLModel class object.

See Also

ranger, fit, resample

Examples

Requires prior installation of suggested package ranger to run

```r
fit(Species ~ ., data = iris, model = RangerModel)
```
Set Recipe Roles

Description

Add to or replace the roles of variables in a preprocessing recipe.

Usage

```r
role_binom(recipe, x, size)
role_case(recipe, group, stratum, weight, replace = FALSE)
role_pred(recipe, offset, replace = FALSE)
role_surv(recipe, time, event)
```

Arguments

- `recipe`: existing recipe object.
- `x, size`: number of counts and trials for the specification of a `BinomialVariate` outcome.
- `group`: variable defining groupings of cases to keep together when folds are constructed for cross-validation [default: none].
- `weight`: numeric variable of case weights for model fitting.
- `replace`: logical indicating whether to replace existing roles.
- `offset`: numeric variable to be added to a linear predictor, such as in a generalized linear model, with known coefficient 1 rather than an estimated coefficient.
- `time, event`: numeric follow up time and 0-1 numeric or logical event indicator for specification of a `Surv` outcome. If the event indicator is omitted, all cases are assumed to have events.

Value

An updated recipe object.

See Also

`recipe`
Examples

library(survival)
library(recipes)

df <- within(veteran, {
 y <- Surv(time, status)
 remove(time, status)
})
rec <- recipe(y ~ ., data = df) %>%
 role_case(stratum = y)

(res <- resample(rec, model = CoxModel))
summary(res)

resample

Resample Estimation of Model Performance

Description

Estimation of the predictive performance of a model estimated and evaluated on training and test
samples generated from an observed data set.

Usage

resample(...)

S3 method for class 'formula'
resample(formula, data, model, ...)

S3 method for class 'matrix'
resample(x, y, model, ...)

S3 method for class 'ModelFrame'
resample(input, model = NULL, ...)

S3 method for class 'recipe'
resample(input, model = NULL, ...)

S3 method for class 'ModelSpecification'
resample(object, control = MachineShop::settings("control"), ...)

S3 method for class 'MLModel'
resample(model, ...)

S3 method for class 'MLModelFunction'
resample(model, ...)
Arguments

... arguments passed from the generic function to its methods, from the MLModel and MLModelFunction methods to first arguments of others, and from others to the ModelSpecification method. The first argument of each fit method is positional and, as such, must be given first in calls to them.

- `formula, data` formula defining the model predictor and response variables and a data frame containing them.
- `model` model function, function name, or object; or another object that can be coerced to a model. A model can be given first followed by any of the variable specifications.
- `x, y` matrix and object containing predictor and response variables.
- `input` input object defining and containing the model predictor and response variables.
- `object` model input or specification.
- `control` control function, function name, or object defining the resampling method to be employed.

Details

Stratified resampling is performed automatically for the `formula` and `matrix` methods according to the type of response variable. In general, strata are constructed from numeric proportions for `BinomialVariate`; original values for character, factor, logical, and ordered; first columns of values for `matrix`; original values for numeric; and numeric times within event statuses for `Surv`. Numeric values are stratified into quantile bins and categorical values into factor levels defined by `MLControl`.

Resampling stratification variables may be specified manually for `ModelFrames` upon creation with the `strata` argument in their constructor. Resampling of this class is unstratified by default. Stratification variables may be designated in `recipe` specifications with the `role_case` function. Resampling will be unstratified otherwise.

Value

Resample class object.

See Also

`c, metrics, performance, plot, summary`

Examples

```r
## Requires prior installation of suggested package gbm to run

## Factor response example
fo <- Species ~ .
ccontrol <- CVControl()
```
gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)

summary(gbm_res1)
plot(gbm_res1)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
plot(res)

response
Extract Response Variable

Description

Extract the response variable from an object.

Usage

```r
response(object, ...)  
## S3 method for class 'MLModelFit'
response(object, newdata = NULL, ...)
## S3 method for class 'ModelFrame'
response(object, newdata = NULL, ...)
## S3 method for class 'ModelSpecification'
response(object, newdata = NULL, ...)
## S3 method for class 'recipe'
response(object, newdata = NULL, ...)
```

Arguments

- `object`
 model fit, input, or specification containing predictor and response variables.
- `...`
 arguments passed to other methods.
- `newdata`
 data frame from which to extract the response variable values if given; otherwise, object is used.
Examples

```r
## Survival response example
library(survival)
mf <- ModelFrame(Surv(time, status) ~ ., data = veteran)
response(mf)
```

rfe
Recursive Feature Elimination

Description

A wrapper method of backward feature selection in which a given model is fit to nested subsets of most important predictor variables in order to select the subset whose resampled predictive performance is optimal.

Usage

```r
rfe(...)
```

S3 method for class 'formula'

```r
rfe(formula, data, model, ...)
```

S3 method for class 'matrix'

```r
rfe(x, y, model, ...)
```

S3 method for class 'ModelFrame'

```r
rfe(input, model = NULL, ...)
```

S3 method for class 'recipe'

```r
rfe(input, model = NULL, ...)
```

S3 method for class 'ModelSpecification'

```r
rfe(
    object,
    select = NULL,
    control = MachineShop::settings("control"),
    props = 4,
    sizes = integer(),
    random = FALSE,
    recompute = TRUE,
    optimize = c("global", "local"),
    samples = c(rfe = 1, varimp = 1),
    metrics = NULL,
    stat = c(resample = MachineShop::settings("stat.Resample"), permute = MachineShop::settings("stat.TrainingParams")),
```
progress = FALSE,
...
)

S3 method for class 'MLModel'
rfe(model, ...)

S3 method for class 'MLModelFunction'
rfe(model, ...)

Arguments

... arguments passed from the generic function to its methods, from the MLModel
and MLModelFunction methods to first arguments of others, and from others to
the ModelSpecification method. The first argument of each fit method is
positional and, as such, must be given first in calls to them.

formula, data formula defining the model predictor and response variables and a data frame
containing them.

model model function, function name, or object; or another object that can be coerced
to a model. A model can be given first followed by any of the variable specifica-
tions.

x, y matrix and object containing predictor and response variables.

input input object defining and containing the model predictor and response variables.

object model input or specification.

select expression indicating predictor variables that can be eliminated (see subset
for syntax) [default: all].

c ontrol control function, function name, or object defining the resampling method to be
employed.

props numeric vector of the proportions of most important predictor variables to retain
in fitted models or an integer number of equal spaced proportions to generate
automatically; ignored if sizes are given.

sizes integer vector of the set sizes of most important predictor variables to retain.

random logical indicating whether to eliminate variables at random with probabilities
proportional to their importance.

recompute logical indicating whether to recompute variable importance after eliminating
each set of variables.

optimize character string specifying a search through all props to identify the globally
optimal model ("global") or a search that stops after identifying the first locally
optimal model ("local").

samples numeric vector or list giving the number of permutation samples for each of
the rfe and varimp algorithms. One or both of the values may be specified as
named arguments or in the order in which their defaults appear. Larger numbers
of samples decrease variability in estimated model performances and variable
importances at the expense of increased computation time. Samples are more
expensive computationally for rfe than for varimp.
metrics function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used.

stat functions or character strings naming functions to compute summary statistics on resampled metric values and permuted samples. One or both of the values may be specified as named arguments or in the order in which their defaults appear.

progress logical indicating whether to display iterative progress during elimination.

Value TrainingStep class object containing a summary of the numbers of predictor variables retained (size), their names (terms), logical indicators for the optimal model selected (selected), and associated performance metrics (metrics).

See Also

performance, plot, summary, varimp

Examples

```r
## Requires prior installation of suggested package gbm to run
(res <- rfe(sale_amount ~ ., data = ICHomes, model = GBMModel))
summary(res)
summary(performance(res))
plot(res, type = "line")
```

RFSRCModel

Fast Random Forest (SRC) Model

Description

Fast OpenMP computing of Breiman’s random forest for a variety of data settings including right-censored survival, regression, and classification.

