Package ‘Matrix’

November 29, 2023

Version 1.6-4

VersionNote do also bump src/version.h, inst/include/Matrix/version.h

Date 2023-11-29

Priority recommended

Title Sparse and Dense Matrix Classes and Methods

Description A rich hierarchy of sparse and dense matrix classes, including general, symmetric, triangular, and diagonal matrices with numeric, logical, or pattern entries. Efficient methods for operating on such matrices, often wrapping the 'BLAS', 'LAPACK', and 'SuiteSparse' libraries.

License GPL (>= 2) | file LICENCE

BugReports https://R-forge.R-project.org/tracker/?atid=294&group_id=61

Contact Matrix-authors@R-project.org

Depends R (>= 3.5.0), methods

Imports grDevices, graphics, grid, lattice, stats, utils

Suggests MASS, datasets, sfsmisc, tools

Enhances SparseM, graph

LazyData no

LazyDataNote not possible, since we use data/*.R and our S4 classes

BuildResaveData no

Encoding UTF-8

R topics documented:

abIndex-class ... 4
abIseq ... 4
all.equal-methods ... 5
asUniqueT ... 6
atomicVector-class ... 7
band-methods .. 8
bandSparse ... 9

1
R topics documented:

bdia... .. 12
boolmatmult-methods .. 14
BunchKaufman-class .. 15
BunchKaufman-methods 17
CAex ... 19
cbind2-methods ... 20
CHMfactor-class ... 21
chol-methods .. 25
chol2inv-methods .. 28
Cholesky-class .. 29
Cholesky-methods ... 32
colSums-methods .. 39
compMatrix-class ... 41
condest .. 42
CsparseMatrix-class ... 44
ddenseMatrix-class .. 45
ddiMatrix-class ... 46
denseLU-class .. 47
denseMatrix-class ... 49
dgCMatrix-class ... 49
dgeMatrix-class ... 50
dgRMatrix-class ... 51
dgTMatrix-class ... 52
Diagonal ... 53
diagonalMatrix-class 55
diagU2N ... 57
dimScale ... 58
dMatrix-class .. 59
dmperm .. 60
dpoMatrix-class .. 62
drop0 .. 64
dsCMatrix-class .. 65
dsparseMatrix-class .. 66
dsRMatrix-class .. 67
dsymMatrix-class ... 68
dtCMatrix-class ... 70
dtpMatrix-class ... 71
dtRMatrix-class ... 73
dtrMatrix-class ... 74
expand-methods ... 75
expm-methods ... 77
externalFormats .. 79
facmul-methods .. 80
fastMisc .. 81
forceSymmetric-methods 85
formatSparseM ... 86
gen... .. 87
Hilbert .. 88
image-methods ... 88
index-class ... 91
class \texttt{abIndex-class} of Abstract Index Vectors

\textbf{Description}

The \texttt{abIndex} class, short for “Abstract Index Vector”, is used for dealing with large index vectors more efficiently, than using integer (or numeric) vectors of the kind \(2:1000000\) or \(c(0:1e5, 1000:1e6)\).

Note that the current implementation details are subject to change, and if you consider working with these classes, please contact the package maintainers (packageDescription("Matrix")$Maintainer).

\textbf{Objects from the Class}

Objects can be created by calls of the form \texttt{new("abIndex", ...)}, but more easily and typically either by as\texttt{(x, "abIndex")} where \(x\) is an integer (valued) vector, or directly by \texttt{abIseq()} and combination \texttt{c(...)} of such.

\textbf{Slots}

\texttt{kind}: a \texttt{character} string, one of \texttt{("int32", "double", "rleDiff")}, denoting the internal structure of the abIndex object.

\texttt{x}: Object of class \texttt{"numLike"}; is used (i.e., not of length 0) only iff the object is \texttt{not} compressed, i.e., currently exactly when \texttt{kind != "rleDiff"}.

\texttt{rleD}: object of class \texttt{"rleDiff"}, used for compression via \texttt{rle}.
Methods

as.numeric, as.integer, as.vector signature(x = "abIndex"): ...
[signature(x = "abIndex", i = "index", j = "ANY", drop = "ANY"): ...
coerce signature(from = "numeric", to = "abIndex"): ...
coerce signature(from = "abIndex", to = "numeric"): ...
coerc signatue(from = "abIndex", to = "integer"): ...
length signature(x = "abIndex"): ...

Ops signature(e1 = "numeric", e2 = "abIndex"): These and the following arithmetic and logic
operations are not yet implemented; see Ops for a list of these (S4) group methods.

Ops signature(e1 = "abIndex", e2 = "abIndex"): ...

Ops signature(e1 = "abIndex", e2 = "numeric"): ...

Summary signature(x = "abIndex"): ...

show ("abIndex"): simple show method, building on show(<rleDiff>).

is.na ("abIndex"): works analogously to regular vectors.

is.finite, is.infinite ("abIndex"): ditto.

Note

This is currently experimental and not yet used for our own code. Please contact us (packageDescription("Matrix")$Maintainer),
if you plan to make use of this class.

Partly builds on ideas and code from Jens Oehlschlaegel, as implemented (around 2008, in the
GPL'ed part of) package ff.

See Also

rle (base) which is used here; numeric

Examples

showClass("abIndex")

ii <- c(-3:40, 20:70)

str(ai <- as(ii, "abIndex"))# note

ai # -> show() method

stopifnot(identical(-3:20,

as(abIseq1(-3,20), "vector")))

abIseq

Sequence Generation of "abIndex", Abstract Index Vectors

Description

Generation of abstract index vectors, i.e., objects of class "abIndex".

abIseq() is designed to work entirely like seq, but producing "abIndex" vectors.
abIseq1() is its basic building block, where abIseq1(n, m) corresponds to n:m.

c(x, ...) will return an "abIndex" vector, when x is one.
all.equal-methods

Usage

abIseq1(from = 1, to = 1)
abIseq (from = 1, to = 1, by = ((to - from)/(length.out - 1)),
 length.out = NULL, along.with = NULL)

S3 method for class 'abIndex'
c(...)

Arguments

from, to the starting and (maximal) end value of the sequence.
by number: increment of the sequence.
length.out desired length of the sequence. A non-negative number, which for seq and
 seq.int will be rounded up if fractional.
along.with take the length from the length of this argument.
... in general an arbitrary number of R objects; here, when the first is an "abIndex"
 vector, these arguments will be concatenated to a new "abIndex" object.

Value

An abstract index vector, i.e., object of class "abIndex".

See Also

the class abIndex documentation; rep2abI() for another constructor; rle (base).

Examples

stopifnot(identical(-3:20,
 as(abIseq1(-3,20), "vector")))

try(## (arithmetic) not yet implemented
 abIseq(1, 50, by = 3)
)

Description

Methods for function all.equal() (from R package base) are defined for all Matrix classes.

Methods

target = "Matrix", current = "Matrix" \
target = "ANY", current = "Matrix" \
target = "Matrix", current = "ANY" these three methods are simply using all.equal.numeric
 directly and work via as.vector().

There are more methods, notably also for "sparseVector"s, see showMethods("all.equal").
Examples

```r
ex <- expand(lu. <- lu(A))
stopifnot(all.equal(as(A[lu.@p + 1L, lu.@q + 1L], "CsparseMatrix"),
                     lu.@L %*% lu.@U),
           with(ex, all.equal(as(P %*% A %*% t(Q), "CsparseMatrix"),
                             L %*% U)),
           with(ex, all.equal(as(A, "CsparseMatrix"),
                             t(P) %*% L %*% U %*% Q)))
```

asUniqueT

Standardize a Sparse Matrix in Triplet Format

Description

Detect or standardize a `TsparseMatrix` with unsorted or duplicated \((i, j)\) pairs.

Usage

- `anyDuplicatedT(x, ...)`
- `isUniqueT(x, byrow = FALSE, isT = is(x, "TsparseMatrix"))`
- `asUniqueT(x, byrow = FALSE, isT = is(x, "TsparseMatrix"))`
- `aggregateT(x)`

Arguments

- `x`: an R object. `anyDuplicatedT` and `aggregateT` require `x` inheriting from `TsparseMatrix`. `asUniqueT` requires `x` inheriting from `Matrix` and coerces `x` to `TsparseMatrix` if necessary.
- `...`: optional arguments passed to the default method for generic function `anyDuplicated`.
- `byrow`: a logical indicating if `x` should be sorted by row then by column.
- `isT`: a logical indicating if `x` inherits from virtual class `TsparseMatrix`.

Value

- `anyDuplicatedT(x)` returns the index of the first duplicated \((i, j)\) pair in `x` (0 if there are no duplicated pairs).
- `isUniqueT(x)` returns `TRUE` if `x` is a `TsparseMatrix` with sorted, nonduplicated \((i, j)\) pairs and `FALSE` otherwise.
- `asUniqueT(x)` returns the unique `TsparseMatrix` representation of `x` with sorted, nonduplicated \((i, j)\) pairs. Values corresponding to identical \((i, j)\) pairs are aggregated by addition, where in the logical case “addition” refers to logical OR.
- `aggregateT(x)` aggregates without sorting.

See Also

Virtual class `TsparseMatrix`.
Examples

```r
example("dgTMatrix-class", echo=FALSE)
## -> 'T2' with (i,j,x) slots of length 5 each
T2u <- asUniqueT(T2)
stopifnot(## They "are" the same (and print the same):
  all.equal(T2, T2u, tol=0),
  ## but not internally:
  anyDuplicatedT(T2) == 2,
  anyDuplicatedT(T2u) == 0,
  length(T2 @x) == 5,
  length(T2u@x) == 3)

isUniqueT(T2) # FALSE
isUniqueT(T2u) # TRUE

T3 <- T2u
T3[1, c(1,3)] <- 10; T3[2, c(1,5)] <- 20
T3u <- asUniqueT(T3)
str(T3u) # sorted in 'j', and within j, sorted in i
stopifnot(isUniqueT(T3u))

## Logical l.TMatrix and n.TMatrix :
(L2 <- T2 > 0)
validObject(L2u <- asUniqueT(L2))
(N2 <- as(L2, "nMatrix"))
validObject(N2u <- asUniqueT(N2))
stopifnot(N2u@i == L2u@i, L2u@i == T2u@i, N2@i == L2@i, L2@i == T2@i,
  N2u@j == L2u@j, L2u@j == T2u@j, N2@j == L2@j, L2@j == T2@j)
# now with a nasty NA [partly failed in Matrix 1.1-5]:
L.0N <- L.1N <- L2
L.0N@x[1:2] <- c(FALSE, NA)
L.1N@x[1:2] <- c(TRUE, NA)
validObject(L.0N)
validObject(L.1N)
(m.0N <- as.matrix(L.0N))
(m.1N <- as.matrix(L.1N))
stopifnot(identical(10L, which(is.na(m.0N))), !anyNA(m.1N))
symnum(m.0N)
symnum(m.1N)
```

atomicVector-class Virtual Class "atomicVector" of Atomic Vectors

Description

The class "atomicVector" is a *virtual* class containing all atomic vector classes of base \(\mathbb{R} \), as also implicitly defined via `is.atomic`.

Objects from the Class

A virtual Class: No objects may be created from it.
Methods

In the **Matrix** package, the "atomicVector" is used in signatures where typically "old-style" "matrix" objects can be used and can be substituted by simple vectors.

Extends

The atomic classes "logical", "integer", "double", "numeric", "complex", "raw" and "character" are extended directly. Note that "numeric" already contains "integer" and "double", but we want all of them to be direct subclasses of "atomicVector".

Author(s)

Martin Maechler

See Also

is.atomic, *integer*, *numeric*, *complex*, etc.

Examples

```r
showClass("atomicVector")
```

band-methods

Extract bands of a matrix

Description

Return the matrix obtained by setting to zero elements below a diagonal (**triu**), above a diagonal (**tril**), or outside of a general band (**band**).

Usage

```r
band(x, k1, k2, ...)
triu(x, k = 0L, ...)  
tril(x, k = 0L, ...)
```

Arguments

- `x` : a matrix-like object
- `k`, `k1`, `k2` : integers specifying the diagonals that are not set to zero. These are interpreted relative to the main diagonal, which is `k=0`. Positive and negative values of `k` indicate diagonals above and below the main diagonal, respectively.
- `...` : optional arguments passed methods (currently unused by package **Matrix**)

Details

triu(`x`, `k`) is equivalent to `band(x, k, dim(x)[2])`. Similarly, **tril**(`x`, `k`) is equivalent to `band(x, -dim(x)[1], k).`
Value

An object of a suitable matrix class, inheriting from `triangularMatrix` where appropriate. It inherits from `sparseMatrix` if and only if \(x \) does.

Methods

- \(x = "CsparseMatrix" \) method for compressed, sparse, column-oriented matrices.
- \(x = "RsparseMatrix" \) method for compressed, sparse, row-oriented matrices.
- \(x = "TsparseMatrix" \) method for sparse matrices in triplet format.
- \(x = "diagonalMatrix" \) method for diagonal matrices.
- \(x = "denseMatrix" \) method for dense matrices in packed or unpacked format.
- \(x = "matrix" \) method for traditional matrices of implicit class `matrix`.

See Also

`bandSparse` for the construction of a banded sparse matrix directly from its non-zero diagonals.

Examples

```r
## A random sparse matrix:
set.seed(7)
m <- matrix(0, 5, 5)
m[sample(length(m), size = 14)] <- rep(1:9, length=14)
(mm <- as(m, "CsparseMatrix"))

tril(mm)       # lower triangle
tril(mm, -1)   # strict lower triangle
triu(mm, 1)    # strict upper triangle
band(mm, -1, 2) # general band

(m5 <- Matrix(rnorm(25), ncol = 5))
tril(m5)       # lower triangle
tril(m5, -1)   # strict lower triangle
triu(m5, 1)    # strict upper triangle
band(m5, -1, 2) # general band

(m65 <- Matrix(rnorm(30), ncol = 5)) # not square
triu(m65)      # result not "dtrMatrix" unless square

(sm5 <- crossprod(mm/2)) # symmetric
band(sm5, -1, 1) # "dsyMatrix": symmetric band preserves symmetry property
as(band(sm5, -1, 1), "sparseMatrix") # often preferable
(sm <- round(crossprod(triu(mm/2)))) # sparse symmetric ("dsC+")
bond(sm, -1,1) # remains "dsC", however*
bond(sm, -2,1) # -> "dgC"
```
bandSparse

Construct Sparse Banded Matrix from (Sup-/Super-) Diagonals

Description

Construct a sparse banded matrix by specifying its non-zero sup- and super-diagonals.

Usage

```r
call = c(bandSparse(n, m = n, k, diagonals, symmetric = FALSE, repr = "C", giveCsparse = (repr == "C")))
```

Arguments

- `n, m` integer vector of length two, specifying the matrix dimension `n x m`.
- `k` integer vector of “diagonal numbers”, with identical meaning as in `band(*, k)`, i.e., relative to the main diagonal, which is `k=0`.
- `diagonals` optional list of sub-/super-diagonals; if missing, the result will be a pattern matrix, i.e., inheriting from class `nMatrix`.
- `symmetric` logical; if true the result will be symmetric (inheriting from class `symmetricMatrix`) and only the upper or lower triangle must be specified (via `k` and `diagonals`).
- `repr` character string, one of "C", "T", or "R", specifying the sparse representation to be used for the result, i.e., one from the super classes `CsparseMatrix`, `TsparseMatrix`, or `RsparseMatrix`.
- `giveCsparse` (deprecated, replaced with `repr`): logical indicating if the result should be a `CsparseMatrix` or a `TsparseMatrix`, where the default was `TRUE`, and now is determined from `repr`; very often Csparse matrices are more efficient subsequently, but not always.

Value

A sparse matrix (of class `CsparseMatrix`) of dimension `n x m` with diagonal “bands” as specified.

See Also

- `band`, for extraction of matrix bands; `bdiag`, `diag`, `sparseMatrix`, `Matrix`.

Examples

```r
diags <- list(1:30, 10*(1:20), 100*(1:20))
s1 <- bandSparse(13, k = -c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
s1
s2 <- bandSparse(13, k = c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
stopifnot(identical(s1, t(s2)), is(s1, "dsCMatrix"))
```

```r
## a pattern Matrix of *full* (sub-)diagonals:
bk <- c(0:4, 7, 9)
(s3 <- bandSparse(30, k = bk, symm = TRUE))
```
If you want a pattern matrix, but with "sparse"-diagonals,
you currently need to go via logical sparse:

```r
llis <- lapply(list(rpois(20, 2), rpois(20, 1), rpois(20, 3))[c(1:3, 2:3, 3:2)],
               as.logical)
(s4 <- bandSparse(20, k = bk, symm = TRUE, diag = llis))
(s4. <- as(drop0(s4), "nsparseMatrix"))
```

```r
n <- 1e4
bk <- c(0:5, 7,11)
bMat <- matrix(1:8, n, 8, byrow=TRUE)
blis <- as.data.frame(bMat)
B <- bandSparse(n, k = bk, diag = blis)
Bs <- bandSparse(n, k = bk, diag = blis, symmetric=TRUE)
B [1:15, 1:30]
Bs[1:15, 1:30]
```

can use a list *or* a matrix for specifying the diagonals:

```r
stopifnot(identical(B, bandSparse(n, k = bk, diag = bMat)),
          identical(Bs, bandSparse(n, k = bk, diag = bMat, symmetric=TRUE)),
          inherits(B, "dtCMatrix") # triangular!
)
```

bdiag

Construct a Block Diagonal Matrix

Description

Build a block diagonal matrix given several building block matrices.

Usage

```r
bdiag(...) .bdiag(lst)
```

Arguments

- `...` individual matrices or a list of matrices.
- `lst` non-empty list of matrices.

Details

For non-trivial argument list, `bdiag()` calls `.bdiag()`. The latter maybe useful to programmers.

Value

A *sparse* matrix obtained by combining the arguments into a block diagonal matrix.

The value of `bdiag()` inherits from class `CsparseMatrix`, whereas `.bdiag()` returns a `TsparseMatrix`.

Note

This function has been written and is efficient for the case of relatively few block matrices which are typically sparse themselves.

It is currently *inefficient* for the case of many small dense block matrices. For the case of *many* dense *k × k* matrices, the `bdiag_m()` function in the ‘Examples’ is an order of magnitude faster.
Author(s)

Martin Maechler, built on a version posted by Berton Gunter to R-help; earlier versions have been posted by other authors, notably Scott Chasalow to S-news. Doug Bates’s faster implementation builds on TsparseMatrix objects.

See Also

Diagonal for constructing matrices of class diagonalMatrix, or kronecker which also works for "Matrix" inheriting matrices.

bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals.

Note that other CRAN R packages have own versions of bdiag() which return traditional matrices.

Examples

bdiag(matrix(1:4, 2), diag(3))
combine "Matrix" class and traditional matrices:
bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))

mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1:3:6), 100:101)
bdiag(mlist)
stopifnot(identical(bdiag(mlist),
 bdiag(lapply(mlist, as.matrix))))

ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"),
 rep(list(Diagonal(2, x=TRUE)), 3))
mln <- c(ml, Diagonal(x = 1:3))
stopifnot(is(bdiag(ml), "lsparseMatrix"),
 is(bdiag(mln),"dsparseMatrix"))

random (diagonal-)block-triangular matrices:
rblockTri <- function(nb, max.ni, lambda = 3) {
 .bdiag(replicate(nb, {
 n <- sample.int(max.ni, 1)
 tril(Matrix(rpois(n * n, lambda = lambda), n, n)))))
}
(T4 <- rblockTri(4, 10, lambda = 1))
image(T1 <- rblockTri(12, 20))

##' Fast version of Matrix :: .bdiag() -- for the case of *many* (k x k) matrices:
##' @param lmat list(<mat1>, <mat2>,, <mat_N>) where each mat_j is a k x k 'matrix'
##' @return a sparse (N*k x N*k) matrix of class \code{\linkS4class{dgCMatrix}}).

bdiag_m <- function(lmat) {
 ## Copyright (C) 2016 Martin Maechler, ETH Zurich
 if(!length(lmat)) return(new("dgCMatrix"))
 stopifnot(is.list(lmat), is.matrix(lmat[[1]])),
 (k <- (d <- dim(lmat[[1]])[1]) == d[2], k x k
 all(vapply(lmat, dim, integer(2)) == k)) # all of them
 N <- length(lmat)
 if(N * k > .Machine$integer.max)
 stop("resulting matrix too large; would be M x M, with M="N*k)
 M <- as.integer(N * k)
 ## result: an M x M matrix
 new("dgCMatrix", Dim = c(M,M),

```
## `i`: maybe there’s a faster way (w/o matrix indexing), but elegant?

```r
i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]),
p = k * 0L:M,
x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE))
```

```r
l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4, 4),
 simplify=FALSE)
dim(T12 <- bdiag_m(l12))# 48 x 48
T12[1:20, 1:20]
```

### boolmatmult-methods

**Boolean Arithmetic Matrix Products: `%&%` and Methods**

**Description**

For boolean or “pattern” matrices, i.e., R objects of class `nMatrix`, it is natural to allow matrix products using boolean instead of numerical arithmetic.

In package `Matrix`, we use the binary operator `%&%` (aka “infix”) function) for this and provide methods for all our matrices and the traditional R matrices (see `matrix`).

**Value**

- a pattern matrix, i.e., inheriting from "nMatrix", or an "ldiMatrix" in case of a diagonal matrix.

**Methods**

We provide methods for both the “traditional” (R base) matrices and numeric vectors and conceptually all matrices and `sparseVectors` in package `Matrix`.

```r
signature(x = "ANY", y = "ANY")
signature(x = "ANY", y = "Matrix")
signature(x = "Matrix", y = "ANY")
signature(x = "nMatrix", y = "nMatrix")
signature(x = "nMatrix", y = "nsparseMatrix")
signature(x = "nsparseMatrix", y = "nMatrix")
signature(x = "nsparseMatrix", y = "nsparseMatrix")
signature(x = "sparseVector", y = "sparseVector")
```

**Note**

These boolean arithmetic matrix products had been newly introduced for `Matrix` 1.2.0 (March 2015). Its implementation has still not been tested extensively.

Originally, it was left unspecified how non-structural zeros, i.e., 0’s as part of the M@x slot should be treated for numeric ("dMatrix") and logical ("lMatrix") sparse matrices. We now specify that boolean matrix products should behave as if applied to `drop0(M)`, i.e., as if dropping such zeros from the matrix before using it.

Equivalently, for all matrices M, boolean arithmetic should work as if applied to `M != 0` (or `M != FALSE`).

The current implementation ends up coercing both x and y to (virtual) class `nsparseMatrix` which may be quite inefficient for dense matrices. A future implementation may well return a matrix with different class, but the “same” content, i.e., the same matrix entries $m_{i,j}$.
See Also

\%\%\%, crossprod(), or tcrossprod(), for (regular) matrix product methods.

Examples

```r
set.seed(7)
L <- Matrix(rnorm(20) > 1, 4,5)
N <- as(L, "nMatrix")
L. <- L; L.[1:2,1] <- TRUE; L.@x[1:2] <- FALSE; L. # has "zeros" to drop0()
D <- Matrix(round(rnorm(30)), 5,6) # -> values in -1:1 (for this seed)
L %&% D
stopifnot(identical(L %&% D, N %&% D),
 all(L %&% D == as((L %*% abs(D)) > 0, "sparseMatrix"))

cross products , possibly with boolArith = TRUE :
crossprod(N) # -> sparse patter
 crossprod(N +0) # -> numeric Matrix (with same "pattern")
stopifnot(all(crossprod(N) == t(N) %&% N),
 identical(crossprod(N), crossprod(N +0, boolArith=TRUE)),
 identical(crossprod(L), crossprod(N , boolArith=FALSE)))
crossprod(D, boolArith = TRUE) # pattern: "nsCMatrix"
crossprod(L, boolArith = TRUE) # ditto
crossprod(L, boolArith = FALSE) # numeric: "dsMatrix"
```

Description

Classes BunchKaufman and pBunchKaufman represent Bunch-Kaufman factorizations of \( n \times n \) real, symmetric matrices \( A \), having the general form

\[
A = UD_U' = LD_L'L'
\]

where \( D_U \) and \( D_L \) are symmetric, block diagonal matrices composed of \( b_U \) and \( b_L \) \( 1 \times 1 \) or \( 2 \times 2 \) diagonal blocks; \( U = \prod_{k=1}^{b_U} P_kU_k \) is the product of \( b_U \) row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and \( L = \prod_{k=1}^{b_L} P_kL_k \) is the product of \( b_L \) row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in 1 or 2 columns.

These classes store the nonzero entries of the \( 2b_U + 1 \) or \( 2b_L + 1 \) factors, which are individually sparse, in a dense format as a vector of length \( nn \) (BunchKaufman) or \( n(n+1)/2 \) (pBunchKaufman), the latter giving the “packed” representation.

Slots

- `Dim`, `Dimnames` inherited from virtual class `MatrixFactorization`.
- `uplo` a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn how the `x` slot is partitioned.
- `x` a numeric vector of length \( nn \) (BunchKaufman) or \( n(n+1)/2 \) (pBunchKaufman), where \( n=\text{Dim}[1] \).

The details of the representation are specified by the manual for LAPACK routines `dsytrf` and `dsptrf`.

- `perm` an integer vector of length \( n=\text{Dim}[1] \) specifying row and column interchanges as described in the manual for LAPACK routines `dsytrf` and `dsptrf`.

```r
BunchKaufman-class Dense Bunch-Kaufman Factorizations

Description

Classes BunchKaufman and pBunchKaufman represent Bunch-Kaufman factorizations of \(n \times n \) real, symmetric matrices \(A \), having the general form

\[
A = UD_U' = LD_L'L'
\]

where \(D_U \) and \(D_L \) are symmetric, block diagonal matrices composed of \(b_U \) and \(b_L \) \(1 \times 1 \) or \(2 \times 2 \) diagonal blocks; \(U = \prod_{k=1}^{b_U} P_kU_k \) is the product of \(b_U \) row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and \(L = \prod_{k=1}^{b_L} P_kL_k \) is the product of \(b_L \) row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in 1 or 2 columns.

These classes store the nonzero entries of the \(2b_U + 1 \) or \(2b_L + 1 \) factors, which are individually sparse, in a dense format as a vector of length \(nn \) (BunchKaufman) or \(n(n+1)/2 \) (pBunchKaufman), the latter giving the “packed” representation.

Slots

- `Dim`, `Dimnames` inherited from virtual class `MatrixFactorization`.
- `uplo` a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn how the `x` slot is partitioned.
- `x` a numeric vector of length \(nn \) (BunchKaufman) or \(n(n+1)/2 \) (pBunchKaufman), where \(n=\text{Dim}[1] \).

The details of the representation are specified by the manual for LAPACK routines `dsytrf` and `dsptrf`.

- `perm` an integer vector of length \(n=\text{Dim}[1] \) specifying row and column interchanges as described in the manual for LAPACK routines `dsytrf` and `dsptrf`.
```
Extends

Class `BunchKaufmanFactorization`, directly. Class `MatrixFactorization`, by class `BunchKaufmanFactorization`, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("BunchKaufman", ...) or new("pBunchKaufman", ...)`, but they are more typically obtained as the value of `BunchKaufman(x)` for `x` inheriting from `dsyMatrix` or `dspMatrix`.

Methods

- `coerce` signature (from = "BunchKaufman", to = "dtrMatrix"): returns a `dtrMatrix`, useful for inspecting the internal representation of the factorization; see ‘Note’.
- `coerce` signature (from = "pBunchKaufman", to = "dtpMatrix"): returns a `dtpMatrix`, useful for inspecting the internal representation of the factorization; see ‘Note’.
- `determinant` signature (from = "pBunchKaufman", logarithm = "logical"): computes the determinant of the factorized matrix `A` or its logarithm.
- `expand1` signature (`x = "pBunchKaufman"`): see `expand1-methods`.
- `expand2` signature (`x = "pBunchKaufman"`): see `expand2-methods`.
- `solve` signature (`a = "pBunchKaufman", b = .`): see `solve-methods`.

Note

In `Matrix < 1.6-0`, class `BunchKaufman` extended `dtrMatrix` and class `pBunchKaufman` extended `dtpMatrix`, reflecting the fact that the internal representation of the factorization is fundamentally triangular: there are \( n(n+1)/2 \) “parameters”, and these can be arranged systematically to form an \( n \times n \) triangular matrix. `Matrix 1.6-0` removed these extensions so that methods would no longer be inherited from `dtrMatrix` and `dtpMatrix`. The availability of such methods gave the wrong impression that `BunchKaufman` and `pBunchKaufman` represent a (singular) matrix, when in fact they represent an ordered set of matrix factors.

The coercions `as(., "dtrMatrix")` and `as(., "dtpMatrix")` are provided for users who understand the caveats.

References

The LAPACK source code, including documentation; see `https://netlib.org/lapack/double/dsytrf.f` and `https://netlib.org/lapack/double/dsptrf.f`.


See Also

Class `dsyMatrix` and its packed counterpart.

Generic functions `BunchKaufman`, `expand1`, and `expand2`. 
Examples

```r
showClass("BunchKaufman")
set.seed(1)

n <- 6L
(A <- forceSymmetric(Matrix(rnorm(n * n), n, n)))

With dimnames, to see that they are propagated:
dimnames(A) <- rep.int(list(paste0("x", seq_len(n))), 2L)

(bk.A <- BunchKaufman(A))
str(e.bk.A <- expand2(bk.A, complete = FALSE), max.level = 2L)
str(E.bk.A <- expand2(bk.A, complete = TRUE), max.level = 2L)

Underlying LAPACK representation
(m.bk.A <- as(bk.A, "dtrMatrix"))
stopifnot(identical(as(m.bk.A, "matrix"), `dim<-'(bk.A@x, bk.A@Dim)))

Number of factors is 2*b+1, b <= n, which can be nontrivial ...
(b <- length(E.bk.A) - 1L) %/% 2L

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ U DU U', U := prod(Pk Uk) in floating point
stopifnot(exprs = {
 identical(names(e.bk.A), c("U", "DU", "U."))
 identical(e.bk.A[["U"]], Reduce("%*%", E.bk.A[seq_len(b)]))
 identical(e.bk.A[["U."]], t(e.bk.A[["U"]]))
 ae1(A, with(e.bk.A, U %*% DU %*% U.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(bk.A)),
 identical(solve(A, b), solve(bk.A, b)))
```

Description

Computes the Bunch-Kaufman factorization of an \( n \times n \) real, symmetric matrix \( A \), which has the general form

\[
A = U D_U U' = L D_L L'
\]

where \( D_U \) and \( D_L \) are symmetric, block diagonal matrices composed of \( b_U \) and \( b_L \) \( 1 \times 1 \) or \( 2 \times 2 \) diagonal blocks; \( U = \prod_{k=1}^{b_U} P_k U_k \) is the product of \( b_U \) row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in \( 1 \) or \( 2 \) columns; and \( L = \prod_{k=1}^{b_L} P_k L_k \) is the product of \( b_L \) row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in \( 1 \) or \( 2 \) columns.

Methods are built on LAPACK routines dsytrf and dsprf.
Usage

BunchKaufman(x, 
## S4 method for signature 'dsyMatrix'
BunchKaufman(x, warnSing = TRUE, 
## S4 method for signature 'dspMatrix'
BunchKaufman(x, warnSing = TRUE, 
## S4 method for signature 'matrix'
BunchKaufman(x, uplo = "U", 

Arguments

x a finite symmetric matrix or Matrix to be factorized. If x is square but not symmetric, then it will be treated as symmetric; see uplo.
warnSing a logical indicating if a warning should be signaled for singular x.
uplo a string, either "U" or "L", indicating which triangle of x should be used to compute the factorization.
...

Value

An object representing the factorization, inheriting from virtual class BunchKaufmanFactorization. The specific class is BunchKaufman unless x inherits from virtual class packedMatrix, in which case it is pBunchKaufman.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.


See Also

Classes BunchKaufman and pBunchKaufman and their methods.
Classes dsyMatrix and dspMatrix.
Generic functions expand1 and expand2, for constructing matrix factors from the result.
Generic functions Cholesky, Schur, lu, and qr, for computing other factorizations.

Examples

showMethods("BunchKaufman", inherited = FALSE)
set.seed(0)
data(CAex, package = "Matrix")
class(CAex) # dgCMatrix
isSymmetric(CAex) # symmetric, but not formally

A <- as(CAex, "symmetricMatrix")
class(A) # dsCMatrix

## Have methods for denseMatrix (unpacked and packed),
## but not yet sparseMatrix ...
CAex

Albers' example Matrix with "Difficult" Eigen Factorization

Description

An example of a sparse matrix for which `eigen()` seemed to be difficult, an unscaled version of this has been posted to the web, accompanying an E-mail to R-help ([https://stat.ethz.ch/mailman/listinfo/r-help](https://stat.ethz.ch/mailman/listinfo/r-help)), by Casper J Albers, Open University, UK.

Usage

data(CAex)

Format

This is a 72 × 72 symmetric matrix with 216 non-zero entries in five bands, stored as sparse matrix of class `dgCMatrix`.

Details

Historical note (2006-03-30): In earlier versions of R, `eigen(CAex)` fell into an infinite loop whereas `eigen(CAex, EISPACK=TRUE)` had been okay.

Examples

```r
data(CAex, package = "Matrix")
str(CAex) # of class "dgCMatrix"

image(CAex)# -> it's a simple band matrix with 5 bands
and the eigen values are basically 1 (42 times) and 0 (30 x):
zapsmall(ev <- eigen(CAex, only.values=TRUE)$values)
i.e., the matrix is symmetric, hence
sCA <- as(CAex, "symmetricMatrix")
and
stopifnot(class(sCA) == "dsCMatrix",
 as(sCA, "matrix") == as(CAex, "matrix"))
```
cbind2-methods  'cbind()' and 'rbind()' recursively built on cbind2/rbind2

Description
The base functions cbind and rbind are defined for an arbitrary number of arguments and hence have the first formal argument ... Now, when S4 objects are found among the arguments, base cbind() and rbind() internally “dispatch” recursively, calling cbind2 or rbind2 respectively, where these have methods defined and so should dispatch appropriately.
cbind2() and rbind2() are from the methods package, i.e., standard R, and have been provided for binding together two matrices, where in Matrix, we have defined methods for these and the 'Matrix' matrices.

Usage
## cbind(..., deparse.level = 1)
## rbind(..., deparse.level = 1)

## S4 method for signature 'Matrix,Matrix'
cbind2(x, y, ...)
## S4 method for signature 'Matrix,Matrix'
rbind2(x, y, ...)

Arguments
...
for [cr]bind, vector- or matrix-like R objects to be bound together; for [cr]bind2, further arguments passed to or from methods; see cbind and cbind2.
deparse.level integer controlling the construction of labels in the case of non-matrix-like arguments; see cbind.
x, y vector- or matrix-like R objects to be bound together.

Value
typically a ‘matrix-like’ object of a similar class as the first argument in ....
Note that sometimes by default, the result is a sparseMatrix if one of the arguments is (even in the case where this is not efficient). In other cases, the result is chosen to be sparse when there are more zero entries is than non-zero ones (as the default sparse in Matrix()).

Author(s)
Martin Maechler

See Also
cbind, cbind2.
Our class definition help pages mentioning cbind2() and rbind2() methods: “denseMatrix”, "diagonalMatrix", "indMatrix".
Examples

```r
(a <- matrix(c(2:1,1:2), 2,2)) # a traditional matrix

(M1 <- cbind(0, rbind(a, 7))) # a traditional matrix

D <- Diagonal(2)

(M2 <- cbind(4, a, D, -1, D, 0)) # a sparse Matrix

stopifnot(validObject(M2), inherits(M2, "sparseMatrix"),
dim(M2) == c(2,9))
```

CHMfactor-class Sparse Cholesky Factorizations

Description

CHMfactor is the virtual class of sparse Cholesky factorizations of \( n \times n \) real, symmetric matrices \( A \), having the general form

\[
P_1 A P_1' = L_1 D L_1' \quad \text{with } D_{jj} \geq 0
\]

or (equivalently)

\[
A = P_1' L_1 D L_1' P_1 \quad \text{with } D_{jj} \geq 0
\]

where \( P_1 \) is a permutation matrix, \( L_1 \) is a unit lower triangular matrix, \( D \) is a diagonal matrix, and \( L = L_1 \sqrt{D} \). The second equalities hold only for positive semidefinite \( A \), for which the diagonal entries of \( D \) are non-negative and \( \sqrt{D} \) is well-defined.

The implementation of class CHMfactor is based on CHOLMOD's C-level cholmod_factor_struct.

Virtual subclasses CHMsimpl and CHMsuper separate the simplicial and supernodal variants. These have nonvirtual subclasses [dn]CHMsimpl and [dn]CHMsuper, where prefix 'd' and prefix 'n' are reserved for numeric and symbolic factorizations, respectively.

Usage

```r
isLDL(x)
```

Arguments

- \( x \) an object inheriting from virtual class CHMfactor, almost always the result of a call to generic function Cholesky.

Value

`isLDL(x)` returns TRUE or FALSE: TRUE if \( x \) stores the lower triangular entries of \( L_1 - I + D \), FALSE if \( x \) stores the lower triangular entries of \( L \).

Slots

- Of CHMfactor:

  - Dim, Dimnames inherited from virtual class MatrixFactorization.
  - colcount an integer vector of length Dim[1] giving an estimate of the number of nonzero entries in each column of the lower triangular Cholesky factor. If symbolic analysis was performed prior to factorization, then the estimate is exact.
perm a 0-based integer vector of length `Dim[1]` specifying the permutation applied to the rows and columns of the factorized matrix. `perm` of length 0 is valid and equivalent to the identity permutation, implying no pivoting.

type an integer vector of length 6 specifying details of the factorization. The elements correspond to members `ordering`, `is_ll`, `is_super`, `is_monotonic`, `maxcsize`, and `maxesize` of the original `cholmod_factor_struct`. Simplicial and supernodal factorizations are distinguished by `is_super`. Simplicial factorizations do not use `maxcsize` or `maxesize`. Supernodal factorizations do not use `is_ll` or `is_monotonic`.

Of `CHMsimpl` (all unused by `nCHMsimpl`):

`nz` an integer vector of length `Dim[1]` giving the number of nonzero entries in each column of the lower triangular Cholesky factor. There is at least one nonzero entry in each column, because the diagonal elements of the factor are stored explicitly.

`p` an integer vector of length `Dim[1]+1`. Row indices of nonzero entries in column `j` of the lower triangular Cholesky factor are obtained as `i[p[j]+seq_len(nz[j])]`. 

`i` an integer vector of length greater than or equal to `sum(nz)` containing the row indices of nonzero entries in the lower triangular Cholesky factor. These are grouped by column and sorted within columns, but the columns themselves need not be ordered monotonically. Columns may be overallocated, i.e., the number of elements of `i` reserved for column `j` may exceed `nz[j]`.

`prv`, `nxt` integer vectors of length `Dim[1]+2` indicating the order in which the columns of the lower triangular Cholesky factor are stored in `i` and `x`. Starting from `j <- Dim[1]+2`, the recursion `j <- nxt[j+1]+1` traverses the columns in forward order and terminates when `nxt[j+1] = -1`. Starting from `j <- Dim[1]+1`, the recursion `j <- prv[j+1]+1` traverses the columns in backward order and terminates when `prv[j+1] = -1`.

Of `dCHMsimpl`:

`x` a numeric vector parallel to `i` containing the corresponding nonzero entries of the lower triangular Cholesky factor `L` or (if and only if `type[2]` is 0) of the lower triangular matrix `L_1 - I + D`.

Of `CHMsuper`:

`super`, `pi`, `px` integer vectors of length `nsuper+1`, where `nsuper` is the number of supernodes. `super[j]+1` is the index of the leftmost column of supernode `j`. The row indices of supernode `j` are obtained as `s[pi[j]+seq_len(pi[j+1]-pi[j])]`. The numeric entries of supernode `j` are obtained as `x[px[j]+seq_len(px[j+1]-px[j])]` (if slot `x` is available).

`s` an integer vector of length greater than or equal to `Dim[1]` containing the row indices of the supernodes. `s` may contain duplicates, but not within a supernode, where the row indices must be increasing.

Of `dCHMsuper`:

`x` a numeric vector of length less than or equal to `prod(Dim)` containing the numeric entries of the supernodes.

**Extends**

Class `MatrixFactorization`, directly.
**CHMfactor-class**

**Instantiation**

Objects can be generated directly by calls of the form `new("dCHMsimpl", ...)`, etc., but `dCHMsimpl` and `dCHMsuper` are more typically obtained as the value of `Cholesky(x, ...) for x inheriting from sparseMatrix` (often `dsCMatrix`).

There is currently no API outside of calls to `new` for generating `nCHMsimpl` and `nCHMsuper`. These classes are vestigial and may be formally deprecated in a future version of `Matrix`.

**Methods**

- **coerce signature**:
  - **from = "CHMsimpl", to = "dtCMatrix"**: returns a `dtCMatrix` representing the lower triangular Cholesky factor $L$ or the lower triangular matrix $L_1 - I + D$, the latter if and only if `from@type[2]` is 0.
  - **from = "CHMsuper", to = "dgCMatrix"**: returns a `dgCMatrix` representing the lower triangular Cholesky factor $L$. Note that, for supernodes spanning two or more columns, the supernodal algorithm by design stores non-structural zeros above the main diagonal, hence `dgCMatrix` is indeed more appropriate than `dtCMatrix` as a coercion target.

- **determinant signature**:
  - **from = "CHMfactor", logarithm = "logical"**: behaves according to an optional argument `sqrt`. If `sqrt = FALSE`, then this method computes the determinant of the factorized matrix $A$ or its logarithm. If `sqrt = TRUE`, then this method computes the determinant of the factor $L = L_1 \sqrt{D}$ or its logarithm, giving NaN for the modulus when $D$ has negative diagonal elements. For backwards compatibility, the default value of `sqrt` is `TRUE`, but that can be expected change in a future version of `Matrix`, hence defensive code will always set `sqrt` to `TRUE`, if the code must remain backwards compatible with `Matrix < 1.6-0`.

- **diag signature**:
  - **x = "CHMfactor"**: returns a numeric vector of length $n$ containing the diagonal elements of $D$, which (if they are all non-negative) are the squared diagonal elements of $L$.

- **expand signature**:
  - **x = "CHMfactor"**: see expand-methods.

- **expand1 signature**:
  - **x = "CHMsimpl"**: see expand1-methods.
  - **x = "CHMsuper"**: see expand1-methods.

- **expand2 signature**:
  - **x = "CHMsimpl"**: see expand2-methods.
  - **x = "CHMsuper"**: see expand2-methods.

- **image signature**:
  - **x = "CHMfactor"**: see image-methods.

- **nnzero signature**:
  - **x = "CHMfactor"**: see nnzero-methods.

- **solve signature**:
  - **a = "CHMfactor", b = .**: see solve-methods.

- **update signature**:
  - **object = "CHMfactor"**: returns a copy of object with the same nonzero pattern but with numeric entries updated according to additional arguments `parent` and `mult`, where `parent` is (coercible to) a `dsCMatrix` or a `dgCMatrix` and `mult` is a numeric vector of positive length.

- **updown signature**:
  - **update = ., C = ., object = "CHMfactor"**: see updown-methods.
References

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.


See Also

Class *dsCMatrix*.

Generic functions *Cholesky*, *updown*, *expand1* and *expand2*.

Examples

```r
showClass("dCHMsimpl")
showClass("dCHMsuper")
set.seed(2)

m <- 1000L
n <- 200L
M <- rsparsematrix(m, n, 0.01)
A <- crossprod(M)
With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)
(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
 identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
 identical(names(E.ch.A), c("P1.", "L", "L.", "P1"))
 identical(e.ch.A[["P1"]],
 new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
 margin = 2L, perm = invertPerm(ch.A@perm, 0L, 1L)))
 identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
 identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
 identical(E.ch.A[["L."]], t(E.ch.A[["L"]]))
 identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
 all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
 ae1(A, with(ch.A, P1. %*% L1 %*% sqrt(P1)))
 ae2(A, with(ch.A, P1. %*% L1 %*% sqrt(P1)))
 ae1(A, with(ch.A, P1. %*% L %*% D %*% L1. %*% P1))
 ae2(A, with(ch.A, P1. %*% L %*% D %*% L1. %*% P1))
 a1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
 a2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
```
## Factorization handled as factorized matrix
## (in some cases only optionally, depending on arguments)
b <- rnorm(n)
stopifnot(identical(det(A), det(ch.A, sqrt = FALSE)),
          identical(solve(A, b), solve(ch.A, b, system = "A")))

u1 <- update(ch.A, A, mult = sqrt(2))
u2 <- update(ch.A, t(M), mult = sqrt(2)) # updating with crossprod(M), not M
stopifnot(all.equal(u1, u2, tolerance = 1e-14))

---

### chol-methods

#### Compute the Cholesky Factor of a Matrix

**Description**

Computes the upper triangular Cholesky factor of an \( n \times n \) real, symmetric, positive semidefinite matrix \( A \), optionally after pivoting. That is the factor \( L' \) in

\[
P_1 A P_1'^\top = LL'
\]

or (equivalently)

\[
A = P_1'^\top LL' P_1
\]

where \( P_1 \) is a permutation matrix.

Methods for **denseMatrix** are built on LAPACK routines `dpstrf`, `dpotrf`, and `dpptrf`. The latter two do not permute rows or columns, so that \( P_1 \) is an identity matrix.

Methods for **sparseMatrix** are built on CHOLMOD routines `cholmod_analyze` and `cholmod_factorize_p`.

**Usage**

chol(x, ...)

```r
S4 method for signature 'dsyMatrix'
chol(x, pivot = FALSE, tol = -1, ...)

S4 method for signature 'dspMatrix'
chol(x, ...)

S4 method for signature 'dsCMatrix'
chol(x, pivot = FALSE, ...)

S4 method for signature 'ddiMatrix'
chol(x, ...)

S4 method for signature 'generalMatrix'
chol(x, uplo = "U", ...)