Usage

```r
RFSRCModel(
  ntree = 1000,
  mtry = integer(),
  nodesize = integer(),
  nodedepth = integer(),
  splitrule = character(),
  nsplit = 10,
)```
block.size = integer(),
samptype = c("swor", "swr"),
membership = FALSE,
sampsize = if (samptype == "swor") function(x) 0.632 * x else function(x) x,
nimpute = 1,
ntime = integer(),
proximity = c(FALSE, TRUE, "inbag", "oob", "all"),
distance = c(FALSE, TRUE, "inbag", "oob", "all"),
forest.wt = c(FALSE, TRUE, "inbag", "oob", "all"),
xvar.wt = numeric(),
split.wt = numeric(),
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
do.trace = FALSE,
statistics = FALSE
)

RFSRCFastModel(
  ntree = 500,
sampsize = function(x) min(0.632 * x, max(x^0.75, 150)),
nimpute = 1,
  ntime = 50,
terminal.qualts = FALSE,
  ...)

Arguments

ntree number of trees.
mtry number of variables randomly selected as candidates for splitting a node.
nodesize minimum size of terminal nodes.
nodedepth maximum depth to which a tree should be grown.
splitrule splitting rule (see rfsrc).
nsplit non-negative integer value for number of random splits to consider for each candidate splitting variable.
block.size interval number of trees at which to compute the cumulative error rate.
samptype whether bootstrap sampling is with or without replacement.
membership logical indicating whether to return terminal node membership.
sampsize function specifying the bootstrap size.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.

Arguments

ntree number of trees.
mtry number of variables randomly selected as candidates for splitting a node.
nodesize minimum size of terminal nodes.
nodedepth maximum depth to which a tree should be grown.
splitrule splitting rule (see rfsrc).
nsplit non-negative integer value for number of random splits to consider for each candidate splitting variable.
block.size interval number of trees at which to compute the cumulative error rate.
samptype whether bootstrap sampling is with or without replacement.
membership logical indicating whether to return terminal node membership.
sampsize function specifying the bootstrap size.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.
nimpute number of iterations of the missing data imputation algorithm.

### Arguments

- **forest.wt**: whether and how to return the forest weight matrix.
- **xvar.wt**: vector of non-negative weights representing the probability of selecting a variable for splitting.
- **split.wt**: vector of non-negative weights used for multiplying the split statistic for a variable.
- **var.used**: whether and how to return variables used for splitting.
- **split.depth**: whether and how to return minimal depth for each variable.
- **do.trace**: number of seconds between updates to the user on approximate time to completion.
- **statistics**: logical indicating whether to return split statistics.
- **terminal.qualts**: logical indicating whether to return terminal node membership information.
- ...: arguments passed to `RFSRCModel`.

### Details

**Response types:** factor, matrix, numeric, Surv

**Automatic tuning of grid parameters:** mtry, nodesize

Default values and further model details can be found in the source links below.

In calls to `varimp` for `RFSRCModel`, argument type may be specified as "permute" (default) for permutation of OOB cases, as "random" for permutation replaced with random assignment, or as "anit" for cases assigned to the split opposite of the random assignments. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set `scale = FALSE`. See example below.

### Value

MLModel class object.

### See Also

rfsrc, rfsrc.fast, fit, resample

### Examples

```r
Requires prior installation of suggested package randomForestSRC to run

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = RFSRCModel)
varimp(model_fit, method = "model", type = "random", scale = TRUE)
```
Recursive Partitioning and Regression Tree Models

Description
Fit an rpart model.

Usage
RPartModel(
  minsplit = 20,
  minbucket = round(minsplit/3),
  cp = 0.01,
  maxcompete = 4,
  maxsurrogate = 5,
  usesurrogate = 2,
  xval = 10,
  surrogatestyle = 0,
  maxdepth = 30
)

Arguments
- **minsplit**: minimum number of observations that must exist in a node in order for a split to be attempted.
- **minbucket**: minimum number of observations in any terminal node.
- **cp**: complexity parameter.
- **maxcompete**: number of competitor splits retained in the output.
- **maxsurrogate**: number of surrogate splits retained in the output.
- **usesurrogate**: how to use surrogates in the splitting process.
- **xval**: number of cross-validations.
- **surrogatestyle**: controls the selection of a best surrogate.
- **maxdepth**: maximum depth of any node of the final tree, with the root node counted as depth 0.

Details
- **Response types**: factor, numeric, Surv

  **Automatic tuning of grid parameter**: **cp**

  Further model details can be found in the source link below.

Value
- MLModel class object.
See Also

rpart, fit, resample

Examples

## Requires prior installation of suggested packages rpart and partykit to run

fit(Species ~ ., data = iris, model = RPartModel)

---

SelectedInput | Selected Model Inputs

Description

Formula, design matrix, model frame, or recipe selection from a candidate set.

Usage

SelectedInput(...)

## S3 method for class 'formula'
SelectedInput(
  ...,
  data,
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'matrix'
SelectedInput(
  ...,
  y,
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'ModelFrame'
SelectedInput(
  ...,
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)
metrics = NULL,
cutoff = MachineShop::settings("cutoff"),
stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'recipe'
SelectedInput(
  ..., 
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'ModelSpecification'
SelectedInput(
  ..., 
  control = MachineShop::settings("control"),
  metrics = NULL,
  cutoff = MachineShop::settings("cutoff"),
  stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'list'
SelectedInput(x, ...)

Arguments

... inputs defining relationships between model predictor and response variables. Supplied inputs must all be of the same type and may be named or unnamed.
data data frame containing predictor and response variables.
control control function, function name, or object defining the resampling method to be employed.
metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Recipe selection is based on the first calculated metric.
cutoff argument passed to the metrics functions.
stat function or character string naming a function to compute a summary statistic on resampled metric values for recipe selection.
y response variable.
x list of inputs followed by arguments passed to their method function.

Value

SelectedModelFrame, SelectedModelRecipe, or SelectedModelSpecification class object that inherits from SelectedInput and ModelFrame, recipe, or ModelSpecification, respectively.
**SelectedModel**

**Description**

Model selection from a candidate set.

**Usage**

```
SelectedModel(...)
```

## Default S3 method:
```
SelectedModel(
 ...,
 control = MachineShop::settings("control"),
 metrics = NULL,
 cutoff = MachineShop::settings("cutoff"),
 stat = MachineShop::settings("stat.TrainingParams")
)
```

## S3 method for class 'ModelSpecification'
```
SelectedModel(
 ...,
)
```

**See Also**

`fit`, `resample`

**Examples**

```r
define selected model frame

```r
sel_mf <- SelectedInput(  
  sale_amount ~ sale_year + built + style + construction,  
  sale_amount ~ sale_year + base_size + bedrooms + basement,  
  data = ICHomes  
)
```

```r
fit(sel_mf, model = GLMModel)
```

```r
define selected recipe

```r
library(recipes)
data(Boston, package = "MASS")
```

```r
rec1 <- recipe(medv ~ crim + zn + indus + chas + nox + rm, data = Boston)
rec2 <- recipe(medv ~ chas + nox + rm + age + dis + rad + tax, data = Boston)
```

```r
sel_rec <- SelectedInput(rec1, rec2)
```

```r
fit(sel_rec, model = GLMModel)
```
SelectedModel

control = MachineShop::settings("control"),
metrics = NULL,
cutoff = MachineShop::settings("cutoff"),
stat = MachineShop::settings("stat.TrainingParams")
)

## S3 method for class 'list'
SelectedModel(x, ...)

Arguments

... model functions, function names, objects; other objects that can be coerced to models; vectors of these to serve as the candidate set from which to select, such as that returned by expand_model; or model specifications.
control control function, function name, or object defining the resampling method to be employed.
metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.
cutoff argument passed to the metrics functions.
stat function or character string naming a function to compute a summary statistic on resampled metric values for model selection.
x list of models followed by arguments passed to their method function.

Details

Response types: factor, numeric, ordered, Surv

Value

SelectedModel or SelectedModelSpecification class object that inherits from MLModel or ModelSpecification, respectively.

See Also

fit, resample

Examples

## Requires prior installation of suggested package gbm and glmnet to run

model_fit <- fit(
  sale_amount ~ ., data = ICHomes,
  model = SelectedModel(GBMModel, GLMNetModel, SVMRadialModel)
)
(selected_model <- as.MLModel(model_fit))
summary(selected_model)
**settings**  

*MachineShop Settings*

**Description**

Allow the user to view or change global settings which affect default behaviors of functions in the **MachineShop** package.

**Usage**

`settings(...)`

**Arguments**

- character names of settings to view, name = value pairs giving the values of settings to change, a vector of these, "reset" to restore all package defaults, or no arguments to view all settings. Partial matching of setting names is supported.

**Value**

The setting value if only one is specified to view. Otherwise, a list of the values of specified settings as they existed prior to any requested changes. Such a list can be passed as an argument to `settings` to restore their values.

**Settings**

- `control` function, function name, or object defining a default resampling method [default: "CVControl"].
- `cutoff` numeric (0, 1) threshold above which binary factor probabilities are classified as events and below which survival probabilities are classified [default: 0.5].
- `distr.SurvMeans` character string specifying distributional approximations to estimated survival curves for predicting survival means. Choices are "empirical" for the Kaplan-Meier estimator, "exponential", "rayleigh", or "weibull" (default).
- `distr.SurvProbs` character string specifying distributional approximations to estimated survival curves for predicting survival events/probabilities. Choices are "empirical" (default) for the Kaplan-Meier estimator, "exponential", "rayleigh", or "weibull".
- `grid` size argument to TuningGrid indicating the number of parameter-specific values to generate automatically for tuning of models that have pre-defined grids or a TuningGrid function, function name, or object [default: 3].
- `method.EmpiricalSurv` character string specifying the empirical method of estimating baseline survival curves for Cox proportional hazards-based models. Choices are "breslow" or "efron" (default).
- `metrics.ConfusionMatrix` function, function name, or vector of these with which to calculate performance metrics for confusion matrices [default: c(Accuracy = "accuracy", Kappa = "kappa2", Weighted Kappa = "weighted_kappa2", Sensitivity = "sensitivity", Specificity = "specificity")].
metrics.factor function, function name, or vector of these with which to calculate performance metrics for factor responses [default: c(Brier = "brier", Accuracy = "accuracy", Kappa = "kappa2", Weighted Kappa = "weighted_kappa2", ROC AUC = "roc_auc", Sensitivity = "sensitivity", Specificity = "specificity").]

metrics.matrix function, function name, or vector of these with which to calculate performance metrics for matrix responses [default: c(RMSE = "rmse", R2 = "r2", MAE = "mae").]

metrics.numeric function, function name, or vector of these with which to calculate performance metrics for numeric responses [default: c(RMSE = "rmse", R2 = "r2", MAE = "mae").]

metrics.Surv function, function name, or vector of these with which to calculate performance metrics for survival responses [default: c("C-Index = "cindex", Brier = "brier", ROC AUC = "roc_auc", Accuracy = "accuracy").]

print_max number of models or data rows to show with print methods or Inf to show all [default: 10].

require names of installed packages to load during parallel execution of resampling algorithms [default: "MachineShop"].

reset character names of settings to reset to their default values.

RHS.formula non-modifiable character vector of operators and functions allowed in traditional formula specifications.

stat.Curve function or character string naming a function to compute one summary statistic at each cutoff value of resampled metrics in performance curves, or NULL for resample-specific metrics [default: "base::mean"].

stat.Resample function or character string naming a function to compute one summary statistic to control the ordering of models in plots [default: "base::mean"].

stat.TrainingParams function or character string naming a function to compute one summary statistic on resampled performance metrics for input selection or tuning or for model selection or tuning [default: "base::mean"].

stats.PartialDependence function, function name, or vector of these with which to compute partial dependence summary statistics [default: c(Mean = "base::mean").]

stats.Resample function, function name, or vector of these with which to compute summary statistics on resampled performance metrics [default: c(Mean = "base::mean", Median = "stats::median", SD = "stats::sd", Min = "base::min", Max = "base::max").]

Examples

## View all current settings
settings()

## Change settings
presets <- settings(control = "BootControl", grid = 10)

## View one setting
settings("control")

## View multiple settings
settings("control", "grid")
## Restore the previous settings
settings(presets)

---

**set_monitor**  
*Training Parameters Monitoring Control*

### Description

Set parameters that control the monitoring of resample estimation of model performance and of tuning parameter optimization.

### Usage

```r
set_monitor(object, ...)
```

#### S3 method for class 'MLControl'

```r
set_monitor(object, progress = TRUE, verbose = FALSE, ...)
```

#### S3 method for class 'MLOptimization'

```r
set_monitor(object, progress = FALSE, verbose = FALSE, ...)
```

#### S3 method for class 'ModelSpecification'

```r
set_monitor(object, which = c("all", "control", "optim"), ...)
```

### Arguments

- **object**: resampling control, tuning parameter optimization, or model specification object.
- **...**: arguments passed from the `ModelSpecification` method to the others.
- **progress**: logical indicating whether to display iterative progress during resampling or optimization. In the case of resampling, a progress bar will be displayed if a computing cluster is not registered or is registered with the `doSNOW` package.
- **verbose**: numeric or logical value specifying the level of progress detail to print, with 0 (FALSE) indicating none and 1 (TRUE) or higher indicating increasing amounts of detail.
- **which**: character string specifying the monitoring parameters to set as "all", "control", or optimization ("optim").

### Value

Argument object updated with the supplied parameters.

### See Also

`resample`, `set_optim`, `set_predict`, `set_strata`
Examples

CVControl() %>% set_monitor(verbos = TRUE)

Description

Set the optimization method and control parameters for tuning of model parameters.

Usage

set_optim_bayes(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bayes(
  object,
  num_init = 5,
  times = 10,
  each = 1,
  acquisition = c("ucb", "ei", "eips", "poi"),
  kappa = stats::qnorm(conf),
  conf = 0.995,
  epsilon = 0,
  control = list(),
  packages = c("ParBayesianOptimization", "rBayesianOptimization"),
  random = FALSE,
  progress = verbose,
  verbose = 0,
  ...
)

set_optim_bfgs(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bfgs(
  object,
  times = 10,
  control = list(),
  random = FALSE,
  progress = FALSE,
  verbose = 0,
  ...
)

set_optim_grid(object, ...)

set_optim_bayes(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bayes(
  object,
  num_init = 5,
  times = 10,
  each = 1,
  acquisition = c("ucb", "ei", "eips", "poi"),
  kappa = stats::qnorm(conf),
  conf = 0.995,
  epsilon = 0,
  control = list(),
  packages = c("ParBayesianOptimization", "rBayesianOptimization"),
  random = FALSE,
  progress = verbose,
  verbose = 0,
  ...
)

set_optim_bfgs(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bfgs(
  object,
  times = 10,
  control = list(),
  random = FALSE,
  progress = FALSE,
  verbose = 0,
  ...
)

set_optim_grid(object, ...)

110

set_optim

Examples

CVControl() %>% set_monitor(verbos = TRUE)

---

set_optim | Tuning Parameter Optimization

Description

Set the optimization method and control parameters for tuning of model parameters.

Usage

set_optim_bayes(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bayes(
  object,
  num_init = 5,
  times = 10,
  each = 1,
  acquisition = c("ucb", "ei", "eips", "poi"),
  kappa = stats::qnorm(conf),
  conf = 0.995,
  epsilon = 0,
  control = list(),
  packages = c("ParBayesianOptimization", "rBayesianOptimization"),
  random = FALSE,
  progress = verbose,
  verbose = 0,
  ...
)

set_optim_bfgs(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_bfgs(
  object,
  times = 10,
  control = list(),
  random = FALSE,
  progress = FALSE,
  verbose = 0,
  ...
)

set_optim_grid(object, ...)
## S3 method for class 'TrainingParams'
set_optim_grid(object, random = FALSE, progress = FALSE, ...)

## S3 method for class 'ModelSpecification'
set_optim_grid(object, ...)

## S3 method for class 'TunedInput'
set_optim_grid(object, ...)

## S3 method for class 'TunedModel'
set_optim_grid(object, ...)

set_optim_pso(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_pso(
  object,
  times = 10,
  each = NULL,
  control = list(),
  random = FALSE,
  progress = FALSE,
  verbose = 0,
  ...
)

set_optim_sann(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_sann(
  object,
  times = 10,
  control = list(),
  random = FALSE,
  progress = FALSE,
  verbose = 0,
  ...
)

set_optim_method(object, ...)

## S3 method for class 'ModelSpecification'
set_optim_method(
  object,
  fun,
  label = "Optimization Function",
  packages = character(),
set_optim

```r
params = list(),
random = FALSE,
progress = FALSE,
verbose = FALSE,
...
```

Arguments

- **object**: Input or model object.
- **...**: Arguments passed to the `TrainingParams` method of `set_optim_grid` from its other methods.
- **num_init**: Number of grid points to sample for the initialization of Bayesian optimization.
- **times**: Maximum number of times to repeat the optimization step. Multiple sets of model parameters are evaluated automatically at each step of the BFGS algorithm to compute a finite-difference approximation to the gradient.
- **each**: Number of times to sample and evaluate model parameters at each optimization step. This is the swarm size in particle swarm optimization, which defaults to `floor(10 + 2 * sqrt(length(bounds)))`.
- **acquisition**: Character string specifying the acquisition function as "ucb" (upper confidence bound), "ei" (expected improvement), "eips" (expected improvement per second), or "poi" (probability of improvement).
- **kappa, conf**: Upper confidence bound ("ucb") quantile or its probability to balance exploitation against exploration. Argument `kappa` takes precedence if both are given and multiplies the predictive standard deviation added to the predictive mean in the acquisition function. Larger values encourage exploration of the model parameter space.
- **epsilon**: Improvement methods ("ei", "eips", and "poi") parameter to balance exploitation against exploration. Values should be between -0.1 and 0.1 with larger ones encouraging exploration.
- **control**: List of control parameters passed to `bayesOpt` by `set_optim_bayes` with package "ParBayesianOptimization", to `BayesianOptimization` by `set_optim_bayes` with package "rBayesianOptimization", to `optim` by `set_optim_bfgs` and `set_optim_sann`, and to `psoptim` by `set_optim_pso`.
- **packages**: R package or packages to use for the optimization method, or an empty vector if none are needed. The first package in `set_optim_bayes` is used unless otherwise specified by the user.
- **random**: Number of points to sample for a random grid search, or `FALSE` for an exhaustive grid search. Used when a grid search is specified or as the fallback method for non-numeric model parameters present during other optimization methods.
- **progress**: Logical indicating whether to display iterative progress during optimization.
- **verbose**: Numeric or logical value specifying the level of progress detail to print, with 0 (FALSE) indicating none and 1 (TRUE) or higher indicating increasing amounts of detail.
fun  user-defined optimization function to which the arguments below are passed in order. An ellipsis can be included in the function definition when using only a subset of the arguments and ignoring others. A tibble returned by the function with the same number of rows as model evaluations will be included in a TrainingStep summary of optimization results; other types of return values will be ignored.

optim  function that takes a numeric vector or list of named model parameters as the first argument, optionally accepts the maximum number of iterations as argument max_iter, and returns a scalar measure of performance to be maximized. Parameter names are available from the grid and bounds arguments described below. If the function cannot be evaluated at a given set of parameter values, then -Inf is returned.

grid  data frame containing a tuning grid of all model parameters.

bounds  named list of lower and upper bounds for each finite numeric model parameter in grid. The types (integer or double) of the original parameter values are preserved in the bounds.

params  list of optimization parameters as supplied to set_optim_method.

monitor  list of the progress and verbose values.

label  character descriptor for the optimization method.

params  list of user-specified model parameters to be passed to fun.

Details

The optimization functions implement the following methods.

set_optim_bayes  Bayesian optimization with a Gaussian process model (Snoek et al. 2012).

set_optim_bfgs  limited-memory modification of quasi-Newton BFGS optimization (Byrd et al. 1995).

set_optim_grid  exhaustive or random grid search.


set_optim_sann  simulated annealing (Belisle 1992). This method depends critically on the control parameter settings. It is not a general-purpose method but can be very useful in getting to good parameter values on a very rough optimization surface.

set_optim_method  user-defined optimization function.

The package-defined optimization functions evaluate and return values of the tuning parameters that are of same type (e.g. integer, double, character) as given in the object grid. Sequential optimization of numeric tuning parameters is performed over a hypercube defined by their minimum and maximum grid values. Non-numeric parameters are optimized with grid searches.

Value

Argument object updated with the specified optimization method and control parameters.
References


See Also

BayesianOptimization, bayesOpt, optim, psoptim, set_monitor, set_predict, set_strata

Examples