S4 method for signature 'triangularMatrix'
chol(x, uplo = "U", ...)
```

**Arguments**

- **x**  
a finite, symmetric, positive semidefinite matrix or **Matrix** to be factorized. If \( x \) is square but not symmetric, then it will be treated as symmetric; see \( \text{uplo} \).

Methods for dense \( x \) require positive definiteness when \( \text{pivot} = \text{FALSE} \). Methods for sparse (but not diagonal) \( x \) require positive definiteness unconditionally.
pivot a logical indicating if the rows and columns of \( x \) should be pivoted. Methods for sparse \( x \) employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability.

tol a finite numeric tolerance, used only if pivot = TRUE. The factorization algorithm stops if the pivot is less than or equal to tol. Negative tol is equivalent to nrow(\( x \)) * .Machine$double.eps * max(diag(\( x \))).

uplo a string, either "U" or "L", indicating which triangle of \( x \) should be used to compute the factorization. The default is "U", even for lower triangular \( x \), to be consistent with chol from base.

... further arguments passed to or from methods.

Details

For \( x \) inheriting from diagonalMatrix, the diagonal result is computed directly and without pivoting, i.e., bypassing CHOLMOD.

For all other \( x \), chol(\( x \), pivot = value) calls Cholesky(\( x \), perm = value, ...) under the hood. If you must know the permutation \( P_1 \) in addition to the Cholesky factor \( L' \), then call Cholesky directly, as the result of chol(\( x \), pivot = TRUE) specifies \( L' \) but not \( P_1 \).

Value

A matrix, triangularMatrix, or diagonalMatrix representing the upper triangular Cholesky factor \( L' \). The result is a traditional matrix if \( x \) is a traditional matrix, dense if \( x \) is dense, and sparse if \( x \) is sparse.

References


The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file 'CHOLMOD/Include/cholmod.h' defining cholmod_factor_struct.


See Also

The default method from base, chol, called for traditional matrices \( x \).

Generic function Cholesky, for more flexibility notably when computing the Cholesky factorization and not only the factor \( L' \).
showMethods("chol", inherited = FALSE)
set.seed(0)

### --- Dense ----------------------------------------------------------

### chol(x, pivot = value) wrapping Cholesky(x, perm = value)
selectMethod("chol", "dsyMatrix")

### Except in packed cases where pivoting is not yet available
selectMethod("chol", "dspMatrix")

### .... Positive definite ..............................................

(A1 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 5)))
(R1.nopivot <- chol(A1))
(R1 <- chol(A1, pivot = TRUE))

### In 2-by-2 cases, we know that the permutation is 1:2 or 2:1,
### even if in general ‘chol’ does not say ...
stopifnot(exprs = {
  all.equal( A1 , as(crossprod(R1.nopivot), "dsyMatrix"))
  all.equal(t(A1[2:1, 2:1]), as(crossprod(R1 ), "dsyMatrix"))
  identical(Cholesky(A1)@perm, 2:1) # because 5 > 1
})

### .... Positive semidefinite but not positive definite ..............

(A2 <- new("dpoMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 4)))
try(R2.nopivot <- chol(A2)) # fails as not positive definite
(R2 <- chol(A2, pivot = TRUE)) # returns, with a warning and ...
stopifnot(exprs = {
  all.equal(t(A2[2:1, 2:1]), as(crossprod(R2), "dsyMatrix"))
  identical(Cholesky(A2)@perm, 2:1) # because 4 > 1
})

### .... Not positive semidefinite ......................................

(A3 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 3)))
try(R3.nopivot <- chol(A3)) # fails as not positive definite
(R3 <- chol(A3, pivot = TRUE)) # returns, with a warning and ...

### _Not_ equal: see details and examples in help("Cholesky")
all.equal(t(A3[2:1, 2:1]), as(crossprod(R3), "dsyMatrix"))

### --- Sparse ---------------------------------------------------------

### chol(x, pivot = value) wrapping
### Cholesky(x, perm = value, LDL = FALSE, super = FALSE)
selectMethod("chol", "dsCMatrix")

### Except in diagonal cases which are handled "directly"
selectMethod("chol", "ddiMatrix")
(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))
(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(A4))
(R4 <- chol(A4, pivot = TRUE))
det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)

stopifnot(exprs = {
  identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
  identical(R4, expand1(ch.A4, "L."))
  all.equal(A4, crossprod(R4.nopivot))
  all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
  all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
  all.equal(diag(R4), sqrt(diag(ch.A4)))
  all.equal(sqrt(det4), det(R4.nopivot))
  all.equal(sqrt(det4), sqrt(diag(ch.A4.nopivot)))
  all.equal(sqrt(det4), sqrt(diag(ch.A4)))
  all.equal(sqrt(det4), det(ch.A4, sqrt = FALSE))
  all.equal(sqrt(det4), det(ch.A4.nopivot, sqrt = FALSE))
  all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
  all.equal(x4, solve(ch.A4.nopivot, solve(t(ch.A4.nopivot), b4)))
  all.equal(x4, solve(ch.A4, b4))
})

---

**chol2inv-methods**

*Inverse from Cholesky Factor*

**Description**

Given *formally* upper and lower triangular matrices $U$ and $L$, compute $(U'U)^{-1}$ and $(LL')^{-1}$, respectively.

This function can be seen as way to compute the inverse of a symmetric positive definite matrix given its Cholesky factor. Equivalently, it can be seen as a way to compute $(X'X)^{-1}$ given the $R$ part of the QR factorization of $X$, if $R$ is constrained to have positive diagonal entries.

**Usage**

```r
chol2inv(x, ...)
```  
* ## S4 method for signature 'dtrMatrix'
chol2inv(x, ...)
* ## S4 method for signature 'dtCMatrix'
chol2inv(x, ...)
* ## S4 method for signature 'generalMatrix'
chol2inv(x, uplo = "U", ...)

**Arguments**

- **x**
  
  a square matrix or `Matrix`, typically the result of a call to `chol`. If `x` is square but not (formally) triangular, then only the upper or lower triangle is considered, depending on optional argument `uplo` if `x` is a `Matrix`. 

---
uplo  a string, either "U" or "L", indicating which triangle of x contains the Cholesky factor. The default is "U", to be consistent with chol2inv from base.

Value

A matrix, symmetricMatrix, or diagonalMatrix representing the inverse of the positive definite matrix whose Cholesky factor is x. The result is a traditional matrix if x is a traditional matrix, dense if x is dense, and sparse if x is sparse.

See Also

The default method from base, chol2inv, called for traditional matrices x.

Generic function chol, for computing the upper triangular Cholesky factor $L'$ of a symmetric positive semidefinite matrix.

Generic function solve, for solving linear systems and (as a corollary) for computing inverses more generally.

Examples

```r
(A <- Matrix(cbind(c(1, 1, 1), c(1, 2, 4), c(1, 4, 16))))
(R <- chol(A))
(L <- t(R))
(R2i <- chol2inv(R))
(L2i <- chol2inv(R))

stopifnot(exprs = {
 all.equal(R2i, tcrossprod(solve(R)))
 all.equal(L2i, crossprod(solve(L)))
 all.equal(as(R2i %*% A, "matrix"), diag(3L)) # the identity
 all.equal(as(L2i %*% A, "matrix"), diag(3L)) # ditto
})
```

Dense Cholesky Factorizations

Description

Classes Cholesky and pCholesky represent dense, pivoted Cholesky factorizations of $n \times n$ real, symmetric, positive semidefinite matrices A, having the general form

$$P_1 AP_1' = L_1 DL_1' = LL'$$

or (equivalently)

$$A = P_1' L_1 DL_1' P_1 = P_1' LL' P_1$$

where $P_1$ is a permutation matrix, $L_1$ is a unit lower triangular matrix, D is a non-negative diagonal matrix, and $L = L_1 \sqrt{D}$.

These classes store the entries of the Cholesky factor L or its transpose $L'$ in a dense format as a vector of length $nn$ (Cholesky) or $n(n + 1)/2$ (pCholesky), the latter giving the “packed” representation.
Slots

- `Dim`, `Dimnames` inherited from virtual class `MatrixFactorization`.
- `uplo` a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn whether `x` stores $L'$ or $L$.
- `x` a numeric vector of length $n^2$ (Cholesky) or $n*(n+1)/2$ (pCholesky), where $n = \text{Dim}[1]$, listing the entries of the Cholesky factor $L$ or its transpose $L'$ in column-major order.
- `perm` a 1-based integer vector of length `Dim[1]` specifying the permutation applied to the rows and columns of the factorized matrix. `perm` of length 0 is valid and equivalent to the identity permutation, implying no pivoting.

Extends

Class `CholeskyFactorization`, directly. Class `MatrixFactorization`, by class `CholeskyFactorization`, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("Cholesky", ...)` or `new("pCholesky", ...)`, but they are more typically obtained as the value of `Cholesky(x)` for `x` inheriting from `dsyMatrix` or `dspMatrix` (often the subclasses of those reserved for positive semidefinite matrices, namely `dpoMatrix` and `dppMatrix`).

Methods

- `coerce` signature(from = "Cholesky", to = "dtrMatrix"): returns a `dtrMatrix` representing the Cholesky factor $L$ or its transpose $L'$; see 'Note'.
- `coerce` signature(from = "pCholesky", to = "dtpMatrix"): returns a `dtpMatrix` representing the Cholesky factor $L$ or its transpose $L'$; see 'Note'.
- `determinant` signature(from = "p?Cholesky", logarithm = "logical"): computes the determinant of the factorized matrix $A$ or its logarithm.
- `diag` signature(x = "p?Cholesky"): returns a numeric vector of length $n$ containing the diagonal elements of $D$, which are the squared diagonal elements of $L$.
- `expand1` signature(x = "p?Cholesky"): see `expand1-methods`.
- `expand2` signature(x = "p?Cholesky"): see `expand2-methods`.
- `solve` signature(a = "p?Cholesky", b = .): see `solve-methods`.

Note

In `Matrix < 1.6-0`, class Cholesky extended `dtrMatrix` and class pCholesky extended `dtpMatrix`, reflecting the fact that the factor $L$ is indeed a triangular matrix. `Matrix 1.6-0` removed these extensions so that methods would no longer be inherited from `dtrMatrix` and `dtpMatrix`. The availability of such methods gave the wrong impression that Cholesky and pCholesky represent a (singular) matrix, when in fact they represent an ordered set of matrix factors.

The coercions `as(., "dtrMatrix")` and `as(., "dtpMatrix")` are provided for users who understand the caveats.
References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dpptrf.f.

Lucas, C. (2004). LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK

Press. doi:10.56021/9781421407944

See Also

Class CHMfactor for sparse Cholesky factorizations.

Classes dpoMatrix and dppMatrix.

Generic functions Cholesky, expand1 and expand2.

Examples

showClass("Cholesky")
set.seed(1)

m <- 30L
n <- 6L
(A <- crossprod(Matrix(rnorm(m * n), m, n)))

## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)
(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

## Underlying LAPACK representation
(m.ch.A <- as(ch.A, "dtrMatrix")) # which is L', not L, because
A@uplo == "U"
stopifnot(identical(as(m.ch.A, "matrix"), "dimc<-"(ch.A@x, ch.A@Dim)))

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
  identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
  identical(names(E.ch.A), c("P1.", "L", "L.", "P1"))
  identical(e.ch.A[["P1"]] [new("pMatrix"), Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
    margin = 2L, perm = invertPerm(ch.A@perm))
  identical(e.ch.A[["P1"]], t(e.ch.A[["P1"]]))
  identical(e.ch.A[["L1"]], t(e.ch.A[["L1"]]))
  identical(E.ch.A[["L"]], t(E.ch.A[["L"]]))
  identical(E.ch.A[["D"]], Diagonal(x = diag(ch.A)))
  all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sort(D)))
  ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
  ae1(A, with(E.ch.A, P1. %*% L %*% D %*% L %*% P1))
  ae2(A[ch.A@perm, ch.A@perm], with(e.ch.A, L1 %*% D %*% L1.))
})
Cholesky-methods

Methods for Cholesky Factorization

Description

Computes the pivoted Cholesky factorization of an \( n \times n \) real, symmetric matrix \( A \), which has the general form

\[
P_1 A P_1' = L_1 D L_1' \quad D_{jj} \geq 0 \quad LL'
\]

or (equivalently)

\[
A = P_1' L_1 D L_1' P_1' \quad D_{jj} \geq 0 \quad P_1' LL' P_1
\]

where \( P_1 \) is a permutation matrix, \( L_1 \) is a unit lower triangular matrix, \( D \) is a diagonal matrix, and \( L = L_1 \sqrt{D} \). The second equalities hold only for positive semidefinite \( A \), for which the diagonal entries of \( D \) are non-negative and \( \sqrt{D} \) is well-defined.

Methods for \texttt{denseMatrix} are built on LAPACK routines \texttt{dpstrf}, \texttt{dpotrf}, and \texttt{dptrf}. The latter two do not permute rows or columns, so that \( P_1 \) is an identity matrix.

Methods for \texttt{sparseMatrix} are built on CHOLMOD routines \texttt{cholmod_analyze} and \texttt{cholmod_factorize_p}.

Usage

\texttt{Cholesky(A, \ldots)}

\texttt{Cholesky(A, perm = TRUE, tol = -1, \ldots)}

\texttt{Cholesky(A, \ldots)}

\texttt{Cholesky(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, \ldots)}

\texttt{Cholesky(A, \ldots)}

\texttt{Cholesky(A, uplo = “U”, \ldots)}

\texttt{Cholesky(A, uplo = “U”, \ldots)}

\texttt{Cholesky(A, uplo = “U”, \ldots)}
Arguments

- **A**: a finite, symmetric matrix or `Matrix` to be factorized. If `A` is square but not symmetric, then it will be treated as symmetric; see `uplo`. Methods for dense `A` require positive definiteness when `perm = FALSE` and positive semidefiniteness when `perm = TRUE`. Methods for sparse `A` require positive definiteness when `LDL = TRUE` and nonzero leading principal minors (after pivoting) when `LDL = FALSE`. Methods for sparse, diagonal `A` are an exception, requiring positive semidefiniteness unconditionally.

- **perm**: a logical indicating if the rows and columns of `A` should be pivoted. Methods for sparse `A` employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability. Pivoting for sparsity may introduce nonpositive leading principal minors, causing the factorization to fail, in which case it may be necessary to set `perm = FALSE`.

- **tol**: a finite numeric tolerance, used only if `perm = TRUE`. The factorization algorithm stops if the pivot is less than or equal to `tol`. Negative `tol` is equivalent to `nrow(A) * .Machine$double.eps * max(diag(A))`.

- **LDL**: a logical indicating if the simplicial factorization should be computed as $P_1' L_1 D L_1' P_1$, such that the result stores the lower triangular entries of $L_1 - I + D$. The alternative is $P_1' L L' P_1$, such that the result stores the lower triangular entries of $L = L_1 \sqrt{D}$. This argument is ignored if `super = TRUE` (or if `super = NA` and the supernodal algorithm is chosen), as the supernodal code does not yet support the `LDL = TRUE` variant.

- **super**: a logical indicating if the factorization should use the supernodal algorithm. The alternative is the simplicial algorithm. Setting `super = NA` leaves the choice to a CHOLMOD-internal heuristic.

- **Imult**: a finite number. The matrix that is factorized is $A + \text{Imult} \times \text{diag(nrow(A))}$, i.e., `A` plus `Imult` times the identity matrix. This argument is useful for symmetric, indefinite `A`, as `Imult > \max(\text{rowSums(abs(A))} - \text{diag(abs(A))})` ensures that $A + \text{Imult} \times \text{diag(nrow(A))}$ is diagonally dominant. (Symmetric, diagonally dominant matrices are positive definite.)

- **uplo**: a string, either "U" or "L", indicating which triangle of `A` should be used to compute the factorization. The default is "U", even for lower triangular `A`, to be consistent with `chol` from `base`.

- **...**: further arguments passed to or from methods.

Details

Note that the result of a call to Cholesky inherits from `CholeskyFactorization` but not `Matrix`. Users who just want a matrix should consider using `chol`, whose methods are simple wrappers around Cholesky returning just the upper triangular Cholesky factor `L'`, typically as a `triangularMatrix`.

However, a more principled approach would be to construct factors as needed from the `CholeskyFactorization` object, e.g., with `expand1(x, "L")`, if `x` is the object.

The behaviour of `Cholesky(A, perm = TRUE)` for dense `A` is somewhat exceptional, in that it expects without checking that `A` is positive semidefinite. By construction, if `A` is positive semidefinite and the exact algorithm encounters a zero pivot, then the unfactorized trailing submatrix is the zero matrix, and there is nothing left to do. Hence when the finite precision algorithm encounters a pivot less than `tol`, it signals a warning instead of an error and zeros the trailing submatrix in order to guarantee that $P' L L' P$ is positive semidefinite even if `A` is not. It follows that one way to test for
positive semidefiniteness of $A$ in the event of a warning is to analyze the error

$$\frac{\|A - P'LL'P\|}{\|A\|}.$$  

See the examples and LAPACK Working Note (“LAWN”) 161 for details.

Value

An object representing the factorization, inheriting from virtual class `CholeskyFactorization`. For a traditional matrix $A$, the specific class is `Cholesky`. For $A$ inheriting from `unpackedMatrix`, `packedMatrix`, and `sparseMatrix`, the specific class is `Cholesky`, `pCholesky`, and `dCHMsimpl` or `dCHMsuper`, respectively.

References


The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.


See Also

Classes `Cholesky`, `pCholesky`, `dCHMsimpl` and `dCHMsuper` and their methods.

Classes `dpoMatrix`, `dppMatrix`, and `dsCMatrix`.

Generic function `chol`, for obtaining the upper triangular Cholesky factor $L'$ as a matrix or `Matrix`.

Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.

Generic functions `BunchKaufman`, `Schur`, `lu`, and `qr`, for computing other factorizations.

Examples

```r
showMethods("Cholesky", inherited = FALSE)
set.seed(0)

---- Dense --
.... Positive definite ..
n <- 6L
(A1 <- crossprod(Matrix(rnorm(n * n), n, n)))
(ch.A1.nopivot <- Cholesky(A1, perm = FALSE))
```
Cholesky-methods

\[(ch.A1 \leftarrow \text{Cholesky}(A1))\]
\[
\text{stopifnot}(\text{exprs} = \{
\quad \text{length}(ch.A1@\text{perm}) == \text{ncol}(A1)
\quad \text{isPerm}(ch.A1@\text{perm})
\quad \text{is.unsorted}(ch.A1@\text{perm}) \# \text{typically not the identity permutation}
\quad \text{length}(ch.A1.nopivot@\text{perm}) == 0L
\})
\]

## A ~ P1
\[
\begin{array}{c}
L \quad D \quad L \\
P_1 \quad L \quad L \\
\end{array}
\]
\[
P_1 \text{ in floating point}
\]

\[
\text{str}(e.ch.A1 \leftarrow \text{expand2}(ch.A1, \text{LDL} = \text{TRUE}), \text{max.level} = 2L)
\]
\[
\text{str}(E.ch.A1 \leftarrow \text{expand2}(ch.A1, \text{LDL} = \text{FALSE}), \text{max.level} = 2L)
\]
\[
\text{stopifnot}(\text{exprs} = \{
\quad \text{all.equal}(\text{as}(A1, \text{"matrix"}), \text{as}(\text{Reduce}(\%\%\%, \text{e.ch.A1}), \text{"matrix"}))
\quad \text{all.equal}(\text{as}(A1, \text{"matrix"}), \text{as}(\text{Reduce}(\%\%\%, \text{E.ch.A1}), \text{"matrix"}))
\})
\]

## .... Positive semidefinite but not positive definite ..............

\[
A2 \leftarrow A1
\]
\[
A2[1L, ] \leftarrow A2[, 1L] \leftarrow 0
\]
\[
A2
\]
\[
\text{try(Cholesky}(A2, \text{perm} = \text{FALSE})) \# \text{fails as not positive definite}
\]
\[
\text{ch.A2} \leftarrow \text{Cholesky}(A2) \# \text{returns, with a warning and ...}
\]
\[
A2.hat \leftarrow \text{Reduce}(\%\%\%, \text{expand2}(ch.A2, \text{LDL} = \text{FALSE}))
\]
\[
\text{norm}(A2 - A2.hat, \text{"2"}) / \text{norm}(A2, \text{"2"}) \# 7.678858e-17
\]

## .... Not positive semidefinite ......................................

\[
A3 \leftarrow A1
\]
\[
A3[1L, ] \leftarrow A3[, 1L] \leftarrow -1
\]
\[
A3
\]
\[
\text{try(Cholesky}(A3, \text{perm} = \text{FALSE})) \# \text{fails as not positive definite}
\]
\[
\text{ch.A3} \leftarrow \text{Cholesky}(A3) \# \text{returns, with a warning and ...}
\]
\[
A3.hat \leftarrow \text{Reduce}(\%\%\%, \text{expand2}(ch.A3, \text{LDL} = \text{FALSE}))
\]
\[
\text{norm}(A3 - A3.hat, \text{"2"}) / \text{norm}(A3, \text{"2"}) \# 1.781568
\]

## Indeed, 'A3' is not positive semidefinite, but 'A3.hat' \_is_ 
\[
\text{ch.A3.hat} \leftarrow \text{Cholesky}(A3.hat)
\]
\[
A3.hat.hat \leftarrow \text{Reduce}(\%\%\%, \text{expand2}(ch.A3.hat, \text{LDL} = \text{FALSE}))
\]
\[
\text{norm}(A3.hat - A3.hat.hat, \text{"2"}) / \text{norm}(A3.hat, \text{"2"}) \# 1.777944e-16
\]

## ---- Sparse ---------------------------------------------------------

## Really just three cases modulo permutation :

## type factorization minors of P1 A P1 

## 1 simplicial P1 A P1' = L1 D L1' nonzero
## 2 simplicial P1 A P1' = L L ' positive
## 3 supernodal P1 A P2' = L L ' positive

\[
data(\text{KNex, package = "Matrix"})
\]
\[
A4 \leftarrow \text{crossprod}(\text{KNex}[[\text{"mm"}]])
\]
\[
\text{ch.A4} \leftarrow \text{list}(\text{ pivoted} =
\text{ list}(\text{simp11} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{FALSE}, \text{LDL} = \text{TRUE}),
\text{ simp10} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{FALSE}, \text{LDL} = \text{FALSE}),
\text{ simp01} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{TRUE}, \text{LDL} = \text{FALSE}),
\text{ simp00} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{FALSE}, \text{LDL} = \text{TRUE}))
\]

## ... Sparse from above, but not positive definite ......................

## ...

## 3 supernodal P1 A P2' = L L ' positive

# data(\text{KNex, package = "Matrix"})
# A4 \leftarrow \text{crossprod}(\text{KNex}[[\text{"mm"}]])
# ch.A4 \leftarrow
# \text{list}(\text{ pivoted} =
# \text{ list}(\text{simp11} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{FALSE}, \text{LDL} = \text{TRUE}),
# \text{ simp10} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{FALSE}, \text{LDL} = \text{FALSE}),
# \text{ simp01} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{TRUE}, \text{LDL} = \text{FALSE}),
# \text{ simp00} = \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{FALSE}, \text{LDL} = \text{TRUE}))
#
# Cholesky-methods

Cholesky-methods

\[
\begin{align*}
\text{super0} &= \text{Cholesky}(A4, \text{perm} = \text{TRUE}, \text{super} = \text{TRUE}), \\
\text{unpivoted} &= \\
\text{list}(\text{simp1}) &= \text{Cholesky}(A4, \text{perm} = \text{FALSE}, \text{super} = \text{FALSE}, \text{LDL} = \text{TRUE}), \\
\text{simp0} &= \text{Cholesky}(A4, \text{perm} = \text{FALSE}, \text{super} = \text{FALSE}, \text{LDL} = \text{FALSE}), \\
\text{super0} &= \text{Cholesky}(A4, \text{perm} = \text{FALSE}, \text{super} = \text{TRUE}). \\
\end{align*}
\]

\begin{verbatim}
ch.A4 <- simplify2array
rapply2 <- function(object, f, ...) rapply(object, f, , , how = "list", ...)

s(rapply2(ch.A4, isLDL))

s(m.ch.A4 <- rapply2(ch.A4, expand1, "L")) # giving L = L1 sqrt(D)

## By design, the pivoted and simplicial factorizations
## are more sparse than the unpivoted and supernodal ones ...

s(rapply2(m.ch.A4, object.size))

## Which is nicely visualized by lattice-based methods for 'image'

inm <- c("pivoted", "unpivoted")

jnm <- c("simp1", "simp0", "super0")

for(i in 1:2)
  for(j in 1:3)
    print(image(m.ch.A4[[c(i, j)]], main = paste(inm[i], jnm[j])),
    split = c(j, i, 3L, 2L), more = i * j < 6L)

simp1 <- ch.A4[[c("pivoted", "simp1")]]

stopifnot(exprs = {
  length(simp1@perm) == ncol(A4)
  isPerm(simp1@perm, 0L)
  is.unsorted(simp1@perm) # typically not the identity permutation
})

## One can expand with and without D regardless of isLDL(.)
## but "without" requires L = L1 sqrt(D), which is conditional
## on min(diag(D)) >= 0, hence "with" is the default

isLDL(simp1)

stopifnot(min(diag(simp1)) >= 0)

str(e.ch.A4 <- expand2(simp1, LDL = TRUE), max.level = 2L) # default

str(E.ch.A4 <- expand2(simp1, LDL = FALSE), max.level = 2L)

stopifnot(exprs = {
  all.equal(E.ch.A4[["L" ]], e.ch.A4[["L1" ]] %*% sqrt(e.ch.A4[["D"]]))
  all.equal(E.ch.A4[["L." ]], sqrt(e.ch.A4[["D"]]) %*% e.ch.A4[["L1."]])
  all.equal(A4, as(Reduce(\%\%\%", e.ch.A4), "symmetricMatrix"))
  all.equal(A4, as(Reduce(\%\%\%, E.ch.A4), "symmetricMatrix"))
})

## The "same" permutation matrix with "alternate" representation
## [i, perm[i]] {margin=1} <-> [invertPerm(perm)[j], j} {margin=2}

alt <- function(P) {
  P@margin <- 1L + !(P@margin - 1L) # 1 <-> 2
  P@perm <- invertPerm(P@perm)
  P
}

## Expansions are elegant but inefficient (transposes are redundant)
## hence programmers should consider methods for 'expand1' and 'diag'

stopifnot(exprs = {
  #...
identical(expand1(simpl1, "P1"), alt(e.ch.A4[["P1"]]))
identical(expand1(simpl1, "L"), E.ch.A4[["L"]])
identical(Diagonal(x = diag(simpl1)), e.ch.A4[["D"]])
}

## chol(A, pivot = value) is a simple wrapper around
## Cholesky(A, perm = value, LDL = FALSE, super = FALSE),
## returning L' = sqrt(D) L1 _but_ giving no information
## about the permutation P1
selectMethod("chol", "dsCMatrix")
stopifnot(all.equal(chol(A4, pivot = TRUE), E.ch.A4[["L"]]))

## Now a symmetric matrix with positive _and_ negative eigenvalues,
## hence _not_ positive semidefinite
A5 <- new("dsCMatrix",
  Dim = c(7L, 7L),
  p = c(0:1, 3L, 6:7, 10:11, 15L),
  i = c(0L, 0:1, 0:3, 2:5, 3:6),
  x = c(1, 6, 38, 10, 60, 103, -4, 6, -32, -247, -2, -16, -128, -2, -67))

(ev <- eigen(A5, only.values = TRUE)$values)
(t.ev <- table(factor(sign(ev), -1:1))) # the matrix "inertia"

ch.A5 <- Cholesky(A5)
islDL(ch.A5) # diag(D) is partly negative

## Sylvester's law of inertia holds here, but not in general
## in finite precision arithmetic
stopifnot(identical(table(factor(sign(d.A5), -1:1)), t.ev))

try(expand1(ch.A5, "L")) # unable to compute L = L1 sqrt(D)
try(expand2(ch.A5, LDL = FALSE)) # ditto
try(chol(A5, pivot = TRUE)) # ditto

## The default expansion is "square root free" and still works here
str(e.ch.A5 <- expand2(ch.A5, LDL = TRUE), max.level = 2L)
stopifnot(all.equal(A5, as(Reduce(`%*%`, e.ch.A5), "symmetricMatrix")))

## Version of the SuiteSparse library, which includes CHOLMOD
Mv <- Matrix.Version()
Mv[["SuiteSparse"]]

---

**coerce-methods-graph**  
*Conversions "graph" <-> (sparse) Matrix*

**Description**

Since 2005, package *Matrix* has supported coercions to and from class *graph* from package *graph*. Since 2013, this functionality has been exposed via functions `T2graph` and `graph2T`, which, unlike methods for `as(from, "<Class>")`, support optional arguments.

**Usage**

```r
graph2T(from, use.weights =)
T2graph(from, need.uniq = !isUniqueT(from), edgemode = NULL)
```
coerce-methods-SparseM

Sparse Matrix Coercion from and to those from package SparseM

Arguments

from for graph2T(), an R object of class "graph";
for T2graph(), a sparse matrix inheriting from "TsparseMatrix".

use.weights logical indicating if weights should be used, i.e., equivalently the result will be numeric, i.e. of class dgTMatrix; otherwise the result will be ngTMatrix or nsTMatrix, the latter if the graph is undirected. The default looks if there are weights in the graph, and if any differ from 1, weights are used.

need.uniq a logical indicating if from may need to be internally “uniqified”; do not set this and hence rather use the default, unless you know what you are doing!

edgemode one of NULL, "directed", or "undirected". The default NULL looks if the matrix is symmetric and assumes "undirected" in that case.

Value

For graph2T(), a sparse matrix inheriting from "TsparseMatrix".

For T2graph() an R object of class "graph".

See Also

Package igraph, which provides similar coercions to and from its class igraph via functions graph_from_adjacency_matrix and as_adjacency_matrix.

Examples

if(requireNamespace("graph")) {
  n4 <- LETTERS[1:4]; dns <- list(n4,n4)
  show(a1 <- sparseMatrix(i= c(1:4), j=c(2:4,1), x = 2, dimnames=dns))
  show(g1 <- as(a1, "graph")) # directed
  unlist(graph::edgeWeights(g1)) # all '2'

  show(a2 <- sparseMatrix(i= c(1:4,4), j=c(2:4,1:2), x = TRUE, dimnames=dns))
  show(g2 <- as(a2, "graph")) # directed
  # now if you want it undirected:
  show(g3 <- T2graph(as(a2,"TsparseMatrix"), edgemode="undirected"))
  show(m3 <- as(g3,"Matrix"))
  show( graph2T(g3) ) # a "pattern Matrix" (nsTMatrix)

  a. <- sparseMatrix(i=4:1, j=1:4, dimnames=list(n4, n4), repr="T") # no 'x'
  show(a.) # "ngTMatrix"
  show(g. <- as(a., "graph"))
}

---

coerce-methods-SparseM

Sparse Matrix Coercion from and to those from package SparseM
Description

Methods for coercion from and to sparse matrices from package SparseM are provided here, for ease of porting functionality to the Matrix package, and comparing functionality of the two packages. All these work via the usual as(. , "<class>") coercion, as(from, Class)

Methods

from = "matrix.csr", to = "dgRMatrix" ...
from = "matrix.csc", to = "dgCMatrix" ...
from = "matrix.coo", to = "dgTMatrix" ...
from = "dgRMatrix", to = "matrix.csr" ...
from = "dgCMatrix", to = "matrix.csc" ...
from = "dgTMatrix", to = "matrix.coo" ...
from = "Matrix", to = "matrix.csr" ...
from = "matrix.csr", to = "dgCMatrix" ...
from = "matrix.coo", to = "dgCMatrix" ...
from = "matrix.csr", to = "Matrix" ...
from = "matrix.csc", to = "Matrix" ...
from = "matrix.coo", to = "Matrix" ...

See Also

The documentation in CRAN package SparseM, such as SparseM.ontology, and one important class, matrix.csr.

colSums-methods

Form Row and Column Sums and Means

Description

Form row and column sums and means for objects, for sparseMatrix the result may optionally be sparse (sparseVector), too. Row or column names are kept respectively as for base matrices and colSums methods, when the result is numeric vector.

Usage

colSums(x, na.rm = FALSE, dims = 1L, ...)
rowSums(x, na.rm = FALSE, dims = 1L, ...)
colMeans(x, na.rm = FALSE, dims = 1L, ...)
rowMeans(x, na.rm = FALSE, dims = 1L, ...)

## S4 method for signature 'CsparseMatrix'
colSums(x, na.rm = FALSE, dims = 1L,
      sparseResult = FALSE, ...)
## S4 method for signature 'CsparseMatrix'
rowSums(x, na.rm = FALSE, dims = 1L, ...)


Arguments

- **x**: a Matrix, i.e., inheriting from \( \text{Matrix} \).
- **na.rm**: logical. Should missing values (including NaN) be omitted from the calculations?
- **dims**: completely ignored by the \( \text{Matrix} \) methods.
- **sparseResult**: logical indicating if the result should be sparse, i.e., inheriting from class \( \text{sparseVector} \). Only applicable when \( x \) is inheriting from a \( \text{sparseMatrix} \) class.

Value

returns a numeric vector if \( \text{sparseResult} \) is \( \text{FALSE} \) as per default. Otherwise, returns a \( \text{sparseVector} \).

\( \text{dimnames(x)} \) are only kept (as \( \text{names(v)} \)) when the resulting \( v \) is \( \text{numeric} \), since \( \text{sparseVectors} \) do not have names.

See Also

colSums and the \( \text{sparseVector} \) classes.

Examples

```r
(M <- bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))) # 7 x 8
colSums(M)
d <- Diagonal(10, c(0,0,10,0,2,rep(0,5)))
MM <- kronecker(d, M)
dim(MM) # 70 80
length(MM@x) # 160, but many are '0' ; drop those:
MM <- drop0(MM)
length(MM@x) # 32
cm <- colSums(MM)
(scm <- colSums(MM, sparseResult = TRUE))
stopifnot(is(scm, "sparseVector"),
 identical(cm, as.numeric(scm)))
rowSums (MM, sparseResult = TRUE) # 14 of 70 are not zero
colMeans(MM, sparseResult = TRUE) # 16 of 80 are not zero
Since we have no 'NA's, these two are equivalent :
stopifnot(identical(rowMeans(MM, sparseResult = TRUE),
 rowMeans(MM, sparseResult = TRUE, na.rm = TRUE)),
 rowMeans(Diagonal(16)) == 1/16,
 colSums(Diagonal(7)) == 1)

dimnames(x) --> names(<value>) :
dimnames(M) <- list(paste("r", 1:7), paste("V",1:8))
M
colSums(M)
rowMeans(M)
```

compMatrix-class

Class "compMatrix" of Composite (Factorizable) Matrices

Description

Virtual class of composite matrices; i.e., matrices that can be factorized, typically as a product of simpler matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

factors: Object of class "list" - a list of factorizations of the matrix. Note that this is typically empty, i.e., list(), initially and is updated automatically whenever a matrix factorization is computed.

Dim, Dimnames: inherited from the Matrix class, see there.

Extends

Class "Matrix", directly.

Methods

dimnames<- signature(x = "compMatrix", value = "list"): set the dimnames to a list of length 2, see dimnames<-. The factors slot is currently reset to empty, as the factorization dimnames would have to be adapted, too.

See Also

The matrix factorization classes "MatrixFactorization" and their generators, lu(), qr(), chol() and Cholesky(), BunchKaufman(), Schur().
condest Compute Approximate CONDITION number and 1-Norm of (Large) Matrices

Description

“Estimate”, i.e. compute approximately the CONDITION number of a (potentially large, often sparse) matrix A. It works by apply a fast randomized approximation of the 1-norm, norm(A,"1"), through onenormest(.)

Usage

condest(A, t = min(n, 5), normA = norm(A, "1"),
    silent = FALSE, quiet = TRUE)

onenormest(A, t = min(n, 5), A.x, At.x, n,
    silent = FALSE, quiet = silent,
    iter.max = 10, eps = 4 * .Machine$double.eps)

Arguments

A a square matrix, optional for onenormest(), where instead of A, A.x and At.x can be specified, see there.
t number of columns to use in the iterations.
normA number; (an estimate of) the 1-norm of A, by default norm(A, "1"); may be replaced by an estimate.
silent logical indicating if warning and (by default) convergence messages should be displayed.
quiet logical indicating if convergence messages should be displayed.
A.x, At.x when A is missing, these two must be given as functions which compute A %% x, or t(A) %% x, respectively.
n == nrow(A), only needed when A is not specified.
iter.max maximal number of iterations for the 1-norm estimator.
eps the relative change that is deemed irrelevant.

Details

condest() calls lu(A), and subsequently onenormest(A.x = , At.x = ) to compute an approximate norm of the inverse of A, A^{-1}, in a way which keeps using sparse matrices efficiently when A is sparse.

Note that onenormest() uses random vectors and hence both functions’ results are random, i.e., depend on the random seed, see, e.g., set.seed().

Value

Both functions return a list; condest() with components,
est a number > 0, the estimated (1-norm) condition number \( \hat{\kappa} \); when \( r := r\text{cond}(A), 1/\hat{\kappa} \approx r \).
`condest` 43

\[ v \] the maximal \( Ax \) column, scaled to \( \text{norm}(v) = 1 \). Consequently, \( \text{norm}(Av) = \text{norm}(A)/est \); when \( est \) is large, \( v \) is an approximate null vector.

The function `onenormest()` returns a list with components,

- `est` a number > 0, the estimated \( \text{norm}(A, "1") \).
- `v` 0-1 integer vector length \( n \), with an 1 at the index \( j \) with maximal column \( A[\, j] \) in \( A \).
- `w` numeric vector, the largest \( Ax \) found.
- `iter` the number of iterations used.

**Author(s)**

This is based on octave’s `condest()` and `onenormest()` implementations with original author Jason Riedy, U Berkeley; translation to R and adaption by Martin Maechler.

**References**


**See Also**

`norm`, `rcond`.

**Examples**

data(KNex, package = "Matrix")
mtm <- with(KNex, crossprod(mm))
system.time(ce <- condest(mtm))
sum(abs(ce$v)) ## || v ||_1 == 1
## Prove that || Av || = || A || / est (as ||v|| = 1):
stopifnot(all.equal(norm(mtm %*% ce$v),
                   norm(mtm) / ce$est))

## reciprocal
1 / ce$est
system.time(rc <- rcond(mtm)) # takes ca 3 x longer
rc
all.equal(rc, 1/ce$est) # TRUE -- the approximation was good

one <- onenormest(mtm)
str(one) # est = 12.3
## the maximal column:
which(one$v == 1) # mostly 4, rarely 1, depending on random seed
Class "CsparseMatrix" of Sparse Matrices in Column-compressed Form

Description

The "CsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed column-oriented form. Since it is a virtual class, no objects may be created from it. See `showClass("CsparseMatrix")` for its subclasses.

Slots

- **i**: Object of class "integer" of length nnzero (number of non-zero elements). These are the 0-based row numbers for each non-zero element in the matrix, i.e., i must be in 0:(nrow(.)-1).
- **p**: `integer` vector for providing pointers, one for each column, to the initial (zero-based) index of elements in the column. `.@p` is of length `ncol(.) + 1`, with `p[1] == 0` and `p[length(p)] == nnzero`, such that in fact, `diff(.@p)` are the number of non-zero elements for each column. In other words, `@p[1:ncol(m)]` contains the indices of those elements in `@x` that are the first elements in the respective column of `m`.

- **Dim**, **Dimnames**: inherited from the superclass, see the `sparseMatrix` class.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

- `matrix products %*%`, `crossprod()` and `tcrossprod()`, several `solve` methods, and other matrix methods available:
  - signature(e1 = "CsparseMatrix", e2 = "numeric")
  - `Arith` signature(e1 = "numeric", e2 = "CsparseMatrix")
  - `Math` signature(x = "CsparseMatrix")
  - `band` signature(x = "CsparseMatrix")
  - signature(e1 = "CsparseMatrix", e2 = "numeric")
  - signature(e1 = "numeric", e2 = "CsparseMatrix")
  - signature(e1 = "numeric", e2 = "numeric")
  - `coerce` signature(from = "CsparseMatrix", to = "TsparseMatrix")
  - `coerce` signature(from = "CsparseMatrix", to = "denseMatrix")
  - `coerce` signature(from = "TsparseMatrix", to = "matrix")
  - `coerce` signature(from = "denseMatrix", to = "CsparseMatrix")
  - `diag` signature(x = "CsparseMatrix")
  - `gamma` signature(x = "CsparseMatrix")
  - `lgamma` signature(x = "CsparseMatrix")
**ddenseMatrix-class**

log signature(x = "CsparseMatrix"): ...

t signature(x = "CsparseMatrix"): ...

tril signature(x = "CsparseMatrix"): ...

triu signature(x = "CsparseMatrix"): ...

**Note**

All classes extending CsparseMatrix have a common validity (see validObject) check function. That function additionally checks the i slot for each column to contain increasing row numbers. In earlier versions of Matrix (<= 0.999375-16), validObject automatically re-sorted the entries when necessary, and hence new() calls with somewhat permuted i and x slots worked, as new(...) (with slot arguments) automatically checks the validity.

Now, you have to use sparseMatrix to achieve the same functionality or know how to use .validateCsparse() to do so.

**See Also**

colSums, kronecker, and other such methods with own help pages.

Further, the super class of CsparseMatrix, sparseMatrix, and, e.g., class dgCMatrix for the links to other classes.

**Examples**

class("CsparseMatrix")

## The common validity check function (based on C code):
getValidity(class("CsparseMatrix"))

---

**ddenseMatrix-class**  
**Virtual Class "ddenseMatrix" of Numeric Dense Matrices**

**Description**

This is the virtual class of all dense numeric (i.e., double, hence “ddense”) S4 matrices. Its most important subclass is the dgeMatrix class.

**Extends**

Class "dMatrix" directly; class "Matrix", by the above.

**Slots**

the same slots at its subclass dgeMatrix, see there.

**Methods**

Most methods are implemented via as(*, "generalMatrix") and are mainly used as “fallbacks” when the subclass doesn’t need its own specialized method.

Use showMethods(class = "ddenseMatrix", where = "package:Matrix") for an overview.
ddiMatrix-class

See Also
The virtual classes Matrix, dMatrix, and dsparseMatrix.

Examples

showClass("ddenseMatrix")

showMethods(class = "ddenseMatrix", where = "package:Matrix")

ddiMatrix-class

Class "ddiMatrix" of Diagonal Numeric Matrices

Description
The class "ddiMatrix" of numerical diagonal matrices.
Note that diagonal matrices now extend sparseMatrix, whereas they did extend dense matrices earlier.

Objects from the Class
Objects can be created by calls of the form new("ddiMatrix", ...) but typically rather via Diagonal.

Slots
x: numeric vector. For an \( n \times n \) matrix, the \( x \) slot is of length \( n \) or \( 0 \), depending on the diag slot:
diag: "character" string, either "U" or "N" where "U" denotes unit-diagonal, i.e., identity matrices.
Dim, Dimnames: matrix dimension and dimnames, see the Matrix class description.

Extends
Class "diagonalMatrix", directly. Class "dMatrix", directly. Class "sparseMatrix", indirectly, see showClass("ddiMatrix").

Methods
%*% signature(x = "ddiMatrix", y = "ddiMatrix"): ...

See Also
Class diagonalMatrix and function Diagonal.

Examples
(d2 <- Diagonal(x = c(10,1)))
str(d2)
## slightly larger in internal size:
str(as(d2, "sparseMatrix"))
M <- Matrix(cbind(1,2:4))
M %*% d2 ## fast multiplication
chol(d2) # trivial
stopifnot(is(cd2 <- chol(d2), "ddiMatrix"),
  all.equal(cd2@x, c(sqrt(10),1)))
References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgetrf.f.


See Also

Class sparseLU for sparse LU factorizations.
Class dgeMatrix.
Generic functions lu, expand1 and expand2.

Examples

showClass("denseLU")
set.seed(1)

n <- 3L
(A <- Matrix(round(rnorm(n * n), 2L), n, n))

## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

## Underlying LAPACK representation
(m.lu.A <- as(lu.A, "dgeMatrix")) # which is L and U interlaced
stopifnot(identical(as(m.lu.A, "matrix"), 'dim<-'(lu.A@x, lu.A@Dim)))
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1’ L U in floating point
stopifnot(exprs = {
  identical(names(e.lu.A), c("P1.", "L", "U"))
  identical(e.lu.A[['P1.']],
    new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
    margin = 1L, perm = invertPerm(asPerm(lu.A@perm))))
  identical(e.lu.A[['L']],
    new("dtrMatrix", Dim = c(n, n), Dimnames = c(list(NULL), NULL),
    uplo = "L", diag = "U", x = lu.A@x))
  identical(e.lu.A[['U']],
    new("dtrMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
    uplo = "U", diag = "N", x = lu.A@x))
  ae1(A, with(e.lu.A, P1.%*% L%*% U))
  ae2(A[asPerm(lu.A@perm), ], with(e.lu.A, L %*% U))
})

## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
  identical(solve(A, b), solve(lu.A, b)))
denseMatrix-class

Virtual Class "denseMatrix" of All Dense Matrices

Description

This is the virtual class of all dense (S4) matrices. It partitions into two subclasses packedMatrix and unpackedMatrix. Alternatively into the (currently) three subclasses ddenseMatrix, ldenseMatrix, and ndenseMatrix.
denseMatrix is (hence) the direct superclass of these \((2 + 3 = 5)\) classes.

Extends

class "Matrix" directly.

Slots

exactly those of its superclass "Matrix", i.e., "Dim" and "Dimnames".

Methods

Use showMethods(class = "denseMatrix", where = "package:Matrix") for an overview of methods.

Extraction ("\[\) methods, see \[-methods.

See Also

colSums, kronecker, and other such methods with own help pages.

Its superclass Matrix, and main subclasses, ddenseMatrix and sparseMatrix.

Examples

showClass("denseMatrix")

dgCMatrix-class

Compressed, sparse, column-oriented numeric matrices

Description

The dgCMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order. dgCMatrix is the "standard" class for sparse numeric matrices in the Matrix package.

Objects from the Class

Objects can be created by calls of the form new("dgCMatrix", ...), more typically via as(*, "CsparseMatrix") or similar. Often however, more easily via Matrix(*, sparse = TRUE), or most efficiently via sparseMatrix().
Slots

x: Object of class "numeric" - the non-zero elements of the matrix.

... all other slots are inherited from the superclass "CsparseMatrix".

Methods

Matrix products (e.g., crossprod-methods), and (among other)

coerce signature(from = "matrix", to = "dgCMatrix")
diag signature(x = "dgCMatrix"): returns the diagonal of x
dim signature(x = "dgCMatrix"): returns the dimensions of x
image signature(x = "dgCMatrix"): plots an image of x using the levelplot function
solve signature(a = "dgCMatrix", b = "..."): see solve-methods, notably the extra argument sparse.
lu signature(x = "dgCMatrix"): computes the LU decomposition of a square dgCMatrix object

See Also
Classes dsCMatrx, dtCMatrx, lu

Examples

(m <- Matrix(c(0,0,2:0), 3,5))
str(m)
m[,1]
**Methods**

The are group methods (see, e.g., `Arith`)

- **Arith** signature(e1 = "dgeMatrix", e2 = "dgeMatrix"): ...
- **Arith** signature(e1 = "dgeMatrix", e2 = "numeric"): ...
- **Arith** signature(e1 = "numeric", e2 = "dgeMatrix"): ...
- **Math** signature(x = "dgeMatrix"): ...
- **Math2** signature(x = "dgeMatrix", digits = "numeric"): ...

Matrix products `%*%`, `crossprod()` and `tcrossprod()`, several `solve` methods, and other matrix methods available:

- **Schur** signature(x = "dgeMatrix", vectors = "logical"): ...  
- **Schur** signature(x = "dgeMatrix", vectors = "missing"): ...  
- **chol** signature(x = "dgeMatrix"): see `chol`.  
- **colMeans** signature(x = "dgeMatrix"): columnwise means (averages)  
- **colSums** signature(x = "dgeMatrix"): columnwise sums  
- **diag** signature(x = "dgeMatrix"): ...  
- **dim** signature(x = "dgeMatrix"): ...  
- **dimnames** signature(x = "dgeMatrix"): ...  
- **eigen** signature(x = "dgeMatrix", only.values = "logical"): ...  
- **eigen** signature(x = "dgeMatrix", only.values = "missing"): ...  
- **norm** signature(x = "dgeMatrix", type = "character"): ...  
- **norm** signature(x = "dgeMatrix", type = "missing"): ...  
- **rcond** signature(x = "dgeMatrix", norm = "character") or norm = "missing": the reciprocal condition number, `rcond()`.
- **rowMeans** signature(x = "dgeMatrix"): rowwise means (averages)  
- **rowSums** signature(x = "dgeMatrix"): rowwise sums  
- **t** signature(x = "dgeMatrix"): matrix transpose

**See Also**

Classes `Matrix`, `dtrMatrix`, and `dsyMatrix`.

---

**dgRMatrix-class**  
**Sparse Compressed, Row-oriented Numeric Matrices**

**Description**

The `dgRMatrix` class is a class of sparse numeric matrices in the compressed, sparse, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

**Note:** The column-oriented sparse classes, e.g., `dgCMatrix`, are preferred and better supported in the `Matrix` package.
**Objects from the Class**

Objects can be created by calls of the form `new("dgRMatrix", ...)`.

**Slots**

- **j**: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the column numbers for each non-zero element in the matrix.
- **p**: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.
- **x**: Object of class "numeric" - the non-zero elements of the matrix.
- **Dim**: Object of class "integer" - the dimensions of the matrix.

**Methods**

- **diag** signature(`x = "dgRMatrix"`): returns the diagonal of `x`
- **dim** signature(`x = "dgRMatrix"`): returns the dimensions of `x`
- **image** signature(`x = "dgRMatrix"`): plots an image of `x` using the `levelplot` function

**See Also**

the `RsparseMatrix` class, the virtual class of all sparse compressed row-oriented matrices, with its methods. The `dgCMatrix` class (column compressed sparse) is really preferred.

---

**Description**

The "dgTMatrix" class is the class of sparse matrices stored as (possibly redundant) triplets. The internal representation is not at all unique, contrary to the one for class `dgCMatrix`.

**Objects from the Class**

Objects can be created by calls of the form `new("dgTMatrix", ...)`, but more typically via `spMatrix()` or `sparseMatrix(*, repr = "T")`.

**Slots**

- **i**: `integer` row indices of non-zero entries in 0-base, i.e., must be in `0:(nrow(.)-1)`.
- **j**: `integer` column indices of non-zero entries. Must be the same length as slot `i` and 0-based as well, i.e., in `0:(ncol(.)-1)`.
- **x**: `numeric` vector - the (non-zero) entry at position `(i,j)`. Must be the same length as slot `i`. If an index pair occurs more than once, the corresponding values of slot `x` are added to form the element of the matrix.
- **Dim**: Object of class "integer" of length 2 - the dimensions of the matrix.
Methods

- signature(e1 = "dgTMatrix", e2 = "dgTMatrix")
- image signature(x = "dgTMatrix"): plots an image of x using the levelplot function
- t signature(x = "dgTMatrix"): returns the transpose of x

Note

Triplet matrices are a convenient form in which to construct sparse matrices after which they can be coerced to *dgCMatrix* objects.

Note that both new(.) and *spMatrix* constructors for "dgTMatrix" (and other "TsparseMatrix" classes) implicitly add \( x_k \)'s that belong to identical \((i_k, j_k)\) pairs.

However this means that a matrix typically can be stored in more than one possible "TsparseMatrix" representations. Use *asUniqueT()* in order to ensure uniqueness of the internal representation of such a matrix.

See Also

Class *dgCMatrix* or the superclasses *dsparseMatrix* and *TsparseMatrix*; asUniqueT.

Examples

```r
m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
str(mT)
mT[1,]
mT[4, drop = FALSE]
stopifnot(identical(mT[lower.tri(mT)],
 m [lower.tri(m)]))
mT[lower.tri(mT, diag=TRUE)] <- 0
mT

Triplet representation with repeated (i,j) entries
adds the corresponding x's:
T2 <- new("dgTMatrix",
 i = as.integer(c(1,1,0,3,3)),
 j = as.integer(c(2,2,4,0,0)), x=10*1:5, Dim=4:5)
str(T2) # contains (i,j,x) slots exactly as above, but
T2 # has only three non-zero entries, as for repeated (i,j)'s,
 # the corresponding x's are "implicitly" added
stopifnot(nnzero(T2) == 3)
```

Description

Construct a formally diagonal *Matrix*, i.e., an object inheriting from virtual class *diagonalMatrix* (or, if desired, a mathematically diagonal *CsparseMatrix*).
Diagonal(n, x = NULL, names = FALSE)

.sparseDiagonal(n, x = NULL, uplo = "U", shape = "t", unitri = TRUE, kind, cols)
.trDiagonal(n, x = NULL, uplo = "U", unitri = TRUE, kind)
.symDiagonal(n, x = NULL, uplo = "U", kind)

Arguments

n
integer indicating the dimension of the (square) matrix. If missing, then length(x) is used.

x
numeric or logical vector listing values for the diagonal entries, to be recycled as necessary. If NULL (the default), then the result is a unit diagonal matrix. 
.sparseDiagonal() and friends ignore non-NULL x when kind = "n".

names
either logical TRUE or FALSE or then a character vector of length n. If true and names(x) is not NULL, use that as both row and column names for the resulting matrix. When a character vector, use it for both dimnames.

uplo
one of c("U", "L"), specifying the uplo slot of the result if the result is formally triangular of symmetric.

shape
one of c("t", "s", "g"), indicating if the result should be formally triangular, symmetric, or "general". The result will inherit from virtual class triangularMatrix, symmetricMatrix, or generalMatrix, respectively.

unitri
logical indicating if a formally triangular result with ones on the diagonal should be formally unit triangular, i.e., with diag slot equal to "U" rather than "N".

kind
one of c("d", "l", "n"), indicating the “mode” of the result: numeric, logical, or pattern. The result will inherit from virtual class dsparseMatrix, lsparseMatrix, or nsparseMatrix, respectively. Values other than "n" are ignored when x is non-NULL; in that case the mode is determined by typeof(x).

cols
optional integer vector with values in 0:(n-1), indexing columns of the specified diagonal matrix. If specified, then the result is (mathematically) D[, cols+1] rather than D, where D = Diagonal(n, x), and it is always "general" (i.e., shape is ignored).

Value

Diagonal() returns an object inheriting from virtual class diagonalMatrix.

.sparseDiagonal() returns a CsparseMatrix representation of Diagonal(n, x) or, if cols is given, of Diagonal(n, x)[, cols+1]. The precise class of the result depends on shape and kind.

.trDiagonal() and .symDiagonal() are simple wrappers, for .sparseDiagonal(shape = "t") and .sparseDiagonal(shape = "s"), respectively.

.sparseDiagonal() exists primarily to leverage efficient C-level methods available for CsparseMatrix.

Author(s)

Martin Maechler
See Also

the generic function diag for extraction of the diagonal from a matrix works for all “Matrices”.

bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals. band(A) returns a band matrix containing some sub-/super - diagonals of A.

Matrix for general matrix construction; further, class diagonalMatrix.

Examples

Diagonal(3)
Diagonal(x = 10^(3:1))
Diagonal(x = (1:4) >= 2)#-> "ldiMatrix"

## Use Diagonal() + kronecker() for "repeated-block" matrices:
M1 <- Matrix(0+0:5, 2,3)
(M <- kronecker(Diagonal(3), M1))
(S <- crossprod(Matrix(rbinom(60, size=1, prob=0.1), 10,6)))
(SI <- S + 10*symDiagonal(6)) # sparse symmetric still
stopifnot(is(SI, "dsCMatrix"))
(I4 <- .sparseDiagonal(4, shape="t"))# now (2012-10) unitriangular
stopifnot(I4@diag == "U", all(I4 == diag(4)))

diagonalMatrix-class  Class "diagonalMatrix" of Diagonal Matrices

Description

Class "diagonalMatrix" is the virtual class of all diagonal matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

diag: character string, either "U" or "N", where "U" means ‘unit-diagonal’.

Dim: matrix dimension, and

Dimnames: the dimnames, a list, see the Matrix class description. Typically list(NULL,NULL) for diagonal matrices.

Extends

Class "sparseMatrix", directly.
Methods

These are just a subset of the signature for which defined methods. Currently, there are (too) many explicit methods defined in order to ensure efficient methods for diagonal matrices.

```r
coerce signature(from = 'matrix', to = 'diagonalMatrix'):
```

```r
coerce signature(from = 'Matrix', to = 'diagonalMatrix'):
```

```r
coerce signature(from = 'diagonalMatrix', to = 'generalMatrix'):
```

```r
coerce signature(from = 'diagonalMatrix', to = 'triangularMatrix'):
```

```r
coerce signature(from = 'diagonalMatrix', to = 'nMatrix'):
```

```r
coerce signature(from = 'diagonalMatrix', to = 'matrix'):
```

```r
coerce signature(from = 'diagonalMatrix', to = 'sparseVector'):
```

```r
t signature(x = 'diagonalMatrix'):
```

and many more methods

```r
solve signature(a = 'diagonalMatrix', b, ...): is trivially implemented, of course; see also solve-methods.
```

```r
which signature(x = 'nMatrix'), semantically equivalent to base function which(x, arr.ind).
```

```r
"Math" signature(x = 'diagonalMatrix'): all these group methods return a "diagonalMatrix", apart from `cumsum()` etc which return a vector also for base `matrix`
```

```r
* signature(e1 = 'ddiMatrix', e2='denseMatrix'): arithmetic and other operators from the Ops group have a few dozen explicit method definitions, in order to keep the results diagonal in many cases, including the following:
```

```r
/ signature(e1 = 'ddiMatrix', e2='denseMatrix'): the result is from class `ddiMatrix` which is typically very desirable. Note that when `e2` contains off-diagonal zeros or NAs, we implicitly use 0/x = 0, hence differing from traditional R arithmetic (where 0/0 \rightarrow NaN), in order to preserve sparsity.
```

```r
summary (object = 'diagonalMatrix'): Returns an object of S3 class "diagSummary" which is the summary of the vector object@x plus a simple heading, and an appropriate print method.
```

See Also

`Diagonal()` as constructor of these matrices, and `isDiagonal`. `ddiMatrix` and `ldiMatrix` are “actual” classes extending "diagonalMatrix".

Examples

```r
I5 <- Diagonal(5)
D5 <- Diagonal(x = 10*(1:5))
trivial (but explicitly defined) methods:
stopifnot(identical(crossprod(I5), I5),
 identical(tcrossprod(I5), I5),
 identical(crossprod(I5, D5), D5),
 identical(tcrossprod(D5, I5), D5),
 identical(solve(D5), solve(D5, I5)),
 all.equal(D5, solve(solve(D5)), tolerance = 1e-12)
)
solve(D5)# efficient as is diagonal
```

# an unusual way to construct a band matrix:
```
rbind2(cbind2(I5, D5),
cbind2(D5, I5))
```
### Description

Transform a triangular matrix \( x \), i.e., of class `triangularMatrix`, from (internally!) unit triangular ("unitriangular") to "general" triangular (\( \text{diagU2N}(x) \)) or back (\( \text{diagN2U}(x) \)). Note that the latter, \( \text{diagN2U}(x) \), also sets the diagonal to one in cases where \( \text{diag}(x) \) was not all one.

\( \text{diagU2N}(x) \) and \( \text{diagN2U}(x) \) assume without checking that \( x \) is a `triangularMatrix` with suitable \( \text{diag} \) slot ("U" and "N", respectively), hence they should be used with care.

### Usage

\[
\begin{align*}
\text{diagU2N}(x, \text{cl} = \text{getClassDef}(\text{class}(x)), \text{checkDense} = \text{FALSE}) \\
\text{diagN2U}(x, \text{cl} = \text{getClassDef}(\text{class}(x)), \text{checkDense} = \text{FALSE})
\end{align*}
\]

### Arguments

- **x**: a `triangularMatrix`, often sparse.
- **cl** (optional, for speedup only): class (definition) of \( x \).
- **checkDense**: logical indicating if dense (see `denseMatrix`) matrices should be considered at all; i.e., when false, as per default, the result will be sparse even when \( x \) is dense.

### Details

The concept of unit triangular matrices with a \( \text{diag} \) slot of "U" stems from LAPACK.

### Value

a triangular matrix of the same `class` but with a different \( \text{diag} \) slot. For \( \text{diagU2N} \) (semantically) with identical entries as \( x \), whereas in \( \text{diagN2U}(x) \), the off-diagonal entries are unchanged and the diagonal is set to all 1 even if it was not previously.

### Note

Such internal storage details should rarely be of relevance to the user. Hence, these functions really are rather internal utilities.

### See Also

"`triangularMatrix`, "`dtCMatrix`".
Examples

(T <- Diagonal(7) + triu(Matrix(rpois(49, 1/4), 7, 7), k = 1))
(uT <- diagN2U(T)) # "unitriangular"
(t.u <- diagN2U(10*T))# changes the diagonal!
stopifnot(all(T == uT), diag(t.u) == 1,
  identical(T, diagU2N(uT)))
T[upper.tri(T)] <- 5 # still "dtC"
T <- diagN2U(as(T,"triangularMatrix"))
dT <- as(T, "denseMatrix") # (unitriangular)
dT.n <- diagU2N(dT, checkDense = TRUE)
sT.n <- diagU2N(dT)
stopifnot(is(dT.n, "denseMatrix"), is(sT.n, "sparseMatrix"),
  dT@diag == "U", dT.n@diag == "N", sT.n@diag == "N",
  all(dT == dT.n), all(dT == sT.n))

---

**dimScale**

Scale the Rows and Columns of a Matrix

Description

dimScale, rowScale, and colScale implement $D_1 \times x \times D_2, D \times x$, and $x \times D$ for diagonal matrices $D_1, D_2$, and $D$ with diagonal entries $d_1, d_2$, and $d$, respectively. Unlike the explicit products, these functions preserve dimnames(x) and symmetry where appropriate.

Usage

dimScale(x, d1 = sqrt(1/diag(x, names = FALSE)), d2 = d1)
rowScale(x, d)
colScale(x, d)

Arguments

- **x**: a matrix, possibly inheriting from virtual class `Matrix`.
- **d1, d2, d**: numeric vectors giving factors by which to scale the rows or columns of x; they are recycled as necessary.

Details

dimScale(x) (with d1 and d2 unset) is only roughly equivalent to `cov2cor(x)`. `cov2cor` sets the diagonal entries of the result to 1 (exactly); dimScale does not.

Value

The result of scaling x, currently always inheriting from virtual class `dMatrix`.
It inherits from `triangularMatrix` if and only if x does. In the special case of dimScale(x, d1, d2) with identical d1 and d2, it inherits from `symmetricMatrix` if and only if x does.

Author(s)

Mikael Jagan
dMatrix-class

Virtual Class "dMatrix" of "double" Matrices

Description
The dMatrix class is a virtual class contained by all actual classes of numeric matrices in the Matrix package. Similarly, all the actual classes of logical matrices inherit from the lMatrix class.

Slots
Common to all matrix object in the package:

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.

Dimnames: list of length two; each component containing NULL or a character vector length equal the corresponding Dim element.

Methods
There are (relatively simple) group methods (see, e.g., Arith)

Arith signature(e1 = "dMatrix", e2 = "dMatrix"): ...
Arith signature(e1 = "dMatrix", e2 = "numeric"): ...
Arith signature(e1 = "numeric", e2 = "dMatrix"): ...
Math signature(x = "dMatrix"): ...
Math2 signature(x = "dMatrix", digits = "numeric"): this group contains round() and signif().
Compare signature(e1 = "numeric", e2 = "dMatrix"): ...
Compare signature(e1 = "dMatrix", e2 = "numeric"): ...
Compare signature(e1 = "dMatrix", e2 = "dMatrix"): ...
Summary signature(x = "dMatrix"): The "Summary" group contains the seven functions max(), min(), range(), prod(), sum(), any(), and all().
The following methods are also defined for all double matrices:

```r
expm signature(x = "dMatrix"): computes the "Matrix Exponential", see expm.
zapsmall signature(x = "dMatrix"): ...
```

The following methods are defined for all logical matrices:

```r
which signature(x = "lsparseMatrix") and many other subclasses of "lMatrix": as the base function which(x, arr.ind) returns the indices of the TRUE entries in x; if arr.ind is true, as a 2-column matrix of row and column indices. Since Matrix version 1.2-9, if useNames is true, as by default, with dimnames, the same as base::which.
```

See Also

The nonzero-pattern matrix class nMatrix, which can be used to store non-NA logical matrices even more compactly.

The numeric matrix classes dgeMatrix, dgCMatrix, and Matrix.

```r
drop0(x, tol=1e-10) is sometimes preferable to (and more efficient than) zapsmall(x, digits=10).
```

Examples

```r
showClass("dMatrix")

set.seed(101)
round(Matrix(rnorm(28), 4,7), 2)
M <- Matrix(rlnorm(56, sd=10), 4,14)
(M. <- zapsmall(M))
table(as.logical(M. == 0))
```

---

### dmperm

**Dulmage-Mendelsohn Permutation / Decomposition**

Description

For any \( n \times m \) (typically) sparse matrix \( x \) compute the Dulmage-Mendelsohn row and columns permutations which at first splits the \( n \) rows and \( m \) columns into coarse partitions each; and then a finer one, reordering rows and columns such that the permuted matrix is “as upper triangular” as possible.

Usage

```r
dmperm(x, nAns = 6L, seed = 0L)
```

Arguments

- **x**: a typically sparse matrix; internally coerced to either "dgCMatrix" or "dtCMatrix".
- **nAns**: an integer specifying the length of the resulting list. Must be 2, 4, or 6.
- **seed**: an integer code in -1,0,1; determining the (initial) permutation; by default, seed = 0, no (or the identity) permutation; seed = -1 uses the “reverse” permutation \( k:1 \); for seed = 1, it is a random permutation (using R’s RNG, seed, etc).
**dmperm**

**Details**

See the book section by Tim Davis; page 122–127, in the References.

**Value**

A named list with (by default) 6 components,

- **p**: integer vector with the permutation p, of length nrow(x).
- **q**: integer vector with the permutation q, of length ncol(x).
- **r**: integer vector of length nb+1, where block k is rows r[k] to r[k+1]-1 in A[p,q].
- **s**: integer vector of length nb+1, where block k is cols s[k] to s[k+1]-1 in A[p,q].
- **rr5**: integer vector of length 5, defining the coarse row decomposition.
- **cc5**: integer vector of length 5, defining the coarse column decomposition.

**Author(s)**

Martin Maechler, with a lot of “encouragement” by Mauricio Vargas.

**References**

Section 7.4 Dulmage-Mendelsohn decomposition, pp. 122 ff of

**See Also**

Schur, the class of permutation matrices; “pMatrix”.

**Examples**

```r
set.seed(17)
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
str(dm9 <- dmperm(S9))
(S9p <- with(dm9, S9[p, q]))
looks good, but *not* quite upper triangular; these, too:
str(dm9.0 <- dmperm(S9, seed=-1)) # non-random too.
str(dm9.1 <- dmperm(S9, seed= 1)) # a random one
The last two permutations differ, but have the same effect!
(S9p0 <- with(dm9.0, S9[p, q])) # .. hmmm ..
stopifnot(all.equal(S9p0, S9p)) # same as as default, but different from the random one

set.seed(11)
(M <- triu(rsparsematrix(9,11, 1/4)))
dM <- dmperm(M); with(dM, M[p, q])
(Mp <- M[sample.int(nrow(M)), sample.int(ncol(M))])
dMp <- dmperm(Mp); with(dMp, Mp[p, q])
```

```r
set.seed(7)
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
str(dm.7 <- dmperm(n7))
stopifnot(exprs = {
 lengths(dm.7[1:2]) == dim(n7)
})
```
dpoMatrix-class

Positive Semi-definite Dense (Packed \ Non-packed) Numeric Matrices

Description

- The "dpoMatrix" class is the class of positive-semidefinite symmetric matrices in nonpacked storage.
- The "dppMatrix" class is the same except in packed storage. Only the upper triangle or the lower triangle is required to be available.
- The "corMatrix" and "pcorMatrix" classes represent correlation matrices. They extend "dpoMatrix" and "dppMatrix", respectively, with an additional slot sd allowing restoration of the original covariance matrix.

Objects from the Class

Objects can be created by calls of the form 
\texttt{new("dpoMatrix", ...)} or from \texttt{crossprod} applied to an "dgeMatrix" object.

Slots

- uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order.
- Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector of non-negative integers.
- Dimnames: inherited from class "Matrix"
- factors: Object of class "list". A named list of factorizations that have been computed for the matrix.
- sd: (for "corMatrix" and "pcorMatrix") a \texttt{numeric} vector of length \( n \) containing the (original) \( \sqrt{\text{var}(.)} \) entries which allow reconstruction of a covariance matrix from the correlation matrix.

Extends

Class "dsyMatrix", directly.
Classes "dgeMatrix", "symmetricMatrix", and many more by class "dsyMatrix".
Methods

chol signature(x = "dpoMatrix"): Returns (and stores) the Cholesky decomposition of x, see chol.

determinant signature(x = "dpoMatrix"): Returns the determinant of x, via chol(x), see above.

rcond signature(x = "dpoMatrix", norm = "character"): Returns (and stores) the reciprocal of the condition number of x. The norm can be "0" for the one-norm (the default) or "I" for the infinity-norm. For symmetric matrices the result does not depend on the norm.

solve signature(a = "dpoMatrix", b = "..."), and

solve signature(a = "dppMatrix", b = "...") work via the Cholesky composition, see also the Matrix solve-methods.

Arith signature(e1 = "dpoMatrix", e2 = "numeric") (and quite a few other signatures): The result of ("elementwise" defined) arithmetic operations is typically not positive-definite anymore. The only exceptions, currently, are multiplications, divisions or additions with positive length(.) == 1 numbers (or logicals).

Note

Currently the validity methods for these classes such as getValidity(getClass("dpoMatrix")) for efficiency reasons only check the diagonal entries of the matrix – they may not be negative. This is only necessary but not sufficient for a symmetric matrix to be positive semi-definite.

A more reliable (but often more expensive) check for positive semi-definiteness would look at the signs of diag(BunchKaufman(.)) (with some tolerance for very small negative values), and for (strict) positive definiteness at something like !inherits(tryCatch(chol(.), error=identity), "error"). Indeed, when coercing to these classes, a version of Cholesky() or chol() is typically used, e.g., see selectMethod("coerce", c(from="dsyMatrix", to="dpoMatrix")).

See Also

Classes dsyMatrix and dgeMatrix; further, Matrix, rcond, chol, solve, crossprod.

Examples

h6 <- Hilbert(6)
rcond(h6)
str(h6)
h6 * 27720 # is `integer'
solve(h6)
str(hp6 <- pack(h6))

### Note that as(*, "corMatrix") *scales* the matrix
(ch6 <- as(h6, "corMatrix"))
stopifnot(all.equal(as(h6 * 27720, "dsyMatrix"), round(27720 * h6),
   tolerance = 1e-14),
   all.equal(ch6@sd^(-2), 2*(1:6)-1,
     tolerance = 1e-12))
chch <- Cholesky(ch6, perm = FALSE)
stopifnot(identical(chch, ch6@factors$Cholesky),
   all(abs(crossprod(as(chch, "dtrMatrix")) - ch6) < 1e-10))
Drop Non-Structural Zeros from a Sparse Matrix

Description

Deletes “non-structural” zeros (i.e., zeros stored explicitly, in memory) from a sparse matrix and returns the result.

Usage

```
drop0(x, tol = 0, is.Csparse = NA, give.Csparse = TRUE)
```

Arguments

- `x`: a `Matrix`, typically inheriting from virtual class `sparseMatrix`, `denseMatrix` and traditional vectors and matrices are coerced to `CsparseMatrix`, with zeros dropped automatically, hence users passing such `x` should consider `as(x, "CsparseMatrix")` instead, notably in the `tol = 0` case.
- `tol`: a non-negative number. If `x` is numeric, then entries less than or equal to `tol` in absolute value are deleted.
- `is.Csparse`: a logical used only if `give.Csparse` is `TRUE`, indicating if `x` already inherits from virtual class `CsparseMatrix`, in which case coercion is not attempted, permitting some (typically small) speed-up.
- `give.Csparse`: a logical indicating if the result must inherit from virtual class `CsparseMatrix`. If `FALSE` and `x` inherits from `RsparseMatrix`, `TsparseMatrix`, or `indMatrix`, then the result preserves the class of `x`. The default value is `TRUE` only for backwards compatibility.

Value

A `sparseMatrix`, the result of deleting non-structural zeros from `x`, possibly after coercion.

Note

drop0 is sometimes called in conjunction with `zapsmall`, e.g., when dealing with sparse matrix products; see the example.

See Also

Function `sparseMatrix`, for constructing objects inheriting from virtual class `sparseMatrix`; `nnzero`.

Examples

```
(m <- sparseMatrix(i = 1:8, j = 2:9, x = c(0:2, 3:-1),
 dims = c(10L, 20L)))
drop0(m)
```

```
A larger example:
t5 <- new("dtCMatrix", Dim = c(5L, 5L), uplo = "L",
x = c(10L, 1L, 3L, 10L, 1L, 10L, 1L, 10L, 10L),
i = c(0L, 2L, 4L, 1L, 3L, 2L, 4L, 3L, 4L),
p = c(0L, 3L, 5L, 7:9))
```
TT <- kronecker(t5, kronecker(kronecker(t5, t5), t5))
IT <- solve(TT)
I. <- TT %*% IT ; nnzero(I.) # 697 ( == 625 + 72 )
I.0 <- drop0(zapsmall(I.))
## which actually can be more efficiently achieved by
I.. <- drop0(I., tol = 1e-15)
stopifnot(all(I.0 == Diagonal(625)), nnzero(I..) == 625)

---

**dsCMatrix-class**

**Numeric Symmetric Sparse (column compressed) Matrices**

**Description**

The `dsCMatrix` class is a class of symmetric, sparse numeric matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order.

The `dsTMatrix` class is the class of symmetric, sparse numeric matrices in triplet format.

**Objects from the Class**

Objects can be created by calls of the form `new("dsCMatrix", ...)` or `new("dsTMatrix", ...)`, or automatically via e.g., `as(*, "symmetricMatrix"), or (for dsCMatrix) also from `Matrix(,)`. Creation “from scratch” most efficiently happens via `sparseMatrix(*, symmetric=TRUE)`.

**Slots**

- `uplo`: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored.
- `i`: Object of class "integer" of length `nnZ` (half number of non-zero elements). These are the row numbers for each non-zero element in the lower triangle of the matrix.
- `p`: (only in class "dsCMatrix"): an `integer` vector for providing pointers, one for each column, see the detailed description in `CsparseMatrix`.
- `j`: (only in class "dsTMatrix"): Object of class "integer" of length `nnZ` (as `i`). These are the column numbers for each non-zero element in the lower triangle of the matrix.
- `x`: Object of class "numeric" of length `nnZ` – the non-zero elements of the matrix (to be duplicated for full matrix).
- `factors`: Object of class "list" - a list of factorizations of the matrix.
- `Dim`: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.

**Extends**

Both classes extend classes and `symmetricMatrix` `dsparseMatrix` directly; `dsCMatrix` further directly extends `CsparseMatrix`, where `dsTMatrix` does `TsparseMatrix`. 
Methods

solve signature(a = "dsCMatrix", b = "..."): x <- solve(a,b) solves \( Ax = b \) for \( x \); see solve-methods.

chol signature(x = "dsCMatrix", pivot = "logical"): Returns (and stores) the Cholesky decomposition of \( x \), see chol.

Cholesky signature(A = "dsCMatrix",...): Computes more flexibly Cholesky decompositions, see Cholesky.

determinant signature(x = "dsCMatrix", logarithm = "missing"): Evaluate the determinant of \( x \) on the logarithm scale. This creates and stores the Cholesky factorization.

determinant signature(x = "dsCMatrix", logarithm = "logical"): Evaluate the determinant of \( x \) on the logarithm scale or not, according to the logarithm argument. This creates and stores the Cholesky factorization.

t signature(x = "dsCMatrix"): Transpose. As for all symmetric matrices, a matrix for which the upper triangle is stored produces a matrix for which the lower triangle is stored and vice versa, i.e., the uplo slot is swapped, and the row and column indices are interchanged.

t signature(x = "dsTMatrix"): Transpose. The uplo slot is swapped from "U" to "L" or vice versa, as for a "dsCMatrix", see above.

See Also

Classes dgCMatrix, dgTMatrix, dgeMatrix and those mentioned above.

Examples

mm <- Matrix(toeplitz(c(10, 0, 1, 0, 3)), sparse = TRUE)
mm # automatically dsCMatrix
str(mm)
mT <- as(as(mm, "generalMatrix"), "TsparseMatrix")

## Either
(symM <- as(mT, "symmetricMatrix")) # dsT
(symC <- as(symM, "CsparseMatrix")) # dsC
## or
sT <- Matrix(mT, sparse=TRUE, forceCheck=TRUE) # dsT

sym2 <- as(symC, "TsparseMatrix")
## ----> the same as 'symM', a "dsTMatrix"


dsparseMatrix-class

Virtual Class "dsparseMatrix" of Numeric Sparse Matrices

Description

The Class "dsparseMatrix" is the virtual (super) class of all numeric sparse matrices.

Slots

Dim: the matrix dimension, see class "Matrix".
Dimnames: see the "Matrix" class.
x: a numeric vector containing the (non-zero) matrix entries.
dsRMatrix-class

### Extends

Class "dMatrix" and "sparseMatrix", directly.
Class "Matrix", by the above classes.

### See Also

the documentation of the (non virtual) sub classes, see `showClass("dsparseMatrix")`: in particular, `dgTMatrix`, `dgCMatrix`, and `dgRMatrix`.

### Examples

```r
showClass("dsparseMatrix")
```

---

<table>
<thead>
<tr>
<th>dsRMClass</th>
<th>Symmetric Sparse Compressed Row Matrices</th>
</tr>
</thead>
</table>

### Description

The `dsRMatrix` class is a class of symmetric, sparse matrices in the compressed, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

### Objects from the Class

These `"..RMatrix"` classes are currently still mostly unimplemented!

Objects can be created by calls of the form `new("dsRMatrix", ...)`.

### Slots

- **uplo**: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored. At present only the lower triangle form is allowed.
- **j**: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- **p**: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.
- **factors**: Object of class "list" - a list of factorizations of the matrix.
- **x**: Object of class "numeric" - the non-zero elements of the matrix.
- **Dim**: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
- **Dimnames**: List of length two, see `Matrix`.

### Extends

Classes `RsparseMatrix`, `dsparseMatrix` and `symmetricMatrix`, directly.
Class "dMatrix", by class "dsparseMatrix", class "sparseMatrix", by class "dsparseMatrix" or "RsparseMatrix"; class "compMatrix" by class "symmetricMatrix" and of course, class "Matrix".
Methods

- **forceSymmetric** signature(x = "dsRMatrix", uplo = "missing"): a trivial method just returning x.

- **forceSymmetric** signature(x = "dsRMatrix", uplo = "character"): if uplo == x@uplo, this trivially returns x; otherwise t(x).

See Also

the classes `dgCMatrix`, `dgTMatrix`, and `dgeMatrix`.

Examples

```r
(m0 <- new("dsRMatrix"))
m2 <- new("dsRMatrix", Dim = c(2L,2L),
 x = c(3,1), j = c(1L,1L), p = 0:2)
m2
stopifnot(colSums(as(m2, "TsparseMatrix")) == 3:4)
str(m2)
(ds2 <- forceSymmetric(diag(2))) # dsys*
dR <- as(ds2, "RsparseMatrix")
dR # dsRMatrix
```

---

dsyMatrix-class

**Symmetric Dense (Packed or Unpacked) Numeric Matrices**

Description

- The "dsyMatrix" class is the class of symmetric, dense matrices in non-packed storage and
- "dspMatrix" is the class of symmetric dense matrices in packed storage, see `pack()`. Only
the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form `new("dsyMatrix", ...)` or `new("dspMatrix", ...),
respectively.

Slots

- uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
  triangular.
- x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
  major order.
- Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
  `Matrix`.
- factors: Object of class "list". A named list of factorizations that have been computed for the
  matrix.
**dsyMatrix-class**

**Extends**

"dsyMatrix" extends class "dgeMatrix", directly, whereas "dsy2Matrix" extends class "ddenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use `showClass("dsyMatrix")`, e.g., for details.

**Methods**

- `norm` signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing": Computes the matrix norm of the desired type, see, `norm`.
- `rcond` signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing": Computes the reciprocal condition number, `rcond()`.
- `solve` signature(a = "dspMatrix", b = "...."), and
- `solve` signature(a = "dsyMatrix", b = "...."): x <- solve(a,b) solves Ax = b for x; see `solve-methods`.
- `t` signature(x = "dsyMatrix"): Transpose; swaps from upper triangular to lower triangular storage, i.e., the uplo slot from "U" to "L" or vice versa, the same as for all symmetric matrices.

**See Also**

The positive (Semi-)definite dense (packed or non-packed numeric matrix classes `dpoMatrix`, `dppMatrix` and `corMatrix`.

Classes `dgeMatrix` and `Matrix`; `solve`, `norm`, `rcond`, `t`

**Examples**

```r
Only upper triangular part matters (when uplo == "U" as per default)
(sy2 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, NA,32,77)))
str(t(sy2)) # uplo = "L", and the lower tri. (i.e. NA is replaced).

chol(sy2) #-> "Cholesky" matrix
(sp2 <- pack(sy2)) # a "dspMatrix"

Coercing to dpoMatrix gives invalid object:
sy3 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, -1, 2, -7))
try(as(sy3, "dpoMatrix")) # -> error: not positive definite

4x4 example
m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(sym <- m+t(m)+diag(11:14, 4))
(S1 <- pack(sym))
(S2 <- t(S1))
stopifnot(all(S1 == S2)) # equal "seen as matrix", but differ internally :
str(S1)
S2@d
```
**Description**

The "dtCMatrix" class is a class of triangular, sparse matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order.

The "dtTMatrix" class is a class of triangular, sparse matrices in triplet format.

**Objects from the Class**

Objects can be created by calls of the form `new("dtCMatrix", ...)` or calls of the form `new("dtTMatrix", ...)`, but more typically automatically via `Matrix()` or coercions such as `as(x, "triangularMatrix")`.

**Slots**

- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- **diag**: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
- **p**: (only present in "dtCMatrix"): an integer vector for providing pointers, one for each column, see the detailed description in `CsparseMatrix`.
- **i**: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- **j**: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix. (Only present in the dtTMatrix class.)
- **x**: Object of class "numeric" - the non-zero elements of the matrix.
- **Dim,Dimnames**: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the `Matrix`, see there.

**Extends**

Class "dgCMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix", "sparseMatrix", and more by class "dgCMatrix" etc, see the examples.

**Methods**

- **solve** signature(a = "dtCMatrix", b = "...."): sparse triangular solve (aka “backsolve” or “forwardsolve”), see `solve-methods`.
- **t** signature(x = "dtCMatrix"): returns the transpose of x
- **t** signature(x = "dtTMatrix"): returns the transpose of x

**See Also**

Classes `dgCMatrix, dgTMatrix, dgeMatrix, and dtrMatrix`.
Examples

```r
dtCMatrix()
dtTMatrix()
t1 <- new("dtTMatrix", x=c(3,7), i=0:1, j=3:2, Dim=as.integer(c(4,4)))
t1
from 0-diagonal to unit-diagonal (low-level step):
tu <- t1; tu@diag <- "U"
tu
(cu <- as(tu, "CsparseMatrix"))
str(cu)# only two entries in @i and @x
stopifnot(cu@i == 1:0,
 all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu))

 t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
(it1 <- solve(t1))
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)

2nd example
U5 <- new("dtCMatrix", i=c(1L, 0:3), p=c(0L,0L,0:2, 5L), Dim = c(5L, 5L),
 x = rep(1, 5), diag = "U")
U5
(iu <- solve(U5))# contains one '0'
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions
I5 <- iu %*% U5 # should equal the identity matrix
I5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(
 all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
 all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
 identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))
)
```

dtpMatrix-class

Packed Triangular Dense Matrices - "dtpMatrix"

Description

The "dtpMatrix" class is the class of triangular, dense, numeric matrices in packed storage. The "dtrMatrix" class is the same except in nonpacked storage.

Objects from the Class

Objects can be created by calls of the form new("dtpMatrix", ...) or by coercion from other classes of matrices.
**Slots**

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order. For a packed square matrix of dimension \(d \times d\), \(\text{length}(x)\) is of length \(d(d+1)/2\) (also when diag == "U"!).

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the `Matrix`, see there.

**Extends**

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix" and more by class "ddenseMatrix" etc, see the examples.

**Methods**

\[\text{signature(x = "dtpMatrix", y = "dgeMatrix")}: \text{Matrix multiplication; ditto for several other signature combinations, see showMethods("\%\%\%", class = "dtpMatrix").}\]

\[\text{determinant signature(x = "dtpMatrix", logarithm = "logical")}: \text{the determinant(x) trivially is prod(diag(x)), but computed on log scale to prevent over- and underflow.}\]

\[\text{diag signature(x = "dtpMatrix")}: \ldots\]

\[\text{norm signature(x = "dtpMatrix", type = "character")}: \ldots\]

\[\text{rcond signature(x = "dtpMatrix", norm = "character")}: \ldots\]

\[\text{solve signature(a = "dtpMatrix", b = ".\ldots")}: \text{efficiently using internal backsolve or forward-solve, see solve-methods.}\]

\[\text{t signature(x = "dtpMatrix")}: \text{t(x) remains a "dtpMatrix", lower triangular if x is upper triangular, and vice versa.}\]

**See Also**

Class `dtrMatrix`

**Examples**

```
showClass("dtrMatrix")
```

```
example("dtrMatrix-class", echo=FALSE)
(p1 <- pack(T2))
str(p1)
(pp <- pack(T))
ip1 <- solve(p1)
stopifnot(length(p1@x) == 3, length(pp@x) == 3,
 p1@uplo == T2@uplo, pp@uplo == T @ uplo,
 identical(t(pp), p1), identical(t(p1), pp),
 all((l.d <- p1 - T2) == 0), is(l.d, "dtpMatrix"),
 all((u.d <- pp - T) == 0), is(u.d, "dtpMatrix"),
 l.d@uplo == T2@uplo, u.d@uplo == T@uplo,
 identical(t(ip1), solve(pp)), is(ip1, "dtpMatrix"),
 all.equal(as(solve(p1,p1), "diagonalMatrix"), Diagonal(2)))
```
dtRMatrix-class

Description

The dtRMatrix class is a class of triangular, sparse matrices in the compressed, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Objects from the Class

This class is currently still mostly unimplemented!

Objects can be created by calls of the form `new("dtRMatrix", ...).

Slots

- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. At present only the lower triangle form is allowed.
- `diag`: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
- `j`: Object of class "integer" of length `nnzero(.)` (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- `p`: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row. (Only present in the dsRMatrix class.)
- `x`: Object of class "numeric" - the non-zero elements of the matrix.
- `Dim`: The dimension (a length-2 "integer")
- `Dimnames`: corresponding names (or NULL), inherited from the `Matrix`, see there.

Extends

Class "dgRMatrix", directly. Class "dsparseMatrix", by class "dgRMatrix". Class "dMatrix", by class "dgRMatrix". Class "sparseMatrix", by class "dgRMatrix". Class "Matrix", by class "dgRMatrix".

Methods

No methods currently with class "dsRMatrix" in the signature.

See Also

Classes `dgCMatrix`, `dgTMatrix`, `dgeMatrix`

Examples

```r
(m0 <- new("dtRMatrix"))
(m2 <- new("dtRMatrix", Dim = c(2L,2L),
 x = c(5, 1:2), p = c(0L,2:3), j= c(0:1,1L)))
str(m2)
(m3 <- as(Diagonal(2), "RsparseMatrix"))# --> dtRMatrix
```
**dtrMatrix-class**

**Triangular, dense, numeric matrices**

### Description

The "dtrMatrix" class is the class of triangular, dense, numeric matrices in nonpacked storage. The "dtpMatrix" class is the same except in packed storage, see `pack()`.

### Objects from the Class

Objects can be created by calls of the form `new("dtrMatrix", ...)`. 

### Slots

- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- **diag**: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
- **x**: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order.
- **Dim**: Object of class "integer". The dimensions of the matrix which must be a two-element vector of non-negative integers.

### Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "Matrix" and others, by class "ddenseMatrix".

### Methods

Among others (such as matrix products, e.g. `?crossprod-methods`),

- **norm** signature(x = "dtrMatrix", type = "character")...
- **rcond** signature(x = "dtrMatrix", norm = "character")...
- **solve** signature(a = "dtrMatrix", b = "..."): efficiently use a “forwardsolve” or backsolve for a lower or upper triangular matrix, respectively, see also `solve-methods`.

+, -, *, ..., ==, >=, ... all the Ops group methods are available. When applied to two triangular matrices, these return a triangular matrix when easily possible.

### See Also

Classes `ddenseMatrix`, `dtpMatrix`, `triangularMatrix`

### Examples

```r
(m <- rbind(2:3, 0:-1))
(M <- as(m, "generalMatrix"))

(T <- as(M, "triangularMatrix")) # formally upper triangular
(T2 <- as(t(M), "triangularMatrix"))
```
stopifnot(T@uplo == "U", T2@uplo == "L", identical(T2, t(T)))

m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(t1 <- Matrix(m+diag(,4)))
str(t1p <- pack(t1))
(t1pu <- diagN2U(t1p))
stopifnot(exprs = {
inherits(t1 , "dtrMatrix"); validObject(t1)
inherits(t1p, "dtpMatrix"); validObject(t1p)
inherits(t1pu,"dtCMatrix"); validObject(t1pu)
t1pu@x == 1:6
all(t1pu == t1p)
identical((t1pu - t1)x, numeric())# sparse all-0
})

---

**Expand Matrix Factorizations**

**Description**

expand1 and expand2 construct matrix factors from objects specifying matrix factorizations. Such objects typically do not store the factors explicitly, employing instead a compact representation to save memory.

**Usage**

```
expand1(x, which, ...)
expand2(x, ...)
```

**Arguments**

- `x` a matrix factorization, typically inheriting from virtual class `MatrixFactorization`.
- `which` a character string indicating a matrix factor.
- `...` further arguments passed to or from methods.

**Details**

Methods for expand are retained only for backwards compatibility with `Matrix < 1.6-0`. New code should use expand1 and expand2, whose methods provide more control and behave more consistently. Notably, expand2 obeys the rule that the product of the matrix factors in the returned list should reproduce (within some tolerance) the factorized matrix, *including* its dimnames.

Hence if `x` is a matrix and `y` is its factorization, then

```
all.equal(as(x, "matrix"), as(Reduce("%*%", expand2(y)), "matrix"))
```

should in most cases return `TRUE`. 

Value

expand1 returns an object inheriting from virtual class Matrix, representing the factor indicated by which, always without row and column names.

expand2 returns a list of factors, typically with names using conventional notation, as in list(L =, U =). The first and last factors get the row and column names of the factorized matrix, which are preserved in the Dimnames slot of x.

Methods

The following table lists methods for expand1 together with allowed values of argument which.

<table>
<thead>
<tr>
<th>class(x)</th>
<th>which</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schur</td>
<td>c(&quot;Q&quot;, &quot;T&quot;, &quot;Q.&quot;)</td>
</tr>
<tr>
<td>denseLU</td>
<td>c(&quot;P1&quot;, &quot;P1.&quot;, &quot;L&quot;, &quot;U&quot;)</td>
</tr>
<tr>
<td>sparseLU</td>
<td>c(&quot;P1&quot;, &quot;P2&quot;, &quot;P2.&quot;, &quot;L&quot;, &quot;U&quot;)</td>
</tr>
<tr>
<td>sparseQR</td>
<td>c(&quot;P1&quot;, &quot;P2&quot;, &quot;P2.&quot;, &quot;Q&quot;, &quot;Q1&quot;, &quot;R&quot;, &quot;R1&quot;)</td>
</tr>
<tr>
<td>BunchKaufman, pBunchKaufman</td>
<td>c(&quot;U&quot;, &quot;DU&quot;, &quot;U.&quot;, &quot;L&quot;, &quot;DL&quot;, &quot;L.&quot;)</td>
</tr>
<tr>
<td>Cholesky, pCholesky</td>
<td>c(&quot;P1&quot;, &quot;P1.&quot;, &quot;L1&quot;, &quot;D&quot;, &quot;L1.&quot;, &quot;L&quot;, &quot;L.&quot;)</td>
</tr>
<tr>
<td>CHMsimpl, CHMsimpl</td>
<td>c(&quot;P1&quot;, &quot;P1.&quot;, &quot;L1&quot;, &quot;D&quot;, &quot;L1.&quot;, &quot;L&quot;, &quot;L.&quot;)</td>
</tr>
</tbody>
</table>

Methods for expand2 and expand are described below. Factor names and classes apply also to expand1.

expand2 signature(x = "CHMsimpl") : expands the factorization \( A = P_1 L_1 D L_1' P_1 = P_1 L L' P_1 \) as list(P1., L1, D, L1, P1) (the default) or as list(P1., L1, L, P1), depending on optional logical argument LDL. P1 and P1 are pMatrix, L1, L1, L, and L are dtCMatrix, and D is a ddiMatrix.

expand2 signature(x = "p?Cholesky") : as CHMsimpl, but the triangular factors are stored as dgCMatrix.

expand2 signature(x = "p??BunchKaufman") : expands the factorization \( A = U D U' = L D L' \) as list(L1, D, L1) (the default) or as list(L, L), depending on optional logical argument LDL. L, L1, L, and L are dtrMatrix or dtpMatrix, and D is a ddiMatrix.

expand2 signature(x = "p??BunchKaufman") : expands the factorization \( A = U D U' = L D L' \) as list(L1, D, L1) (the default) or as list(L, L), depending on optional logical argument LDL. L, L1, L, and L are dtrMatrix or dtpMatrix, and D is a ddiMatrix.

expand2 signature(x = "Schur") : expands the factorization \( A = QTQ' \) as list(Q, T, Q.). Q and Q are x@Q and t(x@Q) modulo Dimnames, and T is x@T.

expand2 signature(x = "sparseLU") : expands the factorization \( A = P_1 L U P_2' \) as list(P1., L, U, P2.). P1 and P2 are pMatrix, and L and U are dtCMatrix.

expand2 signature(x = "denseLU") : expands the factorization \( A = P_1 L U \) as list(P1., L, U). P1 is a pMatrix, and L and U are dtCMatrix if square and dgeMatrix otherwise.

expand2 signature(x = "sparseQR") : expands the factorization \( A = P_1 Q R P_2' = P_1 Q_1 R_1 P_2' \) as list(P1., Q, R, P2.) or list(P1., Q1, R1, P2.), depending on optional logical argument complete. P1 and P2 are pMatrix, Q and Q1 are dgeMatrix, R is a dgCMatrix, and R1 is a dtCMatrix.

expand signature(x = "CHMfactor") : as expand2, but returning list(P, L). expand(x)[["P"]]

and expand2(x)[["P"]]

represent the same permutation matrix P1 but have opposite margin slots and inverted perm slots. The components of expand(x) do not preserve x@Dimnames.
expm-methods 77

expm signature(x = "sparseLU"): as expand2, but returning list(P, L, U, Q). expand(x)[["Q"]]
and expand2(x)[["P2."]] represent the same permutation matrix \( P_2 \) but have opposite margin
slots and inverted perm slots. expand(x)[["P"]]) represents the permutation matrix \( P_1 \) rather
than its transpose \( P_1 \); it is expand2(x)[["P1."]] with an inverted perm slot. expand(x)[["L"]]
and expand2(x)[["L"]]) represent the same unit lower triangular matrix \( L \), but with diag slot
equal to "N" and "U", respectively. expand(x)[["L"]]) and expand(x)[["U"]]) store the permuted
first and second components of x@Dimnames in their Dimnames slots.

expm signature(x = "denseLU"): as expand2, but returning list(L, U, P). expand(x)[["P"]]
and expand2(x)[["P1."]] are identical modulo Dimnames. The components of expand(x)
do not preserve x@Dimnames.

See Also

The virtual class compMatrix of factorizable matrices.
The virtual class MatrixFactorization of matrix factorizations.
Generic functions Cholesky, BunchKaufman, Schur, lu, and qr for computing factorizations.

Examples

showMethods("expand1", inherited = FALSE)
showMethods("expand2", inherited = FALSE)
set.seed(0)

(A <- Matrix(rnorm(9L, 0, 10), 3L, 3L))
(lu.A <- lu(A))
(e.lu.A <- expand2(lu.A))
stopifnot(exprs = {
  is.list(e.lu.A)
  identical(names(e.lu.A), c("P1.", "L", "U"))
  all(sapply(e.lu.A, is, "Matrix")))
  all.equal(as(A, "matrix"), as(Reduce(`%*%`, e.lu.A), "matrix"))
})

## 'expand1' and 'expand2' give equivalent results modulo
## dimnames and representation of permutation matrices;
## see also function 'alt' in example("Cholesky-methods")
(a1 <- sapply(names(e.lu.A), expand1, x = lu.A, simplify = FALSE))
all.equal(a1, e.lu.A)

## see help("denseLU-class") and others for more examples

expm-methods Matrix Exponential

Description

Compute the exponential of a matrix.

Usage

expm(x)
Arguments

x  a matrix, typically inheriting from the dMatrix class.

Details

The exponential of a matrix is defined as the infinite Taylor series \( \expm(A) = I + A + A^2/2! + A^3/3! + \ldots \) (although this is definitely not the way to compute it). The method for the dgeMatrix class uses Ward's diagonal Pade' approximation with three step preconditioning, a recommendation from Moler & Van Loan (1978) “Nineteen dubious ways...”.

Value

The matrix exponential of x.

Author(s)

This is a translation of the implementation of the corresponding Octave function contributed to the Octave project by A. Scottedward Hodel <A.S.Hodel@Eng.Auburn.EDU>. A bug in there has been fixed by Martin Maechler.

References

https://en.wikipedia.org/wiki/Matrix_exponential


for historical reference mostly:


See Also

Package expm, which provides newer (in some cases faster, more accurate) algorithms for computing the matrix exponential via its own (non-generic) function expm(). expm also implements logm(), sqrtm(), etc.

Generic function Schur.

Examples

```r
(m1 <- Matrix(c(1,0,1,1), ncol = 2))
(e1 <- expm(m1)) ; e <- exp(1)
stopifnot(all.equal(e1@x, c(e,0,e,e), tolerance = 1e-15))
(m2 <- Matrix(c(-49, -64, 24, 31), ncol = 2))
(e2 <- expm(m2))
(m3 <- Matrix(cbind(0,rbind(6*diag(3),0))))# sparse!
(e3 <- expm(m3)) # upper triangular
```
**Description**

Read matrices stored in the Harwell-Boeing or MatrixMarket formats or write `sparseMatrix` objects to one of these formats.

**Usage**

- `readHB(file)`
- `readMM(file)`
- `writeMM(obj, file, ...)`

**Arguments**

- `obj` a real sparse matrix
- `file` for `writeMM` - the name of the file to be written. For `readHB` and `readMM` the name of the file to read, as a character scalar. The names of files storing matrices in the Harwell-Boeing format usually end in ".rua" or ".rsa". Those storing matrices in the MatrixMarket format usually end in ".mtx".
  
  Alternatively, `readHB` and `readMM` accept connection objects.

- `...` optional additional arguments. Currently none are used in any methods.

**Value**

The `readHB` and `readMM` functions return an object that inherits from the "Matrix" class. Methods for the `writeMM` generic functions usually return `NULL` and, as a side effect, the matrix `obj` is written to file in the MatrixMarket format (writeMM).

**Note**

The Harwell-Boeing format is older and less flexible than the MatrixMarket format. The function `writeHB` was deprecated and has now been removed. Please use `writeMM` instead.

Note that these formats do not know anything about `dimnames`, hence these are dropped by `writeMM()`.

A very simple way to export small sparse matrices `S`, is to use `summary(S)` which returns a `data.frame` with columns `i`, `j`, and possibly `x`, see summary in `sparseMatrix-class`, and an example below.

**References**

- [https://math.nist.gov/MatrixMarket/](https://math.nist.gov/MatrixMarket/)
- [https://sparse.tamu.edu/](https://sparse.tamu.edu/)

**Examples**

```r
str(pores <- readMM(system.file("external/pores_1.mtx", package = "Matrix")))
str(utm <- readHB(system.file("external/utm300.rua", package = "Matrix")))
str(lundA <- readMM(system.file("external/lund_a.mtx", package = "Matrix")))
str(lundA <- readHB(system.file("external/lund_a.rsa", package = "Matrix")))
https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/counterx/counterx.htm
```
```r
str(jgl <- readMM(system.file("external/jgl009.mtx", package = "Matrix")))

NOTE: The following examples take quite some time
---- even on a fast internet connection:
if(FALSE) {
 ## The URL has been corrected, but we need an untar step:
 u. <- url("https://www.cise.ufl.edu/research/sparse/RB/Boeing/msc00726.tar.gz")
 str(sm <- readHB(gzcon(u.)))
}

data(KNex, package = "Matrix")
Store as MatrixMarket (".mtx") file, here inside temporary dir./folder:
(MMfile <- file.path(tempdir(), "mmMM.mtx"))
writeMM(KNex$mm, file=MMfile)
file.info(MMfile)[,c("size", "ctime")]
very simple export - in triplet format - to text file:
data(CAex, package = "Matrix")
s.CA <- summary(CAex)
message("writing to ", outf <- tempfile())
write.table(s.CA, file = outf, row.names=FALSE)
and read it back -- showing off sparseMatrix():
str(dd <- read.table(outf, header=TRUE))
has columns (i, j, x) -> we can use via do.call() as arguments to sparseMatrix():
mm <- do.call(sparseMatrix, dd)
stopifnot(all.equal(mm, CAex, tolerance=1e-15))
```

---

**facmul-methods**

**Multiplication by Factors from Matrix Factorizations**

### Description

Multiplies a matrix or vector on the left or right by a factor from a matrix factorization or its transpose.

### Usage

```r
facmul(x, factor, y, trans = FALSE, left = TRUE, ...)
```

### Arguments

- `x` a `MatrixFactorization` object.
- `factor` a character string indicating a factor in the factorization represented by `x`, typically an element of `names(expand2(x, ...))`.
- `y` a matrix or vector to be multiplied on the left or right by the factor or its transpose.
- `trans` a logical indicating if the transpose of the factor should be used, rather than the factor itself.
- `left` a logical indicating if the `y` should be multiplied on the left by the factor, rather than on the right.
- `...` further arguments passed to or from methods.
Details

`facmul` is experimental and currently no methods are exported from `Matrix`.

Value

The value of $\text{op}(M) \times y$ or $y \times \text{op}(M)$, depending on `left`, where $M$ is the factor (always without `dimnames`) and $\text{op}(M)$ is $M$ or $t(M)$, depending on `trans`.

Examples

```r
Conceptually, methods for 'facmul' _would_ behave as follows ...
Not run:
n <- 3L
x <- lu(Matrix(rnorm(n * n), n, n))
y <- rnorm(n)
L <- unname(expand2(x)[[nm <- "L"]])
stopifnot(exprs = {
 all.equal(facmul(x, nm, y, trans = FALSE, left = TRUE), L %*% y)
 all.equal(facmul(x, nm, y, trans = FALSE, left = FALSE), y %*% L)
 all.equal(facmul(x, nm, y, trans = TRUE, left = TRUE), crossprod(L, y))
 all.equal(facmul(x, nm, y, trans = TRUE, left = FALSE), tcrossprod(y, L))
})
End(Not run)
```

Description

“Semi-API” functions used internally by `Matrix`, often to bypass S4 dispatch and avoid the associated overhead. These are exported to provide this capability to expert users. Typical users should continue to rely on S4 generic functions to dispatch suitable methods, by calling, e.g., `as(. , <class>)` for coercions.

Usage

```r
.M2kind(from, kind = ".", sparse = NA)

.M2gen(from, kind = ".")
.M2sym(from, ...)
.M2tri(from, ...)
.M2diag(from)

.M2v(from)
.M2m(from)
.M2unpacked(from)
.M2packed(from)
.M2C(from)
.M2R(from)
.M2T(from)
```
\ `.M2V`(from)
\ `.m2V`(from, kind = ".")

\ `.sparse2dense`(from, packed = FALSE)
\ `.diag2dense`(from, kind = ".", shape = "t", packed = FALSE, uplo = "U")
\ `.ind2dense`(from, kind = "n")
\ `.m2dense`(from, class = ".ge", uplo = "U", diag = "N", trans = FALSE)

\ `.dense2sparse`(from, repr = "C")
\ `.diag2sparse`(from, kind = ".", shape = "t", repr = "C", uplo = "U")
\ `.ind2sparse`(from, kind = "n", repr = "n")
\ `.m2sparse`(from, class = ".gC", uplo = "U", diag = "N", trans = FALSE)

\ `.tCRT`(x, lazy = TRUE)
\ `.diag.dsC`(x, Chx = Cholesky(x, LDL = TRUE), res.kind = "diag")

\ `.solve.dgC.lu`(a, b, tol = .Machine$double.eps, check = TRUE)
\ `.solve.dgC.qr`(a, b, order = 3L, check = TRUE)
\ `.solve.dgC.chol`(a, b, check = TRUE)

\ `.updateCHMfactor`(object, parent, mult = 0)

**Arguments**

- `from, x, a, b` a `Matrix`, matrix, or vector.
- `kind` a string (".", ",", "n", "1", or "d") specifying the "kind" of the result. "." indicates that the kind of `from` should be preserved. ",," is equivalent to "z" if `from` is complex and to "d" otherwise. "n" indicates that the result should inherit from `nMatrix` or `nsparseVector` (and so on).
- `shape` a string (".", "g", "s", or "t") specifying the "shape" of the result. "." indicates that the shape of `from` should be preserved. "g" indicates that the result should inherit from `generalMatrix` (and so on).
- `repr` a string (".", "C", "R", or "T") specifying the sparse representation of the result. "." is accepted only by `.ind2sparse` and indicates the most efficient representation, which is "C" ("R") for `margin = 2` (1). "C" indicates that the result should inherit from `CsparseMatrix` (and so on).
- `packed` a logical indicating if the result should inherit from `packedMatrix` rather than from `unpackedMatrix`. It is ignored for `from` inheriting from `generalMatrix`.
- `sparse` a logical indicating if the result should inherit from `sparseMatrix` rather than from `denseMatrix`. If NA, then the result will be formally sparse if and only if `from` is.
- `uplo` a string ("U" or "L") indicating whether the result (if symmetric or triangular) should store the upper or lower triangle of `from`. The elements of `from` in the opposite triangle are ignored.
- `diag` a string ("N" or "U") indicating whether the result (if triangular) should be formally nonunit or unit triangular. In the unit triangular case, the diagonal elements of `from` are ignored.
- `trans` a logical indicating if the result should be a 1-row matrix rather than a 1-column matrix where `from` is a vector but not a matrix.
class  a string whose first three characters specify the class of the result. It should match the pattern "^[.nld](ge|sy|tr|sp|tp)" for `.m2dense` and "^[.nld][gst][CRT]" for `.m2sparse`, where "." in the first position is equivalent to "l" for logical arguments and "d" for numeric arguments.

...  optional arguments passed to `isSymmetric` or `isTriangular`.

lazy  a logical indicating if the transpose should be constructed with minimal allocation, but possibly without preserving representation.

Chx  optionally, the `Cholesky(x, ...)` factorization of `x`. If supplied, then `x` is unused.

res.kind  a string in c("trace", "sumLog", "prod", "min", "max", "range", "diag", "diagBack").

tol  see `lu-methods`.

order  see `qr-methods`.

check  a logical indicating if the first argument should be tested for inheritance from `dgCMatrix` and coerced if necessary. Set to FALSE for speed only if it is known to already inherit from `dgCMatrix`.

object  a Cholesky factorization inheriting from virtual class `CHMfactor`, almost always the result of a call to generic function `Cholesky`.

parent  an object of class `dsCMatrix` or class `dgCMatrix`.

mult  a numeric vector of positive length. Only the first element is used, and that must be finite.

**Details**

Functions with names of the form `.<A>2<B>` implement coercions from virtual class A to the “nearest” non-virtual subclass of virtual class B, where the virtual classes are abbreviated as follows:

- `M Matrix`
- `V sparseVector`
- `m matrix`
- `v vector`
- `dense denseMatrix`
- `unpacked unpackedMatrix`
- `packed packedMatrix`
- `sparse CsparseMatrix, RsparseMatrix, or TsparseMatrix`
- `C CsparseMatrix`
- `R RsparseMatrix`
- `T TsparseMatrix`
- `gen generalMatrix`
- `sym symmetricMatrix`
- `tri triangularMatrix`
- `diag diagonalMatrix`
- `ind indMatrix`

Abbreviations should be seen as a guide, rather than as an exact description of behaviour. Notably, `.m2dense`, `.m2sparse`, and `.m2V` accept vectors that are not matrices.
.tCRT(x): If lazy = TRUE, then .tCRT constructs the transpose of \( x \) using the most efficient representation, which for ‘CRT’ is ‘RCT’. If lazy = FALSE, then .tCRT preserves the representation of \( x \), behaving as the corresponding methods for generic function \( t \).

.diag.dsC(x): .diag.dsC computes (or uses if \( Chx \) is supplied) the Cholesky factorization of \( x \) as \( LDL' \) in order to calculate one of several possible statistics from the diagonal entries of \( D \). See res.kind under ‘Arguments’.

.solve.dgC.*\((a, b)\): .solve.dgC.lu\((a, b)\) needs a square matrix \( a \). .solve.dgC.qr\((a, b)\) needs a “long” matrix \( a \), with \( nrow(a) \geq ncol(a) \). .solve.dgC.chol\((a, b)\) needs a “wide” matrix \( a \), with \( nrow(a) \leq ncol(a) \).

All three may be used to solve sparse linear systems directly. Only .solve.dgC.qr and .solve.dgC.chol be used to solve sparse least squares problems.

.updateCHMfactor\((object, parent, mult)\): .updateCHMfactor updates \( object \) with the result of Cholesky factorizing \( F(parent) + mult[1] \ast diag(nrow(parent)) \), i.e., \( F(parent) \) plus \( mult[1] \) times the identity matrix, where \( F = \text{identity} \) if \( parent \) is a \( \text{dsCMatrix} \) and \( F = \text{tcrossprod} \) if \( parent \) is a \( \text{dgCMatrix} \). The nonzero pattern of \( F(parent) \) must match that of \( S \) if \( object = \text{Cholesky}(S, ...) \).

Examples

\[
\begin{align*}
D. & \leftarrow \text{diag}(x = c(1, 1, 2, 3, 5, 8)) \\
D.0 & \leftarrow \text{Diagonal}(x = c(0, 0, 0, 3, 5, 8)) \\
S. & \leftarrow \text{toeplitz}(\text{as.double}(1:6)) \\
C. & \leftarrow \text{new}(\text{"dgCMatrix"}, \text{Dim} = c(3L, 4L), \text{p} = c(0L, 1L, 1L, 1L, 3L), \text{i} = c(1L, 0L, 2L), x = c(-8, 2, 3)) \\
\end{align*}
\]

\[
\text{stopifnot} = \{ \\
\text{identical(\text{.M2tri} (D.), as(D., \"triangularMatrix\"))} \\
\text{identical(\text{.M2sym} (D.), as(D., \"symmetricMatrix\"))} \\
\text{identical(\text{.M2diag} (D.), as(D., \"diagonalMatrix\"))} \\
\text{identical(\text{.M2kind} (C., \"1\"), as(C., \"lMatrix\"))} \\
\text{identical(\text{.M2kind} (\text{.sparse2dense}(C.), \"1\"), as(as(C., \"denseMatrix\"), \"lMatrix\"))} \\
\text{identical(\text{.diag2sparse}(0.0, \"\"), \"t\"), \"C\")} \\
\text{.dense2sparse(\text{.diag2dense}(0.0, \"\"), \"t\", \text{TRUE}, \"C\")} \\
\text{identical(\text{.M2gen} (\text{.diag2dense}(0.0, \"\"), \"s", \text{FALSE}),} \\
\text{.sparse2dense(\text{.M2gen} (\text{.diag2sparse}(0.0, \"\"), \"s", \text{\"T\"})))} \\
\text{identical(S.,} \\
\text{.M2m(\text{.m2sparse(S., \"sr\")}))} \\
\text{identical(S. * lower.tri(S.) + diag(1, 6L),} \\
\text{.M2m(\text{.m2dense (S., \"tr\"), \"l\", \"u\")})} \\
\text{identical(\text{.M2R} (C.), \text{.M2R} (\text{.M2T}(C.)))} \\
\text{identical(\text{.tCRT} (C.), \text{.M2R} (\text{.t}(C.)))} \\
\}\n\]

\[
A \leftarrow \text{tcrossprod}(C.)/6 + \text{Diagonal}(3, 1/3); A[1,2] \leftarrow 3; A \text{\ stopifnot} = \{ \\
is\text{.numeric} (x. \leftarrow \text{c}(2.2, 0, -1.2)) \\
\text{all.equal}(x., \text{.solve.dgC.lu}(A, c(1, 0, 0), \text{check=FALSE})) \\
\text{all.equal}(x., \text{.solve.dgC.qr}(A, c(1, 0, 0), \text{check=FALSE})) \\
\}\n\]

## Solving sparse least squares:
X <- rbind(A, Diagonal(3)) # design matrix X (for L.S.)
Xt <- t(X) # *transposed* X (for L.S.)
(y <- drop(crossprod(Xt, 1:3)) + c(-1,1)/1000) # small rand.err.
str(solveCh <- .solve.dgC.chol(Xt, y, check=FALSE)) # Xt *is* dgC..
stopifnot(exprs = {
  all.equal(solveCh$coef, 1:3, tol = 1e-3)# rel.err ~ 1e-4
  all.equal(solveCh$coef, drop(solve(tcrossprod(Xt), Xt %*% y)))
  all.equal(solveCh$coef, .solve.dgC.qr(X, y, check=FALSE))
})

forceSymmetric-methods

Force a Matrix to 'symmetricMatrix' Without Symmetry Checks

Description

Force a square matrix \( x \) to a symmetricMatrix, without a symmetry check as it would be applied for \( \text{as}(x, \text{symmetricMatrix}) \).

Usage

forceSymmetric(x, uplo)

Arguments

\( x \)
 any square matrix (of numbers), either ""traditional"" (matrix) or inheriting from Matrix.

\( \text{uplo} \)
 optional string, "U" or "L" indicating which "triangle" half of \( x \) should determine the result. The default is "U" unless \( x \) already has a uplo slot (i.e., when it is symmetricMatrix, or triangularMatrix), where the default will be \( x@\text{uplo} \).

Value

a square matrix inheriting from class symmetricMatrix.

See Also

symmpart for the symmetric part of a matrix, or the coercions as(x, <symmetricMatrix class>).

Examples