```r
ModelSpecification(
 sale_amount ~ ., data = ICHomes,
 model = TunedModel(GBMModel)
) %>% set_optim_bayes
```

set_predict  Resampling Prediction Control

Description

Set parameters that control prediction during resample estimation of model performance.

Usage

```r
set_predict(
 object,
 times = numeric(),
 distr = character(),
 method = character(),
 ...
)
```

Arguments

- **object**  
  control object.
- **times**  
  arguments passed to `predict`.
- **distr**  
  arguments passed to other methods.
Value

Argument object updated with the supplied parameters.

See Also

resample, set_monitor, set_optim, set_strata

Examples

CVControl() %>% set_predict(times = 1:3)

---

set_strata  Resampling Stratification Control

Description

Set parameters that control the construction of strata during resample estimation of model performance.

Usage

set_strata(object, breaks = 4, nunique = 5, prop = 0.1, size = 20, ...)

Arguments

object  control object.

breaks  number of quantile bins desired for stratification of numeric data during resampling.

nunique  number of unique values at or below which numeric data are stratified as categorical.

prop  minimum proportion of data in each strata.

size  minimum number of values in each strata.

...  arguments passed to other methods.

Details

The arguments control resampling strata which are constructed from numeric proportions for BinomialVariate; original values for character, factor, logical, numeric, and ordered; first columns of values for matrix; and numeric times within event statuses for Surv. Stratification of survival data by event status only can be achieved by setting breaks = 1. Numeric values are stratified into quantile bins and categorical values into factor levels. The number of bins will be the largest integer less than or equal to breaks satisfying the prop and size control argument thresholds. Categorical levels below the thresholds will be pooled iteratively by reassigning values in the smallest nominal level to the remaining ones at random and by combining the smallest adjacent ordinal levels. Missing values are replaced with non-missing values sampled at random with replacement.
Value

Argument object updated with the supplied parameters.

See Also

resample, set_monitor, set_optim, set_predict

Examples

CVControl() %>% set_strata(breaks = 3)

---

StackedModel  Stacked Regression Model

Description

Fit a stacked regression model from multiple base learners.

Usage

StackedModel(
  ..., control = MachineShop::settings("control"),
  weights = numeric()
)

Arguments

...  model functions, function names, objects; other objects that can be coerced to models; or vector of these to serve as base learners.
control  control function, function name, or object defining the resampling method to be employed for the estimation of base learner weights.
weights  optional fixed base learner weights.

Details

Response types: factor, numeric, ordered, Surv

Value

StackedModel class object that inherits from MLModel.

References

### step_kmeans

K-Means Clustering Variable Reduction

**Description**

Creates a *specification* of a recipe step that will convert numeric variables into one or more by averaging within k-means clusters.

**Usage**

```r
step_kmeans(
 recipe,
 ...,
 k = 5,
 center = TRUE,
 scale = TRUE,
 algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
 max_iter = 10,
 num_start = 1,
 replace = TRUE,
 prefix = "KMeans",
 role = "predictor",
 skip = FALSE,
 id = recipes::rand_id("kmeans")
)
```

### Examples

```r
Requires prior installation of suggested packages gbm and glmnet to run

model <- StackedModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)
```

---

**See Also**

`fit`, `resample`
step_kmeans

Arguments

- **recipe**
  - *recipe* object to which the step will be added.

- **...**
  - one or more selector functions to choose which variables will be used to compute the components. See selections for more details. These are not currently used by the tidy method.

- **k**
  - number of k-means clusterings of the variables. The value of k is constrained to be between 1 and one less than the number of original variables.

- **center, scale**
  - logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.

- **algorithm**
  - character string specifying the clustering algorithm to use.

- **max_iter**
  - maximum number of algorithm iterations allowed.

- **num_start**
  - number of random cluster centers generated for starting the Hartigan-Wong algorithm.

- **replace**
  - logical indicating whether to replace the original variables.

- **prefix**
  - character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.

- **role**
  - analysis role that added step variables should be assigned. By default, they are designated as model predictors.

- **skip**
  - logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

- **id**
  - unique character string to identify the step.

- **x**
  - step_kmeans object.

Details

K-means clustering partitions variables into k groups such that the sum of squares between the variables and their assigned cluster means is minimized. Variables within each cluster are then averaged to derive a new set of k variables.

Value

Function step_kmeans creates a new step whose class is of the same name and inherits from step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), cluster assignments, sqdist (squared distance from cluster centers), and name of the new variable names.

References

step_kmedoids


See Also

kmeans, recipe, prep, bake

Examples

```r
library(recipes)
rec <- recipe(rating ~ ., data = attitude)
kmeans_rec <- rec %>%
 step_kmedoids(all_predictors(), k = 3)
kmeans_prep <- prep(kmeans_rec, training = attitude)
kmeans_data <- bake(kmeans_prep, attitude)
pairs(kmeans_data, lower.panel = NULL)
tidy(kmeans_rec, number = 1)
tidy(kmeans_prep, number = 1)
```

---

**Description**

Creates a specification of a recipe step that will partition numeric variables according to k-medoids clustering and select the cluster medoids.

**Usage**

```r
step_kmedoids(
 recipe,
 ...,
 k = 5,
 center = TRUE,
 scale = TRUE,
 method = c("pam", "clara"),
 metric = "euclidean",
 optimize = FALSE,
 num_samp = 50,
)```
samp_size = 40 + 2 * k,
replace = TRUE,
prefix = "KMedoids",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("kmedoids")
)

S3 method for class 'step_kmedoids'
tunable(x, ...)

Arguments

- **recipe**: recipe object to which the step will be added.
- **...**: one or more selector functions to choose which variables will be used to compute the components. See selections for more details. These are not currently used by the tidy method.
- **k**: number of k-medoids clusterings of the variables. The value of k is constrained to be between 1 and one less than the number of original variables.
- **center, scale**: logicals indicating whether to mean center and median absolute deviation scale the original variables prior to cluster partitioning, or functions or names of functions for the centering and scaling; not applied to selected variables.
- **method**: character string specifying one of the clustering methods provided by the cluster package. The clara (clustering large applications) method is an extension of pam (partitioning around medoids) designed to handle large datasets.
- **metric**: character string specifying the distance metric for calculating dissimilarities between observations as "euclidean", "manhattan", or "jaccard" (clara only).
- **optimize**: logical indicator or 0:5 integer level specifying optimization for the pam clustering method.
- **num_samp**: number of sub-datasets to sample for the clara clustering method.
- **samp_size**: number of cases to include in each sub-dataset.
- **replace**: logical indicating whether to replace the original variables.
- **prefix**: if the original variables are not replaced, the selected variables are added to the dataset with the character string prefix added to their names; otherwise, the original variable names are retained.
- **role**: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
- **skip**: logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.
- **id**: unique character string to identify the step.
- **x**: step_kmedoids object.
Details

K-medoids clustering partitions variables into k groups such that the dissimilarity between the variables and their assigned cluster medoids is minimized. Cluster medoids are then returned as a set of k variables.

Value

Function `step_kmedoids` creates a new step whose class is of the same name and inherits from `step_sbf`, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns `terms` (selectors or variables selected), `cluster` assignments, `selected` (logical indicator of selected cluster medoids), `silhouette` (silhouette values), and `name` of the selected variable names.

References

See Also

`pam`, `clara`, `recipe`, `prep`, `bake`

Examples

```r
library(recipes)

rec <- recipe(rating ~ ., data = attitude)
kmedoids_rec <- rec %>%
  step_kmedoids(all_predictors(), k = 3)
kmedoids_prep <- prep(kmedoids_rec, training = attitude)
kmedoids_data <- bake(kmedoids_prep, attitude)
pairs(kmedoids_data, lower.panel = NULL)
tidy(kmedoids_rec, number = 1)
tidy(kmedoids_prep, number = 1)
```

Description

Creates a specification of a recipe step that will compute one or more linear combinations of a set of numeric variables according to a user-specified transformation matrix.
Usage

step_lincomp(
 recipe,
 ...,
 transform,
 num_comp = 5,
 options = list(),
 center = TRUE,
 scale = TRUE,
 replace = TRUE,
 prefix = "LinComp",
 role = "predictor",
 skip = FALSE,
 id = recipes::rand_id("lincomp")
)

S3 method for class 'step_lincomp'
tidy(x, ...)

S3 method for class 'step_lincomp'
tunable(x, ...)