```R
Hilbert matrix
i <- 1:6
h6 <- 1/outer(i - 1L, i, "+")
sd <- sqrt(diag(h6))
hh <- t(h6/sd)/sd # theoretically symmetric
isSymmetric(hh, tol=0) # FALSE; hence
try(as(hh, "symmetricMatrix")) # fails, but this works fine:
H6 <- forceSymmetric(hh)

result can be pretty surprising:
(M <- Matrix(1:36, 6))
```
formatSparseM \# symmetric, hence very different in lower triangle
(tm <- tril(M))
forceSymmetric(tm)

**Description**

Utilities for formatting sparse numeric matrices in a flexible way. These functions are used by the `format` and `print` methods for sparse matrices and can be applied as well to standard R matrices. Note that all arguments but the first are optional.

`formatSparseM()` is the main “workhorse” of `formatSpMatrix`, the format method for sparse matrices.

`.formatSparseSimple()` is a simple helper function, also dealing with (short/empty) column names construction.

**Usage**

```r
formatSparseM(x, zero.print = ".", align = c("fancy", "right"),
m = as(x, "matrix"), asLogical=NULL, uniDiag=NULL,
digits=NULL, cx, iN0, dn = dimnames(m))

.formatSparseSimple(m, asLogical=FALSE, digits=NULL,
col.names, note.dropping.colnames = TRUE,
dn=dimnames(m))
```

**Arguments**

- `x`: an R object inheriting from class `sparseMatrix`.
- `zero.print`: character which should be used for structural zeroes. The default "." may occasionally be replaced by " " (blank); using "0" would look almost like `print()`ing of non-sparse matrices.
- `align`: a string specifying how the zero.print codes should be aligned, see `formatSpMatrix`.
- `m`: (optional) a (standard R) matrix version of `x`.
- `asLogical`: should the matrix be formatted as a logical matrix (or rather as a numeric one); mostly for `formatSparseM()`.
- `uniDiag`: logical indicating if the diagonal entries of a sparse unit triangular or unit-diagonal matrix should be formatted as "I" instead of "1" (to emphasize that the 1’s are “structural”).
- `digits`: significant digits to use for printing, see `print.default`.
- `cx`: (optional) character matrix; a formatted version of `x`, still with strings such as "0.00" for the zeros.
- `iN0`: (optional) integer vector, specifying the location of the non-zeroes of `x`.
- `col.names`, `note.dropping.colnames`: see `formatSpMatrix`.
- `dn`: `dimnames` to be used; a list (of length two) with row and column names (or NULL).
Value

a character matrix like `cx`, where the zeros have been replaced with (padded versions of) zero.

As this is a *dense* matrix, do not use these functions for really large (really) sparse matrices!

Author(s)

Martin Maechler

See Also

`formatSparseM` which calls `formatSparseM()` and is the `format` method for sparse matrices.
`printSpMatrix` which is used by the (typically implicitly called) show and print methods for sparse matrices.

Examples

```r
m <- suppressWarnings(matrix(c(0, 3.2, 0,0, 11,0,0,0,0,-7,0), 4,9))
fm <- formatSparseM(m)
noquote(fm)
nice, but this is nicer (with "units" vertically aligned):
print(fm, quote=FALSE, right=TRUE)
and "the same" as :
Matrix(m)

align = "right" is cheaper -- the "." are not aligned:
noquote(f2 <- formatSparseM(m,align="r"))
stopifnot(f2 == fm | m == 0, dim(f2) == dim(m),
 (f2 == ".") == (m == 0))
```

generalMatrix-class

**Class “generalMatrix” of General Matrices**

Description

Virtual class of “general” matrices; i.e., matrices that do not have a known property such as symmetric, triangular, or diagonal.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

- factors
- Dim

Dimnames: all slots inherited from `compMatrix`; see its description.

Extends

Class “compMatrix”, directly. Class “Matrix”, by class "compMatrix".
Hilbert

Generate a Hilbert matrix

Description

Generate the \( n \) by \( n \) symmetric Hilbert matrix. Because these matrices are ill-conditioned for moderate to large \( n \), they are often used for testing numerical linear algebra code.

Usage

Hilbert(n)

Arguments

\( n \)

a non-negative integer.

Value

the \( n \) by \( n \) symmetric Hilbert matrix as a "dpoMatrix" object.

See Also

the class dpoMatrix

Examples

Hilbert(6)

Description

Methods for function image in package Matrix. An image of a matrix simply color codes all matrix entries and draws the \( n \times m \) matrix using an \( n \times m \) grid of (colored) rectangles.

The Matrix package image methods are based on levelplot() from package lattice; hence these methods return an "object" of class "trellis", producing a graphic when (auto-) print()ed.
Usage

## S4 method for signature 'dgTMatrix'
image(x,
  xlim = c(1, di[2]),
  ylim = c(di[1], 1), aspect = "iso",
  sub = sprintf("Dimensions: %d x %d", di[1], di[2]),
  xlab = "Column", ylab = "Row", cuts = 15,
  useRaster = FALSE,
  useAbs = NULL, colorkey = !useAbs,
  col.regions = NULL,
  lwd = NULL, border.col = NULL, ...)

Arguments

x 
a Matrix object, i.e., fulfilling is(x, "Matrix").

xlim, ylim 
x- and y-axis limits; may be used to “zoom into” matrix. Note that x, y “feel
reversed”: ylim is for the rows (= 1st index) and xlim for the columns (= 2nd
index). For convenience, when the limits are integer valued, they are both ex-
tended by 0.5; also, ylim is always used decreasingly.

aspect 
aspect ratio specified as number (y/x) or string; see levelplot.

sub, xlab, ylab 
axis annotation with sensible defaults; see plot.default.

cuts 
number of levels the range of matrix values would be divided into.

useRaster 
logical indicating if raster graphics should be used (instead of the tradition rect-
gle vector drawing). If true, panel.levelplot.raster (from lattice pack-
age) is used, and the colorkey is also done via rasters, see also levelplot and
possibly grid.raster.

Note that using raster graphics may often be faster, but can be slower, depending
on the matrix dimensions and the graphics device (dimensions).

useAbs 
logical indicating if abs(x) should be shown; if TRUE, the former (implicit)
default, the default col.regions will be grey colors (and no colorkey drawn).
The default is FALSE unless the matrix has no negative entries.

colorkey 
logical indicating if a color key aka ‘legend’ should be produced. Default is to
draw one, unless useAbs is true. You can also specify a list, see levelplot,
such as list(raster=TRUE) in the case of rastering.

col.regions 
vector of gradually varying colors; see levelplot.

lwd 
(only used when useRaster is false) non-negative number or NULL (default),
specifying the line-width of the rectangles of each non-zero matrix entry (drawn
by grid.rect). The default depends on the matrix dimension and the device
size.

border.col 
color for the border of each rectangle. NA means no border is drawn. When NULL
as by default, border.col <- if(lwd < .01) NA else NULL is used. Consider
using an opaque color instead of NULL which corresponds to grid::get.gpar("col").

... 
进一步 arguments passed to methods and levelplot, notably at for specifying
(possibly non equidistant) cut values for dividing the matrix values (superseding
cuts above).

Value

as all lattice graphics functions, image(<Matrix>) returns a “trellis” object, effectively the
result of levelplot().
Methods

All methods currently end up calling the method for the `dgTMatrix` class. Use `showMethods(image)` to list them all.

See Also

`levelplot`, and `print.trellis` from package `lattice`.

Examples

```r
showMethods(image)
And if you want to see the method definitions:
showMethods(image, includeDefs = TRUE, inherited = FALSE)

data(CAex, package = "Matrix")
image(CAex, main = "image(CAex)") -> imgC; imgC
stopifnot(!is.null(leg <- imgC$legend), is.list(imgC$right)) # failed for 2 days ..
image(CAex, useAbs=TRUE, main = "image(CAex, useAbs=TRUE)")

cCA <- Cholesky(crossprod(CAex), Imult = .01)
See ?print.trellis --- place two image() plots side by side:
print(image(cCA, main="Cholesky(crossprod(CAex), Imult = .01)",
 split=c(x=1,y=1, nx=2, ny=1), more=TRUE)
print(image(cCA, useAbs=TRUE),
 split=c(x=2,y=1, nx=2, ny=1))

data(USCounties, package = "Matrix")
image(USCounties)# huge
image(sign(USCounties))## just the pattern
how the result looks, may depend heavily on
the device, screen resolution, antialiasing etc
e.g. x11(type="Xlib") may show very differently than cairo-based

Drawing borders around each rectangle;
again, viewing depends very much on the device:
image(USCounties[1:400,1:200], lwd=.1)
Using (xlim,ylim) has advantage : matrix dimension and (col/row) indices:
image(USCounties, c(1,200), c(1,400), lwd=.1)
image(USCounties, c(1,100), c(1,200), lwd=.5)
image(USCounties, c(1,100), c(1,200), lwd=.01)
These 3 are all equivalent :
(I1 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE))
I2 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, border.col=NA)
I3 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=2, border.col=NA)
stopifnot(all.equal(I1, I2, check.environment=FALSE),
 all.equal(I2, I3, check.environment=FALSE))
using an opaque border color
image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=3, border.col = adjustcolor("skyblue", 1/2))

if(interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))) {
Using raster graphics: For PDF this would give a 77 MB file,
however, for such a large matrix, this is typically considerably
slower (than vector graphics rectangles) in most cases :
if(doPNG <- !dev.interactive())
 png("image-USCounties-raster.png", width=3200, height=3200)
image(USCounties, useRaster = TRUE) # should not suffer from anti-aliasing}
```
index-class

Virtual Class "index" - Simple Class for Matrix Indices

Description

The class "index" is a virtual class used for indices (in signatures) for matrix indexing and sub-assignment of Matrix matrices.

In fact, it is currently implemented as a simple class union (setClassUnion) of "numeric", "logical" and "character".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

See Also

[-methods, and

Subassign-methods, also for examples.

Examples

showClass("index")

indMatrix-class

Index Matrices

Description

The indMatrix class is the class of row and column index matrices, stored as 1-based integer index vectors. A row (column) index matrix is a matrix whose rows (columns) are standard unit vectors. Such matrices are useful when mapping observations to discrete sets of covariate values.

Multiplying a matrix on the left by a row index matrix is equivalent to indexing its rows, i.e., sampling the rows "with replacement". Analogously, multiplying a matrix on the right by a column index matrix is equivalent to indexing its columns. Indeed, such products are implemented in Matrix as indexing operations; see ‘Details’ below.

A matrix whose rows and columns are standard unit vectors is called a permutation matrix. This special case is designated by the pMatrix class, a direct subclass of indMatrix.
The transpose of an index matrix is an index matrix with identical perm but opposite margin. Hence the transpose of a row index matrix is a column index matrix, and vice versa.

The cross product of a row index matrix \( R \) and itself is a diagonal matrix whose diagonal entries are the number of entries in each column of \( R \).

Given a row index matrix \( R \) with perm slot \( p \), a column index matrix \( C \) with perm slot \( q \), and a matrix \( M \) with conformable dimensions, we have

\[
\begin{align*}
RM &= R \times M = M[p,] \\
MC &= M \times C = M[, q] \\
C'M &= \text{crossprod}(C, M) = M[q,] \\
MR' &= \text{tcrossprod}(M, R) = M[, p] \\
R'R &= \text{crossprod}(R) = \text{Diagonal}(x=\text{tabulate}(p, \text{ncol}(R))) \\
CC' &= \text{tcrossprod}(C) = \text{Diagonal}(x=\text{tabulate}(q, \text{nrow}(C)))
\end{align*}
\]

Operations on index matrices that result in index matrices will accordingly return an \texttt{indMatrix}. These include products of two column index matrices and (equivalently) column-indexing of a column index matrix (when dimensions are not dropped). Most other operations on \texttt{indMatrix} treat them as sparse nonzero pattern matrices (i.e., inheriting from virtual class \texttt{nsparseMatrix}). Hence vector-valued subsets of \texttt{indMatrix}, such as those given by \texttt{diag}, are always of type \texttt{"logical"}.

Objects from the Class

Objects can be created explicitly with calls of the form \texttt{new("indMatrix", \ldots)}, but they are more commonly created by coercing 1-based integer index vectors, with calls of the form \texttt{as(\ldots, \"indMatrix\")}; see `Methods' below.

**Slots**

- \texttt{margin}: an integer, either 1 or 2, specifying whether the matrix is a row (1) or column (2) index.
- \texttt{perm}: a 1-based integer index vector, i.e., a vector of length \texttt{Dim[margin]} with elements taken from \texttt{1:Dim[1+margin%%2]}.

\texttt{Dim, Dimnames} inherited from virtual superclass \texttt{Matrix}.

**Extends**

Classes \texttt{"sparseMatrix"} and \texttt{"generalMatrix"}, directly.

**Methods**

- \texttt{%*%} signature (\( x = \text{"indMatrix"}, y = \text{"Matrix"} \)) and others listed by \texttt{showMethods("%*%", \text{classes} = \text{"indMatrix"})}: matrix products implemented where appropriate as indexing operations.

- \texttt{coerce} signature (\texttt{from} = \texttt{"numeric"}, \texttt{to} = \texttt{"indMatrix"}): supporting typical \texttt{indMatrix} construction from a vector of positive integers. Row indexing is assumed.

- \texttt{coerce} signature (\texttt{from} = \texttt{"list"}, \texttt{to} = \texttt{"indMatrix"}): supporting \texttt{indMatrix} construction for row and column indexing, including index vectors of length 0 and index vectors whose maximum is less than the number of rows or columns being indexed.

- \texttt{coerce} signature (\texttt{from} = \texttt{"indMatrix"}, \texttt{to} = \texttt{"matrix"}): coercion to a traditional \texttt{matrix} of \texttt{logical} type, with \texttt{FALSE} and \texttt{TRUE} in place of 0 and 1.
t signature(x = "indMatrix"): the transpose, which is an indMatrix with identical perm but opposite margin.

rowSums, rowMeans, colSums, colMeans signature(x = "indMatrix"): row and column sums and means.

rbind2, cbind2 signature(x = "indMatrix", y = "indMatrix"): row-wise catenation of two row index matrices with equal numbers of columns and column-wise catenation of two column index matrices with equal numbers of rows.

kronecker signature(X = "indMatrix", Y = "indMatrix"): Kronecker product of two row index matrices or two column index matrices, giving the row or column index matrix corresponding to their “interaction”.

Author(s)
Fabian Scheipl and Uni Muenchen, building on the existing class pMatrix after a nice hike’s conversation with Martin Maechler. Methods for crossprod(x, y) and kronecker(x, y) with both arguments inheriting from indMatrix were made considerably faster thanks to a suggestion by Boris Vaillant. Diverse tweaks by Martin Maechler and Mikael Jagan, notably the latter’s implementation of margin, prior to which the indMatrix class was designated only for row index matrices.

See Also
Subclass pMatrix of permutation matrices, a special case of index matrices; virtual class nMatrix of nonzero pattern matrices, and its subclasses.

Examples

```r
p1 <- as(c(2,3,1), "pMatrix")
(sm1 <- as(rep(c(2,3,1), e=3), "indMatrix"))
stopifnot(all(sm1 == p1[rep(1:3, each=3),]))

row-indexing of a <pMatrix> turns it into an <indMatrix>:
class(p1[rep(1:3, each=3),])

set.seed(12) # so we know '10' is in sample
random index matrix for 30 observations and 10 unique values:
(s10 <- as(sample(10, 30, replace=TRUE),"indMatrix"))

Sample rows of a numeric matrix :
(mm <- matrix(1:10, nrow=10, ncol=3))
s10 %*% mm

set.seed(27)
IM1 <- as(sample(1:20, 100, replace=TRUE), "indMatrix")
IM2 <- as(sample(1:18, 100, replace=TRUE), "indMatrix")
(c12 <- crossprod(IM1,IM2))

same as cross-tabulation of the two index vectors:
stopifnot(all(c12 - unclass(table(IM1@perm, IM2@perm)) == 0))

3 observations, 4 implied values, first does not occur in sample:
as(2:4, "indMatrix")

3 observations, 5 values, first and last do not occur in sample:
as(list(2:4, 5), "indMatrix")
as(sm1, "nMatrix")
```
invertPerm

Utilities for Permutation Vectors

Description

invertPerm and signPerm compute the inverse and sign of a length-n permutation vector. isPerm tests if a length-n integer vector is a valid permutation vector. asPerm coerces a length-m transposition vector to a length-n permutation vector, where m <= n.

Usage

invertPerm(p, off = 1L, ioff = 1L)
signPerm(p, off = 1L)
isPerm(p, off = 1L)
asPerm(pivot, off = 1L, ioff = 1L, n = length(pivot))

invPerm(p, zero.p = FALSE, zero.res = FALSE)

Arguments

p an integer vector of length n.
pivot an integer vector of length m.
off an integer offset, indicating that p is a permutation of off+0:(n-1) or that pivot contains m values sampled with replacement from off+0:(n-1).
ioff an integer offset, indicating that the result should be a permutation of ioff+0:(n-1).
n a integer greater than or equal to m, indicating the length of the result. Transpositions are applied to a permutation vector vector initialized as seq_len(n).
zero.p a logical. Equivalent to off=0 if TRUE and off=1 if FALSE.
zero.res a logical. Equivalent to ioff=0 if TRUE and ioff=1 if FALSE.

Details

invertPerm(p, off, ioff=1) is equivalent to order(p) or sort.list(p) for all values of off. For the default value off=1, it returns the value of p after p[p] <- seq_along(p).

invPerm is a simple wrapper around invertPerm, retained for backwards compatibility.
Value

By default, i.e., with off=1 and ioff=1:

invertPerm(p) returns an integer vector of length length(p) such that p[invertPerm(p)] and invertPerm(p)[p] are both seq_along(p), i.e., the identity permutation.

signPerm(p) returns 1 if p is an even permutation and -1 otherwise (i.e., if p is odd).

isPerm(p) returns TRUE if p is a permutation of seq_along(p) and FALSE otherwise.

asPerm(pivot) returns the result of transposing elements i and pivot[i] of a permutation vector initialized as seq_len(n), for i in seq_along(pivot).

See Also

Class pMatrix of permutation matrices.

Examples

p <- sample(10L) # a random permutation vector
ip <- invertPerm(p)
s <- signPerm(p)

## 'p' and 'ip' are indeed inverses:
stopifnot(exprs = {
  isPerm(p)
  isPerm(ip)
  identical(s, 1L) || identical(s, -1L)
  identical(s, signPerm(ip))
  identical(ip[p], 1:10)
  identical(ip[p], 1:10)
  identical(invertPerm(ip), p)
})

## Product of transpositions (1 2)(2 1)(4 3)(6 8)(10 1) = (3 4)(6 8)(1 10)
pivot <- c(2L, 1L, 3L, 3L, 5L, 8L, 7L, 6L, 9L, 1L)
q <- asPerm(pivot)
stopifnot(exprs = {
  identical(q, c(10L, 2L, 4L, 3L, 5L, 8L, 7L, 6L, 9L, 1L))
  identical(q[q], seq_len(10L)) # because the permutation is odd:
  signPerm(q) == -1L
})

invPerm # a less general version of 'invertPerm'

---

**Description**

Methods for generic functions anyNA(), is.na(), is.nan(), is.infinite(), and is.finite(), for objects inheriting from virtual class Matrix or sparseVector.
Usage

```r
S4 method for signature 'denseMatrix'
is.na(x)
S4 method for signature 'sparseMatrix'
is.na(x)
S4 method for signature 'diagonalMatrix'
is.na(x)
S4 method for signature 'indMatrix'
is.na(x)
S4 method for signature 'sparseVector'
is.na(x)
...
and likewise for anyNA, is.nan, is.infinite, is.finite
```

Arguments

- `x`: an R object, here a sparse or dense matrix or vector.

Value

For `is.*()` functions, an `nMatrix` or `nsparseVector` matching the dimensions of `x` and specifying the positions in `x` of (some subset of) `NA`, `NaN`, `Inf`, and `-Inf`. For `anyNA()`, TRUE if `x` contains `NA` or `NaN` and FALSE otherwise.

See Also

- `NA`
- `NaN`
- `Inf`

Examples

```r
(M <- Matrix(1:6, nrow = 4, ncol = 3,
dimnames = list(letters[1:4], LETTERS[1:3])))
stopifnot(!anyNA(M), !any(is.na(M)))
M[2:3, 2] <- NA
(inM <- is.na(M))
stopifnot(anyNA(M), sum(inM) == 2)

(A <- spMatrix(nrow = 10, ncol = 20,
 i = c(1, 3:8), j = c(2, 9, 6:10), x = 7 * (1:7)))
stopifnot(!anyNA(A), !any(is.na(A)))
(inA <- is.na(A))
stopifnot(anyNA(A), sum(inA) == 1 + 1 + 5)
```

---

`is.null.DN` Are the Dimnames `dn` NULL-like?
Description

Are the dimnames dn NULL-like?

is.null.DN(dn) is less strict than is.null(dn), because it is also true (TRUE) when the dimnames dn are “like” NULL, or list(NULL, NULL), as they can easily be for the traditional R matrices (matrix) which have no formal class definition, and hence much freedom in how their dimnames look like.

Usage

is.null.DN(dn)

Arguments

dn dimnames() of a matrix-like R object.

Value

logical TRUE or FALSE.

Note

This function is really to be used on “traditional” matrices rather than those inheriting from Matrix, as the latter will always have dimnames list(NULL, NULL) exactly, in such a case.

Author(s)

Martin Maechler

See Also

is.null, dimnames, matrix.

Examples

m1 <- m2 <- m3 <- m4 <- m <-
    matrix(round(100 * rnorm(6)), 2, 3)
dimnames(m1) <- list(NULL, NULL)
dimnames(m2) <- list(NULL, character())
dimnames(m3) <- rev(dimnames(m2))
dimnames(m4) <- rep(list(character()),2)

m4 # prints absolutely identically to m

c.o <- capture.output
cm <- c.o(m)
stopifnot(exprs = {
    m == m1; m == m2; m == m3; m == m4
    identical(cm, c.o(m1)); identical(cm, c.o(m2))
    identical(cm, c.o(m3)); identical(cm, c.o(m4))
})

hasNoDimnames <- function(.) is.null.DN(dimnames(.))
stopifnot(exprs = {
    hasNoDimnames(m)
    hasNoDimnames(m1); hasNoDimnames(m2)
isSymmetric-methods

Methods for Function 'isSymmetric' in Package 'Matrix'

Description

isSymmetric tests whether its argument is a symmetric square matrix, by default tolerating some numerical fuzz and requiring symmetric [dD]imnames in addition to symmetry in the mathematical sense. isSymmetric is a generic function in base, which has a method for traditional matrices of implicit class "matrix". Methods are defined here for various proper and virtual classes in Matrix, so that isSymmetric works for all objects inheriting from virtual class "Matrix".

Usage

```r
S4 method for signature 'denseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'CsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'RsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'TsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'diagonalMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'indMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'dgeMatrix'
isSymmetric(object, checkDN = TRUE, tol = 100 * .Machine$double.eps, tol1 = 8 * tol, ...)
S4 method for signature 'dgCMatrix'
isSymmetric(object, checkDN = TRUE, tol = 100 * .Machine$double.eps, ...)
```

Arguments

- `object` a "Matrix".
- `checkDN` a logical indicating whether symmetry of the Dimnames slot of object should be checked.
- `tol, tol1` numerical tolerances allowing approximate symmetry of numeric (rather than logical) matrices. See also isSymmetric.matrix.
- `...` further arguments passed to methods (typically methods for all.equal).

Details

The Dimnames slot of object, say `dn`, is considered to be symmetric if and only if

- `dn[[1]]` and `dn[[2]]` are identical or one is NULL; and
- `ndn <- names(dn)` is NULL or `ndn[1]` and `ndn[2]` are identical or one is the empty string "".
Hence list(a=nms, a=nms) is considered to be symmetric, and so too are list(a=nms, NULL) and list(NULL, a=nms).

Note that this definition is looser than that employed by isSymmetric.matrix, which requires dn[1] and dn[2] to be identical, where dn is the dimnames attribute of a traditional matrix.

Value

A logical, either TRUE or FALSE (never NA).

See Also

forceSymmetric; symmpart and skewpart; virtual class "symmetricMatrix" and its subclasses.

Examples

isSymmetric(Diagonal(4)) # TRUE of course
M <- Matrix(c(1,2,2,1), 2,2)
isSymmetric(M) # TRUE (*and* of formal class "dsyMatrix")
isSymmetric(as(M, "generalMatrix")) # still symmetric, even if not "formally"
isSymmetric(triu(M)) # FALSE

## Look at implementations:
showMethods("isSymmetric", includeDefs = TRUE) # includes S3 generic from base
Value

A logical, either TRUE or FALSE (never NA).

If object is triangular and upper is NA, then isTriangular returns TRUE with an attribute kind, either "U" or "L", indicating that object is upper or lower triangular, respectively. Users should not rely on how kind is determined for diagonal matrices, which are both upper and lower triangular.

See Also

isSymmetric; virtual classes "triangularMatrix" and "diagonalMatrix" and their subclasses.

Examples

isTriangular(Diagonal(4))
## is TRUE: a diagonal matrix is also (both upper and lower) triangular
(M <- Matrix(c(1,2,0,1), 2,2))
isTriangular(M) # TRUE (*and* of formal class "dtrMatrix")
isTriangular(as(M, "generalMatrix")) # still triangular, even if not "formally"
isTriangular(crossprod(M)) # FALSE

isDiagonal(matrix(c(2,0,0,1), 2,2)) # TRUE

## Look at implementations:
showMethods("isTriangular", includeDefs = TRUE)
showMethods("isDiagonal", includeDefs = TRUE)

KhatRao

Khatri-Rao Matrix Product

Description

Computes Khatri-Rao products for any kind of matrices.

The Khatri-Rao product is a column-wise Kronecker product. Originally introduced by Khatri and Rao (1968), it has many different applications, see Liu and Trenkler (2008) for a survey. Notably, it is used in higher-dimensional tensor decompositions, see Bader and Kolda (2008).

Usage

KhatRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)

Arguments

X, Y matrices of with the same number of columns.

FUN the (name of the) function to be used for the column-wise Kronecker products, see kronecker, defaulting to the usual multiplication.

sparseY logical specifying if Y should be coerced and treated as sparseMatrix. Set this to FALSE, e.g., to distinguish structural zeros from zero entries.

make.dimnames logical indicating if the result should inherit dimnames from X and Y in a simple way.
Value

a "CsparseMatrix", say R, the Khatri-Rao product of \(X (n \times k)\) and \(Y (m \times k)\), is of dimension \((n \cdot m) \times k\), where the \(j\)-th column, \(R[\cdot,j]\) is the kronecker product \texttt{kronecker}(X[\cdot,j], Y[\cdot,j]).

Note

The current implementation is efficient for large sparse matrices.

Author(s)

Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.

References


See Also

\texttt{kronecker}.

Examples

```r
Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
KhatriRao(m,d)
KhatriRao(d,m)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("D", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))

nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)

stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),
all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))

d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,1])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),
all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
```
all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))

## a matrix with "structural" and non-structural zeros:
m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
        Dim = 3:4, x = c(1, 0, 1, 0))
D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5 <- KhatriRao( d, m01))
K5d <- KhatriRao( d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
(K6 <- KhatriRao(diag(3), t(m01)))
K6Dd <- KhatriRao(Diagonal(3), t(m01))
K6d <- KhatriRao(Diag(3), t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)
(K6d <- KhatriRao(Diag(3), t(m01), sparseY=FALSE))

stopifnot(exprs = {
    all(K5 == K5d)
    identical(abs(cbind(c(7L, 10L), c(3L, 4L)));
        which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
    identical(K5d, K5Dd)
    identical(K6, K6Dd)
    all(K6 == K6d)
    identical(abs(cbind(3:4, 1L),
            which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
    identical(K6d, K6Dd)
})

---

**Koenker-Ng Example Sparse Model Matrix and Response Vector**

**Description**

A model matrix \(mm\) and corresponding response vector \(y\) used in an example by Koenker and Ng. The matrix \(mm\) is a sparse matrix with 1850 rows and 712 columns but only 8758 non-zero entries. It is a "dgCMatrix" object. The vector \(y\) is just **numeric** of length 1850.

**Usage**

```r
data(KNex)
```

**References**


**Examples**

```r
data(KNex, package = "Matrix")
class(KNex$mm)
dim(KNex$mm)
image(KNex$mm)
str(KNex)
```
system.time( # a fraction of a second
  sparse.sol <- with(KNex, solve(crossprod(mm), crossprod(mm, y))))

head(round(sparse.sol,3))

## Compare with QR-based solution ("more accurate, but slightly slower"):

system.time(
  sp.sol2 <- with(KNex, qr.coef(qr(mm), y )))

all.equal(sparse.sol, sp.sol2, tolerance = 1e-13) # TRUE

---

**Description**

Computes Kronecker products for objects inheriting from "Matrix".

In order to preserve sparseness, we treat 0 * NA as 0, not as NA as usually in R (and as used for the base function kronecker).

**Methods**

- `kronecker` signature(X = "Matrix", Y = "ANY")
- `kronecker` signature(X = "ANY", Y = "Matrix")
- `kronecker` signature(X = "diagonalMatrix", Y = "ANY")
- `kronecker` signature(X = "sparseMatrix", Y = "ANY")
- `kronecker` signature(X = "TsparseMatrix", Y = "TsparseMatrix")
- `kronecker` signature(X = "dgTMatrix", Y = "dgTMatrix")
- `kronecker` signature(X = "dtTMatrix", Y = "dtTMatrix")
- `kronecker` signature(X = "indMatrix", Y = "indMatrix")

**Examples**

```r
(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4
(t2 <- kronecker(Diagonal(3, 2:4), t1)) # 15 x 12

should also work with special-cased logical matrices
l3 <- upper.tri(matrix(,3,3))
M <- Matrix(l3)
(N <- as(M, "nsparseMatrix")) # "ntCMatrix" (upper triangular)
N2 <- as(N, "generalMatrix") # (lost "t"riangularity)
MM <- kronecker(M,M)
NN <- kronecker(N,N) # "dtTMatrix" i.e. did keep
NN2 <- kronecker(N2,N2)
stopifnot(identical(NN,MM),
 is(NN2, "sparseMatrix"), all(NN2 == NN),
 is(NN, "triangularMatrix"))
```
ldenseMatrix-class

Virtual Class "ldenseMatrix" of Dense Logical Matrices

Description

ldenseMatrix is the virtual class of all dense logical (S4) matrices. It extends both denseMatrix and lMatrix directly.

Slots

x: logical vector containing the entries of the matrix.

Dim, Dimnames: see Matrix.

Extends

Class "lMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "lMatrix".

Class "Matrix", by class "denseMatrix".

Methods

as.vector signature(x = "ldenseMatrix", mode = "missing"): ...

which signature(x = "ndenseMatrix"), semantically equivalent to base function which(x, arr.ind);

for details, see the lMatrix class documentation.

See Also

Class lgeMatrix and the other subclasses.

Examples

showClass(" ldenseMatrix")

as(diag(3) > 0, "ldenseMatrix")

ldiMatrix-class

Class "ldiMatrix" of Diagonal Logical Matrices

Description

The class "ldiMatrix" of logical diagonal matrices.

Objects from the Class

Objects can be created by calls of the form new("ldiMatrix", ...) but typically rather via Diagonal.

Slots

x: "logical" vector.

diag: "character" string, either "U" or "N", see ddiMatrix.

Dim, Dimnames: matrix dimension and dimnames, see the Matrix class description.
IgeMatrix-class

Extends
Class "diagonalMatrix" and class "lMatrix", directly.
Class "sparseMatrix", by class "diagonalMatrix".

See Also
Classes ddiMatrix and diagonalMatrix; function Diagonal.

Examples

(lM <- Diagonal(x = c(TRUE,FALSE,FALSE)))
str(lM)#> gory details (slots)
crossprod(lM) # numeric
(nM <- as(lM, "nMatrix"))
crossprod(nM) # pattern sparse

1geMatrix-class

Class "1geMatrix" of General Dense Logical Matrices

Description
This is the class of general dense logical matrices.

Slots
x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.
factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends
Class "ldenseMatrix", directly. Class "lMatrix", by class "ldenseMatrix". Class "denseMatrix", by class "ldenseMatrix". Class "Matrix", by class "ldenseMatrix". Class "Matrix", by class "ldenseMatrix".

Methods
Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="1geMatrix") for details.

See Also
Non-general logical dense matrix classes such as ltrMatrix, or lsyMatrix; sparse logical classes such as lgCMatrix.
Examples

```r
showClass("lgeMatrix")
str(new("lgeMatrix"))
set.seed(1)
(lM <- Matrix(matrix(rnorm(28), 4,7) > 0)) # a simple random lgeMatrix
set.seed(11)
(lC <- Matrix(matrix(rnorm(28), 4,7) > 0)) # a simple random lgCMatrix
as(lM, "CsparseMatrix")
```

### lSparseMatrix-Classes

**Sparse logical matrices**

#### Description

The `lSparseMatrix` class is a virtual class of logical sparse matrices, i.e., sparse matrices with entries `TRUE`, `FALSE`, or `NA`. These can be stored in the “triplet” form (class `TsparseMatrix`, subclasses `lgTMatrix`, `lsTMatrix`, and `ltTMatrix`) or in compressed column-oriented form (class `CsparseMatrix`, subclasses `lgCMatrix`, `lsCMatrix`, and `ltCMatrix`) or—rarely—in compressed row-oriented form (class `RsparseMatrix`, subclasses `lgRMatrix`, `lsRMatrix`, and `ltRMatrix`). The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.

#### Details

Note that triplet stored (`TsparseMatrix`) matrices such as `lgTMatrix` may contain duplicated pairs of indices `(i, j)` as for the corresponding numeric class `dgTMatrix` where for such pairs, the corresponding `x` slot entries are added. For logical matrices, the `x` entries corresponding to duplicated index pairs `(i, j)` are “added” as well if the addition is defined as logical or, i.e., “`TRUE + TRUE` |-> `TRUE`” and “`TRUE + FALSE` |-> `TRUE`”. Note the use of `asUniqueT()` for getting an internally unique representation without duplicated `(i, j)` entries.

#### Objects from the Class

Objects can be created by calls of the form `new("lgCMatrix", ...)` and so on. More frequently objects are created by coercion of a numeric sparse matrix to the logical form, e.g. in an expression `x != 0`.

The logical form is also used in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence any numeric sparse matrices can be treated as logical sparse matrices.

#### Slots

- **x**: Object of class "logical", i.e., either `TRUE`, `NA`, or `FALSE`.
- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.
- **diag**: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The implicit diagonal elements are not explicitly stored when `diag` is "U". Present in the triangular classes only.
**lsparseMatrix-classes**

- **p**: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.

- **i**: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.

- **j**: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.

- **Dim**: Object of class "integer" - the dimensions of the matrix.

**Methods**

- **coerce** signature(from = "dgCMatrix", to = "lgCMatrix")
- **t** signature(x = "lgCMatrix"): returns the transpose of x

**which** signature(x = "lsparseMatrix"), semantically equivalent to base function **which(x, arr.ind)**; for details, see the **lMatrix** class documentation.

**See Also**

the class **dgCMatrix** and **dgTMatrix**

**Examples**

```r
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
(lm <- (m > 1)) # lgC
!lm # no longer sparse
stopifnot(is(lm,"lsparseMatrix"),
 identical(!lm, m <= 1))

data(KNex, package = "Matrix")
str(mmG.1 <- (KNex $ mm) > 0.1)# "lgC..."
table(mmG.10x)# however with many "non-structural zeros"
from logical to nz_pattern -- okay when there are no NA's :
mmG.1 <- as(mmG.1, "nMatrix") # <<< has "TRUE" also where mmG.1 had FALSE
from logical to "double"
dmG.1 <- as(mmG.1, "dMatrix") # has '0' and back:
lmG.1 <- as(dmG.1, "lMatrix")
stopifnot(identical(nmG.1, as((KNex $ mm) != 0,"nMatrix")),
 validObject(lmG.1),
 identical(lmG.1, mmG.1))

class(xnx <- crossprod(nmG.1))# "nsC..."
class(xlx <- crossprod(mmG.1))# "dsC..." : numeric
is0 <- (x1x == 0)
mean(as.vector(is0))# 99.3% zeros: quite sparse, but
table(xlx@x == 0)# more than half of the entries are (non-structural!) 0
stopifnot(isSymmetric(xlx), isSymmetric(xnx),
 ## compare xnx and xlx : have the *same* non-structural 0s :
sapply(slotNames(xnx),
 function(n) identical(slot(xnx, n), slot(xlx, n))))
```
lsyMatrix-class

Symmetric Dense Logical Matrices

Description

The "lsyMatrix" class is the class of symmetric, dense logical matrices in non-packed storage and "lspMatrix" is the class of these in packed storage. In the packed form, only the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form `new("lsyMatrix", ...)`. 

Slots

- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- `x`: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
- `Dim`, `Dimnames`: The dimension (a length-2 "integer") and corresponding names (or NULL), see the `Matrix` class.
- `factors`: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Both extend classes "ldenseMatrix" and "symmetricMatrix", directly; further, class "Matrix" and others, indirectly. Use `showClass("lsyMatrix")`, e.g., for details.

Methods

Currently, mainly `t()` and coercion methods (for `as(.)`; use, e.g., `showMethods(class="lsyMatrix")` for details.

See Also

`lgeMatrix`, `Matrix`, `t`

Examples

```r
(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
str(M2)
can
(sM <- M2 | t(M2)) # "lge"
as(sM, "symmetricMatrix")
str(sM <- as(sM, "packedMatrix")) # packed symmetric
```
**ltrMatrix-class**

**Triangular Dense Logical Matrices**

**Description**

The "ltrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The "ltrMatrix" class is the same except in packed storage.

**Slots**

- **x**: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- **diag**: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
- **Dim,Dimnames**: The dimension (a length-2 "integer") and corresponding names (or NULL), see the `Matrix` class.
- **factors**: Object of class "list". A named list of factorizations that have been computed for the matrix.

**Extends**

Both extend classes "ldenseMatrix" and "triangularMatrix", directly; further, class "Matrix", "lMatrix" and others, indirectly. Use `showClass("ltrMatrix")`, e.g., for details.

**Methods**

Currently, mainly `t()` and coercion methods (for `as(.)`; use, e.g., `showMethods(class="ltrMatrix")` for details.

**See Also**

Classes `lgeMatrix, Matrix`; function `t`

**Examples**

```r
showClass("ltrMatrix")
str(new("ltrMatrix"))
(lutr <- as(upper.tri(matrix(, 4, 4)), "ldenseMatrix"))
str(lutp <- pack(lutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!lutp # the logical negation (is *not* logical triangular !)
but this one is:
stopifnot(all.equal(lutp, pack(!lutp)))
```
Methods for LU Factorization

Description

Computes the pivoted LU factorization of an \( m \times n \) real matrix \( A \), which has the general form

\[
P_1 A P_2 = LU
\]

or (equivalently)

\[
A = P_1' L U P_2'
\]

where \( P_1 \) is an \( m \times m \) permutation matrix, \( P_2 \) is an \( n \times n \) permutation matrix, \( L \) is an \( m \times \min(m, n) \) unit lower trapezoidal matrix, and \( U \) is a \( \min(m, n) \times n \) upper trapezoidal matrix.

Methods for \texttt{denseMatrix} are built on LAPACK routine \texttt{dgetrf}, which does not permute columns, so that \( P_2 \) is an identity matrix.

Methods for \texttt{sparseMatrix} are built on CSparse routine \texttt{cs_lu}, which requires \( m = n \), so that \( L \) and \( U \) are triangular matrices.

Usage

\[
lu(x, \ldots)
\]

## S4 method for signature ‘dgeMatrix’

\[
lu(x, \text{warnSing} = \text{TRUE}, \ldots)
\]

## S4 method for signature ‘dgCMatrix’

\[
lu(x, \text{errSing} = \text{TRUE}, \text{order} = \text{NA\_integer\_},
\]

\[
\quad \text{tol} = 1, \ldots)
\]

## S4 method for signature ‘dsyMatrix’

\[
lu(x, \text{cache} = \text{TRUE}, \ldots)
\]

## S4 method for signature ‘dsCMatrix’

\[
lu(x, \text{cache} = \text{TRUE}, \ldots)
\]

## S4 method for signature ‘matrix’

\[
lu(x, \ldots)
\]

Arguments

- \( x \): A \texttt{finite} matrix or \texttt{Matrix} to be factorized, which must be square if sparse.
- \texttt{warnSing}: A logical indicating if a \texttt{warning} should be signaled for singular \( x \). Used only by methods for dense matrices.
- \texttt{errSing}: A logical indicating if an \texttt{error} should be signaled for singular \( x \). Used only by methods for sparse matrices.
- \texttt{order}: An integer in \( 0:3 \) passed to CSparse routine \texttt{cs\_sqr}, indicating a strategy for choosing the column permutation \( P_2 \). \( 0 \) means no column permutation. \( 1, 2, \) and \( 3 \) indicate a fill-reducing ordering of \( A + A', A'A', \) and \( A'A \), where \( A \) is \( A \) with “dense” rows removed. \( \text{NA} \) (the default) is equivalent to 2 if \( \text{tol} == 1 \) and 1 otherwise. Do not set to \( 0 \) unless you know that the column order of \( A \) is already sensible.
- \texttt{tol}: A number. The original pivot element is used if its absolute value exceeds \( \text{tol} \times a \), where \( a \) is the maximum in absolute value of the other possible pivot elements. Set \( \text{tol} < 1 \) only if you know what you are doing.
cache  a logical indicating if the result should be cached in x@factors[["LU"]]. Note
    that caching is experimental and that only methods for classes extending compMatrix
    will have this argument.
    ...
    further arguments passed to or from methods.

Details

What happens when x is determined to be near-singular differs by method. The method for class
dgeMatrix completes the factorization, warning if warnSing = TRUE and in any case returning a
valid denseLU object. Users of this method can detect singular x with a suitable warning handler;
see tryCatch. In contrast, the method for class dgCMatrix abandons further computation, throwing
an error if errSing = TRUE and otherwise returning NA. Users of this method can detect singular x
with an error handler or by setting errSing = FALSE and testing for a formal result with is(.,
"sparseLU").

Value

An object representing the factorization, inheriting from virtual class LU. The specific class is
denseLU unless x inherits from virtual class sparseMatrix, in which case it is sparseLU.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/
dgetrf.f.

Mathematics. doi:10.1137/1.9780898718881

Press. doi:10.56021/9781421421407944

See Also

Classes denseLU and sparseLU and their methods.
Classes dgeMatrix and dgCMatrix.
Generic functions expand1 and expand2, for constructing matrix factors from the result.
Generic functions Cholesky, BunchKaufman, Schur, and qr, for computing other factorizations.

Examples

showMethods("lu", inherited = FALSE)
set.seed(0)

## ---- Dense ----------------------------------------------------------
(A1 <- Matrix(rnorm(9L), 3L, 3L))
(lu.A1 <- lu(A1))

(A2 <- round(10 * A1[, -3L]))
(lu.A2 <- lu(A2))

## A ~ P1 L U in floating point
str(e.lu.A2 <- expand2(lu.A2), max.level = 2L)
stopifnot(all.equal(A2, Reduce("%*%", e.lu.A2)))
mat2triplet

Map Matrix to its Triplet Representation

Description

From an R object coercible to "TsparseMatrix", typically a (sparse) matrix, produce its triplet representation which may collapse to a "Duplet" in the case of binary aka pattern, such as "nMatrix" objects.

Usage

mat2triplet(x, uniqT = FALSE)

Arguments

x any R object for which as(x, "TsparseMatrix") works; typically a matrix of one of the Matrix package matrices.

uniqT logical indicating if the triplet representation should be 'unique' in the sense of asUniqueT(byrow=FALSE).

Value

A list, typically with three components,

i vector of row indices for all non-zero entries of x

j vector of columns indices for all non-zero entries of x

x vector of all non-zero entries of x; exists only when as(x, "TsparseMatrix") is not a "nsparseMatrix".

Note that the order of the entries is determined by the coercion to "TsparseMatrix" and hence typically with increasing j (and increasing i within ties of j).

Note

The mat2triplet() utility was created to be a more efficient and more predictable substitute for summary(<sparseMatrix>). UseRs have wrongly expected the latter to return a data frame with columns i and j which however is wrong for a "diagonalMatrix".

See Also

The summary() method for "sparseMatrix", summary,sparseMatrix-method. mat2triplet() is conceptually the inverse function of spMatrix and (one case of) sparseMatrix.
Examples

```r
mat2triplet # simple definition

i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(Ax <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
str(trA <- mat2triplet(Ax))
stopifnot(i == sort(trA$i), sort(j) == trA$j, x == sort(trA$x))

D <- Diagonal(x=4:2)
summary(D)
str(mat2triplet(D))
```

Description

The basic matrix product, \%\% is implemented for all our `Matrix` and also for `sparseVector` classes, fully analogously to R's base matrix and vector objects.

The functions `crossprod` and `tcrossprod` are matrix products or "cross products", ideally implemented efficiently without computing \texttt{t(.)}'s unnecessarily. They also return `symmetricMatrix` classed matrices when easily detectable, e.g., in `crossprod(m)`, the one argument case.

tcrossprod() takes the cross-product of the transpose of a matrix. `tcrossprod(x)` is formally equivalent to, but faster than, the call \texttt{x %*% t(x)}, and so is `tcrossprod(x, y)` instead of \texttt{x %*% t(y)}.

**Boolean** matrix products are computed via either \texttt{%%} or boolArith = TRUE.

Usage

```r
S4 method for signature 'CsparseMatrix,diagonalMatrix'
x \%\% y

S4 method for signature 'CsparseMatrix,diagonalMatrix'
crossprod(x, y = NULL, boolArith = NA, ...)
 ## and for many more signatures

S4 method for signature 'TsparseMatrix,missing'
tcrossprod(x, y = NULL, boolArith = NA, ...)
 ## and for many more signatures
```

Arguments

- \texttt{x} a matrix-like object
- \texttt{y} a matrix-like object, or for [\texttt{t}]{crossprod()} NULL (by default); the latter case is formally equivalent to \texttt{y = x}.
- \texttt{boolArith} \texttt{logical}, i.e., \texttt{NA}, \texttt{TRUE}, or \texttt{FALSE}. If true the result is (coerced to) a pattern matrix, i.e., "\texttt{nMatrix}". If false the result is (coerced to) numeric. When \texttt{NA}, currently the default, the result is a pattern matrix when \texttt{x} and \texttt{y} are "\texttt{nsparseMatrix}" and numeric otherwise.
- ... potentially more arguments passed to and from methods.
Details

For some classes in the Matrix package, such as `dgCMatrix`, it is much faster to calculate the cross-product of the transpose directly instead of calculating the transpose first and then its cross-product. `boolArith = TRUE` for regular (“non cross”) matrix products, `%*%` cannot be specified. Instead, we provide the `%&%` operator for boolean matrix products.

Value

A `Matrix` object, in the one argument case of an appropriate symmetric matrix class, i.e., inheriting from `symmetricMatrix`.

Methods

```r
%*% signature(x = "dgeMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several other signature combinations, see showMethods("%*%", class = "dgeMatrix").
%*% signature(x = "dtrMatrix", y = "matrix") and other signatures (use showMethods("%*%", class="dtrMatrix"): matrix multiplication. Multiplication of (matching) triangular matrices now should remain triangular (in the sense of class `triangularMatrix`).
crossprod signature(x = "dgeMatrix", y = "dgeMatrix"): ditto for several other signatures, use showMethods("crossprod", class = "dgeMatrix"), matrix crossproduct, an efficient version of t(x) %*% y.
crossprod signature(x = "CsparseMatrix", y = "missing") returns t(x) %*% x as an `dsCMatrix` object.
crossprod signature(x = "TsparseMatrix", y = "missing") returns t(x) %*% x as an `dsCMatrix` object.
crossprod,tcrossprod signature(x = "dtrMatrix", y = "matrix") and other signatures, see "%*%" above.
```

Note

`boolArith = TRUE`, `FALSE` or `NA` has been newly introduced for `Matrix` 1.2.0 (March 2015). Its implementation has still not been tested extensively. Notably the behaviour for sparse matrices with x slots containing extra zeros had not been documented previously, see the `%&%` help page.

Currently, `boolArith = TRUE` is implemented via `CsparseMatrix` coercions which may be quite inefficient for dense matrices. Contributions for efficiency improvements are welcome.

See Also

tcrossprod in R’s base, and `crossprod` and `%*%`. `Matrix` package `%&%` for boolean matrix product methods.

Examples

```r
A random sparse "incidence" matrix :
m <- matrix(0, 400, 500)
set.seed(12)
m[runif(314, 0, length(m))] <- 1
mm <- as(m, "CsparseMatrix")
object.size(m) / object.size(mm) # smaller by a factor of > 200

tcrossprod() is very fast:
system.time(tCmm <- tcrossprod(mm))# 0 (PIII, 933 MHz)
```
Matrix

Construct a Classed Matrix

Description

Construct a Matrix of a class that inherits from Matrix.

Usage

Matrix(data=NA, nrow=1, ncol=1, byrow=FALSE, dimnames=NULL, sparse = NULL, doDiag = TRUE, forceCheck = FALSE)

Arguments

data an optional numeric data vector or matrix.
nrow when data is not a matrix, the desired number of rows
ncol when data is not a matrix, the desired number of columns
byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is filled by rows.
dimnames a dimnames attribute for the matrix: a list of two character components. They are set if not NULL (as per default).
sparse logical or NULL, specifying if the result should be sparse or not. By default, it is made sparse when more than half of the entries are 0.
doDiag logical indicating if a diagonalMatrix object should be returned when the resulting matrix is diagonal (mathematically). As class diagonalMatrix extends sparseMatrix, this is a natural default for all values of sparse. Otherwise, if doDiag is false, a dense or sparse (depending on sparse) symmetric matrix will be returned.
forceCheck logical indicating if the checks for structure should even happen when data is already a "Matrix" object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of data and the other parameter. Further, Matrix() makes efforts to keep logical matrices logical, i.e., inheriting from class lMatrix, and to determine specially structured matrices such as symmetric, triangular or diagonal ones. Note that a symmetric matrix also needs symmetric dimnames, e.g., by specifying dimnames = list(NULL,NULL), see the examples.

Most of the time, the function works via a traditional (full) matrix. However, Matrix(0, nrow, ncol) directly constructs an “empty” sparseMatrix, as does Matrix(FALSE, *).

Although it is sometime possible to mix unclassed matrices (created with matrix) with ones of class "Matrix", it is much safer to always use carefully constructed ones of class "Matrix".