Arguments

- **recipe**: recipe object to which the step will be added.
- **...**: one or more selector functions to choose which variables will be used to compute the components. See selections for more details. These are not currently used by the tidy method.
- **transform**: function whose first argument \(x \) is a matrix of variables with which to compute linear combinations and second argument step is the current step. The function should return a transformation matrix or Matrix of variable weights in its columns, or return a list with element `weights` containing the transformation matrix and possibly with other elements to be included as attributes in output from the tidy method.
- **num_comp**: number of components to derive. The value of num_comp will be constrained to a minimum of 1 and maximum of the number of original variables when prep is run.
- **options**: list of elements to be added to the step object for use in the transform function.
- **center, scale**: logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.
- **replace**: logical indicating whether to replace the original variables.
- **prefix**: character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.
- **role**: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
step_sbf

skip logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g., processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_lincomp object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (selectors or variables selected), weight of each variable in the linear transformations, and name of the new variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

pca_mat <- function(x, step) {
 prcomp(x)$rotation[, 1:step$num_comp, drop = FALSE]
}

rec <- recipe(rating ~ ., data = attitude)
lincomp_rec <- rec %>%
 step_lincomp(all_numeric_predictors(),
 transform = pca_mat, num_comp = 3, prefix = "PCA")

lincomp_prep <- prep(lincomp_rec, training = attitude)
lincomp_data <- bake(lincomp_prep, attitude)

pairs(lincomp_data, lower.panel = NULL)

tidy(lincomp_rec, number = 1)
tidy(lincomp_prep, number = 1)

step_sbf Variable Selection by Filtering

Description

Creates a specification of a recipe step that will select variables from a candidate set according to a user-specified filtering function.
Usage

```r
step_sbf(
  recipe,
  ..., 
  filter,
  multivariate = FALSE,
  options = list(),
  replace = TRUE,
  prefix = "SBF",
  role = "predictor",
  skip = FALSE,
  id = recipes::rand_id("sbf")
)
```

S3 method for class 'step_sbf'
tidy(x, ...)

Arguments

- `recipe` - `recipe` object to which the step will be added.
- `...` - one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the `tidy` method.
- `filter` - function whose first argument `x` is a univariate vector or a multivariate data frame of candidate variables from which to select, second argument `y` is the response variable as defined in preceding recipe steps, and third argument `step` is the current step. The function should return a logical value or vector of length equal the number of variables in `x` indicating whether to select the corresponding variable, or return a list or data frame with element `selected` containing the logical(s) and possibly with other elements of the same length to be included in output from the `tidy` method.
- `multivariate` - logical indicating that candidate variables be passed to the `x` argument of the `filter` function separately as univariate vectors if `FALSE`, or altogether in one multivariate data frame if `TRUE`.
- `options` - list of elements to be added to the step object for use in the `filter` function.
- `replace` - logical indicating whether to replace the original variables.
- `prefix` - if the original variables are not replaced, the selected variables are added to the dataset with the character string `prefix` added to their names; otherwise, the original variable names are retained.
- `role` - analysis role that added step variables should be assigned. By default, they are designated as model predictors.
- `skip` - logical indicating whether to skip the step when the recipe is baked. While all operations are baked when `prep` is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using `skip = TRUE` as it may affect the computations for subsequent operations.
- `id` - unique character string to identify the step.
x

step_sbf object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For the tidy method, a tibble with columns terms (selectors or variables selected), selected (logical indicator of selected variables), and name of the selected variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

glm_filter <- function(x, y, step) {
 model_fit <- glm(y ~ ., data = data.frame(y, x))
 p_value <- drop1(model_fit, test = "F")[-1, "Pr(>F)"
 p_value < step$threshold
}

rec <- recipe(rating ~ ., data = attitude)
sbf_rec <- rec %>%
 step_sbf(all_numeric_predictors(),
 filter = glm_filter, options = list(threshold = 0.05))

sbf_prep <- prep(sbf_rec, training = attitude)
sbf_data <- bake(sbf_prep, attitude)
pairs(sbf_data, lower.panel = NULL)
tidy(sbf_rec, number = 1)
tidy(sbf_prep, number = 1)
```
num_comp = 5,
sparsity = 0,
um_var = integer(),
shrinkage = 1e-06,
center = TRUE,
scale = TRUE,
max_iter = 200,
tol = 0.001,
replace = TRUE,
prefix = "SPCA",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("spca")
)

## S3 method for class 'step_spca'
tunable(x, ...)
```

Arguments

- **recipe**: `recipe` object to which the step will be added.
- **...**: one or more selector functions to choose which variables will be used to compute the components. See `selections` for more details. These are not currently used by the `tidy` method.
- **num_comp**: number of components to derive. The value of `num_comp` will be constrained to a minimum of 1 and maximum of the number of original variables when `prep` is run.
- **sparsity, num_var**: sparsity (L1 norm) penalty for each component or number of variables with non-zero component loadings. Larger sparsity values produce more zero loadings. Argument `sparsity` is ignored if `num_var` is given. The argument value may be a single number applied to all components or a vector of component-specific numbers.
- **shrinkage**: numeric shrinkage (quadratic) penalty for the components to improve conditioning; larger values produce more shrinkage of component loadings toward zero.
- **center, scale**: logicals indicating whether to mean center and standard deviation scale the original variables prior to deriving components, or functions or names of functions for the centering and scaling.
- **max_iter**: maximum number of algorithm iterations allowed.
- **tol**: numeric tolerance for the convergence criterion.
- **replace**: logical indicating whether to replace the original variables.
- **prefix**: character string prefix added to a sequence of zero-padded integers to generate names for the resulting new variables.
- **role**: analysis role that added step variables should be assigned. By default, they are designated as model predictors.
step_spca

```
  skip logical indicating whether to skip the step when the recipe is baked. While all operations are baked when prep is run, some operations may not be applicable to new data (e.g. processing outcome variables). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

  id unique character string to identify the step.

  x step_spca object.
```

Details

Sparse principal components analysis (SPCA) is a variant of PCA in which the original variables may have zero loadings in the linear combinations that form the components.

Value

Function `step_spca` creates a new step whose class is of the same name and inherits from `step_lincomp`, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the tidy method, a tibble with columns `terms` (selectors or variables selected), weight of each variable loading in the components, and name of the new variable names; and with attribute `pev` containing the proportions of explained variation.

References

See Also

`spca`, `recipe`, `prep`, `bake`

Examples

```r
library(recipes)

rec <- recipe(rating ~ ., data = attitude)
spca_rec <- rec %>%
  step_spca(all_predictors(), num_comp = 5, sparsity = 1)
spca_prep <- prep(spca_rec, training = attitude)
spca_data <- bake(spca_prep, attitude)

pairs(spca_data, lower.panel = NULL)

tidy(spca_rec, number = 1)
tidy(spca_prep, number = 1)
```
Model Performance Summaries

Description

Summary statistics for resampled model performance metrics.

Usage

```r
## S3 method for class 'ConfusionList'
summary(object, ...)

## S3 method for class 'ConfusionMatrix'
summary(object, ...)

## S3 method for class 'MLModel'
summary(
  object,
  stats = MachineShop::settings("stats.Resample"),
  na.rm = TRUE,
  ...
)

## S3 method for class 'MLModelFit'
summary(object, .type = c("default", "glance", "tidy"), ...)

## S3 method for class 'Performance'
summary(
  object,
  stats = MachineShop::settings("stats.Resample"),
  na.rm = TRUE,
  ...
)

## S3 method for class 'PerformanceCurve'
summary(object, stat = MachineShop::settings("stat.Curve"), ...)

## S3 method for class 'Resample'
summary(
  object,
  stats = MachineShop::settings("stats.Resample"),
  na.rm = TRUE,
  ...
)

## S3 method for class 'TrainingStep'
summary(object, ...)
```
SuperModel

Arguments

object confusion, lift, trained model fit, performance, performance curve, resample, or rfe result.

... arguments passed to other methods.

stats function, function name, or vector of these with which to compute summary statistics.

na.rm logical indicating whether to exclude missing values.

type character string specifying that unMLModelFit(object) be passed to summary ("default"), glance, or tidy.

stat function or character string naming a function to compute a summary statistic at each cutoff value of resampled metrics in PerformanceCurve, or NULL for resample-specific metrics.

Value

An object of summary statistics.

Examples

Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
summary(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)

SuperModel

Super Learner Model

Description

Fit a super learner model to predictions from multiple base learners.
SuperModel

Usage

SuperModel(
 ...,
 model = GBMModel,
 control = MachineShop::settings("control"),
 all_vars = FALSE
)

Arguments

... model functions, function names, objects; other objects that can be coerced to models; or vector of these to serve as base learners.

model model function, function name, or object defining the super model; or another object that can be coerced to the model.

control control function, function name, or object defining the resampling method to be employed for the estimation of base learner weights.

all_vars logical indicating whether to include the original predictor variables in the super model.

Details

Response types: factor, numeric, ordered, Surv

Value

SuperModel class object that inherits from MLModel.

References

See Also

fit, resample

Examples

Requires prior installation of suggested packages gbm and glmnet to run

model <- SuperModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)
SurvMatrix

SurvMatrix Class Constructors

Description
Create a matrix of survival events or probabilities.

Usage
SurvEvents(data = NA, times = numeric(), distr = character())
SurvProbs(data = NA, times = numeric(), distr = character())

Arguments
- **data**: matrix, or object that can be coerced to one, with survival events or probabilities at points in time in the columns and cases in the rows.
- **times**: numeric vector of survival times for the columns.
- **distr**: character string specifying the survival distribution from which the matrix values were derived.

Value
Object that is of the same class as the constructor name and inherits from SurvMatrix. Examples of these are predicted survival events and probabilities returned by the predict function.

See Also
performance.metrics

SurvRegModel

Parametric Survival Model

Description
Fits the accelerated failure time family of parametric survival models.

Usage
SurvRegModel(
 dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal", "logloglogistic"),
 scale = 0,
 parms = list(),
 ...
SurvRegStepAICModel(
 dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal", "logloglogistic"),
 scale = 0,
 parms = list(),
 ...
 direction = c("both", "backward", "forward"),
 scope = list(),
 k = 2,
 trace = FALSE,
 steps = 1000
)

Arguments

- **dist**: assumed distribution for y variable.
- **scale**: optional fixed value for the scale.
- **parms**: list of fixed parameters.
- **...**: arguments passed to `survreg.control`.
- **direction**: mode of stepwise search, can be one of "both" (default), "backward", or "forward".
- **scope**: defines the range of models examined in the stepwise search. This should be a list containing components `upper` and `lower`, both formulae.
- **k**: multiple of the number of degrees of freedom used for the penalty. Only k = 2 gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or SBC.
- **trace**: if positive, information is printed during the running of `stepAIC`. Larger values may give more information on the fitting process.
- **steps**: maximum number of steps to be considered.

Details

- **Response types**: `Surv`

Default values and further model details can be found in the source links below.

Value

- `MLModel` class object.

See Also

- `psm`, `survreg`, `survreg.control`, `stepAIC`, `fit`, `resample`
- `stepAIC`, `fit`, `resample`
SVMModel

Examples

Requires prior installation of suggested packages rms and Hmisc to run

library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = SurvRegModel)

SVMModel

Support Vector Machine Models

Description

Fits the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr (regression) formulations along with native multi-class classification formulations and the bound-constraint SVM formulations.

Usage

SVMModel(
 scaled = TRUE,
 type = character(),
 kernel = c("rbfdot", "polydot", "vanilladot", "tanhdot", "laplacedot", "besseldot",
 "anovadot", "splinedot"),
 kpar = "automatic",
 C = 1,
 nu = 0.2,
 epsilon = 0.1,
 prob.model = FALSE,
 cache = 40,
 tol = 0.001,
 shrinking = TRUE
)

SVMANOVAModel(sigma = 1, degree = 1, ...)

SVMBesselModel(sigma = 1, order = 1, degree = 1, ...)

SVMRadialModel(sigma = numeric(), ...)

SVMLaplaceModel(sigma = numeric(), ...)

SVMLinearModel(...)

SVMPolyModel(degree = 1, scale = 1, offset = 1, ...)

SVMRadialModel(sigma = numeric(), ...)

SVMSplineModel(...)
SVMTanhModel(scale = 1, offset = 1, ...)

Arguments

- **scaled** logical vector indicating the variables to be scaled.
- **type** type of support vector machine.
- **kernel** kernel function used in training and predicting.
- **kpar** list of hyper-parameters (kernel parameters).
- **C** cost of constraints violation defined as the regularization term in the Lagrange formulation.
- **nu** parameter needed for nu-svc, one-svc, and nu-svr.
- **epsilon** parameter in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm.
- **prob.model** logical indicating whether to calculate the scaling parameter of the Laplacian distribution fitted on the residuals of numeric response variables. Ignored in the case of a factor response variable.
- **cache** cache memory in MB.
- **tol** tolerance of termination criterion.
- **shrinking** whether to use the shrinking-heuristics.
- **sigma** inverse kernel width used by the ANOVA, Bessel, and Laplacian kernels.
- **degree** degree of the ANOVA, Bessel, and polynomial kernel functions.
- **...** arguments passed to SVMModel from the other constructors.
- **order** order of the Bessel function to be used as a kernel.
- **scale** scaling parameter of the polynomial and hyperbolic tangent kernels as a convenient way of normalizing patterns without the need to modify the data itself.
- **offset** offset used in polynomial and hyperbolic tangent kernels.

Details

Response types: factor, numeric

Automatic tuning of grid parameters:
- SVMANOVAModel: C, degree
- SVMBesselModel: C, order, degree
- SVMLaplaceModel: C, sigma
- SVMLinearModel: C
- SVMPolyModel: C, degree, scale
- SVMRadialModel: C, sigma

Arguments kernel and kpar are automatically set by the kernel-specific constructor functions. Default values and further model details can be found in the source link below.

Value

MLModel class object.
t.test

Paired t-Tests for Model Comparisons

Description

Paired t-test comparisons of resampled performance metrics from different models.

Usage

```r
## S3 method for class 'PerformanceDiff'

\texttt{t.test(x, adjust = "holm", ...)}
```

Arguments

- `x`: performance difference result.
- `adjust`: p-value adjustment for multiple statistical comparisons as implemented by `p.adjust`.
- `...`: arguments passed to other methods.

Details

The t-test statistic for pairwise model differences of R resampled performance metric values is calculated as

$$ t = \frac{\bar{x}_R}{\sqrt{F s^2_R / R}} $$

where \bar{x}_R and s^2_R are the sample mean and variance. Statistical testing for a mean difference is then performed by comparing t to a t_{R-1} null distribution. The sample variance in the t statistic is known to underestimate the true variances of cross-validation mean estimators. Underestimation of these variances will lead to increased probabilities of false-positive statistical conclusions. Thus, an additional factor F is included in the t statistic to allow for variance corrections. A correction of $F = 1 + K/(K - 1)$ was found by Nadeau and Bengio (2003) to be a good choice for cross-validation with K folds and is thus used for that resampling method. The extension of this correction by Bouchaert and Frank (2004) to $F = 1 + TK/(K - 1)$ is used for cross-validation with K folds repeated T times. For other resampling methods $F = 1$.

Value

`PerformanceDiffTest` class object that inherits from `array`. p-values and mean differences are contained in the lower and upper triangular portions, respectively, of the first two dimensions. Model pairs are contained in the third dimension.

See Also

`ksvm`, `fit`, `resample`
References

Examples

```r
## Requires prior installation of suggested package gbm to run

## Numeric response example
fo <- sale_amount ~ .
control <- CVControl()

gbm_res1 <- resample(fo, ICHomes, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, ICHomes, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, ICHomes, GBMModel(n.trees = 100), control)
res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
t.test(res_diff)
```

TreeModel

Classification and Regression Tree Models

Description

A tree is grown by binary recursive partitioning using the response in the specified formula and choosing splits from the terms of the right-hand-side.

Usage

```r
TreeModel(
  mincut = 5,
  minsize = 10,
  mindev = 0.01,
  split = c("deviance", "gini"),
  k = numeric(),
  best = integer(),
  method = c("deviance", "misclass")
)
```
TunedInput

Arguments

- **mincut**: minimum number of observations to include in either child node.
- **minsize**: smallest allowed node size: a weighted quantity.
- **mindev**: within-node deviance must be at least this times that of the root node for the node to be split.
- **split**: splitting criterion to use.
- **k**: scalar cost-complexity parameter defining a subtree to return.
- **best**: integer alternative to k requesting the number of terminal nodes of a subtree in the cost-complexity sequence to return.
- **method**: character string denoting the measure of node heterogeneity used to guide cost-complexity pruning.

Details

Response types: factor, numeric

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

tree, prune.tree, fit, resample

Examples

```r
## Requires prior installation of suggested package tree to run
fit(Species ~ ., data = iris, model = TreeModel)
```

Description

Recipe tuning over a grid of parameter values.
Usage

TunedInput(object, ...)

S3 method for class 'recipe'
TunedInput(
 object,
 grid = expand_steps(),
 control = MachineShop::settings("control"),
 metrics = NULL,
 cutoff = MachineShop::settings("cutoff"),
 stat = MachineShop::settings("stat.TrainingParams"),
 ...
)

Arguments

object untrained recipe.
...
arguments passed to other methods.
grid RecipeGrid containing parameter values at which to evaluate a recipe, such as those returned by expand_steps.
control control function, function name, or object defining the resampling method to be employed.
metrics metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Recipe selection is based on the first calculated metric.
cutoff argument passed to the metrics functions.
stat function or character string naming a function to compute a summary statistic on resampled metric values for recipe tuning.

Value

TunedModelRecipe class object that inherits from TunedInput and recipe.

See Also

fit, resample, set_optim

Examples

library(recipes)
data(Boston, package = "MASS")

erc <- recipe(medv ~ ., data = Boston) %>%
 step_pca(all_numeric_predictors(), id = "pca")

grid <- expand_steps(
 pca = list(num_comp = 1:2)
)
TunedModel

fit(TunedInput(rec, grid = grid), model = GLMModel)

TunedModel Tuned Model

Description

Model tuning over a grid of parameter values.

Usage

TunedModel(
 object,
 grid = MachineShop::settings("grid"),
 control = MachineShop::settings("control"),
 metrics = NULL,
 cutoff = MachineShop::settings("cutoff"),
 stat = MachineShop::settings("stat.TrainingParams")
)

Arguments

- **object**: model function, function name, or object defining the model to be tuned.
- **grid**: single integer or vector of integers whose positions or names match the parameters in the model’s pre-defined tuning grid if one exists and which specify the number of values used to construct the grid; TuningGrid function, function name, or object; ParameterGrid object; or data frame containing parameter values at which to evaluate the model, such as that returned by expand_params.
- **control**: control function, function name, or object defining the resampling method to be employed.
- **metrics**: metric function, function name, or vector of these with which to calculate performance. If not specified, default metrics defined in the performance functions are used. Model selection is based on the first calculated metric.
- **cutoff**: argument passed to the metrics functions.
- **stat**: function or character string naming a function to compute a summary statistic on resampled metric values for model tuning.