```r
system.time(cm <- crossprod(t(m))) # 0.16
system.time(cm. <- tcrossprod(m)) # 0.02
stopifnot(cm == as(tCmm, "matrix"))
show sparse sub matrix
tCmm[1:16, 1:30]
```
Matrix-class

Value

Returns matrix of a class that inherits from "Matrix". Only if data is not a matrix and does not already inherit from class Matrix are the arguments nrow, ncol and byrow made use of.

See Also

The classes Matrix, symmetricMatrix, triangularMatrix, and diagonalMatrix; further, matrix.

Special matrices can be constructed, e.g., via sparseMatrix (sparse), bdiag (block-diagonal), bandSparse (banded sparse), or Diagonal.

Examples

Matrix(0, 3, 2)  # 3 by 2 matrix of zeros -> sparse
Matrix(0, 3, 2, sparse=FALSE)# -> 'dense'

## 4 cases - 3 different results : 
Matrix(0, 2, 2)  # diagonal !
Matrix(0, 2, 2, sparse=FALSE)# (ditto)
Matrix(0, 2, 2, doDiag=FALSE)# -> sparse symm. "dsCMatrix"
Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE)# -> dense symm. "dsyMatrix"

Matrix(1:6, 3, 2)  # a 3 by 2 matrix (+ integer warning)
Matrix(1:6 + 1, nrow=3)

## logical ones:
Matrix(diag(4) > 0) # -> "ldiMatrix" with diag = "U"
Matrix(diag(4) > 0, sparse=TRUE) # (ditto)
Matrix(diag(4) >= 0) # -> "lsyMatrix" (of all 'TRUE')

## triangular
l3 <- upper.tri(matrix(,3,3))
(M <- Matrix(l3))  # -> "ltCMatrix"
Matrix(! l3)  # -> "ltrMatrix"
as(l3, "CsparseMatrix")# "lgCMatrix"

Matrix(1:9, nrow=3, 
dimnames = list(c("a", "b", "c"), c("A", "B", "C")))
(I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix"
str(I3) # note 'diag = "U"' and the empty 'x' slot

(A <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames
Matrix(A)  # hence 'dgeMatrix'
(As <- Matrix(A, dimnames = list(NULL,NULL)))# -> symmetric
forceSymmetric(As) # also symmetric, w/ symm. dimnames
stopifnot(is(As, "symmetricMatrix"),
is(Matrix(0, 3,3), "sparseMatrix"),
is(Matrix(FALSE, 1,1), "sparseMatrix"))
Matrix-class

Slots

Dim an integer vector of length 2 giving the dimensions of the matrix.
Dimnames a list of length 2. Each element must be NULL or a character vector of length equal to the corresponding element of Dim.

Methods

determinant signature(x = "Matrix", logarithm = "missing"): and
determinant signature(x = "Matrix", logarithm = "logical"): compute the (log) determinant of x. The method chosen depends on the actual Matrix class of x. Note that det also works for all our matrices, calling the appropriate determinant() method. The Matrix::det is an exact copy of base::det, but in the correct namespace, and hence calling the S4-aware version of determinant().

diff signature(x = "Matrix"): As diff() for traditional matrices, i.e., applying diff() to each column.
dim signature(x = "Matrix"): extract matrix dimensions dim.
dim<- signature(x = "Matrix", value = "ANY"): where value is integer of length 2. Allows to reshape Matrix objects, but only when prod(value) == prod(dim(x)).
dimnames signature(x = "Matrix"): extract dimnames.
dimnames<- signature(x = "Matrix", value = "list"): set the dimnames to a list of length 2, see dimnames<-

length signature(x = "Matrix"): simply defined as prod(dim(x)) (and hence of mode "double").
show signature(object = "Matrix"): show method for printing. For printing sparse matrices, see printSpMatrix.
image signature(object = "Matrix"): draws an image of the matrix entries, using levelplot() from package lattice.
head signature(object = "Matrix"): return only the "head", i.e., the first few rows.
tail signature(object = "Matrix"): return only the "tail", i.e., the last few rows of the respective matrix.

as.matrix, as.array signature(x = "Matrix"): the same as as(x, "matrix"); see also the note below.
as.vector signature(x = "Matrix", mode = "missing"): as.vector(m) should be identical to as.vector(as(m, "matrix")), implemented more efficiently for some subclasses.
as(x, "vector"), as(x, "numeric") etc, similarly.
coerce signature(from = "ANY", to = "Matrix"): This relies on a correct as.matrix() method for from.

There are many more methods that (conceptually should) work for all "Matrix" objects, e.g., colSums, rowMeans. Even base functions may work automagically (if they first call as.matrix() on their principal argument), e.g., apply, eigen, svd or kappa all do work via coercion to a "traditional" (dense) matrix.

Note

Loading the Matrix namespace "overloads" as.matrix and as.array in the base namespace by the equivalent of function(x) as(x, "matrix"). Consequently, as.matrix(m) or as.array(m) will properly work when m inherits from the "Matrix" class — also for functions in package base and other packages. E.g., apply or outer can therefore be applied to "Matrix" matrices.
Matrix-notyet

Virtual Classes Not Yet Really Implemented and Used

Description

iMatrix is the virtual class of all integer (S4) matrices. It extends the Matrix class directly.

zMatrix is the virtual class of all complex (S4) matrices. It extends the Matrix class directly.

Examples

```
showClass("iMatrix")
showClass("zMatrix")
```
Description

Return the (maybe super-)class of class cl from package Matrix, returning character(0) if there is none.

Usage

MatrixClass(cl, cld = getClassDef(cl), ...Matrix = TRUE, dropVirtual = TRUE, ...)

Arguments

- **cl**: string, class name
- **cld**: its class definition
- **...Matrix**: logical indicating if the result must be of pattern "][dlniz]..Matrix" where the first letter "][dlniz]" denotes the content kind.
- **dropVirtual**: logical indicating if virtual classes are included or not.
- **...**: further arguments are passed to .selectSuperClasses().

Value

a character string

Author(s)

Martin Maechler, 24 Mar 2009

See Also

Matrix, the mother of all Matrix classes.

Examples

mkA <- setClass("A", contains="dgCMatrix")
(A <- mkA())
stopifnot(identical(
    MatrixClass("A"),
    "dgCMatrix"))
MatrixFactorization-class

Virtual Class "MatrixFactorization" of Matrix Factorizations

Description

MatrixFactorization is the virtual class of factorizations of $m \times n$ matrices $A$, having the general form

$$P_1 A P_2 = A_1 \cdots A_p$$

or (equivalently)

$$A = P_1' A_1 \cdots A_p P_2'$$

where $P_1$ and $P_2$ are permutation matrices. Factorizations requiring symmetric $A$ have the constraint $P_2 = P_1'$, and factorizations without row or column pivoting have the constraints $P_1 = I_m$ and $P_2 = I_n$, where $I_m$ and $I_n$ are the $m \times m$ and $n \times n$ identity matrices.

CholeskyFactorization, BunchKaufmanFactorization, SchurFactorization, LU, and QR are the virtual subclasses of MatrixFactorization containing all Cholesky, Bunch-Kaufman, Schur, LU, and QR factorizations, respectively.

Slots

- **Dim** an integer vector of length 2 giving the dimensions of the factorized matrix.
- **Dimnames** a list of length 2 preserving the dimnames of the factorized matrix. Each element must be NULL or a character vector of length equal to the corresponding element of **Dim**.

Methods

determinant signature(x = "MatrixFactorization", logarithm = "missing"): sets logarithm = TRUE and recalls the generic function.
dim signature(x = "MatrixFactorization"): returns x@Dim.
dimnames signature(x = "MatrixFactorization"): returns x@Dimnames.
dimnames<- signature(x = "MatrixFactorization", value = "NULL"): returns x with x@Dimnames set to list(NULL, NULL).
dimnames<- signature(x = "MatrixFactorization", value = "list"): returns x with x@Dimnames set to value.
length signature(x = "MatrixFactorization"): returns prod(x@Dim).
show signature(object = "MatrixFactorization"): prints the internal representation of the factorization using str.
solve signature(a = "MatrixFactorization", b = .): see solve-methods.
unname signature(obj = "MatrixFactorization"): returns obj with obj@Dimnames set to list(NULL, NULL).
ndenseMatrix-class

See Also

The virtual class compMatrix of factorizable matrices.
Classes extending CholeskyFactorization, namely Cholesky, pCholesky, and CHMfactor.
Classes extending BunchKaufmanFactorization, namely BunchKaufman and pBunchKaufman.
Classes extending SchurFactorization, namely Schur.
Classes extending LU, namely denseLU and sparseLU.
Classes extending QR, namely sparseQR.
Generic functions Cholesky, BunchKaufman, Schur, lu, and qr for computing factorizations.
Generic functions expand1 and expand2 for constructing matrix factors from MatrixFactorization objects.

Examples

showClass("MatrixFactorization")
Examples

showClass("ndenseMatrix")

as(diag(3) > 0, "ndenseMatrix")# -> "nge"

descriptions

Examples

showClass("ndenseMatrix")

as(diag(3) > 0, "ndenseMatrix")# -> "nge"

nearPD

Nearest Positive Definite Matrix

Description

Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.

Usage

nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)

Arguments

x

numeric n x n approximately positive definite matrix, typically an approximation to a correlation or covariance matrix. If x is not symmetric (and ensureSymmetry is not false), symmpart(x) is used.

corr

logical indicating if the matrix should be a correlation matrix.

keepDiag

logical, generalizing corr: if TRUE, the resulting matrix should have the same diagonal (diag(x)) as the input matrix.

base.matrix

logical indicating if the resulting mat component should be a base matrix or (by default) a Matrix of class dpoMatrix.

do2eigen

logical indicating if a posdefify() eigen step should be applied to the result of the Higham algorithm.

doSym

logical indicating ifX <- (X + t(X))/2 should be done, afterX <- tcrossprod(Qd, Q); some doubt if this is necessary.

doDykstra

logical indicating if Dykstra’s correction should be used; true by default. If false, the algorithm is basically the direct fixpoint iteration \( Y_k = P_U(P_S(Y_{k-1})) \).

only.values

logical; if TRUE, the result is just the vector of eigenvalues of the approximating matrix.

ensureSymmetry

logical; by default, symmpart(x) is used whenever isSymmetric(x) is not true. The user can explicitly set this to TRUE or FALSE, saving the symmetry test. Beware however that setting it FALSE for an asymmetric input x, is typically nonsense!

eig.tol

defines relative positiveness of eigenvalues compared to largest one, \( \lambda_1 \). Eigenvalues \( \lambda_k \) are treated as if zero when \( \lambda_k/\lambda_1 \leq \text{eig.tol} \).

conv.tol

convergence tolerance for Higham algorithm.
**nearPD**

- **posd.tol**: tolerance for enforcing positive definiteness (in the final posdefify step when do2eigen is TRUE).
- **maxit**: maximum number of iterations allowed.
- **conv.norm.type**: convergence norm type \((\text{norm}(*, \text{type}))\) used for Higham algorithm. The default is "I" (infinity), for reasons of speed (and back compatibility); using "F" is more in line with Higham's proposal.
- **trace**: logical or integer specifying if convergence monitoring should be traced.

**Details**

This implements the algorithm of Higham (2002), and then (if do2eigen is true) forces positive definiteness using code from posdefify. The algorithm of Knol and ten Berge (1989) (not implemented here) is more general in that it allows constraints to (1) fix some rows (and columns) of the matrix and (2) force the smallest eigenvalue to have a certain value.

Note that setting corr = TRUE just sets diag(.) <- 1 within the algorithm.

Higham (2002) uses Dykstra’s correction, but the version by Jens Oehlschlägel did not use it (accidentally), and still gave reasonable results; this simplification, now only used if doDykstra = FALSE, was active in nearPD() up to Matrix version 0.999375-40.

**Value**

If only.values = TRUE, a numeric vector of eigenvalues of the approximating matrix; Otherwise, as by default, an S3 object of class "nearPD", basically a list with components:

- **mat**: a matrix of class dpoMatrix, the computed positive-definite matrix.
- **eigenvalues**: numeric vector of eigenvalues of mat.
- **corr**: logical, just the argument corr.
- **normF**: the Frobenius norm \((\text{norm}(x-X, "F")\)) of the difference between the original and the resulting matrix.
- **iterations**: number of iterations needed.
- **converged**: logical indicating if iterations converged.

**Author(s)**

Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.

**References**


**See Also**

A first version of this (with non-optional corr=TRUE) has been available as nearcor(); and more simple versions with a similar purpose posdefify(), both from package sfsmisc.
Examples

## Higham (2002), p. 334f - simple example
A <- matrix(1, 3, 3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
n.A$nc[c("mat", "normF")]

set.seed(27)
m <- matrix(round(rnorm(25), 2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))

## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
              0.477, 1, 0.516, 0.233, 0.682, 0.75,
              0.644, 0.516, 1, 0.599, 0.581, 0.742,
              0.478, 0.233, 0.599, 1, 0.741, 0.8,
              0.651, 0.682, 0.581, 0.741, 1, 0.798,
              0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 / 12 (!)
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# still 2 iterations
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1$ iterations # 27 / 30 !

ncF <- nearPD(pr, conv.tol = 1e-15, conv.norm = "F")
stopifnot(all.equal(ncr, ncF))# norm type does not matter at all in this example

## But indeed, the 'corr = TRUE' constraint did ensure a better solution;
## cov2cor() does not just fix it up equivalently:
old.equal(pr - cov2cor(ncr$mat)) # = 0.09994
norm(pr - ncr.1$mat) # = 0.08746 / 0.08805
### 3) a real data example from a 'systemfit' model (3 eq.):

```r
(load(system.file("external", "symW.rda", package="Matrix"))) # "symW"
dim(symW) # 24 x 24
class(symW) # "dsCMatrix": sparse symmetric
if(dev.interactive()) image(symW)
EV <- eigen(symW, only=TRUE)$values
summary(EV) ## looking more closely {EV sorted decreasingly}:
tail(EV) # all 6 are negative
EV2 <- eigen(sWpos <- nearPD(symW)$mat, only=TRUE)$values
stopifnot(EV2 > 0)
if(requireNamespace("sfsmisc")) {
 plot(pmax(1e-3,EV), EV2, type="o", log="xy", xaxt="n", yaxt="n")
 for(side in 1:2) sfsmisc::eaxis(side)
} else
 plot(pmax(1e-3,EV), EV2, type="o", log="xy")
abline(0, 1, col="red3", lty=2)
```

---

**ngeMatrix-class**  
*Class "ngeMatrix" of General Dense Nonzero-pattern Matrices*

**Description**

This is the class of general dense nonzero-pattern matrices, see `nMatrix`.

**Slots**

- `x`: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
- `Dim,Dimnames`: The dimension (a length-2 "integer") and corresponding names (or NULL), see the `Matrix` class.
- `factors`: Object of class "list". A named list of factorizations that have been computed for the matrix.

**Extends**

Class "ndenseMatrix", directly. Class "lMatrix", by class "ndenseMatrix". Class "denseMatrix", by class "ndenseMatrix". Class "Matrix", by class "ndenseMatrix".

**Methods**

Currently, mainly `t()` and coercion methods (for `as()`); use, e.g., `showMethods(class="ngeMatrix")` for details.

**See Also**

Non-general logical dense matrix classes such as `ntrMatrix`, or `nsyMatrix`; sparse logical classes such as `ngCMatrix`.

**Examples**

```r
showClass("ngeMatrix")
"lgeMatrix" is really more relevant
```
nMatrix-class

Class "nMatrix" of Non-zero Pattern Matrices

Description

The nMatrix class is the virtual “mother” class of all non-zero pattern (or simply pattern) matrices in the Matrix package.

Slots

Common to all matrix object in the package:

- **Dim**: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
- **Dimnames**: list of length two; each component containing NULL or a character vector length equal the corresponding Dim element.

Methods

- **coerce** signature(from = "matrix", to = "nMatrix"): Note that these coercions (must) coerce NAs to non-zero, hence conceptually TRUE. This is particularly important when sparseMatrix objects are coerced to "nMatrix" and hence to nsparseMatrix.

Additional methods contain group methods, such as

- **Ops** signature(e1 = "nMatrix", e2 = "...."),....
- **Arith** signature(e1 = "nMatrix", e2 = "...."),....
- **Compare** signature(e1 = "nMatrix", e2 = "...."),....
- **Logic** signature(e1 = "nMatrix", e2 = "...."),....
- **Summary** signature(x = "nMatrix", "...."),....

See Also

The classes lMatrix, nsparseMatrix, and the mother class, Matrix.

Examples

```r
getclass("nMatrix")
L3 <- Matrix(upper.tri(diag(3)))
L3 # an "ltCMatrix"
as(L3, "nMatrix") # -> ntC*
```
```r
similar, not using Matrix()
as(upper.tri(diag(3)), "nMatrix")# currently "ngTMatrix"
```
The Number of Non-Zero Values of a Matrix

Description
Returns the number of non-zero values of a numeric-like R object, and in particular an object x inheriting from class Matrix.

Usage
nnzero(x, na.counted = NA)

Arguments
x an R object, typically inheriting from class Matrix or numeric.
na.counted a logical describing how NAs should be counted. There are three possible settings for na.counted:
TRUE NAs are counted as non-zero (since “they are not zero”).
NA (default) the result will be NA if there are NA’s in x (since “NA’s are not known, i.e., may be zero”).
FALSE NAs are omitted from x before the non-zero entries are counted.

For sparse matrices, you may often want to use na.counted = TRUE.

Value
the number of non zero entries in x (typically integer).

Note that for a symmetric sparse matrix S (i.e., inheriting from class symmetricMatrix), nnzero(S) is typically twice the length(S@x).

Methods
signature(x = "ANY") the default method for non-Matrix class objects, simply counts the number 0s in x, counting NA’s depending on the na.counted argument, see above.
signature(x = "denseMatrix") conceptually the same as for traditional matrix objects, care has to be taken for "symmetricMatrix" objects.
signature(x = "diagonalMatrix"), and signature(x = "indMatrix") fast simple methods for these special "sparseMatrix" classes.
signature(x = "sparseMatrix") typically, the most interesting method, also carefully taking "symmetricMatrix" objects into account.

See Also
The Matrix class also has a length method; typically, length(M) is much larger than nnzero(M) for a sparse matrix M, and the latter is a better indication of the size of M.
drop0, zapsmall.
Examples

```r
m <- Matrix(0+1:28, nrow = 4)
m[[-3, c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
nzero(mT)
(S <- crossprod(mT))
nzero(S)
str(S) # slots are smaller than nnzero()
stopifnot(nnzero(S) == sum(as.matrix(S) != 0))# failed earlier
```

```r
data(KNex, package = "Matrix")
M <- KNex$mm
class(M)
dim(M)
length(M); stopifnot(length(M) == prod(dim(M)))
nzero(M) # more relevant than length
the above are also visible from
str(M)
```

---

**norm-methods**

### Matrix Norms

**Description**

Computes a matrix norm of \( x \), using Lapack for dense matrices. The norm can be the one ("O", or "1") norm, the infinity ("I") norm, the Frobenius ("F") norm, the maximum modulus ("M") among elements of a matrix, or the spectral norm or 2-norm ("2"), as determined by the value of `type`.

**Usage**

```r
norm(x, type, ...)
```

**Arguments**

- `x` a real or complex matrix.
- `type` A character indicating the type of norm desired.
  - "O", "o" or "1" specifies the one norm, (maximum absolute column sum);
  - "I" or "i" specifies the infinity norm (maximum absolute row sum);
  - "F" or "f" specifies the Frobenius norm (the Euclidean norm of \( x \) treated as if it were a vector);
  - "M" or "m" specifies the maximum modulus of all the elements in \( x \); and
  - "2" specifies the “spectral norm” aka “2-norm”, which is the largest singular value (svd) of \( x \).

The default is "O". Only the first character of `type[1]` is used.

- `...` further arguments passed to or from other methods.

**Details**

For dense matrices, the methods eventually call the Lapack functions `dlange`, `dlansy`, `dlantr`, `zlange`, `zlansy`, and `zlantr`. 
Value

A numeric value of class "norm", representing the quantity chosen according to type.

References


See Also

onenormest(), an approximate randomized estimate of the 1-norm condition number, efficient for large sparse matrices.

The norm() function from R’s base package.

Examples

```r
x <- Hilbert(9)
stopifnot(identical(norm(x, "1"), norm(x, "1")))

allnorms <- function(x) {
 do2 <- getRversion() >= "4.0.0"
 vapply(c("1", "I", "F", "M", if(do2) "2"), norm, 0, x = x)
}

allnorms(x)

allnorms(Hilbert(10))
```

```
i <- c(1,3:8); j <- c(2,9:6:10); x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x) ## 8 x 10 "dgCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular = TRUE)) ## 10 x 10 "dtCMatrix"

allnorms(A) -> nA
allnorms(tA)
```

```
stopifnot(all.equal(nA, allnorms(as(A, "matrix"))),
 all.equal(nA, allnorms(tA))) # because tA == rbind(A, 0, 0)

A. <- A; A.[1,3] <- NA

stopifnot(is.na(allnorms(A.))) # gave error
```

---

**nsparseMatrix-classes**

**Sparse "pattern" Matrices**

**Description**

The nsparseMatrix class is a virtual class of sparse “pattern” matrices, i.e., binary matrices conceptually with TRUE/FALSE entries. Only the positions of the elements that are TRUE are stored.

These can be stored in the “triplet” form (TsparseMatrix, subclasses ngTMatrix, nsTMatrix, and ntTMatrix which really contain pairs, not triplets) or in compressed column-oriented form (class CsparseMatrix, subclasses ngCMatrix, nsCMatrix, and ntCMatrix) or—rarely—in compressed row-oriented form (class RsparseMatrix, subclasses ngRMatrix, nsRMatrix, and ntRMatrix).

The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.
Objects from the Class

Objects can be created by calls of the form `new("ngCMatrix", ...)` and so on. More frequently objects are created by coercion of a numeric sparse matrix to the pattern form for use in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence numeric sparse matrices can be treated as sparse pattern matrices.

Slots

- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.
- `diag`: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The implicit diagonal elements are not explicitly stored when `diag` is "U". Present in the triangular classes only.
- `p`: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.
- `i`: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.
- `j`: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.
- `Dim`: Object of class "integer" - the dimensions of the matrix.

Methods

- `coerce` signature(from = "dgCMatrix", to = "ngCMatrix"), and many similar ones; typically you should coerce to "nsparseMatrix" (or "nMatrix"). Note that coercion to a sparse pattern matrix records all the potential non-zero entries, i.e., explicit ("non-structural") zeroes are coerced to TRUE, not FALSE, see the example.
- `t` signature(x = "ngCMatrix"): returns the transpose of `x`
- `which` signature(x = "lsparseMatrix"). semantically equivalent to base function `which(x, arr.ind)`; for details, see the `lMatrix` class documentation.

See Also

the class `dgCMatrix`

Examples

```r
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
`extract the nonzero-pattern of (m) into an nMatrix'``:
mm <- as(m, "nsparseMatrix") ## -> will be a "ngCMatrix"
str(mm) # no 'x' slot
nnm <- !mm # no longer sparse
consistency check:
stopifnot(xor(as(mm, "matrix"),
 as(nnm, "matrix")))
```
### low-level way of adding "non-structural zeros":

```r
nnm <- as(nnm, "lsparseMatrix") # "lgCMatrix"
nnm@x[2:4] <- c(FALSE, NA, NA)
nnm
as(nnm, "nMatrix") # NAs *and* non-structural 0 |---→ ‘TRUE’

data(KNex, package = "Matrix")
nmm <- as(KNex$mm, "nMatrix")
str(xlx <- crossprod(nmm))# "nsCMatrix"
stopifnot(isSymmetric(xlx))
image(xlx, main=paste("crossprod(nmm) : Sparse", class(xlx)))
```

---

**nsyMatrix-class**

### Symmetric Dense Nonzero-Pattern Matrices

**Description**

The "nsyMatrix" class is the class of symmetric, dense nonzero-pattern matrices in non-packed storage and "nspMatrix" is the class of these in packed storage. Only the upper triangle or the lower triangle is stored.

**Objects from the Class**

Objects can be created by calls of the form `new("nsyMatrix", ...).

**Slots**

- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- `x`: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
- `Dim, Dimnames`: The dimension (a length-2 "integer") and corresponding names (or NULL), see the `Matrix` class.
- `factors`: Object of class "list". A named list of factorizations that have been computed for the matrix.

**Extends**

"nsyMatrix" extends class "ngeMatrix", directly, whereas "nspMatrix" extends class "ndenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use `showClass("nsyMatrix")`, e.g., for details.

**Methods**

Currently, mainly `t()` and coercion methods (for `as(.)`; use, e.g., `showMethods(class="nsyMatrix")` for details.

**See Also**

`ngeMatrix`, `Matrix`, `t`
ntrMatrix-class

Examples

(s0 <- new("nsyMatrix"))

(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
(sM <- M2 & t(M2)) # -> "lge"
(class(sM <- as(sM, "nMatrix")) # -> "nge"
  (sM <- as(sM, "symmetricMatrix")) # -> "nsy"
str(sM <- as(sM, "packedMatrix")) # -> "nsp", i.e., packed symmetric

ntrMatrix-class  Triangular Dense Logical Matrices

Description

The "ntrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The "ntpMatrix" class is the same except in packed storage.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

"ntrMatrix" extends class "ngeMatrix", directly, whereas
"ntpMatrix" extends class "ndenseMatrix", directly.

Both extend Class "triangularMatrix", directly, and class "denseMatrix", "lMatrix" and others, indirectly, use showClass("nsyMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="ntrMatrix") for details.

See Also

Classes ngeMatrix, Matrix; function t
Examples

```r
showClass("ntrMatrix")
str(new("ntpMatrix"))
(nutr <- as(upper.tri(matrix(, 4, 4)), "ndenseMatrix"))
str(nutp <- pack(nutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!nutp # the logical negation (is *not* logical triangular !)
but this one is:
stopifnot(all.equal(nutp, pack(!nutp)))
```

Description

The class "number" is a virtual class, currently used for vectors of eigen values which can be "numeric" or "complex".

It is a simple class union (setClassUnion) of "numeric" and "complex".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

```r
showClass("number")
stopifnot(is(1i, "number"), is(pi, "number"), is(1:3, "number"))
```

pack

Description

pack() coerces dense symmetric and dense triangular matrices from unpacked format (storing the full matrix) to packed format (storing only one of the upper and lower triangles). unpack() performs the reverse coercion. The two formats are formalized by the virtual classes "packedMatrix" and "unpackedMatrix".

Usage

```r
pack(x, ...)
S4 method for signature 'dgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'lgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'ngeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'matrix'
pack(x, symmetric = NA, upperTri = NA, ...)
```

unpack(x, ...)

Arguments

x            A dense symmetric or dense triangular matrix.

For pack(): typically an "unpackedMatrix" or a standard "matrix", though "packedMatrix" are allowed and returned unchanged.

For unpack(): typically a "packedMatrix", though "unpackedMatrix" are allowed and returned unchanged.

symmetric    logical (including NA) optionally indicating whether x is symmetric (or triangular).

upperTri     (for triangular x only) logical (including NA) indicating whether x is upper (or lower) triangular.

... further arguments passed to or from other methods.

Details

pack(x) checks matrices x not inheriting from one of the virtual classes "symmetricMatrix" "triangularMatrix" for symmetry (via isSymmetric()) then for upper and lower triangularity (via isTriangular()) in order to identify a suitable coercion. Setting one or both of symmetric and upperTri to TRUE or FALSE rather than NA allows skipping of irrelevant tests for large matrices known to be symmetric or (upper or lower) triangular.

Users should not assume that pack() and unpack() are inverse operations. Specifically, y <- unpack(pack(x)) may not reproduce an "unpackedMatrix" x in the sense of identical(). See the examples.

Value

For pack(): a "packedMatrix" giving the condensed representation of x.

For unpack(): an "unpackedMatrix" giving the full storage representation of x.

Examples

showMethods("pack")
(s <- crossprod(matrix(sample(15), 5,3))) # traditional symmetric matrix
(sp <- pack(s))
(mt <- as.matrix(tt <- tril(s))
(pt <- pack(mt))
stopifnot(identical(pt, pack(tt)),
         dim(s) == dim(sp), all(s == sp),
         dim(mt) == dim(pt), all(mt == pt), all(mt == tt))

showMethods("unpack")
(cp4 <- chol(Hilbert(4))) # is triangular
(tp4 <- pack(cp4) # [t]riangular [p]acked
str(tp4)
(unpack(tp4))
stopifnot(identical(tp4, pack(unpack(tp4))))

z1 <- new("dsyMatrix", Dim = c(2L, 2L), x = as.double(1:4), uplo = "U")
z2 <- unpack(pack(z1))
stopifnot(!identical(z1, z2), # _not_ identical
         all(z1 == z2)) # but mathematically equal
cbind(z1@x, z2@x) # (unused!) lower triangle is "lost" in translation
packedMatrix-class  Virtual Class "packedMatrix" of Packed Dense Matrices

Description

Class "packedMatrix" is the virtual class of dense symmetric or triangular matrices in "packed" format, storing only the \( \text{choose}(n+1,2) = n(n+1)/2 \) elements of the upper or lower triangle of an \( n \)-by-\( n \) matrix. It is used to define common methods for efficient subsetting, transposing, etc. of its proper subclasses: currently "[dlnt]spMatrix" (packed symmetric), "[dlnt]tpMatrix" (packed triangular), and subclasses of these, such as "dppMatrix", "pCholesky", and "pBunchKaufman".

Slots

- `uplo`: character; either "U", for upper triangular, and "L", for lower.
- `Dim`, `Dimnames`: as all Matrix objects.

Extends


Methods

- `pack` signature(x = "packedMatrix"): ...
- `unpack` signature(x = "packedMatrix"): ...
- `isSymmetric` signature(object = "packedMatrix"): ...
- `isTriangular` signature(object = "packedMatrix"): ...
- `isDiagonal` signature(object = "packedMatrix"): ...
- `t` signature(x = "packedMatrix"): ...
- `diag` signature(x = "packedMatrix"): ...
- `diag<-` signature(x = "packedMatrix"): ...

Author(s)

Mikael Jagan

See Also

pack and unpack; its virtual "complement" "unpackedMatrix"; its proper subclasses "dspMatrix", "lttMatrix", etc.

Examples

showClass("packedMatrix")
showMethods(classes = "packedMatrix")
**Description**

The `pMatrix` class is the class of *permutation* matrices, stored as 1-based integer permutation vectors. A permutation matrix is a square matrix whose rows and columns are all standard unit vectors. It follows that permutation matrices are a special case of *index* matrices (hence `pMatrix` is defined as a direct subclass of `indMatrix`).

Multiplying a matrix on the left by a permutation matrix is equivalent to permuting its rows. Analogously, multiplying a matrix on the right by a permutation matrix is equivalent to permuting its columns. Indeed, such products are implemented in `Matrix` as indexing operations; see ‘Details’ below.

**Details**

By definition, a permutation matrix is both a row index matrix and a column index matrix. However, the `perm` slot of a `pMatrix` cannot be used interchangeably as a row index vector and column index vector. If `margin=1`, then `perm` is a row index vector, and the corresponding column index vector can be computed as `invPerm(perm)`, i.e., by inverting the permutation. Analogously, if `margin=2`, then `perm` and `invPerm(perm)` are column and row index vectors, respectively.

Given an *n*-by-*n* row permutation matrix *P* with `perm` slot *p* and a matrix *M* with conformable dimensions, we have

\[
PM = P \%*\% M = M[p,] \\
MP = M \%*\% P = M[, i(p)] \\
P'M = \text{crossprod}(P, M) = M[i(p),] \\
MP' = \text{tcrossprod}(M, P) = M[, p] \\
P'^'M = \text{crossprod}(P) = \text{Diagonal}(n) \\
P'^'P = \text{tcrossprod}(P) = \text{Diagonal}(n)
\]

where *i* := `invPerm`.

**Objects from the Class**

Objects can be created explicitly with calls of the form `new("pMatrix", ...)`, but they are more commonly created by coercing 1-based integer index vectors, with calls of the form `as(., "pMatrix")`; see ‘Methods’ below.

**Slots**

`margin, perm` inherited from superclass `indMatrix`. Here, `perm` is an integer vector of length `Dim[1]` and a permutation of `1:Dim[1]`.

`Dim, Dimnames` inherited from virtual superclass `Matrix`.

**Extends**

Class "indMatrix", directly.
Methods

%*% signature(x = "pMatrix", y = "Matrix") and others listed by showMethods("%*%", classes = "pMatrix"): matrix products implemented where appropriate as indexing operations.

coerce signature(from = "numeric", to = "pMatrix"): supporting typical pMatrix construction from a vector of positive integers, specifically a permutation of 1:n. Row permutation is assumed.

t signature(x = "pMatrix"): the transpose, which is a pMatrix with identical perm but opposite margin. Coincides with the inverse, as permutation matrices are orthogonal.

solve signature(a = "pMatrix", b = "missing"): the inverse permutation matrix, which is a pMatrix with identical perm but opposite margin. Coincides with the transpose, as permutation matrices are orthogonal. See showMethods("solve", classes = "pMatrix") for more signatures.

determinant signature(x = "pMatrix", logarithm = "logical"): always returning 1 or -1, as permutation matrices are orthogonal. In fact, the result is exactly the sign of the permutation.

See Also

Superclass indMatrix of index matrices, for many inherited methods; invPerm, for computing inverse permutation vectors.

Examples

(p01 <- as(as.integer(c(2,3,1)), "pMatrix"))
t(p01) # is the same as
solve(p01)
p01 %*% t(p01) # check that the transpose is the inverse
stopifnot(all(diag(3) == as(p01 %*% t(p01), "matrix")),
         is.logical(as(p01, "matrix")))

set.seed(11)
## random permutation matrix :  
(00p <- as(sample(10),"pMatrix"))

## Permute rows / columns of a numeric matrix : 
(mm <- round(array(rnorm(3 * 3), c(3, 3)), 2))
mm %*% p01
p01 %*% mm
try(as(as.integer(c(3,3,1)), "pMatrix"))# Error: not a permutation

as(p01, "TsparseMatrix")
p01[1:7, 1:4] # gives an "ngTMatrix" (most economic!)

## row-indexing of a <pMatrix> keeps it as an <indMatrix>:  
p01[1:3, ]
printSpMatrix

Description

Format and print sparse matrices flexibly. These are the “workhorses” used by the format, show and print methods for sparse matrices. If \( x \) is large, printSpMatrix2(\( x \)) calls printSpMatrix() twice, namely, for the first and the last few rows, suppressing those in between, and also suppresses columns when \( x \) is too wide.

printSpMatrix() basically prints the result of formatSpMatrix().

Usage

formatSpMatrix(x, digits = NULL, maxp = 1e9,
               cld = getClassDef(class(x)), zero.print = ".",
               col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
               align = c("fancy", "right"))

printSpMatrix(x, digits = NULL, maxp = max(100L, getOption("max.print")),
              cld = getClassDef(class(x)),
              zero.print = ".", col.names, note.dropping.colnames = TRUE,
              uniDiag = TRUE, col.trailer = "",
              align = c("fancy", "right"))

printSpMatrix2(x, digits = NULL, maxp = max(100L, getOption("max.print")),
               zero.print = ".", cld = getClassDef(class(x)),
               uniDiag = TRUE, suppRows = NULL, suppCols = NULL,
               col.trailer = if(suppCols) "......" else "",
               align = c("fancy", "right"),
               width = getOption("width"), fitWidth = TRUE)

Arguments

\( x \) an \( \text{R} \) object inheriting from class sparseMatrix.

digits significant digits to use for printing, see print.default, the default, NULL, corresponds to using getOption("digits").

maxp integer, default from options(max.print), influences how many entries of large matrices are printed at all. Typically should not be smaller than around 1000; values smaller than 100 are silently “rounded up” to 100.

cld the class definition of \( x \); must be equivalent to getClassDef(class(x)) and exists mainly for possible speedup.

zero.print character which should be printed for structural zeroes. The default "." may occasionally be replaced by " " (blank); using "0" would look almost like print()ing of non-sparse matrices.

col.names logical or string specifying if and how column names of \( x \) should be printed, possibly abbreviated. The default is taken from options("sparse.colnames") if that is set, otherwise FALSE unless there are less than ten columns. When TRUE the full column names are printed. When col.names is a string beginning with "abb" or "sub" and ending with an integer \( n \) (i.e., of the form "abb... <n>"), the column names are abbreviate()d or substring()ed to (target) length \( n \), see the examples.

note.dropping.colnames logical specifying, when col.names is FALSE if the dropping of the column names should be noted, TRUE by default.
printSpMatrix

uniDiag  logical indicating if the diagonal entries of a sparse unit triangular or unit-diagonal matrix should be formatted as "I" instead of "1" (to emphasize that the 1's are "structural").

col.trailer  a string to be appended to the right of each column; this is typically made use of by `show(<sparseMatrix>)` only, when suppressing columns.

suppRows, suppCols  logicals or `NULL`, for `printSpMatrix2()` specifying if rows or columns should be suppressed in printing. If `NULL`, sensible defaults are determined from `dim(x)` and `options(c("width", "max.print"))`. Setting both to `FALSE` may be a very bad idea.

align  a string specifying how the `zero.print` codes should be aligned, i.e., padded as strings. The default, "fancy", takes some effort to align the typical `zero.print = "."` with the position of 0, i.e., the first decimal (one left of decimal point) of the numbers printed, whereas `align = "right"` just makes use of `print(*, right = TRUE)`.

width  number, a positive integer, indicating the approximately desired (line) width of the output, see also `fitWidth`.

fitWidth  logical indicating if some effort should be made to match the desired width or temporarily enlarge that if deemed necessary.

Details

(formatSpMatrix): If `x` is large, only the first rows making up the approximately first `maxp` entries is used, otherwise all of `x`. `.formatSparseSimple()` is applied to (a dense version of) the matrix. Then, `formatSparseM` is used, unless in trivial cases or for sparse matrices without `x` slot.

Value

`formatSpMatrix()`
returns a character matrix with possibly empty column names, depending on `col.names` etc, see above.

`printSpMatrix*()`
return `x` invisibly, see `invisible`.

Author(s)

Martin Maechler

See Also

the virtual class `sparseMatrix` and the classes extending it; maybe `sparseMatrix` or `spMatrix` as simple constructors of such matrices.

The underlying utilities `formatSparseM` and `.formatSparseSimple()` (on the same page).

Examples

```r
f1 <- gl(5, 3, labels = LETTERS[1:5])
X <- as(f1, "sparseMatrix")
X ## <==> show(X) <==> print(X)
t(X) ## shows column names, since only 5 columns
```
X2 <- as(gl(12, 3, labels = paste(LETTERS[1:12], "c", sep = ".")), "sparseMatrix")

X2

## less nice, but possible:
print(X2, col.names = TRUE) # use [,1] [,2] .. => does not fit

## Possibilities with column names printing:
t(X2) # suppressing column names
print(t(X2), col.names = TRUE)
print(t(X2), zero.print = "", col.names = "abbr. 1")
print(t(X2), zero.print = "-", col.names = "substring 2")

---

qr-methods  Methods for QR Factorization

Description

Computes the pivoted QR factorization of an \( m \times n \) real matrix \( A \), which has the general form

\[
P_1 A P_2 = QR
\]

or (equivalently)

\[
A = P'_1 Q R P'_2
\]

where \( P_1 \) and \( P_2 \) are permutation matrices, \( Q = \prod_{j=1}^{n} H_j \) is an \( m \times m \) orthogonal matrix equal to the product of \( n \) Householder matrices \( H_j \), and \( R \) is an \( m \times n \) upper trapezoidal matrix.

denseMatrix use the default method implemented in base, namely qr.default. It is built on LINPACK routine dqrdc and LAPACK routine dgeqp3, which do not pivot rows, so that \( P_1 \) is an identity matrix.

Methods for sparseMatrix are built on CSparse routines cs_sqr and cs_qr, which require \( m \geq n \).

Usage

```
qr(x, ...)
S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)
```

Arguments

- **x** a finite matrix or Matrix to be factorized, satisfying nrow(x) >= ncol(x) if sparse.
- **order** an integer in 0:3 passed to CSparse routine cs_sqr, indicating a strategy for choosing the column permutation \( P_2 \). 0 means no column permutation. 1, 2, and 3 indicate a fill-reducing ordering of \( A + A', A' A \), and \( A' A \), where \( A \) is already sensible.
- **...** further arguments passed to or from methods.
Details

If \( x \) is sparse and structurally rank deficient, having structural rank \( r < n \), then \( x \) is augmented with \( (n - r) \) rows of (partly non-structural) zeros, such that the augmented matrix has structural rank \( n \). This augmented matrix is factorized as described above:

\[
P_1 A P_2 = P_1 \begin{bmatrix} A_0 \\ 0 \end{bmatrix} P_2 = QR
\]

where \( A_0 \) denotes the original, user-supplied \((m - (n - r)) \times n\) matrix.

Value

An object representing the factorization, inheriting from virtual S4 class \( \text{QR} \) or S3 class \( \text{qr} \). The specific class is \( \text{qr} \) unless \( x \) inherits from virtual class \( \text{sparseMatrix} \), in which case it is \( \text{sparseQR} \).

References


See Also

Class \text{sparseQR} and its methods.
Class \text{dgCMatrix}.

Generic function \text{qr} from \text{base}, whose default method \text{qr.default} “defines” the S3 class \text{qr} of dense QR factorizations.
Generic functions \text{expand1} and \text{expand2}, for constructing matrix factors from the result.
Generic functions \text{Cholesky}, \text{BunchKaufman}, \text{Schur}, and \text{lu}, for computing other factorizations.

Examples

textshowMethods("qr", inherited = FALSE)

## Rank deficient: columns 3 \{b2\} and 6 \{c3\} are "extra"
M <- as(cbind(a1 = 1,
        b1 = rep(c(1, 0), each = 3L),
        b2 = rep(c(0, 1), each = 3L),
        c1 = rep(c(1, 0, 0), 2L),
        c2 = rep(c(0, 1, 0), 2L),
        c3 = rep(c(0, 0, 1), 2L)),
        "CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps

## ... [1] full rank ..................................................
## ===> a least squares solution of A x = b exists
## and is unique _in exact arithmetic_

(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))
qr-methods

142

stopifnot(exprs = {
  rankMatrix(A1) == ncol(A1)
  { d1 <- abs(diag(qr.A1@R)); sum(d1 < max(d1) * eps) == 0L }
  rcond(crossprod(A1)) >= eps
  all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b))))
  all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b)
})

## .... [2] numerically rank deficient with full structural rank .......
## ====> a least squares solution of A x = b does not
## exist or is not unique _in exact arithmetic_

(A2 <- M)
(qr.A2 <- qr(A2))

stopifnot(exprs = {
  rankMatrix(A2) == ncol(A2) - 2L
  { d2 <- abs(diag(qr.A2@R)); sum(d2 < max(d2) * eps) == 2L }
  rcond(crossprod(A2)) < eps

## 'qr.coef' computes unique least squares solution of "nearby" problem
## Z x = b for some full rank Z ~ A, currently without warning {FIXME}!
tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)

  all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})

## .... [3] numerically and structurally rank deficient ..............
## ====> factorization of _augmented_ matrix with
## full structural rank proceeds as in [2]
## NB: implementation details are subject to change; see (*) below

A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"

stopifnot(exprs = {
  ## sparseQR object preserves the unaugmented dimensions (*)
  dim(qr.A3  ) == dim(A3)
  dim(qr.A3@V) == dim(A3) + c(2L, 0L)
  dim(qr.A3@R) == dim(A3) + c(2L, 0L)

  ## The augmented matrix remains numerically rank deficient
  rankMatrix(A3) == ncol(A3) - 2L
  { d3 <- abs(diag(qr.A3@R)); sum(d3 < max(d3) * eps) == 2L }
  rcond(crossprod(A3)) < eps
})

## Auxiliary functions accept and return a vector or matrix
## with dimensions corresponding to the unaugmented matrix (*),
## in all cases with a warning
qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)
## yet more examples ..........................................

By disabling column pivoting, one gets the "vanilla" factorization

\[ A = Q^\top R, \text{ where } Q^\top := P_1 \]  

Q is orthogonal because P1 and Q are

```r
(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting
```

```r
ea1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ea2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
```

```r
stopifnot(exprs = {
 length(qr.A1 @q) == ncol(A1)
 length(qr.A1.pp@q) == 0L # indicating no column pivoting
 ae2(A1[, qr.A1@q + 1L], qr.Q(qr.A1) %*% qr.R(qr.A1))
})
```

---

**rankMatrix**

Ranks of a Matrix

### Description

Compute 'the' matrix rank, a well-defined functional in theory(*), somewhat ambiguous in practice. We provide several methods, the default corresponding to Matlab's definition.

(*) The rank of a \(n \times m\) matrix \(A, \text{rk}(A)\), is the maximal number of linearly independent columns (or rows); hence \(\text{rk}(A) \leq \min(n,m)\).

### Usage

```r
rankMatrix(x, tol = NULL,
 method = c("tolNorm2", "qr", "qrLINPACK", "qr",
 "useGrad", "maybeGrad"),
 sval = svd(x, 0, 0)$d, warn.t = TRUE, warn.qr = TRUE)
```

```r
qr2rankMatrix(qr, tol = NULL, isBqr = is.qr(qr), do.warn = TRUE)
```

### Arguments

- **x**
  - numeric matrix, of dimension \(n \times m\), say.

- **tol**
  - nonnegative number specifying a (relative, "scalefree") tolerance for testing of "practically zero" with specific meaning depending on method; by default, \(\max(\dim(x)) \times .Machine$double.eps\) is according to Matlab's default (for its only method which is our method="tolNorm2").

- **method**
  - a character string specifying the computational method for the rank, can be abbreviated:
    - "tolNorm2": the number of singular values \(\geq tol \times \max(sval)\);
    - "qrLINPACK": for a dense matrix, this is the rank of \(\text{qr}(x, \text{tol}, \text{LAPACK}=\text{FALSE})\) (which is \(\text{qr}(...)$\text{rank}\));
      - This ("\text{qr}". dense) version used to be the recommended way to compute a matrix rank for a while in the past.
      - For sparse \(x\), this is equivalent to "\text{qr}.R".
      - For sparse \(x\), this is equivalent to "\text{qr}.R".
"qr.R": this is the rank of triangular matrix $R$, where $qr()$ uses LAPACK or a "sparseQR" method (see $qr$-methods) to compute the decomposition $QR$. The rank of $R$ is then defined as the number of "non-zero" diagonal entries $d_i$ of $R$, and "non-zero"s fulfill $|d_i| \geq \text{tol} \cdot \max(|d_i|)$.

"qr": for back compatibility; for dense $x$, it corresponds to "qrLINPACK", whereas for sparse $x$, it uses "qr.R". For all the "qr*" methods, singular values $sval$ are not used, which may be crucially important for a large sparse matrix $x$, as in that case, when $sval$ is not specified, the default, computing $svd()$ currently coerces $x$ to a dense matrix.

"useGrad": considering the "gradient" of the (decreasing) singular values, the index of the smallest gap.

"maybeGrad": choosing method "useGrad" only when that seems reasonable; otherwise using "tolNorm2".

sval numeric vector of non-increasing singular values of $x$; typically unspecified and computed from $x$ when needed, i.e., unless method = "qr".

warn.t logical indicating if rankMatrix() should warn when it needs $t(x)$ instead of $x$. Currently, for method = "qr" only, gives a warning by default because the caller often could have passed $t(x)$ directly, more efficiently.

warn.qr in the $QR$ cases (i.e., if method starts with "qr"), rankMatrix() calls qr2rankMatrix(..., do.warn = warn.qr), see below.

qr an R object resulting from $qr(x, ...)$, i.e., typically inheriting from class "qr" or "sparseQR".

isBqr logical indicating if qr is resulting from base $qr()$. (Otherwise, it is typically from Matrix package sparse $qr()$)

do.warn logical; if true, warn about non-finite diagonal entries in the $R$ matrix of the $QR$ decomposition. Do not change lightly!

Details

qr2rankMatrix() is typically called from rankMatrix() for the "qr*" methods, but can be used directly - much more efficiently in case the qr-decomposition is available anyway.

Value

If $x$ is a matrix of all 0 (or of zero dimension), the rank is zero; otherwise, typically a positive integer in $1: \min(\text{dim}(x))$ with attributes detailing the method used.

There are rare cases where the sparse $QR$ decomposition "fails" in so far as the diagonal entries of $R$, the $d_i$ (see above), end with non-finite, typically NaN entries. Then, a warning is signalled (unless warn.qr / do.warn is not true) and NA (specifically, NA_integer_) is returned.

Note

For large sparse matrices $x$, unless you can specify $sval$ yourself, currently method = "qr" may be the only feasible one, as the others need $sval$ and call $svd()$ which currently coerces $x$ to a denseMatrix which may be very slow or impossible, depending on the matrix dimensions.

Note that in the case of sparse $x$, method = "qr", all non-strictly zero diagonal entries $d_i$ where counted, up to including Matrix version 1.1-0, i.e., that method implicitly used $\text{tol} = 0$, see also the set.seed(42) example below.
rankMatrix

**Author(s)**

Martin Maechler; for the "*Grad" methods building on suggestions by Ravi Varadhan.

**See Also**

qr, svd.

**Examples**

```r
rankMatrix(cbind(1, 0, 1:3)) # 2
```

```r
(meths <- eval(formals(rankMatrix)$method))
```

```r
a "border" case:
H12 <- Hilbert(12)
rankMatrix(H12, tol = 1e-20) # 12; but 11 with default method & tol.
sapply(meths, function(.m.) rankMatrix(H12, method = .m.))
```

```r
tolNorm2 qr.R qrLINPACK qr useGrad maybeGrad
11 11 12 12 11 11
The meaning of 'tol' for method="qrLINPACK" and *dense* x is not entirely "scale free"
rMQL <- function(ex, M) rankMatrix(M, method="qrLINPACK",tol = 10^-ex)
rMQR <- function(ex, M) rankMatrix(M, method="qr.R", tol = 10^-ex)
sapply(5:15, rMQL, M = H12) # result is platform dependent
sapply(5:15, rMQL, M = 1000 * H12) # not identical unfortunately
sapply(5:15, rMQR, M = H12)
sapply(5:15, rMQR, M = 1000 * H12) # the *same*
```

```r
"sparse" case:
M15 <- kronecker(diag(x=c(100,1,10)), Hilbert(5))
sapply(meths, function(.m.) rankMatrix(M15, method = .m.))
```

```r
all 15, but 'useGrad' has 14.
sapply(meths, function(.m.) rankMatrix(M15, method = .m., tol = 1e-7)) # all 14
```

```r
"large" sparse
n <- 250000; p <- 33; nnz <- 10000
L <- sparseMatrix(i = sample.int(n, nnz, replace=TRUE),
 j = sample.int(p, nnz, replace=TRUE),
 x = rnorm(nnz))
(st1 <- system.time(r1 <- rankMatrix(L))) # warning+ ~1.5 sec (2013)
(st2 <- system.time(r2 <- rankMatrix(L, method = "qr"))) # considerably faster!
r1[[1]][[1]] == print(r2[[1]]) ## --> (33 TRUE)
```

```r
another sparse-"qr" one, which `\`failed\' till 2013-11-23:
set.seed(42)
f1 <- factor(sample(50, 1000, replace=TRUE))
f2 <- factor(sample(50, 1000, replace=TRUE))
f3 <- factor(sample(50, 1000, replace=TRUE))
D <- t(do.call(rbind, lapply(list(f1,f2,f3), as, 'sparseMatrix')))
dim(D); nnzero(D) # 1000 x 150 // 3000 non-zeroes (= 2%)
stopifnot(rankMatrix(D, method="qr") == 148,
 rankMatrix(crossprod(D),method="qr") == 148)
```
rcond-methods

Estimate the Reciprocal Condition Number

Description

Estimate the reciprocal of the condition number of a matrix.

This is a generic function with several methods, as seen by showMethods(rcond).

Usage

rcond(x, norm, ...)

### S4 method for signature 'sparseMatrix,character'

rcond(x, norm, useInv=FALSE, ...)

Arguments

- **x**: an R object that inherits from the Matrix class.
- **norm**: character string indicating the type of norm to be used in the estimate. The default is "0" for the 1-norm ("0" is equivalent to "1"). For sparse matrices, when useInv=TRUE, norm can be any of the kinds allowed for norm; otherwise, the other possible value is "I" for the infinity norm, see also norm.
- **useInv**: logical (or "Matrix" containing solve(x)). If not false, compute the reciprocal condition number as 1/(∥x∥ · ∥x⁻¹∥), where x⁻¹ is the inverse of x, solve(x). This may be an efficient alternative (only) in situations where solve(x) is fast (or known), e.g., for (very) sparse or triangular matrices. Note that the result may differ depending on useInv, as per default, when it is false, an approximation is computed.
- **...**: further arguments passed to or from other methods.

Value

An estimate of the reciprocal condition number of x.

BACKGROUND

The condition number of a regular (square) matrix is the product of the norm of the matrix and the norm of its inverse (or pseudo-inverse).

More generally, the condition number is defined (also for non-square matrices A) as

\[ \kappa(A) = \frac{\max\|u\|_1 \|Au\|}{\min\|u\|_1 \|Au\|} \]

Whenever x is not a square matrix, in our method definitions, this is typically computed via rcond(qr.R(qr(X)), ...) where X is x or t(x).
The condition number takes on values between 1 and infinity, inclusive, and can be viewed as a factor by which errors in solving linear systems with this matrix as coefficient matrix could be magnified.

`rcond()` computes the reciprocal condition number $1/\kappa$ with values in $[0, 1]$ and can be viewed as a scaled measure of how close a matrix is to being rank deficient (aka “singular”).

Condition numbers are usually estimated, since exact computation is costly in terms of floating-point operations. An (over) estimate of reciprocal condition number is given, since by doing so overflow is avoided. Matrices are well-conditioned if the reciprocal condition number is near 1 and ill-conditioned if it is near zero.

References


See Also

`norm, kappa()` from package `base` computes an approximate condition number of a “traditional” matrix, even non-square ones, with respect to the $p = 2$ (Euclidean) `norm`. `solve`.

`condest`, a newer approximate estimate of the (1-norm) condition number, particularly efficient for large sparse matrices.

Examples

```r
x <- Matrix(rnorm(9), 3, 3)
rcond(x)
typically "the same" (with more computational effort):
1 / (norm(x) * norm(solve(x)))
rcond(Hilbert(9)) # should be about 9.1e-13

For non-square matrices:
rcond(x1 <- cbind(1:10)) # 0.05278
rcond(x2 <- cbind(x1, x1:10)) # practically 0, since x2 does not have full rank

sparse
(S1 <- Matrix(rbind(0:1,0, diag(3:-2))))
rcond(S1)
m1 <- as(S1, "denseMatrix")
all.equal(rcond(S1), rcond(m1))

wide and sparse
rcond(Matrix(cbind(0, diag(2:-1))))