Details

The expand_modelgrid function enables manual extraction and viewing of grids created automatically when a TunedModel is fit.

Response types: factor, numeric, ordered, Surv
TuningGrid

Value

TunedModel class object that inherits from MLModel.

See Also

fit, resample, set_optim

Examples

Requires prior installation of suggested package gbm to run
May require a long runtime

Automatically generated grid
model_fit <- fit(sale_amount ~ ., data = ICHomes,
 model = TunedModel(GBMModel))
varimp(model_fit)
(tuned_model <- as.MLModel(model_fit))
summary(tuned_model)
plot(tuned_model, type = "l")

Randomly sampled grid points
fit(sale_amount ~ ., data = ICHomes,
 model = TunedModel(
 GBMModel,
 grid = TuningGrid(size = 1000, random = 5)
))

User-specified grid
fit(sale_amount ~ ., data = ICHomes,
 model = TunedModel(
 GBMModel,
 grid = expand_params(
 n.trees = c(50, 100),
 interaction.depth = 1:2,
 n.minobsinnode = c(5, 10)
)
))

TuningGrid

<table>
<thead>
<tr>
<th>Tuning Grid Control</th>
</tr>
</thead>
</table>

Description

Defines control parameters for a tuning grid.
Usage

TuningGrid(size = 3, random = FALSE)

Arguments

size single integer or vector of integers whose positions or names match the parameters in a model’s tuning grid and which specify the number of values used to construct the grid.

random number of unique points to sample at random from the grid defined by size. If size is a single unnamed integer, then random = Inf will include all values of all grid parameters in the constructed grid, whereas random = FALSE will include all values of default grid parameters.

Details

Returned TuningGrid objects may be supplied to TunedModel for automated construction of model tuning grids. These grids can be extracted manually and viewed with the expand_modelgrid function.

Value

TuningGrid class object.

See Also

TunedModel, expand_modelgrid

Examples

TunedModel(XGBTreeModel, grid = TuningGrid(10, random = 5))
Value

The supplied object with its MLModelFit classes and fields removed.

varimp

Variable Importance

Description

Calculate measures of the relative importance of predictors in a model.

Usage

```r
varimp(object, method = c("permute", "model"), scale = TRUE, ...)
```

Arguments

- `object`: model fit result.
- `method`: character string specifying the calculation of variable importance as permutation-base ("permute") or model-specific ("model"). If model-specific importance is specified but not defined, the permutation-based method will be used instead with its default values (below). Permutation-based variable importance is defined as the relative change in model predictive performances between datasets with and without permuted values for the associated variable (Fisher et al. 2019).
- `scale`: logical indicating whether importance values should be scaled to a maximum of 100.
- `...`: arguments passed to model-specific or permutation-based variable importance functions. These include the following arguments and default values for `method = "permute"`.
 - `select = NULL`: expression indicating predictor variables for which to compute variable importance (see `subset` for syntax) [default: all].
 - `samples = 1`: number of times to permute the values of each variable. Larger numbers of samples decrease variability in the estimates at the expense of increased computation time.
 - `prop = numeric()`: proportion of observations to sample without replacement at each round of variable permutations [default: all]. Subsampling of observations can decrease computation time.
 - `size = integer()`: number of observations to sample at each round of permutations [default: all].
 - `times = numeric()`: numeric vector of follow-up times at which to predict survival probabilities or NULL for predicted survival means.
 - `metric = NULL`: metric function or function name with which to calculate performance. If not specified, the first applicable default metric from the `performance` functions is used.
compare = c("-", "/") character specifying the relative change to compute in comparing model predictive performances between datasets with and without permuted values. The choices are difference ("-"), and ratio ("/").
stats = MachineShop::settings("stat.TrainingParams") function, function name, or vector of these with which to compute summary statistics on the set of variable importance values from the permuted datasets.
na.rm = TRUE logical indicating whether to exclude missing variable importance values from the calculation of summary statistics.
progress = TRUE logical indicating whether to display iterative progress during computation.

Value

VariableImportance class object.

References

See Also

plot

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)

(vi <- varimp(gbm_fit))

plot(vi)
Usage

XGBModel(
 nrounds = 100,
 ...,
 objective = character(),
 aft_loss_distribution = "normal",
 aft_loss_distribution_scale = 1,
 base_score = 0.5,
 verbose = 0,
 print_every_n = 1
)

XGBDARTModel(
 eta = 0.3,
 gamma = 0,
 max_depth = 6,
 min_child_weight = 1,
 max_delta_step = .(0.7 * is(y, "PoissonVariate")),
 subsample = 1,
 colsample_bytree = 1,
 colsample_bylevel = 1,
 colsample_bynode = 1,
 alpha = 0,
 lambda = 1,
 tree_method = "auto",
 sketch_eps = 0.03,
 scale_pos_weight = 1,
 refresh_leaf = 1,
 process_type = "default",
 grow_policy = "depthwise",
 max_leaves = 0,
 max_bin = 256,
 num_parallel_tree = 1,
 sample_type = "uniform",
 normalize_type = "tree",
 rate_drop = 0,
 one_drop = 0,
 skip_drop = 0,
 ...
)

XGBLinearModel(
 alpha = 0,
 lambda = 0,
 updater = "shotgun",
 feature_selector = "cyclic",
 top_k = 0,
 ...)
XGBTreeModel(
 eta = 0.3,
 gamma = 0,
 max_depth = 6,
 min_child_weight = 1,
 max_delta_step = (.0.7 * is(y, "PoissonVariate")),
 subsample = 1,
 .colsample_bytree = 1,
 colsample_bylevel = 1,
 colsample_bynode = 1,
 alpha = 0,
 lambda = 1,
 tree_method = "auto",
 sketch_eps = 0.03,
 scale_pos_weight = 1,
 refresh_leaf = 1,
 process_type = "default",
 grow_policy = "depthwise",
 max_leaves = 0,
 max_bin = 256,
 num_parallel_tree = 1,
 ...
)

Arguments

nrounds number of boosting iterations.

... model parameters as described below and in the XGBoost documentation and arguments passed to XGBModel from the other constructors.

objective optional character string defining the learning task and objective. Set automatically if not specified according to the following values available for supported response variable types.

factor: "multi:softprob", "binary:logistic" (2 levels only)
 "rank:pairwise", "rank:ndcg", "rank:map"
PoissonVariate: "count:poisson"
Surv: "survival:aft", "survival:cox"
The first values listed are the defaults for the corresponding response types.

aft_loss_distribution character string specifying a distribution for the accelerated failure time objective ("survival:aft") as "extreme", "logistic", or "normal".

aft_loss_distribution_scale numeric scaling parameter for the accelerated failure time distribution.

base_score initial prediction score of all observations, global bias.
verbose numeric value controlling the amount of output printed during model fitting, such that 0 = none, 1 = performance information, and 2 = additional information.

print_every_n numeric value designating the fitting iterations at which to print output when verbose > 0.

eta shrinkage of variable weights at each iteration to prevent overfitting.

gamma minimum loss reduction required to split a tree node.

max_depth maximum tree depth.

min_child_weight minimum sum of observation weights required of nodes.

max_delta_step, tree_method, sketch_eps, scale_pos_weight, updater, refresh_leaf, process_type, grow_policy, max_leaves, max_bin, num_parallel_tree other tree booster parameters.

subsample subsample ratio of the training observations.

colsample_bytree, colsample_bylevel, colsample_bynode subsample ratio of variables for each tree, level, or split.

alpha, lambda L1 and L2 regularization terms for variable weights.

sample_type, normalize_type type of sampling and normalization algorithms.

rate_drop rate at which to drop trees during the dropout procedure.

one_drop integer indicating whether to drop at least one tree during the dropout procedure.

skip_drop probability of skipping the dropout procedure during a boosting iteration.

feature_selector, top_k character string specifying the feature selection and ordering method, and number of top variables to select in the "greedy" and "thrifty" feature selectors.

Details

Response types: factor, numeric, PoissonVariate, Surv

Automatic tuning of grid parameters: XGBDARTModel: nrounds, eta*, gamma*, max_depth, min_child_weight*, subsample*, colsample_bytree*, rate_drop*, skip_drop*

 XGBLinearModel: nrounds, alpha, lambda

 XGBTreeModel: nrounds, eta*, gamma*, max_depth, min_child_weight*, subsample*, colsample_bytree*

* excluded from grids by default

Default values and further model details can be found in the source link below.