Large sparse example --------
m <- Matrix(c(3,0:2), 2,2)
M <- bdiag(kronecker(Diagonal(2), m), kronecker(m,m))
36*(IM <- solve(M)) # still sparse
MM <- kronecker(Diagonal(10), kronecker(Diagonal(5),kronecker(m,M)))
dim(M3 <- kronecker(bdiag(M,M),MM)) # 12^800 ^ 2
if(interactive()) ## takes about 2 seconds if you have >= 8 GB RAM
 system.time(r <- rcond(M3))
whereas this is *fast* even though it computes solve(M3)
if(interactive()) ## the values are not the same
 c(r, r.) # 0.05555 0.013888
```
## for all 4 norms available for sparseMatrix :
cbind(rr <- sapply(c("1","I","F","M"),
        function(N) rcond(M3, norm=N, useInv=TRUE)))

---

rep2abI  
*Replicate Vectors into 'abIndex' Result*

### Description

rep2abI(x, times) conceptually computes rep.int(x, times) but with an abIndex class result.

### Usage

rep2abI(x, times)

### Arguments

- **x** numeric vector
- **times** integer (valued) scalar: the number of repetitions

### Value

a vector of class abIndex

### See Also

rep.int(), the base function; abIseq, abIndex.

### Examples

(ab <- rep2abI(2:7, 4))
stopifnot(identical(as(ab, "numeric"),
        rep(2:7, 4))

---

replValue-class  
*Virtual Class "replValue" - Simple Class for Subassignment Values*

### Description

The class "replValue" is a virtual class used for values in signatures for sub-assignment of Matrix matrices.

In fact, it is a simple class union (setClassUnion) of "numeric" and "logical" (and maybe "complex" in the future).

### Objects from the Class

Since it is a virtual Class, no objects may be created from it.
See Also

Subassign-methods, also for examples.

Examples

showClass("replValue")

rleDiff-class Class "rleDiff" of rle(diff(.)) Stored Vectors

Description

Class "rleDiff" is for compactly storing long vectors which mainly consist of linear stretches. For such a vector x, diff(x) consists of constant stretches and is hence well compressable via rle().

Objects from the Class

Objects can be created by calls of the form new("rleDiff", ...).
Currently experimental, see below.

Slots

first: A single number (of class "numLike", a class union of "numeric" and "logical").

rle: Object of class "rle", basically a list with components "lengths" and "values", see rle(). As this is used to encode potentially huge index vectors, lengths may be of type double here.

Methods

There is a simple show method only.

Note

This is currently an experimental auxiliary class for the class abIndex, see there.

See Also

rle, abIndex.

Examples

showClass("rleDiff")

ab <- c(abIseq(2, 100), abIseq(20, -2))
ab@rleD # is "rleDiff"
rsparsematrix  Random Sparse Matrix

Description

Generate a random sparse matrix efficiently. The default has rounded gaussian non-zero entries, and \( \text{rand}.x = \text{NULL} \) generates random pattern matrices, i.e. inheriting from \text{nsparsMat}.x.

Usage

\[
\text{rsparsematrix}(nrow, ncol, \text{density}, \text{nnz} = \text{round}(\text{density} \times \text{maxE}), \\
\quad \text{symmetric} = \text{FALSE}, \\
\quad \text{rand}.x = \text{function}(n) \text{signif}(\text{rnorm}(n), 2), \ldots)
\]

Arguments

- \( nrow, ncol \): number of rows and columns, i.e., the matrix dimension (\text{dim}).
- \( \text{density} \): optional number in \([0, 1]\), the density is the proportion of non-zero entries among all matrix entries. If specified it determines the default for \text{nnz}, otherwise \text{nnz} needs to be specified.
- \( \text{nnz} \): number of non-zero entries, for a sparse matrix typically considerably smaller than \( nrow \times ncol \). Must be specified if \text{density} is not.
- \( \text{symmetric} \): logical indicating if result should be a matrix of class \text{symmetricMatrix}. Note that in the symmetric case, \text{nnz} denotes the number of non zero entries of the upper (or lower) part of the matrix, including the diagonal.
- \( \text{rand}.x \): NULL or the random number generator for the \text{x} slot, a \text{function} such that \( \text{rand}.x(n) \) generates a numeric vector of length \( n \). Typical examples are \( \text{rand}.x = \text{rnorm} \), or \( \text{rand}.x = \text{runif} \); the default is nice for didactical purposes.
- \( \ldots \): optionally further arguments passed to \text{sparseMatrix()}, notably \text{repr}.

Details

The algorithm first samples “encoded” \((i, j)\)s without replacement, via one dimensional indices, if not symmetric \text{sample.int}(nrow*ncol, \text{nnz}), then—if \text{rand}.x is not NULL—gets \( x \leftarrow \text{rand}.x(\text{nnz}) \) and calls \text{sparseMatrix}(i=i, j=j, x=x, \ldots). When \text{rand}.x=NULL, \text{sparseMatrix}(i=i, j=j, \ldots) will return a pattern matrix (i.e., inheriting from \text{nsparsMat}).

Value

A \text{sparseMatrix}, say \( M \) of dimension \( (nrow, ncol) \), i.e., with \( \text{dim}(M) = c(nrow, ncol) \), if symmetric is not true, with \( nzM \leq \text{nnzero}(M) \) fulfilling \( nzM \leq \text{nnz} \) and typically, \( nzM = \text{nnz} \).

Author(s)

Martin Maechler
Examples

```r
set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M
M1 <- rsparsematrix(1000, 20, nnz = 123, rand.x = runif)
summary(M1)

a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"

a random pattern aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))

a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")
head(T2)
```

RsparseMatrix-class  
Class “RsparseMatrix” of Sparse Matrices in Row-compressed Form

Description

The "RsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed row-oriented form. Since it is a virtual class, no objects may be created from it. See showClass("RsparseMatrix") for its subclasses.

Slots

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.

Dim, Dimnames: inherited from the superclass, see sparseMatrix.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Originally, few methods were defined on purpose, as we rather use the CsparseMatrix in Matrix. Then, more methods were added but beware that these typically do not return "RsparseMatrix" results, but rather Csparse* or Tsparse* ones; e.g., R[i, j] <- v for an "RsparseMatrix" R works, but after the assignment, R is a (triplet) "TsparseMatrix".

`t` signature(x = "RsparseMatrix"): ...

`coerce` signature(from = "RsparseMatrix", to = "CsparseMatrix"): ...

`coerce` signature(from = "RsparseMatrix", to = "TsparseMatrix"): ...
See Also

its superclass, sparseMatrix, and, e.g., class dgRMatrix for the links to other classes.

Examples

showClass("RsparseMatrix")

Schur-class  Schur Factorizations

Description

Schur is the class of Schur factorizations of $n \times n$ real matrices $A$, having the general form

$$A = QTQ'$$

where $Q$ is an orthogonal matrix and $T$ is a block upper triangular matrix with $1 \times 1$ or $2 \times 2$ diagonal blocks specifying the real and complex conjugate eigenvalues of $A$. The column vectors of $Q$ are the Schur vectors of $A$, and $T$ is the Schur form of $A$.

The Schur factorization generalizes the spectral decomposition of normal matrices $A$, whose Schur form is block diagonal, to arbitrary square matrices.

Details

The matrix $A$ and its Schur form $T$ are similar and thus have the same spectrum. The eigenvalues are computed trivially as the eigenvalues of the diagonal blocks of $T$.

Slots

- Dim, Dimnames inherited from virtual class MatrixFactorization.
- Q an orthogonal matrix, inheriting from virtual class Matrix.
- T a block upper triangular matrix, inheriting from virtual class Matrix. The diagonal blocks have dimensions 1-by-1 or 2-by-2.
- EValues a numeric or complex vector containing the eigenvalues of the diagonal blocks of $T$, which are the eigenvalues of $T$ and consequently of the factorized matrix.

Extends

Class SchurFactorization, directly. Class MatrixFactorization, by class SchurFactorization, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("Schur", ...), but they are more typically obtained as the value of Schur($x$) for $x$ inheriting from Matrix (often dgeMatrix).

Methods

determinant signature(from = "Schur", logarithm = "logical"): computes the determinant of the factorized matrix $A$ or its logarithm.
expand1 signature(x = "Schur"): see expand1-methods.
expand2 signature(x = "Schur"): see expand2-methods.
solve signature(a = "Schur", b = .): see solve-methods.
Schur-methods

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.


See Also

Class `dgeMatrix`.

Generic functions `Schur`, `expand1` and `expand2`.

Examples

```r
showClass("Schur")
set.seed(0)

n <- 4L
(A <- Matrix(rnorm(n * n), n, n))

With dimnames, to see that they are propagated :
dimnames(A) <- list(paste0("r", seq_len(n)),
 paste0("c", seq_len(n)))

(sch.A <- Schur(A))
str(e.sch.A <- expand2(sch.A), max.level = 2L)

A ~ Q T Q' in floating point
stopifnot(exprs = {
 identical(names(e.sch.A), c("Q", "T", "Q."))
 all.equal(A, with(e.sch.A, Q %*% T %*% Q.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(all.equal(det(A), det(sch.A)),
 all.equal(solve(A, b), solve(sch.A, b)))

One of the non-general cases:
Schur(Diagonal(6L))
```

Schur-methods Methods for Schur Factorization

Description

Computes the Schur factorization of an \( n \times n \) real matrix \( A \), which has the general form

\[
A = QTQ'
\]

where \( Q \) is an orthogonal matrix and \( T \) is a block upper triangular matrix with \( 1 \times 1 \) and \( 2 \times 2 \) diagonal blocks specifying the real and complex conjugate eigenvalues of \( A \). The column vectors of \( Q \) are the Schur vectors of \( A \), and \( T \) is the Schur form of \( A \).

Methods are built on LAPACK routine dgees.
Usage

Schur(x, vectors = TRUE, ...)  

Arguments

x       a finite square matrix or Matrix to be factorized.

vectors a logical. If TRUE (the default), then Schur vectors are computed in addition to
         the Schur form.

...    further arguments passed to or from methods.

Value

An object representing the factorization, inheriting from virtual class SchurFactorization if
vectors = TRUE. Currently, the specific class is always Schur in that case.

An exception is if x is a traditional matrix, in which case the result is a named list containing Q, T,
and EValues slots of the Schur object.

If vectors = FALSE, then the result is the same named list but without Q.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.

Press. doi:10.56021/9781421407944

See Also

Class Schur and its methods.

Class dgeMatrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions Cholesky, BunchKaufman, lu, and qr, for computing other factorizations.

Examples

showMethods("Schur", inherited = FALSE)
set.seed(0)

Schur(Hilbert(9L)) # real eigenvalues

(A <- Matrix(round(rnorm(25L, sd = 100)), 5L, 5L))

(sch.A <- Schur(A)) # complex eigenvalues

## A ~ Q T Q' in floating point

str(e.sch.A <- expand2(sch.A), max.level = 2L)

stopifnot(all.equal(A, Reduce("%*%", e.sch.A)))

(e1 <- eigen(sch.A@T, only.values = TRUE)$values)

(e2 <- eigen(A , only.values = TRUE)$values)

(e3 <- sch.A@EValues)

stopifnot(exprs = {

  all.equal(e1, e2, tolerance = 1e-13)


all.equal(e1, e3[order(Mod(e3), decreasing = TRUE)], tolerance = 1e-13)
identical(Schur(A, vectors = FALSE),
  list(T = sch.A@T, EValues = e3))
identical(Schur(as(A, "matrix")),
  list(Q = as(sch.A@Q, "matrix"),
       T = as(sch.A@T, "matrix"), EValues = e3))

---

**solve-methods**

Methods in Package **Matrix** for Function **solve**

**Description**

Methods for generic function **solve** for solving linear systems of equations, i.e., for $X$ in $AX = B$, where $A$ is a square matrix and $X$ and $B$ are matrices with dimensions consistent with $A$.

**Usage**

```r
solve(a, b, ...)
```

## S4 method for signature 'dgeMatrix,ANY'
solve(a, b, tol = .Machine$double.eps, ...)

## S4 method for signature 'dgCMatrix,missing'
solve(a, b, sparse = TRUE, ...)

## S4 method for signature 'dgCMatrix,matrix'
solve(a, b, sparse = FALSE, ...)

## S4 method for signature 'dgCMatrix,denseMatrix'
solve(a, b, sparse = FALSE, ...)

## S4 method for signature 'dgCMatrix,sparseMatrix'
solve(a, b, sparse = TRUE, ...)

## S4 method for signature 'denseLU,dgeMatrix'
solve(a, b, ...)

## S4 method for signature 'BunchKaufman,dgeMatrix'
solve(a, b, ...)

## S4 method for signature 'Cholesky,dgeMatrix'
solve(a, b, ...)

## S4 method for signature 'sparseLU,dgCMatrix'
solve(a, b, tol = .Machine$double.eps, ...)

## S4 method for signature 'sparseQR,dgCMatrix'
solve(a, b, ...)

## S4 method for signature 'CHMfactor,dgCMatrix'
solve(a, b, system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"), ...)

**Arguments**

- **a**

  a finite square matrix or **Matrix** containing the coefficients of the linear system, or otherwise a **MatrixFactorization**, in which case methods behave (by default) as if the factorized matrix were specified.
solve-methods

b a vector, \texttt{sparsesVector}, matrix, or \texttt{Matrix} satisfying \texttt{NROW(b) == nrow(a)}, giving the right-hand side(s) of the linear system. Vectors \(b\) are treated as \texttt{length(b)}-by-1 matrices. If \(b\) is missing, then methods take \(b\) to be an identity matrix.

tol a non-negative number. For a inheriting from \texttt{denseMatrix}, an error is signaled if the reciprocal one-norm condition number (see \texttt{rcond}) of \(a\) is less than \(\texttt{tol}\), indicating that \(a\) is near-singular. For a of class \texttt{sparseLU}, an error is signaled if the ratio \(\min(d)/\max(d)\) is less than \(\texttt{tol}\), where \(d = \text{abs(diag(a@U))}\). (Interpret with care, as this ratio is a cheap heuristic and not in general equal to or even proportional to the reciprocal one-norm condition number.) Setting \(\texttt{tol} = 0\) disables the test.

\texttt{sparse} a logical indicating if the result should be formally sparse, i.e., if the result should inherit from virtual class \texttt{sparseMatrix}. Only methods for sparse \(a\) and missing or matrix \(b\) have this argument. Methods for missing or sparse \(b\) use \texttt{sparse = TRUE} by default. Methods for dense \(b\) use \texttt{sparse = FALSE} by default.

\texttt{system} a string specifying a linear system to be solved. Only methods for a inheriting from \texttt{CHMfactor} have this argument. See ‘Details’.

... further arguments passed to or from methods.

Details

Methods for general and symmetric matrices \(a\) compute a triangular factorization (LU, Bunch-Kaufman, or Cholesky) and call the method for the corresponding factorization class. The factorization is sparse if \(a\) is. Methods for sparse, symmetric matrices \(a\) attempt a Cholesky factorization and perform an LU factorization only if that fails (typically because \(a\) is not positive definite).

Triangular, diagonal, and permutation matrices do not require factorization (they are already “factors”), hence methods for those are implemented directly. For triangular \(a\), solutions are obtained by forward or backward substitution; for diagonal \(a\), they are obtained by scaling the rows of \(b\); and for permutations \(a\), they are obtained by permuting the rows of \(b\).

Methods for dense \(a\) are built on 14 LAPACK routines: class \texttt{d..Matrix}, where \(..=(\text{ge|tr|tp|sy|sp|po|pp})\), uses routines \texttt{d..tri} and \texttt{d..trs} for missing and non-missing \(b\), respectively. A corollary is that these methods always give a dense result.

Methods for sparse \(a\) are built on CSparse routines \texttt{cs_lsolve}, \texttt{cs_usolve}, and \texttt{cs_spsolve} and CHOLMOD routines \texttt{cholmod_solve} and \texttt{cholmod_spsolve}. By default, these methods give a vector result if \(b\) is a vector, a sparse matrix result if \(b\) is missing or a sparse matrix, and a dense matrix result if \(b\) is a dense matrix. One can override this behaviour by setting the \texttt{sparse} argument, where available, but that should be done with care. Note that a sparse result may be sparse only in the formal sense and not at all in the mathematical sense, depending on the nonzero patterns of \(a\) and \(b\). Furthermore, whereas dense results are fully preallocated, sparse results must be “grown” in a loop over the columns of \(b\).

Methods for a of class \texttt{sparseQR} are simple wrappers around \texttt{qr.coef}, giving the least squares solution in overdetermined cases.

Methods for a inheriting from \texttt{CHMfactor} can solve systems other than the default one \(AX = B\). The correspondence between its \texttt{system} argument the system actually solved is outlined in the table below. See \texttt{CHMfactor-class} for a definition of notation.

<table>
<thead>
<tr>
<th>system</th>
<th>isLDL(a)=TRUE</th>
<th>isLDL(a)=FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;A&quot;</td>
<td>(AX = B)</td>
<td>(AX = B)</td>
</tr>
<tr>
<td>&quot;LDLt&quot;</td>
<td>(L_L D_L L' X = B)</td>
<td>(L_L' X = B)</td>
</tr>
<tr>
<td>&quot;LD&quot;</td>
<td>(L_L D_L X = B)</td>
<td>(L X = B)</td>
</tr>
</tbody>
</table>
sparse.model.matrix  

Construct Sparse Design / Model Matrices

\[
\begin{array}{lcl}
\text{"DLt"} & DL_1^t X = B & L_1^t X = B \\
\text{"L"} & L_1 X = B & L X = B \\
\text{"Lt"} & L_1^t X = B & L^t X = B \\
\text{"D"} & DX = B & X = B \\
\text{"P"} & X = P_1^t B & X = P B \\
\text{"Pt"} & X = P_1 B & X = P^t B \\
\end{array}
\]

See Also

Virtual class \texttt{MatrixFactorization} and its subclasses.

Generic functions \texttt{Cholesky}, \texttt{BunchKaufman}, \texttt{Schur}, \texttt{lu}, and \texttt{qr} for computing factorizations.

Generic function \texttt{solve} from \texttt{base}.

Function \texttt{qr.coef} from \texttt{base} for computing least squares solutions of overdetermined linear systems.

Examples

## A close to symmetric example with "quite sparse" inverse:

\(n1 \leftarrow 7; n2 \leftarrow 3\)

\(dd \leftarrow \text{data.frame}\left(a = \text{gl}(n1,n2), b = \text{gl}(n2,1,n1*n2)\right)\)  
# balanced 2-way

\(X \leftarrow \text{sparse.model.matrix}(\sim -1+ a + b, dd)\)  
# no intercept --> even sparser

\(XXt \leftarrow \text{tcrossprod}(X)\)

\(\text{diag}(XXt) \leftarrow \text{rep}(c(0,0,1,0), \text{length.out} = \text{nrow}(XXt))\)

\(n \leftarrow \text{nrow}(\text{Zz} \leftarrow \text{kronecker}(XXt, \text{Diagonal}(x=c(4,1))))\)

\(\text{image}(a \leftarrow 2*\text{Diagonal}(n) + \text{ZZ} \times \text{Diagonal}(x=c(10, \text{rep}(1, n-1))))\)

\(\text{isSymmetric}(a) \# \text{FALSE}\)

\(\text{image}(\text{drop0}(\text{skewpart}(a)))\)

\(\text{image}(\text{ia0} \leftarrow \text{solve}(a, \text{tol} = 0))\)  
# checker board, dense [but really, a is singular!]

\(\text{try(solve}(a, \text{sparse=TRUE})\)  
\#-> error [ TODO: assertError ]

\(\text{ia.} \leftarrow \text{solve}(a, \text{sparse=FALSE}, \text{tol} = 1e-19)\)  
\#-> *no* error

\(\text{if}(\text{R.version$arch} == "x86_64")\)

\(## \text{Fails on 32-bit [Fedora 19, R 3.0.2] from Matrix 1.1-0 on [FIXME ??] only}\)

\(\text{stopifnot(\text{all.equal}(\text{as.matrix}(\text{ia.}), \text{as.matrix}(\text{ia0}))))}\)

\(a \leftarrow a + \text{Diagonal}(n)\)

\(\text{iad} \leftarrow \text{solve}(a)\)

\(\text{ias} \leftarrow \text{solve}(a, \text{sparsel}=\text{FALSE})\)

\(\text{stopifnot(\text{all.equal}(\text{as(iad,"denseMatrix")}, \text{ias}, \text{tolerance}=1e-14))}\)

\(\text{I.} \leftarrow \text{iaad} \times \text{image}(\text{I.})\)

\(\text{I0} \leftarrow \text{drop0}(\text{zapsmall}(\text{I.})); \text{image}(\text{I0})\)

\(\text{.I} \leftarrow a \times \text{iaad}\)

\(\text{.I0} \leftarrow \text{drop0}(\text{zapsmall}(\text{.I}))\)

\(\text{stopifnot(\ all.equal(\text{as(I0, "diagonalMatrix")}, \text{Diagonal}(n)),}\)

\(\text{ all.equal(\text{as(.I0,"diagonalMatrix"), \text{Diagonal}(n)})})\)
Description

Construct a sparse model or “design” matrix, from a formula and data frame (sparse.model.matrix) or a single factor (fac2sparse).

The Fac2[Ss]parse() functions are utilities, also used internally in the principal user level function sparse.model.matrix().

Usage

sparse.model.matrix(object, data = environment(object),
contrasts.arg = NULL, xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE,
sep = "", verbose = FALSE, ...)

fac2sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse)
fac2Sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse,
factorPatt12, contrasts.arg = NULL)

Arguments

object an object of an appropriate class. For the default method, a model formula or
terms object.
data a data frame created with model.frame. If another sort of object, model.frame
is called first.
contrasts.arg for sparse.model.matrix(): A list, whose entries are contrasts suitable for
input to the contrasts replacement function and whose names are the
names of columns of data containing factors.
for fac2Sparse(): character string or NULL or (coercable to) "sparseMatrix",
specifying the contrasts to be applied to the factor levels.
xlev to be used as argument of model.frame if data has no "terms" attribute.
transpose logical indicating if the transpose should be returned; if the transposed is used
anyway, setting transpose = TRUE is more efficient.
drop.unused.levels should factors have unused levels dropped? The default for sparse.model.matrix
has been changed to FALSE, 2010-07, for compatibility with R’s standard (dense)
model.matrix().
row.names logical indicating if row names should be used.
sep character string passed to paste() when constructing column names from the
variable name and its levels.
verbose logical or integer indicating if (and how much) progress output should be printed.
... further arguments passed to or from other methods.
from (for fac2sparse()): a factor.
to a character indicating the “kind” of sparse matrix to be returned. The default,
"d" is for double.
giveCsparse deprecated, replaced with repr; logical indicating if the result must be a CsparseMatrix.
repr character string, one of "C", "T", or "R", specifying the sparse representation
to be used for the result, i.e., one from the super classes CsparseMatrix, TsparseMatrix,
or RsparseMatrix.
sparse.model.matrix

factorPatt12 logical vector, say \(fp\), of length two; when \(fp[1]\) is true, return "contrasted" \(t(X)\); when \(fp[2]\) is true, the original ("dummy") \(t(X)\), i.e., the result of \texttt{fac2sparse()}.

Value

a sparse matrix, extending \texttt{CsparseMatrix} (for \texttt{fac2sparse()} if \texttt{repr = "C"} as per default; a \texttt{TsparseMatrix} or \texttt{RsparseMatrix}, otherwise).

For \texttt{fac2Sparse()}, a \texttt{list} of length two, both components with the corresponding transposed model matrix, where the corresponding \texttt{factorPatt12} is true.

\texttt{fac2sparse()}, the basic workhorse of \texttt{sparse.model.matrix()}, returns the transpose (\(t\)) of the model matrix.

Note

\texttt{model.Matrix(sparse = TRUE)} from package \texttt{MatrixModels} may be nowadays be preferable to \texttt{sparse.model.matrix}, as \texttt{model.Matrix} returns an object of class \texttt{modelMatrix} with additional slots assign and contrasts relating to the model variables.

Author(s)

Doug Bates and Martin Maechler, with initial suggestions from Tim Hesterberg.

See Also

\texttt{model.matrix} in package \texttt{stats}, part of base \texttt{R}.

\texttt{model.Matrix} in package \texttt{MatrixModels}; see 'Note'.

\texttt{as(f, "sparseMatrix")} (see \texttt{coerce(from = "factor", ..)} in the class doc \texttt{sparseMatrix}) produces the transposed sparse model matrix for a single factor \(f\) (and no contrasts).

Examples

\begin{verbatim}
dd <- data.frame(a = gl(3,4), b = gl(4,1,12)) # balanced 2-way
options("contrasts") # the default: "contr.treatment"
sparse.model.matrix(~ a + b, dd)
sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))

## Sparse method is equivalent to the traditional one:
stopifnot(all(sparse.model.matrix(~  a + b, dd) ==
  Matrix(model.matrix(~  a + b, dd), sparse=TRUE)),
  all(sparse.model.matrix(~0 + a + b, dd) ==
  Matrix(model.matrix(~0 + a + b, dd), sparse=TRUE)))
\end{verbatim}

\begin{verbatim}
(ff <- gl(3,4,, c("X","Y", "Z")))
fac2sparse(ff) # 3 x 12 sparse Matrix of class "dgCMatrix"
\end{verbatim}

\begin{verbatim}
(f30 <- gl(3,0 )
\end{verbatim}
sparseLU-class

Sparse LU Factorizations

Description

sparseLU is the class of sparse, row- and column-pivoted LU factorizations of \( n \times n \) real matrices \( A \), having the general form

\[
P_1 A P_2 = LU
\]

or (equivalently)

\[
A = P_1' L U P_2'
\]

where \( P_1 \) and \( P_2 \) are permutation matrices, \( L \) is a unit lower triangular matrix, and \( U \) is an upper triangular matrix.

Slots

- \( \text{Dim, Dimnames} \) inherited from virtual class MatrixFactorization.
- \( L \) an object of class \( \text{dtCMatrix} \), the unit lower triangular \( L \) factor.
- \( U \) an object of class \( \text{dtCMatrix} \), the upper triangular \( U \) factor.
- \( p, q \) 0-based integer vectors of length \( \text{Dim}[1] \), specifying the permutations applied to the rows and columns of the factorized matrix. \( q \) of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using R syntax, the matrix \( P_1 A P_2 \) is precisely \( A[p+1, q+1] \) (\( A[p+1, \] when \( q \) has length 0).

Extends

Class \( LU \), directly. Class MatrixFactorization, by class \( LU \), distance 2.

Instantiation

Objects can be generated directly by calls of the form \( \text{new("sparseLU", \ldots)} \), but they are more typically obtained as the value of \( \text{lu(x)} \) for \( x \) inheriting from \( \text{sparseMatrix} \) (often \( \text{dgCMatrix} \)).

Methods

determinant signature(from = "sparseLU", logarithm = "logical"): computes the determinant of the factorized matrix \( A \) or its logarithm.
expand signature(x = "sparseLU"): see expand-methods.
expand1 signature(x = "sparseLU"): see expand1-methods.
expand2 signature(x = "sparseLU"): see expand2-methods.
solve signature(a = "sparseLU", b = .): see solve-methods.
sparseLU-class

References


See Also

Class `denseLU` for dense LU factorizations.

Class `dgCMatrix`.

Generic functions `lu`, `expand1` and `expand2`.

Examples

```r
showClass("sparseLU")
set.seed(2)

A <- as(readMM(system.file("external", "pores_1.mtx", package = "Matrix"), "CsparseMatrix")
{n <- A@Dim[1L]}

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)), paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L U P2' in floating point
stopifnot(exprs = {
 identical(names(e.lu.A), c("P1.", "L", "U", "P2."))
 identical(e.lu.A[["P1."]],
 new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
 margin = 1L, perm = invertPerm(lu.A@p, 0L, 1L)))
 identical(e.lu.A[["P2."]],
 new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
 margin = 2L, perm = invertPerm(lu.A@q, 0L, 1L)))
 identical(e.lu.A[["L"]], lu.A@L)
 identical(e.lu.A[["U"]], lu.A@U)
 ae1(A, with(e.lu.A, P1. %*% L %*% U %*% P2.))
 ae2(A[lu.A@p + 1L, lu.A@q + 1L], with(e.lu.A, L %*% U))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
 identical(solve(A, b), solve(lu.A, b)))
```
sparseMatrix  General Sparse Matrix Construction from Nonzero Entries

Description

User-friendly construction of sparse matrices (inheriting from virtual \texttt{class CsparseMatrix}, \texttt{RsparseMatrix}, or \texttt{TsparseMatrix}) from the positions and values of their nonzero entries. This interface is recommended over direct construction via calls such as \texttt{new("..[CRT]Matrix", ...)}.

Usage

\begin{verbatim}
sparseMatrix(i, j, p, x, dims, dimnames,
    symmetric = FALSE, triangular = FALSE, index1 = TRUE,
    repr = c("C", "R", "T"), giveCsparse,
    check = TRUE, use.last.ij = FALSE)
\end{verbatim}

Arguments

- **i, j**: integer vectors of equal length specifying the positions (row and column indices) of the nonzero (or non-\texttt{TRUE}) entries of the matrix. Note that, when \texttt{x} is non-missing, the \texttt{x}_k corresponding to \textit{repeated} pairs \((i_k, j_k)\) are \textit{added}, for consistency with the definition of class \texttt{TsparseMatrix}, unless \texttt{use.last.ij} is \texttt{TRUE}, in which case only the \textit{last} such \texttt{x}_k is used.

- **p**: integer vector of pointers, one for each column (or row), to the initial (zero-based) index of elements in the column (or row). Exactly one of \texttt{i}, \texttt{j}, and \texttt{p} must be missing.

- **x**: optional, typically nonzero values for the matrix entries. If specified, then the length must equal that of \texttt{i} (or \texttt{j}) or equal 1, in which case \texttt{x} is recycled as necessary. If missing, then the result is a \texttt{nonzero} pattern matrix, i.e., inheriting from class \texttt{nsparseMatrix}.

- **dims**: optional length-2 integer vector of matrix dimensions. If missing, then \(!index1+c(max(i),max(j))\) is used.

- **dimnames**: optional list of \texttt{dimnames}; if missing, then \texttt{NULL} ones are used.

- **symmetric**: logical indicating if the resulting matrix should be symmetric. In that case, \((i, j, p)\) should specify only one triangle (upper or lower).

- **triangular**: logical indicating if the resulting matrix should be triangular. In that case, \((i, j, p)\) should specify only one triangle (upper or lower).

- **index1**: logical. If \texttt{TRUE} (the default), then \texttt{i} and \texttt{j} are interpreted as 1-based indices, following the \texttt{R} convention. That is, counting of rows and columns starts at 1. If \texttt{FALSE}, then they are interpreted as 0-based indices.

- **repr**: \texttt{character} string, one of \texttt{"C"}, \texttt{"R"}, and \texttt{"T"}, specifying the \texttt{representation} of the sparse matrix result, i.e., specifying one of the virtual classes \texttt{CsparseMatrix}, \texttt{RsparseMatrix}, and \texttt{TsparseMatrix}.

- **giveCsparse**: \texttt{(deprecated, replaced by \texttt{repr})} logical indicating if the result should inherit from \texttt{CsparseMatrix} or \texttt{TsparseMatrix}. Note that operations involving \texttt{CsparseMatrix} are very often (but not always) more efficient.
check logical indicating whether to check that the result is formally valid before returning. Do not set to FALSE unless you know what you are doing!

use.last.ij logical indicating if, in the case of repeated (duplicated) pairs \((i_k, j_k)\), only the last pair should be used. FALSE (the default) is consistent with the definition of class \texttt{TsparseMatrix}.

Details

Exactly one of the arguments \(i\), \(j\) and \(p\) must be missing.

In typical usage, \(p\) is missing, \(i\) and \(j\) are vectors of positive integers and \(x\) is a numeric vector. These three vectors, which must have the same length, form the triplet representation of the sparse matrix.

If \(i\) or \(j\) is missing then \(p\) must be a non-decreasing integer vector whose first element is zero. It provides the compressed, or “pointer” representation of the row or column indices, whichever is missing. The expanded form of \(p\), \(\text{rep}(\text{seq.along}(dp), dp)\) where \(dp \leftarrow \text{diff}(p)\), is used as the \((1\text{-based})\) row or column indices.

You cannot set both \texttt{singlar} and \texttt{triangular} to true; rather use \texttt{Diagonal()} (or its alternatives, see there).

The values of \(i\), \(j\), \(p\) and \texttt{index1} are used to create 1-based index vectors \(i\) and \(j\) from which a \texttt{TsparseMatrix} is constructed, with numerical values given by \(x\), if non-missing. Note that in that case, when some pairs \((i_k, j_k)\) are repeated (aka “duplicated”), the corresponding \(x_k\) are \textit{added}, in consistency with the definition of the \texttt{TsparseMatrix} class, unless \texttt{use.last.ij} is set to true.

By default, when \texttt{repr = "C"}, the \texttt{CsparseMatrix} derived from this triplet form is returned, where \texttt{repr = "R"} now allows to directly get an \texttt{RsparseMatrix} and \texttt{repr = "T"} leaves the result as \texttt{TsparseMatrix}.

The reason for returning a \texttt{CsparseMatrix} object instead of the triplet format by default is that the compressed column form is easier to work with when performing matrix operations. In particular, if there are no zeros in \(x\) then a \texttt{CsparseMatrix} is a unique representation of the sparse matrix.

Value

A sparse matrix, by default in compressed sparse column format and (formally) without symmetric or triangular structure, i.e., by default inheriting from both \texttt{CsparseMatrix} and \texttt{generalMatrix}.

Note

You \textit{do} need to use \texttt{index1 = FALSE} (or add + 1 to \(i\) and \(j\)) if you want use the 0-based \(i\) (and \(j\)) slots from existing sparse matrices.

See Also

\texttt{Matrix(*, sparse=TRUE)} for the constructor of such matrices from a \textit{dense} matrix. That is easier in small sample, but much less efficient (or impossible) for large matrices, where something like \texttt{sparseMatrix()} is needed. Further \texttt{bdiag} and \texttt{Diagonal} for (block-)diagonal and \texttt{bandSparse} for banded sparse matrix constructors.

Random sparse matrices via \texttt{rsparsematrix()}. The standard \texttt{R xtabs(*, sparse=TRUE)}, for sparse tables and \texttt{sparse.model.matrix()} for building sparse model matrices.

Consider \texttt{CsparseMatrix} and similar class definition help files.
Examples

```r
simple example
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(A <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
summary(A)
note that *internally* 0-based row indices are used

(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
stopifnot(all(sA == tA + t(tA)) ,
 identical(sA, as(tA + t(tA), "symmetricMatrix")))

dims can be larger than the maximum row or column indices
(AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)))
summary(AA)

i, j and x can be in an arbitrary order, as long as they are consistent
set.seed(1); (perm <- sample(1:7))
(A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]))
stopifnot(identical(A, A1))

The slots are 0-index based, so
try(sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x)))
fails and you should say so: 1-indexing is FALSE:
 sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x), index1 = FALSE)

the (i,j) pairs can be repeated, in which case the x's are summed
(args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)))
(Aa <- do.call(sparseMatrix, args))
explicitly ask for elimination of such duplicates, so
that the last one is used:
(A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))))
stopifnot(Aa[1,2] == 9, # 2+7 == 9
 A.[1,2] == 2) # 2 was *after* 7

for a pattern matrix, of course there is no "summing":
(nA <- do.call(sparseMatrix, args[c("i","j")])))

dn <- list(LETTERS[1:3], letters[1:5])
pointer vectors can be used, and the (i,x) slots are sorted if necessary:
m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
m
str(m)
stopifnot(identical(dimnames(m), dn))

sparseMatrix(x = 2.72, i=1:3, j=2:4) # recycling x
sparseMatrix(x = TRUE, i=1:3, j=2:4) # recycling x, |--> "lgCMatrix"

no 'x' --> patter*n* matrix:
(n <- sparseMatrix(i=1:6, j=rev(2:7)))# --> ngCMatrix

an empty sparse matrix:
(e <- sparseMatrix(dims = c(4,6), i={}, j={}))

a symmetric one:
(sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,
```

sparseMatrix-class

Virtual Class "sparseMatrix" — Mother of Sparse Matrices

Description

Virtual Mother Class of All Sparse Matrices

Slots

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.

Dimnames: a list of length two - inherited from class Matrix, see Matrix.

Extends

Class "Matrix", directly.

Methods

show (object = "sparseMatrix"): The show method for sparse matrices prints "structural" zeroes as "." using printSpMatrix() which allows further customization.

print signature(x = "sparseMatrix")....

The print method for sparse matrices by default is the same as show() but can be called with extra optional arguments, see printSpMatrix().

format signature(x = "sparseMatrix")....

The format method for sparse matrices, see formatSpMatrix() for details such as the extra optional arguments.
sparseMatrix-class

summary(object = "sparseMatrix", uniqT=FALSE): Returns an object of S3 class "sparseSummary" which is basically a data.frame with columns (i,j,x) (or just (i,j) for nsparseMatrix class objects) with the stored (typically non-zero) entries. The print method resembles Matlab's way of printing sparse matrices, and also the MatrixMarket format, see writeMM.

cbind2(x = *, y = *): several methods for binding matrices together, column-wise, see the basic cbind and rbind functions.
Note that the result will typically be sparse, even when one argument is dense and larger than the sparse one.

rbind2(x = *, y = *): binding matrices together row-wise, see cbind2 above.
determinant(x = "sparseMatrix", logarithm=TRUE): determinant() methods for sparse matrices typically work via Cholesky or lu decompositions.
diag(x = "sparseMatrix"): extracts the diagonal of a sparse matrix.
dim<signature(x = "sparseMatrix", value = "ANY"): allows to reshape a sparse matrix to a sparse matrix with the same entries but different dimensions. value must be of length two and fulfill prod(value) == prod(dim(x)).

coerce signature(from = "factor", to = "sparseMatrix"): Coercion of a factor to "sparseMatrix" produces the matrix of indicator rows stored as an object of class "dgCMatrix". To obtain columns representing the interaction of the factor and a numeric covariate, replace the "x" slot of the result by the numeric covariate then take the transpose. Missing values (NA) from the factor are translated to columns of all 0s.

See also colSums, norm, ... for methods with separate help pages.

Note
In method selection for multiplication operations (i.e. %*% and the two-argument form of crossprod) the sparseMatrix class takes precedence in the sense that if one operand is a sparse matrix and the other is any type of dense matrix then the dense matrix is coerced to a dgeMatrix and the appropriate sparse matrix method is used.

See Also
sparseMatrix, and its references, such as xtabs(*, sparse=TRUE), or sparse.model.matrix(), for constructing sparse matrices.
T2graph for conversion of "graph" objects (package graph) to and from sparse matrices.

Examples
showClass("sparseMatrix") ## and look at the help() of its subclasses
M <- Matrix(0, 10000, 100)
M[1,1] <- M[2,3] <- 3.14
M ## show(.) method suppresses printing of the majority of rows

data(CAex, package = "Matrix")
dim(CAex) # 72 x 72 matrix
determinant(CAex) # works via sparse lu(.)

## factor -> t( <sparse design matrix> ) :
(fact <- gl(5, 3, 30, labels = LETTERS[1:5]))
(Xt <- as(fact, "sparseMatrix")) # indicator rows

## missing values --> all-0 columns:
f.mis <- fact

# 166
sparseQR-class

167

i.mis <- c(3:5, 17)
is.na(f.mis) <- i.mis
Xt != (X. <- as(f.mis, "sparseMatrix")) # differ only in columns 3:5,17
stopifnot(all(X.[,i.mis] == 0), all(Xt[,-i.mis] == X.[,-i.mis]))

sparseQR-class

Sparse QR Factorizations

Description

sparseQR is the class of sparse, row- and column-pivoted QR factorizations of \( m \times n \) \((m \geq n)\) real matrices, having the general form

\[
P_1 A P_2 = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1
\]

or (equivalently)

\[
A = P'_1 (Q R P'_2) = P'_1 \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} P'_2 = P'_1 Q_1 R_1 P'_2
\]

where \( P_1 \) and \( P_2 \) are permutation matrices, \( Q = \prod_{j=1}^{n} H_j \) is an \( m \times m \) orthogonal matrix (\( Q_1 \) contains the first \( n \) column vectors) equal to the product of \( n \) Householder matrices \( H_j \), and \( R \) is an \( m \times n \) upper trapezoidal matrix (\( R_1 \) contains the first \( n \) row vectors and is upper triangular).

Usage

\[\text{qrR}(\text{qr}, \text{complete} = \text{FALSE}, \text{backPermute} = \text{TRUE}, \text{row.names} = \text{TRUE})\]

Arguments

- \text{qr} an object of class \text{sparseQR}, almost always the result of a call to generic function \text{qr} with sparse \( x \).
- \text{complete} a logical indicating if \( R \) should be returned instead of \( R_1 \).
- \text{backPermute} a logical indicating if \( R \) or \( R_1 \) should be multiplied on the right by \( P'_2 \).
- \text{row.names} a logical indicating if \( \text{dimnames}(\text{qr})[1] \) should be propagated unpermuted to the result. If \text{complete} = \text{FALSE}, then only the first \( n \) names are kept.

Details

The method for \text{qr.Q} does not return \( Q \) but rather the (also orthogonal) product \( P'_1 Q \). This behaviour is algebraically consistent with the \text{base} implementation (see \text{qr}), which can be seen by noting that \text{qr.default} in \text{base} does not pivot rows, constraining \( P_1 \) to be an identity matrix. It follows that \text{qr.Q(qr.default(x))} also returns \( P'_1 Q \).

Similarly, the methods for \text{qr.qy} and \text{qr.qty} multiply on the left by \( P'_1 Q \) and \( Q' P_1 \) rather than \( Q \) and \( Q' \).

It is wrong to expect the values of \text{qr.Q} (or \text{qr.R}, \text{qr.qy}, \text{qr.qty}) computed from “equivalent” sparse and dense factorizations (say, \text{qr}(x) and \text{qr(as(x, "matrix")))} for \( x \) of class \text{dgCMatrix} to compare equal. The underlying factorization algorithms are quite different, notably as they employ different pivoting strategies, and in general the factorization is not unique even for fixed \( P_1 \) and \( P_2 \).
On the other hand, the values of \( qr.X, qr.coef, qr.fitted, \) and \( qr.resid \) are well-defined, and in those cases the sparse and dense computations should compare equal (within some tolerance).

The method for \( qr.R \) is a simple wrapper around \( qrR \), but not back-permuting by default and never giving row names. It did not support \( \text{backPermute} = \text{TRUE} \) until \( \text{Matrix} \geq 1.6-0 \), hence code needing the back-permuted result should call \( qrR \) if \( \text{Matrix} >= 1.6-0 \) is not known.

**Slots**

- \( \text{Dim, Dimnames} \) inherited from virtual class \text{MatrixFactorization}.
- \( \beta \): a numeric vector of length \( \text{Dim}[2] \), used to construct Householder matrices; see \( V \) below.
- \( V \): an object of class \text{dgCMatrix} with \( \text{Dim}[2] \) columns. The number of rows \( \text{nrow}(V) \) is at least \( \text{Dim}[1] \) and at most \( \text{Dim}[1] + \text{Dim}[2] \). \( V \) is lower trapezoidal, and its column vectors generate the Householder matrices \( H_j \) that compose the orthogonal \( Q \) factor. Specifically, \( H_j = \text{diag}(\text{Dim}[1]) - \beta[j] * \text{tcrossprod}(V[, j]) \).
- \( R \): an object of class \text{dgCMatrix} with \( \text{nrow}(V) \) rows and \( \text{Dim}[2] \) columns. \( R \) is the upper trapezoidal \( R \) factor.
- \( p, q \): 0-based integer vectors of length \( \text{nrow}(V) \) and \( \text{Dim}[2] \), respectively, specifying the permutations applied to the rows and columns of the factorized matrix. \( q \) of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using \( R \) syntax, the matrix \( P_1 A P_2 \) is precisely \( A[p+1, q+1] \) (\( A[p+1, ] \) when \( q \) has length 0).

**Extends**

Class \text{QR}, directly. Class \text{MatrixFactorization}, by class \text{QR}, distance 2.

**Instantiation**

Objects can be generated directly by calls of the form \text{new("sparseQR", \ldots)}, but they are more typically obtained as the value of \text{qr(x)} for \( x \) inheriting from \text{sparseMatrix} (often \text{dgCMatrix}).

**Methods**

- \text{determinant} signature(from = "sparseQR", logarithm = "logical"): computes the determinant of the factorized matrix \( A \) or its logarithm.
- \text{expand1} signature(x = "sparseQR"): see \text{expand1-methods}.
- \text{expand2} signature(x = "sparseQR"): see \text{expand2-methods}.
- \text{qr.Q} signature(qr = "sparseQR"): returns as a \text{dgeMatrix} either \( P_1'Q \) or \( P_1'Q_1 \), depending on optional argument complete. The default is \text{FALSE}, indicating \( P_1'Q_1 \).
- \text{qr.R} signature(qr = "sparseQR"): \text{qrR} returns \( R, R_1, RP_2', \) or \( R_1P_2' \), depending on optional arguments \text{complete} and \text{backPermute}. The default in both cases is \text{FALSE}, indicating \( R_1 \), for compatibility with \text{base}. The class of the result in that case is \text{dtCMatrix}. In the other three cases, it is \text{dgCMatrix}.
- \text{qr.X} signature(qr = "sparseQR"): returns \( A \) as a \text{dgeMatrix}, by default. If \( m > n \) and optional argument \text{ncol} is greater than \( n \), then the result is augmented with \( P_1'QJ \), where \( J \) is composed of columns \( (n+1) \) through \text{ncol} of the \( m \times m \) identity matrix.
- \text{qr.coef} signature(qr = "sparseQR", y = \ldots): returns as a \text{dgeMatrix} or vector the result of multiplying \( y \) on the left by \( P_2R_1'^{-1}Q_1'P_1 \).
- \text{qr.fitted} signature(qr = "sparseQR", y = \ldots): returns as a \text{dgeMatrix} or vector the result of multiplying \( y \) on the left by \( P_1'Q_1Q_1'^{-1}P_1 \).
qr.resid signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying y on the left by \( P_1'Q_2Q_2'P_1 \).

qr.qty signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying y on the left by \( Q'P_1 \).

qr.qy signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying y on the left by \( P_1'Q \).

solve signature(a = "sparseQR", b = .): see solve-methods.

References

See Also
Class dgCMatrix.
Generic function qr from base, whose default method qr.default “defines” the S3 class qr of dense QR factorizations.
qr-methods for methods defined in Matrix.
Generic functions expand1 and expand2.

Examples
showClass("sparseQR")
set.seed(2)

m <- 300L
n <- 60L
A <- rsparsematrix(m, n, 0.05)
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),
                          paste0("c", seq_len(n)))

(qr.A <- qr(A))
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)

t(sapply(e.qr.A, dim))
t(sapply(E.qr.A, dim))

## Horribly inefficient, but instructive :
slowQ <- function(V, beta) {
  d <- dim(V)
  Q <- diag(d[1L])
  if(d[2L] > 0L) {
    for(j in d[2L]:1L) {
      cat(j, "\n", sep = "")
      Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q
    }
  }
  return(Q)
}
\begin{verbatim}

spvec <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)

## more identities
b <- rnorm(m)

for (x in names(e.qr.A))
  stopifnot(exprs =
    ae1(qrX <- qr.X(qr.A), A),
    ae2(qrQ <- qr.Q(qr.A), with(e.qr.A, P1. %*% Q1)),
    ae2(qrc <- qr.coef(qr.A, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b)),
    ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, trcrossprod(qrQ) %*% b)),
    ae2(qrr <- qr.resid(qr.A, b = qrf),
        with(E.qr.A, P1. %*% Q %*% b)),
    ae2(qr.qy(qr.A, qrq), b))

## Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <=> qr.default(A)

for (x in names(e.qr.A))
  stopifnot(exprs =
    ae2(qrX <- qr.X(qr.Am), A),
    ae2(qrQ <- qr.Q(qr.Am), with(e.qr.A, P1. %*% Q1)),
    ae2(qrc <- qr.coef(qr.Am, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b)),
    ae2(qrf <- qr.fitted(qr.Am, b), with(e.qr.A, trcrossprod(qrQ) %*% b)),
    ae2(qrr <- qr.resid(qr.Am, b = qrf),
        with(E.qr.A, P1. %*% Q %*% b)),
    ae2(qr.qy(qr.Am, qrq), b))

\end{verbatim}

\textbf{Sparse Vector Construction from Nonzero Entries}

\section{Sparse Vector Construction from Nonzero Entries}

\begin{itemize}
  \item \textbf{Sparse Vector Construction from Nonzero Entries}
  \item \textbf{Sparse Vector Construction from Nonzero Entries}
\end{itemize}
**Description**

User friendly construction of sparse vectors, i.e., objects inheriting from class `sparseVector`, from indices and values of its non-zero entries.

**Usage**

```r
sparseVector(x, i, length)
```

**Arguments**

- **x**: vector of the non zero entries; may be missing in which case a "nsparseVector" will be returned.
- **i**: integer vector (of the same length as x) specifying the indices of the non-zero (or non-TRUE) entries of the sparse vector.
- **length**: length of the sparse vector.

**Details**

Zero entries in x are dropped automatically, analogously as `drop0()` acts on sparse matrices.

**Value**

A sparse vector, i.e., inheriting from class `sparseVector`.

**Author(s)**

Martin Maechler

**See Also**

`sparseMatrix()` constructor for sparse matrices; the class `sparseVector`.

**Examples**

```r
str(sv <- sparseVector(x = 1:10, i = sample(999, 10), length=1000))

sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
ss <- as(sx, "sparseVector")
stopifnot(identical(ss,
 sparseVector(x = c(2, -1, -2, 3, 1, -3, 5, 3.2),
 i = c(15L, 10:9, 3L,12L,8L,16L, 4L), length = 20L)))

(ns <- sparseVector(i= c(7, 3, 2), length = 10))
stopifnot(identical(ns,
 new("nsparseVector", length = 10, i = c(2, 3, 7))))
```
Sparse Vector Classes: The virtual mother class "sparseVector" has the five actual daughter classes "dsparseVector", "isparseVector", "lsparseVector", "nsparseVector", and "zsparseVector", where we've mainly implemented methods for the d*, l* and n* ones.

Slots

- **length**: class "numeric" - the length of the sparse vector. Note that "numeric" can be considerably larger than the maximal "integer", .Machine$integer.max, on purpose.

- **i**: class "numeric" - the (1-based) indices of the non-zero entries. Must not be NA and strictly sorted increasingly. Note that "integer" is "part of" "numeric", and can (and often will) be used for non-huge sparseVectors.

- **x**: (for all but "nsparseVector") - the non-zero entries. This is of class "numeric" for class "dsparseVector", "logical" for class "lsparseVector", etc.

Methods

- **length** signature(x = "sparseVector"): simply extracts the length slot.

- **show** signature(object = "sparseVector"): The show method for sparse vectors prints "structural" zeroes as "." using the non-exported prSpVector function which allows further customization such as replacing "." by " " (blank). Note that options(max.print) will influence how many entries of large sparse vectors are printed at all.

- **as.vector** signature(x = "sparseVector", mode = "character"): coerces sparse vectors to "regular", i.e., atomic vectors. This is the same as as(x, "vector").

- **as**: see coerce below

- **coerce** signature(from = "sparseVector", to = "sparseMatrix"), and coercions to and from sparse matrices (sparseMatrix) are provided and work analogously as in standard R, i.e., a vector is coerced to a 1-column matrix.

- **dim<-** signature(x = "sparseVector", value = "integer"): coerces a sparse vector to a sparse Matrix, i.e., an object inheriting from sparseMatrix, of the appropriate dimension.

- **head** signature(x = "sparseVector"): as with R's (package util) head, head(x, n) (for n >= 1) is equivalent to x[1:n], but here can be much more efficient, see the example.

- **tail** signature(x = "sparseVector"): analogous to head, see above.

- **toeplitz** signature(x = "sparseVector"): as toeplitz(x), produce the \( n \times n \) Toeplitz matrix from x, where \( n = \text{length}(x) \).

- **rep** signature(x = "sparseVector") repeat x, with the same argument list \( (x, \text{times}, \text{length.out}, \text{each}, \ldots) \) as the default method for rep().

- **which** signature(x = "nsparseVector") and **which** signature(x = "lsparseVector") return the indices of the non-zero entries (which is trivial for sparse vectors).
**Ops** signature(e1 = "sparseVector", e2 = ".*"): define arithmetic, compare and logic operations, (see **Ops**).

**Summary** signature(x = "sparseVector"): define all the **Summary** methods.

[ signature(x = "atomicVector", i = ...)]: not only can you subset (aka “index into”) sparseVectors x[i] using sparseVectors i, but we also support efficient subsetting of traditional vectors x by logical sparse vectors (i.e., i of class "nsparseVector" or "lsparseVector").

is.na, is.finite, is.infinite (x = "sparseVector"), and

is.na, is.finite, is.infinite (x = "n sparseVector") return logical or "n sparseVector" of the same length as x, indicating if/where x is NA (or NaN), finite or infinite, entirely analogously to the corresponding base R functions.

c.sparseVector() is an S3 method for all "sparseVector"s, but automatic dispatch only happens for the first argument, so it is useful also as regular R function, see the examples.

See Also

sparseVector() for friendly construction of sparse vectors (apart from as(*, "sparseVector").

Examples

getClass("sparseVector")
getClass("dsparseVector")

sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
(ss <- as(sx, "sparseVector"))

ix <- as.integer(round(sx))
(is <- as(ix, "sparseVector")) ## an "ispars eVector" (!)
(ns <- sparseVector(i= c(7, 3, 2), length = 10)) # "n sparseVector"
## rep() works too:
(ri <- rep(is, length.out = 25))

## Using "dim<-", as in base R:
## r <- ss
## dim(r) <- c(4,5) # becomes a sparse Matrix:
## r
## or coercion (as as.matrix() in base R):
as(ss, "Matrix")
stopifnot(all(ss == print(as(ss, "CsparseMatrix"))))

## currently has "non-structural" FALSE -- printing as ":"
(lis <- is & FALSE)
(nn <- is[is == 0]) # all "structural" FALSE

## NA-case
sN <- sx; sN[4] <- NA
(sN[4] <- as(sN, "sparseVector"))

v <- as(c(0,0,3, 3.2, rep(0,9),-3,0,-1, rep(0,20),5,0),
"sparseVector")

v <- rep(rep(v, 50), 5000)
set.seed(1); v[sample(v@i, 1e6)] <- 0
str(v)
spMatrix

Sparse Matrix Constructor From Triplet

Description

User friendly construction of a sparse matrix (inheriting from class TsparseMatrix) from the triplet representation.

This is much less flexible than sparseMatrix() and hence somewhat deprecated.

Usage

spMatrix(nrow, ncol, i = integer(0L), j = integer(0L), x = double(0L))
Arguments

nrow, ncol  integers specifying the desired number of rows and columns.
i, j       integer vectors of the same length specifying the locations of the non-zero (or non-TRUE) entries of the matrix.
x         atomic vector of the same length as i and j, specifying the values of the non-zero entries.

Value

A sparse matrix in triplet form, as an R object inheriting from both TsparseMatrix and generalMatrix. The matrix \( M \) will have \( M[i[k], j[k]] == x[k] \), for \( k = 1, 2, \ldots, n \), where \( n = \text{length}(i) \) and \( M[i', j'] == 0 \) for all other pairs \((i', j')\).

See Also

Matrix(*, sparse=TRUE) for the more usual constructor of such matrices. Then, spMatrix is more general and flexible than spMatrix() and by default returns a CsparseMatrix which is often slightly more desirable. Further, bdiag and Diagonal for (block-)diagonal matrix constructors.

Consider TsparseMatrix and similar class definition help files.

Examples