In calls to varimp for XGBTreeModel, argument type may be specified as "Gain" (default) for the fractional contribution of each predictor to the total gain of its splits, as "Cover" for the number of observations related to each predictor, or as "Frequency" for the percentage of times each predictor is used in the trees. Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.
See Also

\texttt{xgboost.fit.resample}

Examples

```r
## Requires prior installation of suggested package xgboost to run

model_fit <- fit(Species ~ ., data = iris, model = XGBTreeModel)
varimp(model_fit, method = "model", type = "Frequency", scale = FALSE)
```
Index

* datasets
ICHomes, 46
+SurvMatrix, SurvMatrix-method
 (combine), 22

(quote), 89

[,DiscreteVariate, ANY, missing, missing-method
 (extract), 35

[,Listof, ANY, missing, missing-method
 (extract), 35

[,ModelFrame, ANY, ANY-method
 (extract), 35

[,ModelFrame, ANY, missing, ANY-method
 (extract), 35

[,ModelFrame, missing, ANY, ANY-method
 (extract), 35

[,ModelFrame, missing, missing, ANY-method
 (extract), 35

[,RecipeGrid, ANY, ANY-method
 (extract), 35

[,Resample, ANY, ANY-method
 (extract), 35

[,Resample, ANY, missing, ANY-method
 (extract), 35

[,Resample, missing, missing, ANY-method
 (extract), 35

[,SurvMatrix, ANY, ANY-method
 (extract), 35

[,SurvTimes, ANY, missing, missing-method
 (extract), 35

[,BinomialVariate (extract), 35

accuracy (metrics), 55
AdaBagModel, 7, 69
AdaBoostModel, 8, 69
as.data.frame, 10
as.MLInput, 10
as.MLMModel, 11, 39, 76
auc, 80
auc (metrics), 55
Automatic tuning, 7, 9, 13, 16, 18, 22, 30,
 37, 40–42, 45, 48–50, 53, 74, 83, 90,
 92, 101, 102, 134, 146

bagging, 8
bake, 119, 121, 123, 125, 127
bartMachine, 12, 13
BARTMachineModel, 12, 69
BARTModel, 13, 69
baselearners, 40
BayesianOptimization, 112, 114
bayesOpt, 112, 114
BinomialVariate, 47, 93, 95, 115
BinomialVariate (DiscreteVariate), 28
blackboost, 17
BlackBoostModel, 15, 69
boosting, 9
BootControl, 6
BootControl (MLControl), 60
BootOptimismControl, 6
BootOptimismControl (MLControl), 60
brier (metrics), 55
bruto, 36, 53
c, 20, 24, 51, 80, 95
c (combine), 22
C5.0, 18
C5.0Control, 18
C50Model, 17, 69
calibration, 5, 19, 23, 82
case weights, 19, 23, 51, 59, 78, 80
case_weights, 20
cforest, 22
cforest_control, 22
CForestModel, 21, 69
cindex (metrics), 55
clara, 120, 121
coerced, 30, 32, 38, 71, 95, 98, 106, 116, 130
combine, 22
collusion, 5, 23, 23, 54, 59, 78, 82, 86, 129
ConfusionMatrix (confusion), 23
calibration. 149
classification, 149
classifiers (MLControl), 60
control. 23, 71, 95, 98, 104, 106, 107, 109, 114–116, 130, 138, 139
controls (MLControl), 60
CoxModel, 24, 69
coxph, 25
coxph.control, 25
CoxStepAICModel, 69
CoxStepAICModel (CoxModel), 24
cross-validation, 67, 93
cross_entropy (metrics), 55
ctree_control, 16, 17
curves (performance_curve), 79
CVControl, 6
CVControl (MLControl), 60
CVOptimismControl, 6
CVOptimismControl (MLControl), 60
data frame, 20, 26, 32, 38, 67, 72, 85, 95, 98, 104, 139
dependence, 5, 26, 82
diff, 5, 27
difference, 135
differences, 10
DiscreteVariate, 28, 47
earth. 30
EarthModel, 29, 69
expand_model, 5, 30, 106
expand_modelgrid, 5, 31, 139, 141
expand_params, 5, 33, 139
expand_steps, 5, 34, 138
extract, 35
f_score (metrics), 55
factor, 47
Family, 16, 17, 39, 40, 42
fda, 37
FDAModel, 36, 69
fit, 5, 8, 9, 11, 13, 15, 17, 18, 20, 22, 25, 26, 30, 37, 37, 40–42, 44, 45, 47–49, 51, 52, 54, 65–67, 70, 72–74, 76, 78, 82, 84, 85, 89, 90, 92, 96, 101, 103, 105, 106, 117, 129, 130, 132, 135, 137, 138, 140–142, 147
fitting, 93
fnr (metrics), 55
formula, 32, 38, 47, 67, 72, 95, 98
fpr (metrics), 55
gamboost, 40
GAMBoostModel, 39, 69
gbart, 15
gbm, 41
GBMModel, 40, 69
gen.ridge, 36, 53
gini (metrics), 55
glance, 129
glm, 44
glm.control, 43, 44
glmboost, 42
GLMBoostModel, 42, 69
GLMModel, 43, 69
glmnet, 45
GLMNetModel, 44, 69
GLMStepAICModel, 69
GLMStepAICModel (GLMModel), 43
ICHomes, 46
input, 32, 38, 65, 71, 95, 98, 112
inputs, 46, 104
install.packages, 68
kappa2 (metrics), 55
kknn, 48
kmeans, 119
KNNModel, 47, 69
ksvm, 135
lars, 49
LARSModel, 49, 69
lda, 51
LDAModel, 50, 69
library, 68
lift, 6, 23, 51, 82, 129
lm, 52
LMMModel, 52, 69
loess, 19
MachineShop (MachineShop-package), 5
MachineShop-package, 5
mae (metrics), 55
mars, 36, 53
Matrix, 122
matrix, 32, 38, 47, 67, 72, 95, 98, 122
mbart, 15
mda, 54
MDAModel, 53, 69
metric, 54, 72, 78, 99, 104, 106, 138, 139, 142
model specification, model functions
(MLModelFunction MLMetric<-(MLModel MLMetric model MLControl metrics metricinfo 150
PDAModel partial dependence PDAModel (pam p.adjust ordered ParsnipModel parameters optimization OOBControl OOBControl (optim (mse observed responses observed numeric NNetModel nnet (msle metrics metrics metrics 30 120, 121
metrics 84
metrics, 6, 23, 35, 61, 63, 80, 86, 95, 97, 108, 131
MLControl, 60, 95
MLMetric, 6, 63, 78
MLMetric<- (MLMetric), 63
MLModel, 6, 64
MLModelFunction (MLModel), 64
model, 30, 32, 38, 65, 68, 71, 95, 98, 106, 112, 116, 130, 139
model functions, 89
model specification, 11, 76
model.frame, 64
model.matrix, 64
ModelFrame, 10, 20, 47, 65, 66
modelinfo, 6, 68, 70
models, 5, 66, 69
ModelSpecification, 47, 70, 70
mse (metrics), 55
msle (metrics), 55
mvr, 84

naiveBayes, 73
NaiveBayesModel, 69, 72
NegBinomialVariate, 47
NegBinomialVariate (DiscreteVariate), 28
nnet, 74
NNetModel, 69, 73
npv (metrics), 55
numeric, 47

observed, 54
observed responses, 19, 23, 51, 54, 59, 68, 78, 80
OOBControl, 6
OOBControl (MLControl), 60
optim, 112, 114
optimization, 109
ordered, 47

p.adjust, 135
pam, 120, 121
ParameterGrid, 75, 139
parameters, 75
ParsnipModel, 11, 69, 76
partial dependence, 108
PDAModel, 69
PDAModel (FDAModel), 36

performance, 6, 10, 27, 60, 72, 77, 82, 86, 95, 99, 104, 106–108, 129, 131, 138, 139, 142
performance curve, 23, 59, 82, 129
performance_curve, 6, 79
plot, 6, 20, 24, 27, 51, 79, 80, 81, 95, 99, 143
plots, 108
PLSModel, 70, 83
PoissonVariate, 47
PoissonVariate (DiscreteVariate), 28
polr, 84
POLRModel, 70, 84
polyreg, 36, 53
ppr (metrics), 55
ppv (metrics), 55
pr_auc (metrics), 55
precision (metrics), 55
predict, 5, 26, 37, 39, 50, 53, 85, 88, 114, 131
predict, MLModelFit–method (predict), 85
predict.fda, 37
predict.lda, 51
predict.mda, 54
predict.MLMModelFit (predict), 85
predict.qda, 89
predicted, 54
predicted responses, 19, 23, 51, 59, 78, 80
prep, 118–127
print, 6, 86
prune.tree, 137
psm, 132
psoptim, 112, 114

qda, 89
QDAModel, 70, 88
quote, 89, 89

r2 (metrics), 55
randomForest, 90
RandomForestModel, 70, 90
ranger, 92
RangerModel, 70, 91
recall (metrics), 55
recipe, 20, 34, 47, 93, 118–127, 138
recipe_roles, 93
resample, 5, 8–10, 13, 15, 17–19, 22, 23, 25, 27, 30, 37, 40–42, 44, 45, 47–49, 51, 52, 54, 59, 62, 66, 67, 70, 72–74, 76, 78, 80, 82, 84, 89, 90, 92, 93, 94, 101, 103, 105, 106, 109, 115–117,
TrainControl (MLControl), 60
Tree, 137
TreeModel, 70, 136
tunable.step_kmeans (step_kmeans), 117
tunable.step_kmedoids (step_kmedoids), 119
tunable.step_lincomp (step_lincomp), 121
tunable.step_spca (step_spca), 125
TunedInput, 34, 47, 62, 137
TunedModel, 32, 33, 62, 70, 75, 139, 141
TunedModelRecipe (TunedInput), 137
tuning, 107, 108
TuningGrid, 107, 139, 140
unMLModelFit, 141
unMLModelFit(object), 129
variable importance, 82
varimp, 6, 13, 18, 25, 30, 39, 44, 52, 65, 84, 98, 99, 101, 142, 146
weighted_kappa2 (metrics), 55
weights, 38
XGBDARTModel, 70
XGBDARTModel (XGBModel), 143
XGBLinearModel, 70
XGBLinearModel (XGBModel), 143
XGBModel, 70, 143
xgboost, 147
XGBTreeModel, 70
XGBTreeModel (XGBModel), 143