```r
simple example
A <- spMatrix(10,20, i = c(1,3:8),
j = c(2,9,6:10),
x = 7 * (1:7))
A # a "dgTMatrix"
summary(A)
str(A) # note that *internally* 0-based indices (i,j) are used
L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27,
 (1:27) %% 4 != 1)
L # an "lgTMatrix"
```

## A simplified predecessor of Matrix' rsparsematrix() function :

```r
rSpMatrix <- function(nrow, ncol, nnz,
 rand.x = function(n) round(rnorm(nnz), 2)) {
 ## Purpose: random sparse matrix
 ## --
 ## Arguments: (nrow,ncol): dimension
 ## nnz : number of non-zero entries
 ## rand.x: random number generator for 'x' slot
 ## --
 ## Author: Martin Maechler, Date: 14.-16. May 2007
 stopifnot((nnz <- as.integer(nnz)) >= 0,
 nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
 spMatrix(nrow, ncol,
 i = sample(nrow, nnz, replace = TRUE),
 j = sample(ncol, nnz, replace = TRUE),
 x = rand.x(nnz))
}
```
Subassign-methods

Methods for "[<-" - Assigning to Subsets for 'Matrix'

Description

Methods for "[<-", i.e., extraction or subsetting mostly of matrices, in package Matrix.

Note: Contrary to standard matrix assignment in base R, in x[..] <- val it is typically an error (see stop) when the type or class of val would require the class of x to be changed, e.g., when x is logical, say "lsparseMatrix", and val is numeric. In other cases, e.g., when x is a "nsparseMatrix" and val is not TRUE or FALSE, a warning is signalled, and val is "interpreted" as logical, and (logical) NA is interpreted as TRUE.

Methods

There are many many more than these:

x = "Matrix", i = "missing", j = "missing", value= "ANY" is currently a simple fallback method implementation which ensures "readable" error messages.

x = "Matrix", i = "ANY", j = "ANY", value= "ANY" currently gives an error

x = "denseMatrix", i = "index", j = "missing", value= "numeric" ...

x = "denseMatrix", i = "index", j = "index", value= "numeric" ...

x = "denseMatrix", i = "missing", j = "index", value= "numeric" ...

See Also

[-methods for subsetting "Matrix" objects; the index class; Extract about the standard subset assignment (and extraction).

Examples

set.seed(101)
(a <- m <- Matrix(round(rnorm(7*4),2), nrow = 7))

a[] <- 2.2 # <<- replaces **every** entry
a

## as do these:
a[,] <- 3 ; a[TRUE,] <- 4

m[2, 3] <- 3.14 # simple number
m[3, 3:4]<- 3:4 # simple numeric of length 2

## sub matrix assignment:
m[-(4:7), 3:4] <- cbind(1,2:4) #> upper right corner of 'm'
m[3:5, 2:3] <- 0
m[6:7, 1:2] <- Diagonal(2)
m
Description

Methods for "[", i.e., extraction or subsetting mostly of matrices, in package Matrix.

Methods

There are more than these:

x = "Matrix", i = "missing", j = "missing", drop= "ANY" ...

x = "Matrix", i = "numeric", j = "missing", drop= "missing" ...

x = "Matrix", i = "missing", j = "numeric", drop= "missing" ...

x = "dsparseMatrix", i = "missing", j = "numeric", drop= "logical" ...

x = "dsparseMatrix", i = "numeric", j = "missing", drop= "logical" ...

x = "dsparseMatrix", i = "numeric", j = "numeric", drop= "logical" ...

See Also

[<−methods for subassignment to "Matrix" objects. Extract about the standard extraction.

Examples

str(m <- Matrix(round(rnorm(7*4),2), nrow = 7))
stopifnot(identical(m, m[]))
m[2, 3] # simple number
m[2, 3:4] # simple numeric of length 2
m[2, 3:4, drop=FALSE] # sub matrix of class 'dgeMatrix'
## rows or columns only:
# first row, as simple numeric vector
m[1,]  # sub matrix of first two columns

showMethods("[", inherited = FALSE)
symmetricMatrix-class

Virtual Class of Symmetric Matrices in Package Matrix

Description

The virtual class of symmetric matrices, "symmetricMatrix", from the package Matrix contains numeric and logical, dense and sparse matrices, e.g., see the examples with the “actual” subclasses.

The main use is in methods (and C functions) that can deal with all symmetric matrices, and in as(*, "symmetricMatrix").

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there. See below, about storing only one of the two Dimnames components.

factors: a list of matrix factorizations, also from the Matrix class.

Extends

Class "Matrix", directly.

Methods

dimnames signature(object = "symmetricMatrix"): returns symmetric dimnames, even when the Dimnames slot only has row or column names. This allows to save storage for large (typically sparse) symmetric matrices.

isSymmetric signature(object = "symmetricMatrix"): returns TRUE trivially.

There's a C function symmetricMatrix_validate() called by the internal validity checking functions, and also from getValidity(getClass("symmetricMatrix")).

Validity and dimnames

The validity checks do not require a symmetric Dimnames slot, so it can be list(NULL, <character>), e.g., for efficiency. However, dimnames() and other functions and methods should behave as if the dimnames were symmetric, i.e., with both list components identical.

See Also

isSymmetric which has efficient methods (isSymmetric-methods) for the Matrix classes. Classes triangularMatrix, and, e.g., dsyMatrix for numeric dense matrices, or lscMatrix for a logical sparse matrix class.
Examples

```r
An example about the symmetric Dimnames:
sy <- sparseMatrix(i = c(2,4,3:5), j = c(4,7:5,5), x = 1:5, dims = c(7,7),
 symmetric = TRUE, dimnames = list(NULL, letters[1:7]))
sy # shows symmetrical dimnames
sy@Dimnames # internally only one part is stored
dimnames(sy) # both parts - as sy *is* symmetrical

showClass("symmetricMatrix")

The names of direct subclasses:
scl <- getClass("symmetricMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]

Methods -- applicable to all subclasses above:
showMethods(classes = "symmetricMatrix")
```

Description

`symmpart(x)` computes the symmetric part \((x + t(x))/2\) and `skewpart(x)` the skew symmetric part \((x - t(x))/2\) of a square matrix \(x\), more efficiently for specific Matrix classes.

Note that \(x == symmpart(x) + skewpart(x)\) for all square matrices – apart from extraneous `NA` values in the RHS.

Usage

```r
symmpart(x)
skewpart(x)
```

Arguments

- **x**
  - a square matrix; either “traditional” of class "matrix", or typically, inheriting from the `Matrix` class.

Details

These are generic functions with several methods for different matrix classes, use e.g., `showMethods(symmpart)` to see them.

If the row and column names differ, the result will use the column names unless they are (partly) NULL where the row names are non-NULL (see also the examples).

Value

`symmpart(x)` returns a symmetric matrix, inheriting from `symmetricMatrix` or `diagonalMatrix` if `x` inherits from `Matrix`.

`skewpart(x)` returns a skew-symmetric matrix, inheriting from `generalMatrix,symmetricMatrix` or `diagonalMatrix` if `x` inherits from `Matrix`.
### triangularMatrix-class

**Virtual Class of Triangular Matrices in Package Matrix**

The virtual class of triangular matrices, "triangularMatrix", the package Matrix contains *square* (nrow == ncol) numeric and logical, dense and sparse matrices, e.g., see the examples. A main use of the virtual class is in methods (and C functions) that can deal with all triangular matrices.

#### Slots

- **uplo**: String (of class "character"). Must be either "U", for upper triangular, and "L", for lower triangular.
- **diag**: String (of class "character"). Must be either "U", for unit triangular (diagonal is all ones) or "N" for non-unit. The diagonal elements are not accessed internally when diag is "U". For `denseMatrix` classes, they need to be allocated though, such that the length of the x slot does not depend on diag.
- **Dim**, **Dimnames**: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the `Matrix`, see there.

#### Extends

Class "Matrix", directly.

#### Methods

There’s a C function `triangularMatrix_validity()` called by the internal validity checking functions.

Currently, `Schur`, `isSymmetric` and `as()` (i.e. `coerce`) have methods with `triangularMatrix` in their signature.

### See Also

`isSymmetric`.

### Examples

```r
m <- Matrix(1:4, 2,2)
symmpart(m)
skewpart(m)

stopifnot(all(m == symmpart(m) + skewpart(m)))

dn <- dimnames(m) <- list(row = c("r1", "r2"), col = c("var.1", "var.2"))
stopifnot(all(m == symmpart(m) + skewpart(m)))
colnames(m) <- NULL
stopifnot(all(m == symmpart(m) + skewpart(m)))
dimnames(m) <- unname(dn)
stopifnot(all(m == symmpart(m) + skewpart(m)))

investigate the current methods:
showMethods(skewpart, include = TRUE)
```

---

**See Also**

`isSymmetric`.

**Examples**

```r
m <- Matrix(1:4, 2,2)
symmpart(m)
skewpart(m)

stopifnot(all(m == symmpart(m) + skewpart(m)))

dn <- dimnames(m) <- list(row = c("r1", "r2"), col = c("var.1", "var.2"))
stopifnot(all(m == symmpart(m) + skewpart(m)))
colnames(m) <- NULL
stopifnot(all(m == symmpart(m) + skewpart(m)))
dimnames(m) <- unname(dn)
stopifnot(all(m == symmpart(m) + skewpart(m)))

investigate the current methods:
showMethods(skewpart, include = TRUE)
```
TsparseMatrix-class

See Also

isTriangular() for testing any matrix for triangularity; classes symmetricMatrix, and, e.g., dtrMatrix for numeric dense matrices, or ltrCMatrix for a logical sparse matrix subclass of "triangularMatrix".

Examples

showClass("triangularMatrix")

## The names of direct subclasses:
scl <- getClass("triangularMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]

(m <- matrix(c(5,1,0,3), 2))
as(m, "triangularMatrix")

 TsparseMatrix-class  Class "TsparseMatrix" of Sparse Matrices in Triplet Form

Description

The "TsparseMatrix" class is the virtual class of all sparse matrices coded in triplet form. Since it is a virtual class, no objects may be created from it. See showClass("TsparseMatrix") for its subclasses.

Slots

Dim, Dimnames: from the "Matrix" class,

i: Object of class "integer" - the row indices of non-zero entries in 0-base, i.e., must be in 0:(nrow(.)-1).

j: Object of class "integer" - the column indices of non-zero entries. Must be the same length as slot i and 0-based as well, i.e., in 0:(ncol(.)-1). For numeric Tsparse matrices, (i,j) pairs can occur more than once, see dgTMatrix.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Extraction ("\[\]" methods, see \[-methods\].

Note

Most operations with sparse matrices are performed using the compressed, column-oriented or CsparseMatrix representation. The triplet representation is convenient for creating a sparse matrix or for reading and writing such matrices. Once it is created, however, the matrix is generally coerced to a CsparseMatrix for further operations.

Note that all new(.), spMatrix and sparseMatrix(*, repr="T") constructors for "TsparseMatrix" classes implicitly add (i.e., “sum up”) x_k's that belong to identical (i_k,j_k) pairs, see, the example below, or also "dgTMatrix".
For convenience, methods for some operations such as `%*%` and `crossprod` are defined for `TsparseMatrix` objects. These methods simply coerce the `TsparseMatrix` object to a `CsparseMatrix` object then perform the operation.

See Also
its superclass, `sparseMatrix`, and the `dgTMatrix` class, for the links to other classes.

Examples

```r
showClass("TsparseMatrix")
or just the subclasses' names
names(getClass("TsparseMatrix")@subclasses)

T3 <- spMatrix(3, 4, i=c(1,3:1), j=c(2,4:2), x=1:4)
T3 # only 3 non-zero entries, 5 = 1+4 !
```

unpackedMatrix-class

Virtual Class "unpackedMatrix" of Unpacked Dense Matrices

Description

Class "unpackedMatrix" is the virtual class of dense matrices in "unpacked" format, storing all m*n elements of an m-by-n matrix. It is used to define common methods for efficient sub-setting, transposing, etc. of its proper subclasses: currently "[dln]geMatrix" (unpacked general), "[dln]syMatrix" (unpacked symmetric), "[dln]trMatrix" (unpacked triangular), and subclasses of these, such as "dpoMatrix", "Cholesky", and "BunchKaufman".

Slots

`Dim`, `Dimnames`: as all `Matrix` objects.

Extends


Methods

- `pack` signature(x = "unpackedMatrix"): ...
- `unpack` signature(x = "unpackedMatrix"): ...
- `isSymmetric` signature(object = "unpackedMatrix"): ...
- `isTriangular` signature(object = "unpackedMatrix"): ...
- `isDiagonal` signature(object = "unpackedMatrix"): ...
- `t` signature(x = "unpackedMatrix"): ...
- `diag` signature(x = "unpackedMatrix"): ...
- `diag<-` signature(x = "unpackedMatrix"): ...
updown-methods

Author(s)
Mikael Jagan

See Also
pack and unpack; its virtual "complement" "packedMatrix"; its proper subclasses "dsyMatrix", "ltrMatrix", etc.

Examples
showClass("unpackedMatrix")
showMethods(classes = "unpackedMatrix")

Description
Computes a rank-\(k\) update or downdate of a sparse Cholesky factorization

\[ P_1 A P_1' = L_1 D L_1' = LL' \]

which for some \(k\)-column matrix \(C\) is the factorization

\[ P_1 (A + sCC') P_1' = \tilde{L}_1 \tilde{D} \tilde{L}_1' = \tilde{L} \tilde{L}' \]

Here, \(s = 1\) for an update and \(s = -1\) for a downdate.

Usage
updown(update, C, L)

Arguments
update a logical (TRUE or FALSE) or character ("+" or "-"") indicating if \(L\) should be updated (or otherwise downdated).
C a finite matrix or Matrix such that tcrossprod(C) has the dimensions of \(L\).
L an object of class dCHMsimpl or dCHMsuper specifying a sparse Cholesky factorization.

Value
A sparse Cholesky factorization with dimensions matching \(L\), typically of class dCHMsimpl.

Author(s)
Initial implementation by Nicholas Nagle, University of Tennessee.

References
See Also

Classes `dCHMsimpl` and `dCHMsuper` and their methods, notably for generic function `update`, which is not equivalent to `updown(update = TRUE).

Generic function `Cholesky`.

Examples

```r
m <- sparseMatrix(i = c(3, 1, 3:2, 2:1), p = c(0:2, 4, 4, 6), x = 1:6,
dimnames = list(LETTERS[1:3], letters[1:5]))
uc0 <- Cholesky(A <- crossprod(m) + Diagonal(5))
uc1 <- updown("+", Diagonal(5, 1), uc0)
uc2 <- updown("-", Diagonal(5, 1), uc1)
stopifnot(all.equal(uc0, uc2))
```

Description

This matrix gives the contiguities of 3111 U.S. counties, using the queen criterion of at least one shared vertex or edge.

Usage

```r
data(USCounties)
```

Format

A 3111 × 3111 sparse, symmetric matrix of class `dsCMatrix`, with 9101 nonzero entries.

Source

GAL lattice file ‘usc_q.GAL’ (retrieved in 2008 from ‘http://sal.uiuc.edu/weights/zips/usc.zip’ with permission from Luc Anselin for use and distribution) was read into R using function `read.gal` from package `spdep`.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights, using functions `nb2listw` and `similar.listw` from packages `spdep` and `spatialreg`. The resulting `listw` object was coerced to class `dsTMatrix` using `as_dsTMatrix_listw` from `spatialreg`, and subsequently to class `dsCMatrix`.

References

Examples

data(USCounties, package = "Matrix")
(n <- ncol(USCounties))
I <- .symDiagonal(n)

set.seed(1)
r <- 50L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
    determinant(USCounties + mult * I, logarithm = TRUE)$modulus))

## Can be done faster by updating the Cholesky factor:

C1 <- Cholesky(USCounties, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)
    determinant(update(C1, USCounties, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(USCounties, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)
    determinant(update(C2, USCounties, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ2))

---

wrld_1deg

Contiguity Matrix of World One-Degree Grid Cells

Description

This matrix gives the contiguities of 15260 one-degree grid cells of world land areas, using a criterion based on the great-circle distance between centers.

Usage

data(wrld_1deg)

Format

A 15260 x 15260 sparse, symmetric matrix of class dsCMatrx, with 55973 nonzero entries.

Source

Shoreline data were read into R from the GSHHS database using function Rgshhs from package maptools. Antarctica was excluded. An approximately one-degree grid was generated using function Sobj_SpatialGrid, also from maptools. Grid cells with centers on land were identified using the over method for classes SpatialPolygons and SpatialGrid, defined in package sp. Neighbours of these were identified by passing the resulting SpatialPixels object to function dnearneigh from package spdep, using as a cut-off a great-circle distance of sqrt(2) kilometers between centers.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights, using functions nb2listw and similar.listw from packages spdep and spatialreg. The resulting listw object was coerced to class dsTMatrix using as_dsTMatrix_listw from spatialreg, and subsequently to class dsCMatrx.
References


Examples

data(wrld_1deg, package = "Matrix")
(n <- ncol(wrld_1deg))
I <- .symDiagonal(n)

doExtras <- interactive() || nzchar(Sys.getenv("RMATRIXCHECK_EXTRA"))
set.seed(1)
r <- if(doExtras) 20L else 3L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
  determinant(wrld_1deg + mult * I, logarithm = TRUE)$modulus))

## Can be done faster by updating the Cholesky factor:

C1 <- Cholesky(wrld_1deg, Imult = 2)

system.time(MJ1 <- sapply(rho, function(mult)
  determinant(update(C1, wrld_1deg, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(wrld_1deg, super = TRUE, Imult = 2)

system.time(MJ2 <- sapply(rho, function(mult)
  determinant(update(C2, wrld_1deg, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ2))
Index

!,Matrix-method (Matrix-class), 116
!,indMatrix-method (indMatrix-class), 91
!,ldenseMatrix-method (ldenseMatrix-class), 104
!,ldiMatrix-method (ldiMatrix-class), 104
!,lsparseMatrix-method (lsparseMatrix-classes), 106
!,lsparseVector-method (sparseVector-class), 172
!,ndenseMatrix-method (ndenseMatrix-class), 121
!,ndiMatrix-method (ldiMatrix-class), 104
!,nsparseMatrix-method (nsparseMatrix-classes), 129
!,nsparseVector-method (sparseVector-class), 172
!,sparseVector-method (sparseVector-class), 172

* Choleski
  Cholesky-methods, 32

* NA
  is.na-methods, 95

* algebra
  boolmatmult-methods, 14
  BunchKaufman-class, 15
  BunchKaufman-methods, 17
  CHMfactor-class, 21
  chol-methods, 25
  chol2inv-methods, 28
  Cholesky-class, 29
  Cholesky-methods, 32
  colSums-methods, 39
  compMatrix-class, 41
  condest, 42
  denseLU-class, 47
  dimScale, 58
  dmperm, 60
  expand-methods, 75
  KhatriRao, 100
  kronecker-methods, 103
  lu-methods, 110
matmult-methods, 113
MatrixFactorization-class, 120
nearPD, 122
norm-methods, 128
qr-methods, 140
rankMatrix, 143
rcond-methods, 146
Schur-class, 152
Schur-methods, 153
solve-methods, 155
sparseLU-class, 160
sparseQR-class, 167
symmpart-methods, 179
updown-methods, 183

* arith
  all.equal-methods, 6
  colSums-methods, 39
  dimScale, 58
  facmul-methods, 80
  KhatriRao, 100
  kronecker-methods, 103
  matmult-methods, 113
  symmpart-methods, 179

* array
  asUniqueT, 7
  band-methods, 9
  bandSparse, 11
  bdiag, 12
  boolmatmult-methods, 14
  BunchKaufman-class, 15
  BunchKaufman-methods, 17
  cbind2-methods, 20
  CHMfactor-class, 21
  chol-methods, 25
  chol2inv-methods, 28
  Cholesky-class, 29
  Cholesky-methods, 32
  colSums-methods, 39
  compMatrix-class, 41
  denseMatrix-class, 44
denseLU-class, 47

187
<table>
<thead>
<tr>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>denseMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>dgCMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>dgeMatrix-class</td>
<td>50</td>
</tr>
<tr>
<td>dgRMatrix-class</td>
<td>51</td>
</tr>
<tr>
<td>dgTMatrix-class</td>
<td>52</td>
</tr>
<tr>
<td>Diagonal</td>
<td>53</td>
</tr>
<tr>
<td>diagonalMatrix-class</td>
<td>55</td>
</tr>
<tr>
<td>diagU2N</td>
<td>57</td>
</tr>
<tr>
<td>dimScale</td>
<td>58</td>
</tr>
<tr>
<td>dMatrix-class</td>
<td>59</td>
</tr>
<tr>
<td>dmperm</td>
<td>60</td>
</tr>
<tr>
<td>dpoMatrix-class</td>
<td>62</td>
</tr>
<tr>
<td>drop0</td>
<td>64</td>
</tr>
<tr>
<td>dsCMatrix-class</td>
<td>65</td>
</tr>
<tr>
<td>dsparseMatrix-class</td>
<td>66</td>
</tr>
<tr>
<td>dSymMatrix-class</td>
<td>67</td>
</tr>
<tr>
<td>dSymMatrix-class</td>
<td>68</td>
</tr>
<tr>
<td>dtCMatrix-class</td>
<td>70</td>
</tr>
<tr>
<td>dtpMatrix-class</td>
<td>71</td>
</tr>
<tr>
<td>dtRMatrix-class</td>
<td>73</td>
</tr>
<tr>
<td>dtrMatrix-class</td>
<td>74</td>
</tr>
<tr>
<td>expand-methods</td>
<td>75</td>
</tr>
<tr>
<td>expm-methods</td>
<td>77</td>
</tr>
<tr>
<td>facmul-methods</td>
<td>80</td>
</tr>
<tr>
<td>forceSymmetric-methods</td>
<td>85</td>
</tr>
<tr>
<td>generalMatrix-class</td>
<td>87</td>
</tr>
<tr>
<td>Hilbert</td>
<td>88</td>
</tr>
<tr>
<td>indMatrix-class</td>
<td>91</td>
</tr>
<tr>
<td>is.null.DN</td>
<td>96</td>
</tr>
<tr>
<td>isSymmetric-methods</td>
<td>98</td>
</tr>
<tr>
<td>isTriangular-methods</td>
<td>99</td>
</tr>
<tr>
<td>KhatriRao</td>
<td>100</td>
</tr>
<tr>
<td>kronecker-methods</td>
<td>103</td>
</tr>
<tr>
<td>ldenseMatrix-class</td>
<td>104</td>
</tr>
<tr>
<td>ldiMatrix-class</td>
<td>104</td>
</tr>
<tr>
<td>lgeMatrix-class</td>
<td>105</td>
</tr>
<tr>
<td>lsparseMatrix-classes</td>
<td>106</td>
</tr>
<tr>
<td>lSymMatrix-class</td>
<td>108</td>
</tr>
<tr>
<td>ltrMatrix-class</td>
<td>109</td>
</tr>
<tr>
<td>lu-methods</td>
<td>110</td>
</tr>
<tr>
<td>mat2triplet</td>
<td>112</td>
</tr>
<tr>
<td>matmult-methods</td>
<td>113</td>
</tr>
<tr>
<td>Matrix</td>
<td>115</td>
</tr>
<tr>
<td>Matrix-class</td>
<td>116</td>
</tr>
<tr>
<td>Matrix-notyet</td>
<td>118</td>
</tr>
<tr>
<td>MatrixFactorization-class</td>
<td>120</td>
</tr>
<tr>
<td>ndenseMatrix-class</td>
<td>121</td>
</tr>
<tr>
<td>nearPD</td>
<td>122</td>
</tr>
<tr>
<td>ngeMatrix-class</td>
<td>125</td>
</tr>
<tr>
<td>nMatrix-class</td>
<td>126</td>
</tr>
<tr>
<td>nnzzero-methods</td>
<td>127</td>
</tr>
<tr>
<td>nSparseMatrix-classes</td>
<td>129</td>
</tr>
<tr>
<td>nSyMatrix-class</td>
<td>131</td>
</tr>
<tr>
<td>ntrMatrix-class</td>
<td>131</td>
</tr>
<tr>
<td>pack</td>
<td>133</td>
</tr>
<tr>
<td>packedMatrix-class</td>
<td>132</td>
</tr>
<tr>
<td>pMatrix-class</td>
<td>135</td>
</tr>
<tr>
<td>qr-methods</td>
<td>140</td>
</tr>
<tr>
<td>RsparseMatrix-class</td>
<td>150</td>
</tr>
<tr>
<td>Schur-class</td>
<td>151</td>
</tr>
<tr>
<td>Schur-methods</td>
<td>152</td>
</tr>
<tr>
<td>solve-methods</td>
<td>153</td>
</tr>
<tr>
<td>sparse.model.matrix</td>
<td>155</td>
</tr>
<tr>
<td>sparseLU-class</td>
<td>157</td>
</tr>
<tr>
<td>sparseMatrix-class</td>
<td>162</td>
</tr>
<tr>
<td>sparseQR-class</td>
<td>165</td>
</tr>
<tr>
<td>spMatrix</td>
<td>167</td>
</tr>
<tr>
<td>Subassign-methods</td>
<td>176</td>
</tr>
<tr>
<td>Subscript-methods</td>
<td>177</td>
</tr>
<tr>
<td>symmetricMatrix-class</td>
<td>178</td>
</tr>
<tr>
<td>symmpart-methods</td>
<td>179</td>
</tr>
<tr>
<td>triangularMatrix-class</td>
<td>180</td>
</tr>
<tr>
<td>TsparseMatrix-class</td>
<td>181</td>
</tr>
<tr>
<td>unpackedMatrix-class</td>
<td>182</td>
</tr>
<tr>
<td>updown-methods</td>
<td>183</td>
</tr>
</tbody>
</table>

* attributes:
  - diagU2N, 57
  - is.null.DN, 96

* characters:
  - formatSparseM, 86
  - printSpMatrix, 137

* classes:
  - abIndex-class, 4
  - atomicVector-class, 8
  - BunchKaufman-class, 15
  - CHMfactor-class, 21
  - Cholesky-class, 29
  - compMatrix-class, 41
  - CsparseMatrix-class, 44
  - ddenseMatrix-class, 45
  - ddiMatrix-class, 46
  - denseLU-class, 47
  - denseMatrix-class, 49
  - dgCMatrix-class, 49
  - dgEMatrix-class, 51
  - dgRMatrix-class, 51
  - dgTMatrix-class, 52
  - diagonalMatrix-class, 55
  - dMatrix-class, 59
  - dpoMatrix-class, 62
  - dsCMatrix-class, 65
  - dsparseMatrix-class, 66
<table>
<thead>
<tr>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsRMatrix-class</td>
<td>67</td>
</tr>
<tr>
<td>dsyMatrix-class</td>
<td>68</td>
</tr>
<tr>
<td>dtCMatrix-class</td>
<td>70</td>
</tr>
<tr>
<td>dtpMatrix-class</td>
<td>71</td>
</tr>
<tr>
<td>dtRMatrix-class</td>
<td>73</td>
</tr>
<tr>
<td>dtrMatrix-class</td>
<td>74</td>
</tr>
<tr>
<td>generalMatrix-class</td>
<td>87</td>
</tr>
<tr>
<td>index-class</td>
<td>91</td>
</tr>
<tr>
<td>indMatrix-class</td>
<td>91</td>
</tr>
<tr>
<td>ldenseMatrix-class</td>
<td>104</td>
</tr>
<tr>
<td>ldMatrix-class</td>
<td>104</td>
</tr>
<tr>
<td>lgeMatrix-class</td>
<td>105</td>
</tr>
<tr>
<td>lSparseMatrix-classes</td>
<td>106</td>
</tr>
<tr>
<td>lsyMatrix-class</td>
<td>108</td>
</tr>
<tr>
<td>ltrMatrix-class</td>
<td>109</td>
</tr>
<tr>
<td>Matrix-class</td>
<td>116</td>
</tr>
<tr>
<td>Matrix-notyet</td>
<td>118</td>
</tr>
<tr>
<td>MatrixFactorization-class</td>
<td>120</td>
</tr>
<tr>
<td>ndenseMatrix-class</td>
<td>121</td>
</tr>
<tr>
<td>ngeMatrix-class</td>
<td>125</td>
</tr>
<tr>
<td>nMatrix-class</td>
<td>126</td>
</tr>
<tr>
<td>nsparseMatrix-classes</td>
<td>129</td>
</tr>
<tr>
<td>nsysMatrix-class</td>
<td>131</td>
</tr>
<tr>
<td>ntrMatrix-class</td>
<td>132</td>
</tr>
<tr>
<td>nMatrix-class</td>
<td>133</td>
</tr>
<tr>
<td>packedMatrix-class</td>
<td>135</td>
</tr>
<tr>
<td>pMatrix-class</td>
<td>136</td>
</tr>
<tr>
<td>replValue-class</td>
<td>148</td>
</tr>
<tr>
<td>rleDiff-class</td>
<td>149</td>
</tr>
<tr>
<td>RsparseMatrix-class</td>
<td>151</td>
</tr>
<tr>
<td>Schur-class</td>
<td>152</td>
</tr>
<tr>
<td>sparseLU-class</td>
<td>160</td>
</tr>
<tr>
<td>sparseMatrix-class</td>
<td>165</td>
</tr>
<tr>
<td>sparseQR-class</td>
<td>167</td>
</tr>
<tr>
<td>sparseVector-class</td>
<td>172</td>
</tr>
<tr>
<td>symmetricMatrix-class</td>
<td>178</td>
</tr>
<tr>
<td>triangularMatrix-class</td>
<td>180</td>
</tr>
<tr>
<td>TsparseMatrix-class</td>
<td>181</td>
</tr>
<tr>
<td>unpackedMatrix-class</td>
<td>182</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
</table>
| logic             | all.equal-methods, 6  
asUniqueT, 7  
boolmatmult-methods, 14  
nnzero-methods, 127  |
| manip             | abIseq, 5  
asUniqueT, 7  
chind2-methods, 20  
drop0, 64  
rep2abI, 148  
sparseVector-class, 172  |
| math              | condest, 42  
expm-methods, 77  
is.na-methods, 95  
norm-methods, 128  
rcond-methods, 146  |
| methods           | all.equal-methods, 6  
band-methods, 9  
boolmatmult-methods, 14  
BunchKaufman-methods, 17  
chind2-methods, 20  
chol-methods, 25  
chol2inv-methods, 28  
Cholesky-methods, 32  
coerce-methods-graph, 37  
coerce-methods-SparseM, 38  
colSums-methods, 39  
expand-methods, 75  
expm-methods, 77  
externalFormats, 79  
facmul-methods, 80  
forceSymmetric-methods, 85  
image-methods, 88  
is.na-methods, 95  
isSymmetric-methods, 98  
isTriangular-methods, 99  
kronecker-methods, 103  
lu-methods, 110  
nnzero-methods, 127  
norm-methods, 128  
pack, 133  
qr-methods, 140  
rcond-methods, 146  
Schur-methods, 153  
solve-methods, 155  
Subassign-methods, 176  
Substring-methods, 177  
symmpart-methods, 179  
updown-methods, 183  |
| connection         | externalFormats, 79  |
| datasets           | CAEx, 19  
KNex, 102  
USCounties, 184  
wrld_1deg, 185  |
| distribution       | rsparsematrix, 150  |
| file               | externalFormats, 79  |
| hplot              | image-methods, 88  |
INDEX

* models
  sparse.model.matrix, 157
* print
  formatSparseM, 86
  printSpMatrix, 137
* programming
  all.equal-methods, 6
  CHMfactor-class, 21
  is.na-methods, 95
  is.null.DN, 96
  isSymmetric-methods, 98
  isTriangular-methods, 99
* utilities
  abIseq, 5
  asUniqueT, 7
  bandSparse, 11
  bdia, 12
  CHMfactor-class, 21
  coerce-methods-graph, 37
  condest, 42
  Diagonal, 53
  diagU2N, 57
  dimScale, 58
  dmperm, 60
  drop0, 64
  externalFormats, 79
  fastMisc, 81
  formatSparseM, 86
  Hilbert, 88
  invertPerm, 94
  is.null.DN, 96
  KhatriRao, 100
  mat2triplet, 112
  Matrix, 115
  MatrixClass, 119
  nearPD, 122
  printSpMatrix, 137
  rankMatrix, 143
  rep2abI, 148
  rsparsematrix, 150
  sparse.model.matrix, 157
  sparseMatrix, 162
  sparseQR-class, 167
  sparseVector, 170
  spMatrix, 174
*,Matrix,ddiMatrix-method
  (ddenseMatrix-class), 45
*,ddenseMatrix,ldiMatrix-method
  (ddenseMatrix-class), 45
*,ddenseMatrix,ndiMatrix-method
  (ddenseMatrix-class), 45
*,ddiMatrix,Matrix-method
  (ddiMatrix-class), 46
*,ddiMatrix,ddenseMatrix-method
  (ddiMatrix-class), 46
*,ddiMatrix,ldenseMatrix-method
  (ddiMatrix-class), 46
*,ddiMatrix,ndenseMatrix-method
  (ddiMatrix-class), 46
*,ldenseMatrix,ddiMatrix-method
  (ldenseMatrix-class), 104
*,ldenseMatrix,ldiMatrix-method
  (ldenseMatrix-class), 104
*,ldenseMatrix,ndiMatrix-method
  (ldenseMatrix-class), 104
*,ldiMatrix,Matrix-method
  (ldiMatrix-class), 104
*,ldiMatrix,ddenseMatrix-method
  (ldiMatrix-class), 104
*,ldiMatrix,ldenseMatrix-method
  (ldiMatrix-class), 104
*,ldiMatrix,ndenseMatrix-method
  (ldiMatrix-class), 104
*,ndenseMatrix,ddiMatrix-method
  (ndenseMatrix-class), 121
*,ndenseMatrix,ldiMatrix-method
  (ndenseMatrix-class), 121
*,ndenseMatrix,ndiMatrix-method
  (ndenseMatrix-class), 121
*,ndiMatrix,Matrix-method
  (ndiMatrix-class), 104
*,ndiMatrix,ddenseMatrix-method
  (ndiMatrix-class), 104
*,ndiMatrix,ldenseMatrix-method
  (ndiMatrix-class), 104
*,ndiMatrix,ndenseMatrix-method
  (ndiMatrix-class), 104
*,Matrix,missing-method (Matrix-class), 116
+,Matrix,dgTMatrix-method
  (dgTMatrix-class), 52
-,Matrix,missing-method (Matrix-class), 116
-,denseMatrix,missing-method
  (denseMatrix-class), 116
-,diagonalMatrix,missing-method
  (diagonalMatrix-class), 55
-,dsparseVector,missing-method
(sparseVector-class), 172
-., indMatrix, missing-method
  (indMatrix-class), 91
-., nsparseMatrix, missing-method
  (nsparseMatrix-classes), 129
-., sparseMatrix, missing-method
  (sparseMatrix-class), 165
.. .CR2RC (FastMisc), 81
  CR2T (FastMisc), 81
  M2C (FastMisc), 81
  M2R (FastMisc), 81
  M2T (FastMisc), 81
  M2V (FastMisc), 81
  M2diagonal (FastMisc), 81
  M2gen (FastMisc), 81
  M2kind (FastMisc), 81
  M2m (FastMisc), 81
  M2packed (FastMisc), 81
  M2sym (FastMisc), 81
  M2tri (FastMisc), 81
  M2unpacked (FastMisc), 81
  M2v (FastMisc), 81
  Machine, 143, 172
  T2CR (FastMisc), 81
  bdiag (bdig), 12
  dense2dg (FastMisc), 81
  dense2kind (FastMisc), 81
  dense2m (FastMisc), 81
  dense2sparse (FastMisc), 81
  dense2v (FastMisc), 81
  diag.dsc (fastMsc), 81
  diag2dense (fastMsc), 81
  diag2sparse (FastMisc), 81
  diagN2U (diagU2N), 57
  diagU2N (diagU2N), 57
  formatSparseSimple, 139
  formatSparseSimple (FormatSparseM), 86
  ind2dense (FastMisc), 81
  ind2sparse (FastMisc), 81
  m2V (FastMisc), 81
  m2dense (FastMisc), 81
  m2sparse (FastMisc), 81
  selectSuperClasses, 119
  solve.dgC.chol (fastMsc), 81
  solve.dgC.lu (FastMisc), 81
  solve.dgC.qr (FastMisc), 81
  sparse2dense (FastMisc), 81
  sparse2g (fastMsc), 81
  sparse2kind (FastMisc), 81
  sparse2m (FastMisc), 81
  sparse2v (FastMisc), 81
  .sparseDiagonal (Diagonal), 53
  .symDiagonal (Diagonal), 53
  .tCR2RC (fastMsc), 81
  .tCRt (FastMisc), 81
  .trDiagonal (Diagonal), 53
  .updateCHMfactor (FastMisc), 81
  .validateCsparse (CsparseMatrix-class), 44
  /., ddiMatrix, Matrix-method
    (ddiMatrix-class), 46
  /., ddiMatrix, ddenseMatrix-method
    (ddiMatrix-class), 46
  /., ddiMatrix, ldenseMatrix-method
    (ddiMatrix-class), 46
  /., ddiMatrix, ndenseMatrix-method
    (ddiMatrix-class), 46
  /., ldiMatrix, Matrix-method
    (ldiMatrix-class), 104
  /., ldiMatrix, ddenseMatrix-method
    (ldiMatrix-class), 104
  /., ldiMatrix, ldenseMatrix-method
    (ldiMatrix-class), 104
  /., ldiMatrix, ndenseMatrix-method
    (ldiMatrix-class), 104
  /., ndiMatrix, Matrix-method
    (ndiMatrix-class), 104
  /., ndiMatrix, ddenseMatrix-method
    (ndiMatrix-class), 104
  /., ndiMatrix, ldenseMatrix-method
    (ndiMatrix-class), 104
  /., ndiMatrix, ndenseMatrix-method
    (ndiMatrix-class), 104
[(Subscript-methods), 177
[., Matrix, ANY, NULL, ANY-method
  (Subscript-methods), 177
[., Matrix, NULL, ANY, ANY-method
  (Subscript-methods), 177
[., Matrix, NULL, NULL, ANY-method
  (Subscript-methods), 177
[., Matrix, index, index, logical-method
  (Subscript-methods), 177
[., Matrix, index, index, logical-method
  (Subscript-methods), 177
[., Matrix, index, missing, logical-method
  (Subscript-methods), 177
[., Matrix, index, missing, logical-method
  (Subscript-methods), 177
[., Matrix, index, missing, missing-method
  (Subscript-methods), 177
[., Matrix, index, missing, missing-method
  (Subscript-methods), 177
[., Matrix, matrix, missing, missing-method
  (Subscript-methods), 177
[., Matrix, missing, index, logical-method
  (Subscript-methods), 177
**INDEX**

(matmult-methods), 113
%\%\%, denseMatrix, vector-method
(matmult-methods), 113
%\%\%, diagonalMatrix, CsparseMatrix-method
(matmult-methods), 113
%\%\%, diagonalMatrix, RsparseMatrix-method
(matmult-methods), 113
%\%\%, diagonalMatrix, TsparseMatrix-method
(matmult-methods), 113
%\%\%, diagonalMatrix, denseMatrix-method
(matmult-methods), 113
%\%\%, diagonalMatrix, diagonalMatrix-method
(matmult-methods), 113
%\%\%, diagonalMatrix, matrix-method
(matmult-methods), 113
%\%\%, diagonalMatrix, vector-method
(matmult-methods), 113
%\%\%, indMatrix, Matrix-method
(matmult-methods), 113
%\%\%, indMatrix, indMatrix-method
(matmult-methods), 113
%\%\%, indMatrix, matrix-method
(matmult-methods), 113
%\%\%, indMatrix, pMatrix-method
(matmult-methods), 113
%\%\%, indMatrix, vector-method
(matmult-methods), 113
%\%\%, matrix, CsparseMatrix-method
(matmult-methods), 113
%\%\%, matrix, RsparseMatrix-method
(matmult-methods), 113
%\%\%, matrix, TsparseMatrix-method
(matmult-methods), 113
%\%\%, matrix, denseMatrix-method
(matmult-methods), 113
%\%\%, matrix, diagonalMatrix-method
(matmult-methods), 113
%\%\%, matrix, indMatrix-method
(matmult-methods), 113
%\%\%, matrix, pMatrix-method
(matmult-methods), 113
%\%\%, matrix, sparseVector-method
(matmult-methods), 113
%\%\%, pMatrix, Matrix-method
(matmult-methods), 113
%\%\%, pMatrix, indMatrix-method
(matmult-methods), 113
%\%\%, pMatrix, matrix-method
(matmult-methods), 113
%\%\%, pMatrix, pMatrix-method
(matmult-methods), 113
%\%\%, pMatrix, vector-method
%%, ddiMatrix, Matrix-method
(ddiMatrix-class). 46

%%, ddiMatrix, d denseMatrix-method
(ddiMatrix-class). 46

%%, ddiMatrix, l denseMatrix-method
(ddiMatrix-class). 46

%%, ddiMatrix, n denseMatrix-method
(ddiMatrix-class). 46

%%, l diMatrix, Matrix-method
(ldiMatrix-class). 104

%%, l diMatrix, d denseMatrix-method
(ldiMatrix-class). 104

%%, l diMatrix, l denseMatrix-method
(ldiMatrix-class). 104

%%, l diMatrix, n denseMatrix-method
(ldiMatrix-class). 104

%%, ndiMatrix, Matrix-method
(ndiMatrix-class). 104

%%, ndiMatrix, d denseMatrix-method
(ndiMatrix-class). 104

%%, ndiMatrix, l denseMatrix-method
(ndiMatrix-class). 104

%%, ndiMatrix, n denseMatrix-method
(ndiMatrix-class). 104

%%, (boolmatmult-methods), 14

%%, ANY, ANY-method
(boolmatmult-methods). 14

%%, ANY, Matrix-method
(boolmatmult-methods). 14

%%, ANY, matrix-method
(boolmatmult-methods). 14

%%, ANY, sparseVector-method
(boolmatmult-methods). 14

%%, ANY, vector-method
(boolmatmult-methods). 14

%%, C sparseMatrix, C sparseMatrix-method
(boolmatmult-methods). 14

%%, C sparseMatrix, R sparseMatrix-method
(boolmatmult-methods). 14

%%, C sparseMatrix, T sparseMatrix-method
(boolmatmult-methods). 14

%%, denseMatrix, C sparseMatrix-method
(boolmatmult-methods). 14

%%, denseMatrix, R sparseMatrix-method
(boolmatmult-methods). 14

%%, denseMatrix, T sparseMatrix-method
(boolmatmult-methods). 14

%%, diagonalMatrix, denseMatrix-method
(boolmatmult-methods). 14

%%, diagonalMatrix, diagonalMatrix-method
(boolmatmult-methods). 14

%%, diagonalMatrix, matrix-method
(boolmatmult-methods). 14

%%, diagonalMatrix, vector-method
(boolmatmult-methods). 14

%%, matrix, ANY-method
(boolmatmult-methods). 14

%%, matrix, indMatrix-method
(boolmatmult-methods). 14

%%, diagonalMatrix, T sparseMatrix-method
(boolmatmult-methods). 14
INDEX

^, Matrix, ddiMatrix-method
(Matrix-class), 116
^, Matrix, ldiMatrix-method
(Matrix-class), 116
^, Matrix, ndiMatrix-method
(Matrix-class), 116
^, ddenseMatrix, ddiMatrix-method
(ddenseMatrix-class), 45
^, ddenseMatrix, ldiMatrix-method
(ddenseMatrix-class), 45
^, ddenseMatrix, ndiMatrix-method
(ddenseMatrix-class), 45
^, ldenseMatrix, ddiMatrix-method
(ldenseMatrix-class), 104
^, ldenseMatrix, ldiMatrix-method
(ldenseMatrix-class), 104
^, ldenseMatrix, ndiMatrix-method
(ldenseMatrix-class), 104
^, ldiMatrix, Matrix-method
(ldiMatrix-class), 104
^, ldiMatrix, ddiMatrix-method
(ldiMatrix-class), 104
^, ldiMatrix, ldiMatrix-method
(ldiMatrix-class), 104
^, ldiMatrix, ndiMatrix-method
(ldiMatrix-class), 104
^, ndenseMatrix, ddiMatrix-method
(ndenseMatrix-class), 121
^, ndenseMatrix, ldiMatrix-method
(ndenseMatrix-class), 121
^, ndenseMatrix, ndiMatrix-method
(ndenseMatrix-class), 121
abbreviate, 138
abIndex, 5, 6, 148, 149
abIndex-class, 4
abIsq, 4, 5, 148
abIsq1(abIsq), 5
abs, 89
aggregateT(asUniqueT), 7
all, 59
all.equal, 6, 98
all.equal(all.equal-methods), 6
all.equal(abIndex, abIndex-method
(all.equal-methods), 6
all.equal(abIndex, numLike-method
(all.equal-methods), 6
all.equal(Matrix, Matrix-method
(all.equal-methods), 6
all.equal, Matrix, sparseVector-method
(all.equal-methods), 6
all.equal, Matrix, vector-method
(all.equal-methods), 6
all.equal, numLike, abIndex-method
(all.equal-methods), 6
all.equal, sparseVector, Matrix-method
(all.equal-methods), 6
all.equal, sparseVector, sparseVector-method
(all.equal-methods), 6
all.equal, vector, vector-method
(all.equal-methods), 6
all.equal-methods, 6
all.equal.numeric, 6
any, 59
anyDuplicated, 7
anyDuplicatedT(asUniqueT), 7
anyNA, 95
anyNA(is.na-methods), 95
anyNA, denseMatrix-method
(is.na-methods), 95
anyNA, diagonalMatrix-method
(is.na-methods), 95
anyNA, indMatrix-method(is.na-methods), 95
anyNA, sparseMatrix-method
(is.na-methods), 95
anyNA, sparseVector-method
(is.na-methods), 95
anyNA-methods(is.na-methods), 95
anyNA-methods(is.na-methods), 95
Arith, apply	117
Arith, abIndex, abIndex-method	(abIndex-class), 4
Arith, abIndex, numLike-method	(abIndex-class), 4
Arith, CsparseMatrix, CsparseMatrix-method	(CsparseMatrix-class), 44
Arith, ddenseMatrix, logical-method	(ddenseMatrix-class), 45
Arith, dgeMatrix, logical-method	(dgeMatrix-class), 50
Arith, lgeMatrix, logical-method	(lgeMatrix-class), 105
Arith, lgTMatrix, lgTMatrix-method	(lsparseMatrix-classes), 106
Arith, logical, ddenseMatrix-method	(ddenseMatrix-class), 45
Arith, logical, dgeMatrix-method	(dgeMatrix-class), 50
Arith, logical, lgeMatrix-method	(lgeMatrix-class), 105
Arith, logical, lgTMatrix-method	(lsparseMatrix-classes), 106
Arith, logical, dsparseMatrix-method	(dsparseMatrix-class), 66
Arith, logical, nMatrix-method	(nMatrix-class), 126
Arith, Matrix, logical-method	(Matrix-class), 116
Arith, Matrix, logical-method	(Matrix-class), 116
Arith, Matrix, logical-method	(Matrix-class), 116
Arith, nMatrix, logical-method	(nMatrix-class), 126
Arith, nMatrix, logical-method	(nMatrix-class), 126
INDEX

Arith, nsparseMatrix, dsparseMatrix-method
(nsparseMatrix-classes), 129
Arith, nsparseMatrix, lsparseMatrix-method
(nsparseMatrix-classes), 129
Arith, nsparseMatrix, Matrix-method
(nsparseMatrix-classes), 129
Arith, numeric, CsparseMatrix-method
(CsparseMatrix-class), 44
Arith, numeric, ddenseMatrix-method
(ddenseMatrix-class), 45
Arith, numeric, ddiMatrix-method
(ddiMatrix-class), 46
Arith, numeric, dgCMatrix-method
(dgCMatrix-class), 49
Arith, numeric, dgeMatrix-method
(dgeMatrix-class), 50
Arith, numeric, dpoMatrix-method
(dpoMatrix-class), 62
Arith, numeric, dppMatrix-method
(dpoMatrix-class), 62
Arith, numeric, dsparseMatrix-method
(dsparseMatrix-class), 66
Arith, numeric, IdiMatrix-method
(IdiMatrix-class), 104
Arith, numeric, IMatrix-method
(IMatrix-class), 39
Arith, numeric, nMatrix-method
(nMatrix-class), 126
Arith, numLike, abIndex-method
(abIndex-class), 4
Arith, sparseVector, ddenseMatrix-method
(sparseVector-class), 172
Arith, sparseVector, dgeMatrix-method
(sparseVector-class), 172
Arith, sparseVector, sparseVector-method
(sparseVector-class), 172
Arith, triangularMatrix, diagonalMatrix-method
(triangularMatrix-class), 180
as, 37, 39, 105, 108, 109, 125, 131, 132
as.array, 117
as.array, Matrix-method (Matrix-class), 116
as.array, sparseVector-method
(sparseVector-class), 172
as.complex, Matrix-method
(Matrix-class), 116
as.complex, sparseVector-method
(sparseVector-class), 172
as.integer, abIndex-method
(abIndex-class), 4
as.integer, Matrix-method
(Matrix-class), 116
as.logical, Matrix-method
(Matrix-class), 116
as.logical, sparseVector-method
(sparseVector-class), 172
as.matrix, 117
as.matrix, Matrix-method (Matrix-class), 116
as.matrix, sparseVector-method
(sparseVector-class), 172
as.numeric, abIndex-method
(abIndex-class), 4
as.numeric, Matrix-method
(Matrix-class), 116
as.numeric, sparseVector-method
(sparseVector-class), 172
as.vector, 6
as.vector, abIndex-method
(abIndex-class), 4
as.vector, Matrix-method (Matrix-class), 116
as.vector, sparseVector-method
(sparseVector-class), 172
asPerm, 47
asPerm (invertPerm), 94
asUniqueT, 7, 53, 106, 112
atomicVector-class, 8
attribute, 99, 100
band, 11, 55
band (band-methods), 9
band, CsparseMatrix-method
(band-methods), 9
band, denseMatrix-method (band-methods), 9
band, diagonalMatrix-method
(band-methods), 9
band, indMatrix-method (band-methods), 9
band, matrix-method (band-methods), 9
band, RsparseMatrix-method
(band-methods), 9
band, TsparseMatrix-method
(band-methods), 9
band-methods, 9
bandSparse, 10, 11, 13, 55, 116, 163
bdiag, 11, 12, 116, 163, 175
boolmatmult-methods, 14
BunchKaufman, 16, 18, 34, 41, 63, 76, 77, 111,
121, 141, 154, 157, 182
BunchKaufman (BunchKaufman-methods), 17
BunchKaufman, dspMatrix-method
(BunchKaufman-methods), 17
BunchKaufman,dspyMatrix-method
(BunchKaufman-methods), 17
BunchKaufman,matrix-method
(BunchKaufman-methods), 17
BunchKaufman-class, 15
BunchKaufman-methods, 17
BunchKaufmanFactorization-class
(BunchKaufmanFactorization-class), 120

\[ \text{c. 4} \]
\[ \text{c.abIndex (abIseq), 5} \]
\[ \text{c.Matrix (Matrix-class), 116} \]
\[ \text{c.sparseVector (sparseVector-class), 172} \]
\[ \text{caex, 19} \]
\[ \text{cbind, 20, 166} \]
\[ \text{cbind2, 20} \]
\[ \text{cbind2 (cbind2-methods), 20} \]
\[ \text{cbind2, Matrix, Matrix-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2, matrix, matrix-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2, Matrix, missing-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2, Matrix, NULL-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2, Matrix, vector-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2, NULL, Matrix-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2, vector, Matrix-method} \]
\[ \text{(cbind2-methods), 20} \]
\[ \text{cbind2-methods, 20} \]
\[ \text{character, 4, 11, 54, 55, 59, 119, 126, 158, 162} \]
\[ \text{CHMsimpl}, 31, 121, 156 \]
\[ \text{CHMsimpl-class, 21} \]
\[ \text{CHMsimpl-class (CHMsimpl-class), 21} \]
\[ \text{chol}, 26, 28, 29, 33, 34, 41, 51, 63, 66 \]
\[ \text{chol (chol-methods), 25} \]
\[ \text{chol, ddiMatrix-method (chol-methods), 25} \]
\[ \text{chol, dspyMatrix-method (chol-methods), 25} \]
\[ \text{chol, dspyMatrix-method (chol-methods), 25} \]
\[ \text{chol, dspMatrix-method (chol-methods), 25} \]
\[ \text{chol, dsRMatrix-method (chol-methods), 25} \]
\[ \text{chol, dTMatrix-method (chol-methods), 25} \]
\[ \text{chol, dspyMatrix-method (chol-methods), 25} \]
\[ \text{chol, generalMatrix-method} \]
\[ \text{(chol-methods), 25} \]
\[ \text{chol, symmetricMatrix-method} \]
\[ \text{(chol-methods), 25} \]
\[ \text{chol, triangularMatrix-method} \]
\[ \text{(chol-methods), 25} \]
\[ \text{chol-methods, 25} \]
\[ \text{chol2inv, 29} \]
\[ \text{chol2inv (chol2inv-methods), 28} \]
\[ \text{chol2inv, ANY-method (chol2inv-methods), 28} \]
\[ \text{chol2inv, ddiMatrix-method} \]
\[ \text{(chol2inv-methods), 28} \]
\[ \text{chol2inv, diagonalMatrix-method} \]
\[ \text{(chol2inv-methods), 28} \]
\[ \text{chol2inv, dtCMatrix-method} \]
\[ \text{(chol2inv-methods), 28} \]
\[ \text{chol2inv, dtMatrix-method} \]
\[ \text{(chol2inv-methods), 28} \]
\[ \text{chol2inv, dtRMatrix-method} \]
\[ \text{(chol2inv-methods), 28} \]
\[ \text{chol2inv, dtCMatrix-method} \]
\[ \text{(chol2inv-methods), 28} \]
\[ \text{Cholesky, 18, 21, 23, 24, 26, 30, 31, 34, 41, 63, 66, 76, 77, 83, 111, 121, 141, 154, 157, 166, 182, 184} \]
\[ \text{Cholesky (Cholesky-methods), 32} \]
\[ \text{Cholesky, ddiMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, diagonalMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, dsCMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, dspMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, dsRMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, dTMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, dspyMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
\[ \text{Cholesky, generalMatrix-method} \]
\[ \text{(Cholesky-methods), 32} \]
INDEX

Cholesky, matrix-method
   (Cholesky-methods), 32
Cholesky, symmetricMatrix-method
   (Cholesky-methods), 32
Cholesky, triangularMatrix-method
   (Cholesky-methods), 32
Cholesky-class, 29
Cholesky-methods, 32
CholeskyFactorization, 30, 33, 34
CholeskyFactorization-class
   (MatrixFactorization-class), 120
class, 4, 8, 11, 20, 57, 97–99, 119, 123, 144, 148, 162, 171, 176
coerce, 180
coerce, abIndex, integer-method
   (abIndex-class), 4
coerce, abIndex, numeric-method
   (abIndex-class), 4
coerce, abIndex, seqMat-method
   (abIndex-class), 4
coerce, abIndex, vector-method
   (abIndex-class), 4
coerce, ANY, denseMatrix-method
   (denseMatrix-class), 49
coerce, ANY, Matrix-method
   (Matrix-class), 116
coerce, ANY, sparseMatrix-method
   (sparseMatrix-class), 165
coerce, ANY, sparseVector-method
   (sparseVector-class), 172
coerce, atomicVector, dsparseVector-method
   (atomicVector-class), 8
coerce, atomicVector, sparseVector-method
   (atomicVector-class), 8
coerce, BunchKaufman, dtRMatrix-method
   (BunchKaufman-class), 15
coerce, CHMsimpl, dtCMatrix-method
   (CHMfactor-class), 21
coerce, CHMsuper, dgCMatrix-method
   (CHMfactor-class), 21
coerce, Cholesky, dtRMatrix-method
   (Cholesky-class), 29
coerce, corMatrix, pcorMatrix-method
   (dpoMatrix-class), 62
coerce, denseLU, dgeMatrix-method
   (denseLU-class), 47
coerce, dgCMatrix, matrix.csc-method
   (coerce-methods-SparseM), 38
case, logical, abIndex-method
   (abIndex-class), 4
coerce, Matrix, triangularMatrix-method
(Matrix-class), 116
coerce, matrix, triangularMatrix-method
(triangularMatrix-class), 180
coerce, Matrix, TSparseMatrix-method
(TSparseMatrix-class), 116
coerce, matrix, TSparseMatrix-method
(TSparseMatrix-class), 181
coerce, Matrix, unpackedMatrix-method
(Matrix-class), 116
coerce, matrix, unpackedMatrix-method
(unpackedMatrix-class), 182
coerce, matrix.coo, CsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.coo, dgCMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.coo, dgTMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.coo, Matrix-method
(coerce-methods-SparseM), 38
coerce, matrix.coo, RsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.coo, sparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.coo, TsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csc, CsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csc, dgCMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csc, Matrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csc, RsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csc, sparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csc, TsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, CsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, dgCMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, dgRMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, Matrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, RsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, sparseMatrix-method
(coerce-methods-SparseM), 38
coerce, matrix.csr, TsparseMatrix-method
(coerce-methods-SparseM), 38
coerce, numeric, abIndIndex-method
(abindex-class), 4
coerce, numeric, indMatrix-method
(indMatrix-class), 129
coerce, numeric, pMatrix-method
(pMatrix-class), 136
coerce, numeric, seqMat-method
(abindex-class), 4
coerce, sparseVector, CsparseMatrix-method
(sparseVector-class), 172
coerce, sparseVector, denseMatrix-method
(sparseVector-class), 172
coerce, sparseVector, dsparseVector-method
(sparseVector-class), 172
coerce, sparseVector, generalMatrix-method
(sparseVector-class), 172
coerce, sparseVector, lsparseVector-method
(sparseVector-class), 172
coerce, sparseVector, Matrix-method
(sparseVector-class), 172
coerce, sparseVector, nsparseVector-method
(sparseVector-class), 172
coerce, sparseVector, RsparseMatrix-method
(sparseVector-class), 172
coerce, sparseVector, sparseMatrix-method
(sparseVector-class), 172
coerce, sparseVector, TsparseMatrix-method
(sparseVector-class), 172
coerce, sparseVector, unpackedMatrix-method
(sparseVector-class), 172
coerce, sparseVector, zsparseVector-method
(sparseVector-class), 172
coerce, TSparseMatrix, graphNEL-method
(coerce-methods-graph), 37
coerce, vector, CsparseMatrix-method
(coerce-methods-SparseM), 38
coerco, numeric, seqMat-method
(sparseMatrix-classes), 129
coerce, numeric, pMatrix-method
(sparseMatrix-classes), 129
coerce, numeric, seqMat-method
(sparseMatrix-classes), 129
INDEX

(CsparseMatrix-class), 44
coerce, vector, ddenseMatrix-method
  (ddenseMatrix-class), 45
coerce, vector, denseMatrix-method
  (denseMatrix-class), 49
coerce, vector, dMatrix-method
  (dMatrix-class), 59
coerce, vector, dsparseMatrix-method
  (dsparseMatrix-class), 66
coerce, vector, dsparseVector-method
  (sparseVector-class), 172
coerce, vector, generalMatrix-method
  (generalMatrix-class), 87
coerce, vector, isparseVector-method
  (sparseVector-class), 172
coerce, vector, ldenseMatrix-method
  (ldenseMatrix-class), 104
coerce, vector, lMatrix-method
  (dMatrix-class), 59
coerce, vector, lSparseMatrix-method
  (lSparseMatrix-classes), 106
coerce, vector, lSparseVector-method
  (sparseVector-class), 172
coerce, vector, Matrix-method
  (Matrix-class), 116
coerce, vector, ndenseMatrix-method
  (ndenseMatrix-class), 121
coerce, vector, nMatrix-method
  (nMatrix-class), 126
coerce, vector, nsparsesMatrix-method
  (nsparsesMatrix-classes), 129
coerce, vector, nsparsesVector-method
  (sparseVector-class), 172
coerce, vector, RSparseMatrix-method
  (RSparseMatrix-class), 151
coerce, vector, SparseMatrix-method
  (sparseMatrix-class), 165
coerce, vector, SparseVector-method
  (sparseVector-class), 172
coerce, vector, TSparseMatrix-method
  (TSparseMatrix-class), 181
coerce, vector, unpackedMatrix-method
  (unpackedMatrix-class), 182
coerce, vector, zSparseVector-method
  (zSparseVector-class), 172
coerce-methods-graph, 37
coerce-methods-SparseM, 38
colMeans (colSums-methods), 39
colMeans, CsparseMatrix-method
  (colSums-methods), 39
colMeans, indMatrix-method
  (colSums-methods), 39
colMeans, RsparseMatrix-method
  (colSums-methods), 39
colMeans, TsparseMatrix-method
  (colSums-methods), 39
colMeans-methods (colSums-methods), 39
colScale (dimScale), 58
colSums, 39, 40, 45, 49, 117, 166
colSums (colSums-methods), 39
colSums, CsparseMatrix-method
  (colSums-methods), 39
colSums, denseMatrix-method
  (colSums-methods), 39
colSums, diagonalMatrix-method
  (colSums-methods), 39
colSums, indMatrix-method
  (colSums-methods), 39
colSums, RsparseMatrix-method
  (colSums-methods), 39
colSums, TsparseMatrix-method
  (colSums-methods), 39
colSums-methods, 39
Compare, CsparseMatrix, CsparseMatrix-method
  (CsparseMatrix-class), 44
Compare, dMatrix, logical-method
  (dMatrix-class), 59
Compare, dMatrix, numeric-method
  (dMatrix-class), 59
Compare, lgeMatrix, lgeMatrix-method
  (lgeMatrix-class), 105
Compare, lMatrix, logical-method
  (dMatrix-class), 59
Compare, lMatrix, numeric-method
  (dMatrix-class), 59
Compare, logical, dMatrix-method
  (dMatrix-class), 59
Compare, logical, lMatrix-method
  (dMatrix-class), 59
Compare, logical, nMatrix-method
  (nMatrix-class), 126
Compare, ngeMatrix, ngeMatrix-method
  (ngeMatrix-class), 125
Compare, nMatrix, logical-method
  (nMatrix-class), 126
Compare, nMatrix, numeric-method
  (nMatrix-class), 126
INDEX

205

(dMatrix-class), 59

Compare, numeric, lMatrix-method
(dMatrix-class), 59

Compare, numeric, nMatrix-method
(nMatrix-class), 126

Compare, triangularMatrix, diagonalMatrix-method
(triangularMatrix-class), 180

crossprod, denseMatrix, vector-method

complex, 9, 118

compMatrix, 77, 87, 88, 111, 121

compMatrix-class, 41

condest, 42, 42, 147

corMatrix-class
(dpoMatrix-class), 62

cov2cor, packedMatrix-method
(packedMatrix-class), 135

cov2cor, sparseMatrix-method
(sparseMatrix-class), 165

cov2cor, unpackedMatrix-method
(unpackedMatrix-class), 182

crossprod, 44, 51, 63, 93, 113, 114, 166

crossprod (matmult-methods), 113

crossprod, ANY, Matrix-method
(matmult-methods), 113

crossprod, ANY, sparseVector-method
(matmult-methods), 113

crossprod, CsparseMatrix, CsparseMatrix-method
(matmult-methods), 113

crossprod, CsparseMatrix, denseMatrix-method
(matmult-methods), 113

crossprod, CsparseMatrix, diagonalMatrix-method
(matmult-methods), 113

crossprod, CsparseMatrix, matrix-method
(matmult-methods), 113

crossprod, CsparseMatrix, missing-method
(matmult-methods), 113

crossprod, CsparseMatrix, RsparseMatrix-method
(matmult-methods), 113

crossprod, CsparseMatrix, TsparseMatrix-method
(matmult-methods), 113

crossprod, denseMatrix, CsparseMatrix-method
(matmult-methods), 113

crossprod, denseMatrix, denseMatrix-method
(matmult-methods), 113

crossprod, denseMatrix, diagonalMatrix-method
(matmult-methods), 113

crossprod, denseMatrix, matrix-method
(matmult-methods), 113

crossprod, denseMatrix, missing-method
(matmult-methods), 113

crossprod, denseMatrix, sparseVector-method
(matmult-methods), 113

crossprod, matrix, diagonalMatrix-method
(matmult-methods), 113

crossprod, matrix, indMatrix-method
(matmult-methods), 113

crossprod, matrix, pMatrix-method
(matmult-methods), 113

crossprod, matrix, RsparseMatrix-method
(matmult-methods), 113

crossprod, matrix, sparseVector-method
(matmult-methods), 113

crossprod, Matrix, indMatrix-method
(matmult-methods), 113

crossprod, Matrix, pMatrix-method
(matmult-methods), 113

crossprod, Matrix, RsparseMatrix-method
(matmult-methods), 113

crossprod, Matrix, sparseVector-method
(matmult-methods), 113
determinant, dgTMatrix, logical-method	dgMatrix, 38, 66–68, 70, 73, 90, 106, 107, 181, 182
determinant, diagonalMatrix, logical-method	diag, 11, 55, 92, 121, 122
determinant, dpoMatrix, logical-method	diag, CMF-factor-method (CMF-factor-class), 21
determinant, dppMatrix, logical-method	diag, Cholesky-method (Cholesky-class), 29
determinant, dsCMatrix, logical-method	diag, CsparseMatrix-method (C.sparseMatrix-class), 44
determinant, dspMatrix, logical-method	diag, denseMatrix-method (denseMatrix-class), 49
determinant, dsRMatrix, logical-method	diag, diagonalMatrix-method (diagonalMatrix-class), 55
determinant, dsyMatrix, logical-method	diag, indMatrix-method (indMatrix-class), 91
determinant, dsTMatrix, logical-method	diag, pcholesky-method (Cholesky-class), 29
determinant, dpoMatrix-class	diag, RsparseMatrix-method (RsparseMatrix-class), 151
dgCMatrix, 116	diag, TsparseMatrix-method (TsparseMatrix-class), 181
dgCMatrix, 116	diag<-, CsparseMatrix-method (C.sparseMatrix-class), 44
determinant, Matrix, logical-method	diag<-, denseMatrix-method (denseMatrix-class), 49
determinant, Matrix-class	diag<-, diagonalMatrix-method (diagonalMatrix-class), 55
determinant, MatrixFactorization, missing-method (MatrixFactorization-class), 120	diag<-, indMatrix-method (indMatrix-class), 91
determinant, pBunchKaufman, logical-method (BunchKaufman-class), 15	diag<-, RsparseMatrix-method (RsparseMatrix-class), 151
determinant, pCholesky, logical-method (Cholesky-class), 29	diag<-, TsparseMatrix-method (TsparseMatrix-class), 181
determinant, pMatrix, logical-method (pMatrix-class), 136	diagN2U(diagU2N), 57
determinant, Schur, logical-method (Schur-class), 152	Diagonal, 13, 46, 53, 56, 104, 105, 116, 163, 175
determinant, sparseQR, logical-method (sparseQR-class), 167	diagonalMatrix-class, 55
determinant, triangularMatrix, logical-method (triangularMatrix-class), 180	diagU2N, 57
dgCMatrix, 116	diff, 117, 149
dgCMatrix, 116	diff, denseMatrix-method (denseMatrix-class), 49
dgCMatrix, 116	diff, sparseMatrix-method (sparseMatrix-class), 165
dgCMatrix, 116	diff, sparseVector-method (sparseVector-class), 172
dgeMatrix, 116	dim, 117, 139, 150
dgeMatrix, 116	dim, Matrix-method (Matrix-class), 116
dgeMatrix, 116	dim, MatrixFactorization-method (MatrixFactorization-class), 116
dsTMatrix-class (dsCMatrix-class), 65
dsyMatrix, 16, 18, 30, 51, 63, 178, 183
dsyMatrix-class, 68
dtCMatrix, 23, 30, 57, 60, 76, 160, 168
dtCMatrix-class, 70
dtpMatrix, 16, 30, 74, 76
dtpMatrix-class, 71
dtrMatrix, 16, 30, 51, 70, 72, 76, 181
dtrMatrix-class, 73
dtTMatrix-class, 74
dtTMatrix-class (dtCMatrix-class), 70

eigen, 19, 117
error, 110
expand (expand-methods), 75
expand, CHMfactor-method
(expand-methods), 75
expand, denseLU-method (expand-methods), 75
expand, sparseLU-method
(expand-methods), 75
expand-methods, 75
expand1, 16, 18, 24, 31, 33, 34, 48, 111, 121, 141, 153, 154, 161, 169
expand1 (expand-methods), 75
expand1, BunchKaufman-method
(expand-methods), 75
expand1, CHMsimpl-method
(expand-methods), 75
expand1, CHMsuper-method
(expand-methods), 75
expand1, Cholesky-method
(expand-methods), 75
expand1, denseLU-method
(expand-methods), 75
expand1, pBunchKaufman-method
(expand-methods), 75
expand1, pCholesky-method
(expand-methods), 75
expand1, Schur-method (expand-methods), 75
expand1, sparseLU-method
(expand-methods), 75
expand1, sparseQR-method
(expand-methods), 75
expand1-methods (expand-methods), 75
expand2, 16, 18, 24, 31, 34, 48, 80, 111, 121, 141, 153, 154, 161, 169
expand2 (expand-methods), 75
expand2, BunchKaufman-method
(expand-methods), 75
expand2, CHMsimpl-method
(expand-methods), 75

dim<-, denseMatrix-method
(denseMatrix-class), 49
dim<-, sparseMatrix-method
(sparseMatrix-class), 165
dim<-, sparseVector-method
(sparseVector-class), 172
dimnames, 40, 46, 55, 60, 79, 86, 97, 100, 104, 115, 117, 162, 178
dimnames, Matrix-method (Matrix-class), 116
dimnames, MatrixFactorization-method
(MatrixFactorization-class), 120
dimnames, symmetricMatrix-method
(symmetricMatrix-class), 178
dimnames<-, compMatrix, list-method
(compMatrix-class), 41
dimnames<-, compMatrix, NULL-method
(compMatrix-class), 41
dimnames<-, Matrix, list-method
(Matrix-class), 116
dimnames<-, Matrix, NULL-method
(Matrix-class), 116
dimnames<-, MatrixFactorization, list-method
(MatrixFactorization-class), 120
dimnames<-, MatrixFactorization, NULL-method
(MatrixFactorization-class), 120
dimScale, 58
dMatrix, 14, 46, 58, 78
dMatrix-class, 59
dmperm, 60
double, 149, 158
dpoMatrix, 30, 31, 34, 69, 88, 122, 123, 182
dpoMatrix-class, 62
dppMatrix, 30, 31, 34, 69, 135
dppMatrix-class (dpoMatrix-class), 62
drop, abIndex-method (abIndex-class), 4
drop, Matrix-method (Matrix-class), 116
drop0, 14, 60, 64, 127, 171
dsCMatrix, 23, 24, 34, 50, 76, 83, 184, 185
dsCMatrix-class, 65
dspMatrix, 46, 53, 54, 65, 67
dspMatrix-class, 66
dspMatrix-class (dsyMatrix-class), 68
dsmatrix, 67
dsTMatrix, 184, 185

dspMatrix-class, 65
dtsMatrix, 16, 18, 30, 135

INDEX

expand2, CHMsuper-method (expand-methods), 75
expand2, Cholesky-method (expand-methods), 75
expand2, denseLU-method (expand-methods), 75
expand2, pBunchKaufman-method (expand-methods), 75
expand2, pCholesky-method (expand-methods), 75
expand2, Schur-method (expand-methods), 75
expand2, Schur-method (expand-methods), 75
expand2, sparseLU-method (expand-methods), 75
expand2, sparseQR-method (methods), 60
expm, 60
expm, expm-methods, 77
expm, ddMatrix-method (expm-methods), 77
expm, dgeMatrix-method (expm-methods), 77
expm, dMatrix-method (expm-methods), 77
expm, dsparseMatrix-method (expm-methods), 77
expm, dspMatrix-method (expm-methods), 77
expm, dMatrix-method (expm-methods), 77
expm, speXpMatrix-methods, 77
expm-methods, 77
extends, 115
externalFormats, 79
Extract, 176, 177
fac2Sparse (sparse.model.matrix), 157
fac2sparse, 159
fac2sparse (sparse.model.matrix), 157
facmul (facmul-methods), 80
facmul-methods, 80
factor, 158
FALSE, 97
fastMisc, 81
finite, 18, 25, 26, 33, 110, 140, 154, 155, 183
forceSymmetric, 99
forceSymmetric (forceSymmetric-methods), 85
forceSymmetric, CsparseMatrix, character-method (forceSymmetric-methods), 85
forceSymmetric, CsparseMatrix, missing-method (forceSymmetric-methods), 85
forceSymmetric, denseMatrix, character-method (forceSymmetric-methods), 85
forceSymmetric, denseMatrix, missing-method (forceSymmetric-methods), 85
forceSymmetric, diagonalMatrix, character-method (forceSymmetric-methods), 85
forceSymmetric, diagonalMatrix, missing-method (forceSymmetric-methods), 85
forceSymmetric, indMatrix, character-method (forceSymmetric-methods), 85
forceSymmetric, indMatrix, missing-method (forceSymmetric-methods), 85
forceSymmetric, matrix, character-method (forceSymmetric-methods), 85
forceSymmetric, matrix, missing-method (forceSymmetric-methods), 85
forceSymmetric, RsparseMatrix, character-method (forceSymmetric-methods), 85
forceSymmetric, RsparseMatrix, missing-method (forceSymmetric-methods), 85
forceSymmetric, TsparseMatrix, character-method (forceSymmetric-methods), 85
forceSymmetric, TsparseMatrix, missing-method (forceSymmetric-methods), 85
forceSymmetric-methods, 85
format, 86, 87, 138, 165
format, sparseMatrix-method (sparseMatrix-class), 165
formatSparseM, 86, 139
formatSpMatrix, 86, 87, 165
formatSpMatrix (printSpMatrix), 137
function, 100, 150
generalMatrix, 54, 82, 83, 92, 163, 175, 179
generalMatrix-class, 87
get.gpar, 89
getClassDef, 138
goOption, 138
getValidity, 63, 178
graph, 37
graph2T (coerce-methods-graph), 37
grey, 89
grid.raster, 89
grid.rect, 89
head, 172
head, Matrix-method (Matrix-class), 116
head, sparseVector-method (sparseVector-class), 172
head, sparseVector-method
head, sparseVector-method
head, Matrix-method (Matrix-class), 116
head, sparseVector-method (sparseVector-class), 172
identity, 23
identical, 134
image, 88, 117
image (image-methods), 88
INDEX

kroncker, TsparseMatrix, TsparseMatrix-method (kroncker-methods), 103
kroncker, vector, Matrix-method (kroncker-methods), 103
kroncker-methods, 103

ldenseMatrix, 49, 108, 109
ldenseMatrix-class, 104
ldiMatrix, 14, 56
ldiMatrix-class, 104
length, 54, 60, 127, 172
length, abIndex-method (abIndex-class), 4
length, Matrix-method (Matrix-class), 116
length, MatrixFactorization-method (MatrixFactorization-class), 120
length, sparseVector-method (sparseVector-class), 172
levelplot, 50, 52, 53, 88–90, 117
lgCMatrix, 105
lgCMatrix-class (lsparseMatrix-classes), 106
lgeMatrix, 104, 108, 109
lgeMatrix-class, 105
lgRMatrix-class (lsparseMatrix-classes), 106
lgTMatrix-class (lsparseMatrix-classes), 106
lMatrix, 14, 104, 105, 107, 109, 113, 115, 121, 126, 130
lMatrix-class (dMatrix-class), 59
log, denseMatrix-method (denseMatrix-class), 49
log, diagonalMatrix-method (diagonalMatrix-class), 55
log, indMatrix-method (indMatrix-class), 91
log, sparseMatrix-method (sparseMatrix-class), 165
log, sparseVector-method (sparseVector-class), 172
Logic, ANY, Matrix-method (Matrix-class), 116
Logic, CsparseMatrix, CsparseMatrix-method (CsparseMatrix-class), 44
Logic, dMatrix, logical-method (dMatrix-class), 59
Logic, dMatrix, numeric-method (dMatrix-class), 59
Logic, dMatrix, sparseVector-method (dMatrix-class), 59
Logic, ldenseMatrix, ldenseMatrix-method (ldenseMatrix-class), 104
Logic, lgCMatrix, lgCMatrix-method (lgCMatrix-class), 106
Logic, lgeMatrix, lgeMatrix-method (lgeMatrix-class), 105
Logic, lgTMatrix, lgTMatrix-method (lsparseMatrix-classes), 106
Logic, lMatrix, logical-method (dMatrix-class), 59
Logic, lMatrix, numeric-method (dMatrix-class), 59
Logic, lMatrix, sparseVector-method (dMatrix-class), 59
Logic, logical, dMatrix-method (dMatrix-class), 59
Logic, logical, lMatrix-method (dMatrix-class), 59
Logic, logical, nMatrix-method (nMatrix-class), 126
Logic, lsCMatrix, lsCMatrix-method (lsparseMatrix-classes), 106
Logic, lsparseMatrix, ldenseMatrix-method (lsparseMatrix-classes), 106
Logic, lsparseMatrix, lsparseMatrix-method (lsparseMatrix-classes), 106
Logic, lsparseVector, lsparseVector-method (sparseVector-class), 172
Logic, ltCMatrix, ltCMatrix-method (lsparseMatrix-classes), 106
Logic, Matrix, ANY-method (Matrix-class), 116
Logic, Matrix, nMatrix-method (Matrix-class), 116
Logic, ngeMatrix, ngeMatrix-method (ngeMatrix-class), 125
Logic, nMatrix, logical-method (nMatrix-class), 126
Logic, nMatrix, Matrix-method (nMatrix-class), 126
Logic, nMatrix, nMatrix-method (nMatrix-class), 126
Logic, nMatrix, numeric-method (nMatrix-class), 126
Logic, nMatrix, sparseVector-method (nMatrix-class), 126
Logic, numeric, dMatrix-method (dMatrix-class), 59
Logic, numeric, lMatrix-method (dMatrix-class), 59
Logic, numeric, nMatrix-method (nMatrix-class), 126
INDEX

Logic, sparseVector, dMatrix-method
(sparseVector-class), 172
Logic, sparseVector, lMatrix-method
(sparseVector-class), 172
Logic, sparseVector, nMatrix-method
(sparseVector-class), 172
Logic, sparseVector, sparseVector-method
(sparseVector-class), 172
Logic, triangularMatrix, diagonalMatrix-method
(triangularMatrix-class), 180
logical, 54, 60, 63, 92, 97–100, 105, 112,
113, 115, 119, 127, 144, 173, 176
lsCMatrix, 178
lsCMatrix-class
(lsparseMatrix-classes), 106
lsSparseMatrix, 54
lsSparseMatrix-class
(lsparseMatrix-classes), 106
lsSparseMatrix-classes, 106
lsSparseVector-class
(sparseVector-class), 172
lsMatrix-class
(lsparseMatrix-classes), 108
lsRMatrix-class
(lsparseMatrix-classes), 106
lsTMatrix-class
(lsparseMatrix-classes), 106
lsyMatrix, 105
lsyMatrix-class, 108
ltCMatrix, 181
ltCMatrix-class
(lsparseMatrix-classes), 106
ltMatrix, 135
ltMatrix-class
(ltrMatrix-class), 109
ltrMatrix, 105, 183
ltrMatrix-class
(lsparseMatrix-classes), 106
ltrMatrix-class, 109
ltTMatrix-class
(lsparseMatrix-classes), 106
lu, 47, 111, 160
lu, 18, 34, 41, 42, 47, 48, 50, 77, 121, 141,
154, 157, 160, 161, 166
lu (lu-methods), 110
lu, denseMatrix-method (lu-methods), 110
lu, dgCMatrix-method (lu-methods), 110
lu, dgeMatrix-method (lu-methods), 110
lu, dgrMatrix-method (lu-methods), 110
lu, dtMatrix-method (lu-methods), 110
lu, diagonalMatrix-method (lu-methods), 110
lu, dsCMatrix-method (lu-methods), 110
lu, dspMatrix-method (lu-methods), 110
lu, dsRMatrix-method (lu-methods), 110
lu, dTMatrix-method (lu-methods), 110
lu, matrix-method (lu-methods), 110
lu, sparseMatrix-method (lu-methods), 110
LU-class (MatrixFactorization-class),
120
lu-methods, 110
mat2triplet, 112
Math, denseMatrix-method
(denseMatrix-class), 49
Math, diagonalMatrix-method
(diagonalMatrix-class), 55
Math, indMatrix-method
(indMatrix-class), 91
Math, sparseMatrix-method
(sparseMatrix-class), 165
Math, sparseVector-method
(sparseVector-class), 172
Math2, Matrix-method (Matrix-class), 116
Math2, sparseVector-method
(sparseVector-class), 172
matmult-methods, 113
Matrix, 6, 7, 11, 18, 20, 25, 28, 33, 34, 40, 41,
46, 49–51, 53, 55, 58, 60, 63–70, 72,
73, 76, 79, 82, 83, 85, 92, 95, 97–99,
103–105, 108–110, 113, 114, 115,
116, 118, 119, 121, 122, 125–127,
131, 132, 135, 136, 140, 152,
154–156, 163, 165, 175, 178–183
matrix, 10, 14, 56, 85, 86, 92, 97–99, 112,
115–117, 122, 127, 176
Matrix-class, 116
Matrix-notyet, 118
matrix.csr, 39
Matrix.Version (Matrix-class), 116
MatrixClass, 119
MatrixFactorization, 15, 16, 21, 22, 30, 41,
47, 75, 77, 80, 152, 155, 157, 160,
168
MatrixFactorization-class, 120
max, 59
mean, denseMatrix-method
(denseMatrix-class), 49
mean, sparseMatrix-method
(sparseMatrix-class), 165
mean, sparseVector-method
  (sparseVector-class), 172
method, 98
min, 59
model.frame, 158
model.matrix, 158, 159

NA, 56, 60, 96, 99, 100, 103, 106, 126, 127, 166, 173, 176, 179
NA_integer_, 144
names, 40, 54
NaN, 96, 144
nCHMsimpl-class (CHMfactor-class), 21
nCHMsuper-class (CHMfactor-class), 21
ncol, 180
ndenseMatrix, 49
ndenseMatrix-class, 121
ndiMatrix-class (ldiMatrix-class), 104
nearcor, 123
nearPD, 122
new, 23, 45, 162
ngCMatrix, 125
ngCMatrix-class
  (nsparseMatrix-classes), 129
ngeMatrix, 121, 131, 132
ngeMatrix-class, 125
ngRMMatrix-class
  (nsparseMatrix-classes), 129
ngTMatrix, 38
ngTMatrix-class
  (nsparseMatrix-classes), 129
nMatrix, 11, 14, 60, 82, 93, 96, 112, 113, 125
nMatrix-class, 126
nnzero, 64, 73, 150
nnzero (nnzero-methods), 127
nnzero, ANY-method (nnzero-methods), 127
nnzero, CHMfactor-method
  (nnzero-methods), 127
nnzero, denseMatrix-method
  (nnzero-methods), 127
nnzero, diagonalMatrix-method
  (nnzero-methods), 127
nnzero, indMatrix-method
  (nnzero-methods), 127
nnzero, sparseMatrix-method
  (nnzero-methods), 127
nnzero, vector-method (nnzero-methods), 127
nnzero-methods, 127
norm, 42, 43, 69, 123, 129, 146, 147, 166
norm (norm-methods), 128
norm, ANY, missing-method (norm-methods), 128
norm, denseMatrix, character-method
  (norm-methods), 128
norm, diagonalMatrix, character-method
  (norm-methods), 128
norm, indMatrix, character-method
  (norm-methods), 128
norm, pMatrix, character-method
  (norm-methods), 128
norm, sparseMatrix, character-method
  (norm-methods), 128
norm-methods, 128
nrow, 180
nsCMatrix-class
  (nsparseMatrix-classes), 129
nsparseMatrix, 14, 54, 92, 112, 113, 126, 150, 162, 166
nsparseMatrix-class
  (nsparseMatrix-classes), 129
nsparseMatrix-class, 129
nsparseVector, 82, 96
nsparseVector-class
  (sparsesVector-class), 172
nspMatrix-class (nsyMatrix-class), 131
nsRMatrix-class
  (nsparseMatrix-classes), 129
nsTMatrix, 38
nsTMatrix-class
  (nsparseMatrix-classes), 129
nsyMatrix, 125
nsyMatrix-class, 131
ntCMatrix-class
  (nsparseMatrix-classes), 129
ntMatrix, 150
ntMatrix-class
  (nsparseMatrix-classes), 129
ntnMatrix-class, 125
ntRMatrix-class
  (nsparseMatrix-classes), 129
ntnMatrix-class, 129
ntTMatrix, 132
ntTMatrix-class
  (nsparseMatrix-classes), 129
NULL, 79, 86, 97, 115, 138, 150, 162
numeric, 4, 5, 9, 39, 40, 52, 62, 66, 102, 127
onenormest, 129
onenormest (condest), 42
Ops, 5, 56, 74, 173
Ops, abIndex, abIndex-method
  (abIndex-class), 4
Ops, abIndex, ANY-method (abIndex-class), 4
Ops, ANY, abIndex-method (abIndex-class), 4
INDEX

Ops, ndiMatrix, ldiMatrix-method
   (ldiMatrix-class), 104
Ops, ndiMatrix, ndiMatrix-method
   (ldiMatrix-class), 104
Ops, nMatrix, dMatrix-method
   (nMatrix-class), 126
Ops, nMatrix, lMatrix-method
   (nMatrix-class), 126
Ops, nMatrix, nMatrix-method
   (nMatrix-class), 126
Ops, nMatrix, numeric-method
   (nMatrix-class), 126
Ops, nsparseMatrix, dsparseMatrix-method
   (nsparseMatrix-classes), 129
Ops, nsparseMatrix, lsparseMatrix-method
   (nsparseMatrix-classes), 129
Ops, nsparseMatrix, sparseMatrix-method
   (nsparseMatrix-classes), 129
Ops, NULL, Matrix-method (Matrix-class), 116
Ops, numeric, dpoMatrix-method
   (dpoMatrix-class), 62
Ops, numeric, dppMatrix-method
   (dpoMatrix-class), 62
Ops, numeric, lMatrix-method
   (dMatrix-class), 59
Ops, numeric, nMatrix-method
   (nMatrix-class), 126
Ops, numeric, sparseMatrix-method
   (sparseMatrix-class), 165
Ops, sparseMatrix, ddiMatrix-method
   (sparseMatrix-class), 165
Ops, sparseMatrix, ldiMatrix-method
   (sparseMatrix-class), 165
Ops, sparseMatrix, nMatrix-method
   (sparseMatrix-class), 165
Ops, sparseMatrix, numeric-method
   (sparseMatrix-class), 165
Ops, sparseMatrix, sparseMatrix-method
   (sparseMatrix-class), 165
Ops, sparseVector, ANY-method
   (sparseVector-class), 172
Ops, sparseVector, atomicVector-method
   (sparseVector-class), 172
Ops, sparseVector, Matrix-method
   (sparseVector-class), 172
Ops, sparseVector, sparseVector-method
   (sparseVector-class), 172
options, 23, 138, 139, 172
order, 94, 112
outer, 117
pack, 68, 74, 133, 135, 183
pack, dgeMatrix-method (pack), 133
pack, lgeMatrix-method (pack), 133
pack, matrix-method (pack), 133
pack, ngeMatrix-method (pack), 133
pack, packedMatrix-method (pack), 133
pack, sparseMatrix-method (pack), 133
pack, unpackedMatrix-method (pack), 133
pack-methods (pack), 133
packedMatrix, 18, 34, 49, 82, 83, 133, 183
packedMatrix-class, 135
panel.levelplot.raster, 89
paste, 158
pBunchKaufman, 18, 76, 121, 135
pBunchKaufman-class
   (BunchKaufman-class), 15
pCholesky, 34, 76, 121, 135
pCholesky-class (Cholesky-class), 29
pcorMatrix-class (dpoMatrix-class), 62
plot.default, 89
pMatrix, 61, 76, 91, 93, 95
pMatrix-class, 136
posdefify, 122, 123
print, 56, 87, 88, 117, 138, 139, 165, 166
print, diagonalMatrix-method
   (diagonalMatrix-class), 55
print, sparseMatrix-method
   (sparseMatrix-class), 165
print.default, 86, 138
print.sparseMatrix
   (sparseMatrix-class), 165
print.trellis, 90
printSpMatrix, 87, 117, 137, 165
printSpMatrix2 (printSpMatrix), 137
prod, 59
QR, 141, 168
qr, 18, 34, 41, 77, 111, 121, 141, 143–145, 154, 157, 167–169
qr (qr-methods), 140
qr, dgCMatrix-method (qr-methods), 140
qr, sparseMatrix-method (qr-methods), 140
QR-class (MatrixFactorization-class), 120
qr-methods, 140
qr.coef, 156, 157, 169
qr.coef, sparseQR, dgeMatrix-method
   (sparseQR-class), 167
qr.coef, sparseQR, dgeMatrix-method
   (sparseQR-class), 167
qr.coef, sparseQR, matrix-method
   (sparseQR-class), 167
qr.coef, sparseQR, vector-method
   (sparseQR-class), 167
INDEX

qr.default, 140
qr.fitted, 169
qr.fitted, sparseQR, dgeMatrix-method
  (sparseQR-class), 167
qr.fitted, sparseQR, Matrix-method
  (sparseQR-class), 167
qr.fitted, sparseQR, matrix-method
  (sparseQR-class), 167
qr.fitted, sparseQR, vector-method
  (sparseQR-class), 167
qr.Q, 169
qr.Q, sparseQR-method (sparseQR-class), 167
qr.qty, 169
qr.qty, sparseQR, dgeMatrix-method
  (sparseQR-class), 167
qr.qty, sparseQR, Matrix-method
  (sparseQR-class), 167
qr.qty, sparseQR, matrix-method
  (sparseQR-class), 167
qr.qty, sparseQR, vector-method
  (sparseQR-class), 167
qr.qy, 169
qr.qy, sparseQR, dgeMatrix-method
  (sparseQR-class), 167
qr.qy, sparseQR, Matrix-method
  (sparseQR-class), 167
qr.qy, sparseQR, matrix-method
  (sparseQR-class), 167
qr.qy, sparseQR, vector-method
  (sparseQR-class), 167
qr.R, 169
qr.R, sparseQR-method (sparseQR-class), 167
qr.resid, 169
qr.resid, sparseQR, dgeMatrix-method
  (sparseQR-class), 167
qr.resid, sparseQR, Matrix-method
  (sparseQR-class), 167
qr.resid, sparseQR, matrix-method
  (sparseQR-class), 167
qr.resid, sparseQR, vector-method
  (sparseQR-class), 167
qr.solve, 169
qr.X, 169
qr.X, sparseQR-method (sparseQR-class), 167
qr2rankMatrix (rankMatrix), 143
qrR (sparseQR-class), 167
range, 59
rankMatrix, 143
rbind, 20, 166
rbind2, 20
rbind2 (cbind2-methods), 20
rbind2, Matrix, Matrix-method
  (cbind2-methods), 20
rbind2, Matrix, matrix-method
  (cbind2-methods), 20
rbind2, matrix, Matrix-method
  (cbind2-methods), 20
rbind2, Matrix, missing-method
  (cbind2-methods), 20
rbind2, Matrix, NULL-method
  (cbind2-methods), 20
rbind2, Matrix, vector-method
  (cbind2-methods), 20
rbind2, NULL, Matrix-method
  (cbind2-methods), 20
rbind2, vector, Matrix-method
  (cbind2-methods), 20
rbind2-methods (cbind2-methods), 20
rcond, 43, 51, 63, 69, 156
rcond (rcond-methods), 146
rcond, ANY, missing-method
  (rcond-methods), 146
rcond, denseMatrix, character-method
  (rcond-methods), 146
rcond, diagonalMatrix, character-method
  (rcond-methods), 146
rcond, indMatrix, character-method
  (rcond-methods), 146
rcond, pMatrix, character-method
  (rcond-methods), 146
rcond, sparseMatrix, character-method
  (rcond-methods), 146
rcond-methods, 146
readHB (externalFormats), 79
readMM (externalFormats), 79
rep, denseMatrix-method
  (denseMatrix-class), 49
rep, sparseMatrix-method
  (sparseMatrix-class), 165
rep, sparseVector-method
  (sparseVector-class), 172
rep.int, 148
rep2abI, 6, 148
replValue-class, 148
rle, 4–6, 149
rleDiff, 4
rleDiff-class, 149
round, 59
rowMeans, 117
rowMeans (colSums-methods), 39
rowMeans, CsparseMatrix-method
INDEX

(colSums-methods), 39
rowMeans,denseMatrix-method (colSums-methods), 39
rowMeans,diagonalMatrix-method (colSums-methods), 39
rowMeans,indMatrix-method (colSums-methods), 39
rowMeans,RsparseMatrix-method (colSums-methods), 39
rowMeans,TsparseMatrix-method (colSums-methods), 39
rowMeans-methods (colSums-methods), 39
rowScale (dimScale), 58
rowSums (colSums-methods), 39
rowSums,CsparseMatrix-method (colSums-methods), 39
rowSums,denseMatrix-method (colSums-methods), 39
rowSums,diagonalMatrix-method (colSums-methods), 39
rowSums,indMatrix-method (colSums-methods), 39
rowSums,RsparseMatrix-method (colSums-methods), 39
rowSums,TsparseMatrix-method (colSums-methods), 39
rowSums-methods (colSums-methods), 39
RsparseMatrix, 11, 52, 64, 67, 83, 106, 129, 158, 159, 162, 163
rsparsematrix, 150, 163
RsparseMatrix-class, 151
sample.int, 150
Schur, 18, 34, 41, 61, 76–78, 111, 121, 141, 152–154, 157, 180
Schur (Schur-methods), 153
Schur,dgeMatrix-method (Schur-methods), 153
Schur,diagonalMatrix-method (Schur-methods), 153
Schur,dsyMatrix-method (Schur-methods), 153
Schur,generalMatrix-method (Schur-methods), 153
Schur,matrix-method (Schur-methods), 153
Schur,symmetricMatrix-method (Schur-methods), 153
Schur,triangularMatrix-method (Schur-methods), 153
Schur-class, 152
Schur-methods, 153
SchurFactorization, 152, 154
SchurFactorization-class (MatrixFactorization-class), 120
seq, 5
seqMat-class (abIndex-class), 4
set.seed, 42
setClassUnion, 91, 113, 148
show, 5, 87, 117, 138, 139, 149, 165, 172
show,abIndex-method (abIndex-class), 4
show,BunchKaufmanFactorization-method (MatrixFactorization-class), 120
show,CholeskyFactorization-method (MatrixFactorization-class), 120
show,denseMatrix-method (denseMatrix-class), 49
show,diagonalMatrix-method (diagonalMatrix-class), 55
show,LU-method (MatrixFactorization-class), 120
show,MatrixFactorization-method (MatrixFactorization-class), 120
show,QR-method (MatrixFactorization-class), 120
show,rleDiff-method (rleDiff-class), 149
show,SchurFactorization-method (MatrixFactorization-class), 120
show,sparseMatrix-method (sparseMatrix-class), 165
show,sparseVector-method (sparseVector-class), 172
showClass, 46, 69, 108, 119, 131, 132
showMethods, 45, 49, 105, 108, 109, 125, 131, 132, 146, 179
signif, 59
signPerm (invertPerm), 94
skewpart, 99
skewpart (symmpart-methods), 179
skewpart,CsparseMatrix-method (symmpart-methods), 179
skewpart,denseMatrix-method (symmpart-methods), 179
skewpart,diagonalMatrix-method (symmpart-methods), 179
skewpart,indMatrix-method (symmpart-methods), 179
skewpart,matrix-method (symmpart-methods), 179
INDEX

(sympart-methods), 179
skewpart, RsparseMatrix-method
(sympart-methods), 179
skewpart, TsparseMatrix-method
(sympart-methods), 179
skewpart-methods (sympart-methods), 179
slot, 98
solve, 29, 44, 51, 61, 69, 146, 147, 155, 157
solve (solve-methods), 155
solve, ANY, ANY-method (solve-methods), 155
solve, BunchKaufman, dgeMatrix-method
(solve-methods), 155
solve, BunchKaufman, missing-method
(solve-methods), 155
solve, CHMfactor, dgCMatrix-method
(solve-methods), 155
solve, CHMfactor, dgeMatrix-method
(solve-methods), 155
solve, CHMfactor, missing-method
(solve-methods), 155
solve, Cholesky, dgeMatrix-method
(solve-methods), 155
solve, Cholesky, missing-method
(solve-methods), 155
solve, CsparseMatrix, ANY-method
(solve-methods), 155
solve, ddiMatrix, Matrix-method
(solve-methods), 155
solve, ddiMatrix, missing-method
(solve-methods), 155
solve, ddiMatrix, vector-method
(solve-methods), 155
solve, denseLU, dgeMatrix-method
(solve-methods), 155
solve, denseLU, missing-method
(solve-methods), 155
solve, denseMatrix, ANY-method
(solve-methods), 155
solve, dgCMatrix, denseMatrix-method
(solve-methods), 155
solve, dgCMatrix, matrix-method
(solve-methods), 155
solve, dgCMatrix, missing-method
(solve-methods), 155
solve, dgCMatrix, sparseMatrix-method
(solve-methods), 155
solve, dgCMatrix, vector-method
(solve-methods), 155
solve, dgeMatrix, ANY-method
(solve-methods), 155
solve, dtrMatrix, dgeMatrix-method
(solve-methods), 155
solve, dtrMatrix, triangularMatrix-method
(solve-methods), 155
solve, dtpMatrix, dgeMatrix-method
(solve-methods), 155
solve, dtpMatrix, missing-method
(solve-methods), 155
solve, dtpMatrix, triangularMatrix-method
(solve-methods), 155
solve, dtrMatrix, dgeMatrix-method
(solve-methods), 155
solve, dtrMatrix, triangularMatrix-method
(solve-methods), 155
solve, indMatrix, ANY-method
(solve-methods), 155
solve, matrix, Matrix-method
(solve-methods), 155
solve, matrix, sparseVector-method
(solve-methods), 155
solve, MatrixFactorization, CsparseMatrix-method
(solve-methods), 155
solve, MatrixFactorization, denseMatrix-method
(solve-methods), 155
solve, diagonalMatrix, ANY-method
(solve-methods), 155
solve, dpoMatrix, ANY-method
(solve-methods), 155
solve, dppMatrix, ANY-method
(solve-methods), 155
solve, dsCMatrix, denseMatrix-method
(solve-methods), 155
solve, dsCMatrix, matrix-method
(solve-methods), 155
solve, dsCMatrix, missing-method
(solve-methods), 155
solve, dsCMatrix, sparseMatrix-method
(solve-methods), 155
solve, dsCMatrix, vector-method
(solve-methods), 155
solve, dspMatrix, ANY-method
(solve-methods), 155
solve, dsyMatrix, ANY-method
(solve-methods), 155
solve, dtCMatrix, dgeMatrix-method
(solve-methods), 155
solve, dtCMatrix, dgeMatrix-method
(solve-methods), 155
solve, dtCMatrix, missing-method
(solve-methods), 155
solve, dtCMatrix, triangularMatrix-method
(solve-methods), 155
solve, dtpMatrix, dgeMatrix-method
(solve-methods), 155
solve, dtpMatrix, missing-method
(solve-methods), 155
solve, dtpMatrix, triangularMatrix-method
(solve-methods), 155
solve, tspart, RsparseMatrix-method
(sympart-methods), 179
solve, tspart, TsparseMatrix-method
(sympart-methods), 179
solve, tspart-methods (sympart-methods), 179

solve, MatrixFactorization, dgCMatrix-method
(solve-methods), 155
solve, MatrixFactorization, dgeMatrix-method
(solve-methods), 155
solve, MatrixFactorization, diagonalMatrix-method
(solve-methods), 155
solve, MatrixFactorization, indMatrix-method
(solve-methods), 155
solve, MatrixFactorization, matrix-method
(solve-methods), 155
solve, MatrixFactorization, RsparseMatrix-method
(solve-methods), 155
solve, pBunchKaufman, dgeMatrix-method
(solve-methods), 155
solve, pBunchKaufman, missing-method
(solve-methods), 155
solve, pCholesky, dgeMatrix-method
(solve-methods), 155
solve, pCholesky, missing-method
(solve-methods), 155
solve, pMatrix, Matrix-method
(solve-methods), 155
solve, pMatrix, matrix-method
(solve-methods), 155
solve, pMatrix, missing-method
(solve-methods), 155
solve, pMatrix, vector-method
(solve-methods), 155
solve, RsparseMatrix, ANY-method
(solve-methods), 155
solve, Schur, ANY-method
(solve-methods), 155
solve, sparseLU, dgCMatrix-method
(solve-methods), 155
solve, sparseLU, dgeMatrix-method
(solve-methods), 155
solve, sparseLU, missing-method
(solve-methods), 155
solve, sparseQR, dgCMatrix-method
(solve-methods), 155
solve, sparseQR, dgeMatrix-method
(solve-methods), 155
solve, sparseQR, missing-method
(solve-methods), 155
solve, triangularMatrix, CsparseMatrix-method
(solve-methods), 155
solve, triangularMatrix, denseMatrix-method
(solve-methods), 155
solve, triangularMatrix, dgCMatrix-method
(solve-methods), 155
solve, triangularMatrix, dgeMatrix-method
(solve-methods), 155
solve, triangularMatrix, diagonalMatrix-method
(solve-methods), 155
solve, triangularMatrix, indMatrix-method
(solve-methods), 155
solve, triangularMatrix, matrix-method
(solve-methods), 155
solve, triangularMatrix, RsparseMatrix-method
(solve-methods), 155
solve, triangularMatrix, sparseVector-method
(solve-methods), 155
solve, triangularMatrix, TsparseMatrix-method
(solve-methods), 155
solve, triangularMatrix, matrix-method
(solve-methods), 155
solve, triangularMatrix, ANY-method
(solve-methods), 155
solve, sparseVector-method
(sparseVector-class), 172
sort, sparseVector-method
(sparseVector-class), 172
sparse.model.matrix, 157, 163, 166
sparseLU, 48, 76, 111, 121, 156
sparseLU-class, 160
SparseM.ontology, 39
sparseMatrix-class, 165
sparseQR, 76, 121, 141, 144, 156, 167
sparseQR-class, 167
sparseVector, 6, 14, 39, 40, 83, 95, 113, 156, 170, 171, 173
sparseVector-class, 172
sparMatrix, 52, 53, 112, 139, 174, 181
stop, 176
str, 120
Subassign-methods, 176
Subscript-methods, 177
substring, 138
sum, 59
summary, 112
Summary, abIndex-method (abIndex-class), 4
INDEX

Summary,denseMatrix-method
(denseMatrix-class), 49
Summary,diagonalMatrix-method
(diagonalMatrix-class), 55
summary,diagonalMatrix-method
(diagonalMatrix-class), 55
Summary,indMatrix-method
(indMatrix-class), 91
Summary,sparseMatrix-method
(sparseMatrix-class), 165
summary,sparseMatrix-method
(sparseMatrix-class), 165
Summary,sparseVector-method
(sparseVector-class), 172
svd, 117, 128, 144, 145
symmetricMatrix, 11, 29, 54, 58, 65, 67, 83,
85, 88, 99, 108, 113, 114, 116, 127,
134, 150, 179, 181
symmetricMatrix-class, 178
symmpart, 85, 99, 122
symmpart (symmpart-methods), 179
symmpart,CsparseMatrix-method
(symmpart-methods), 179
symmpart,denseMatrix-method
(symmpart-methods), 179
symmpart,diagonalMatrix-method
(symmpart-methods), 179
symmpart,indMatrix-method
(symmpart-methods), 179
symmpart,matrix-method
(symmpart-methods), 179
symmpart,RsparseMatrix-method
(symmpart-methods), 179
symmpart,TsparseMatrix-method
(symmpart-methods), 179
symmpart-methods, 179
t, 69, 105, 108, 109, 113, 125, 131, 132, 144,
159
t,CsparseMatrix-method
(CsparseMatrix-class), 44
t,denseMatrix-method
(denseMatrix-class), 49
t,diagonalMatrix-method
(diagonalMatrix-class), 55
t,indMatrix-method(indMatrix-class), 91
t,pmatrix-method(pMatrix-class), 136
t,RsparseMatrix-method
(RsparseMatrix-class), 151
t,sparseVector-method
(sparseVector-class), 172
t,TsparseMatrix-method
(TsparseMatrix-class), 181
t2graph, 166
t2graph (coerce-methods-graph), 37
tail,Matrix-method (Matrix-class), 116
tail,sparseVector-method
(sparseVector-class), 172
tcrossprod, 15, 23, 113, 114, 183
tcrossprod (matmult-methods), 113
tcrossprod,ANY,Matrix-method
(matmult-methods), 113
tcrossprod,ANY,sparseVector-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,CsparseMatrix-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,denseMatrix-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,diagonalMatrix-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,matrix-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,missing-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,TsparseMatrix-method
(matmult-methods), 113
tcrossprod,CsparseMatrix,vector-method
(matmult-methods), 113
tcrossprod,denseMatrix,CsparseMatrix-method
(matmult-methods), 113
tcrossprod,denseMatrix,denseMatrix-method
(matmult-methods), 113
tcrossprod,denseMatrix,matrix-method
(matmult-methods), 113
tcrossprod,denseMatrix,missing-method
(matmult-methods), 113
tcrossprod,denseMatrix,RsparseMatrix-method
(matmult-methods), 113
tcrossprod,denseMatrix,TsparseMatrix-method
(matmult-methods), 113
tcrossprod,denseMatrix,vector-method
(matmult-methods), 113
tcrossprod,diagonalMatrix,CsparseMatrix-method
(matmult-methods), 113
tcrossprod,diagonalMatrix,denseMatrix-method
(matmult-methods), 113
tcrossprod,diagonalMatrix,diagonalMatrix-method
(matmult-methods), 113
tcrossprod,diagonalMatrix,matrix-method
(matmult-methods), 113
tcrossprod,diagonalMatrix,missing-method
(matmult-methods), 113

105x709
INDEX
writeMM, sparseMatrix-method
    (externalFormats), 79
wrld_1deg, 185

xtabs, 163, 166

zapsmall, 64, 127
zapsmall, Matrix-method (Matrix-class), 116
zapsmall, sparseVector-method
    (sparseVector-class), 172
zMatrix-class (Matrix-notyet), 118
zsparseVector-class
    (sparseVector-class), 172