Package ‘Matrix’

August 14, 2023

Version 1.6-1
Date 2023-08-11
Priority recommended
Title Sparse and Dense Matrix Classes and Methods
Description A rich hierarchy of sparse and dense matrix classes, including general, symmetric, triangular, and diagonal matrices with numeric, logical, or pattern entries. Efficient methods for operating on such matrices, often wrapping the ‘BLAS’, ‘LAPACK’, and ‘SuiteSparse’ libraries.
License GPL (>= 2) | file LICENSE
BugReports https://R-forge.R-project.org/tracker/?atid=294&group_id=61
Contact Matrix-authors@R-project.org
Depends R (>= 3.5.0), methods
Imports grDevices, graphics, grid, lattice, stats, utils
Suggests MASS, datasets, sfsmisc
Enhances SparseM, graph
LazyData no
LazyDataNote not possible, since we use data/*.R and our S4 classes
BuildResaveData no
Encoding UTF-8
NeedsCompilation yes
Author Douglas Bates [aut] (<https://orcid.org/0000-0001-8316-9503>),
 Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),
 Mikael Jagan [aut] (<https://orcid.org/0000-0002-3542-2938>),
 Timothy A. Davis [ctb] (<https://orcid.org/0000-0001-7614-6899>),
 SuiteSparse libraries, notably CHOLMOD and AMD, collaborators
 listed in dir(pattern="^\{A-Z\}+.txt$", full.names=TRUE,
 system.file("doc", "SuiteSparse", package="Matrix")),
 Jens Oehlschlägel [ctb] (initial nearPD()),
R topics documented:

abIndex-class .. 5
abIsq .. 6
all-methods .. 7
all.equal-methods ... 8
atomicVector-class .. 9
band-methods ... 9
bandSparse .. 11
bdia ... 12
boolmatmult-methods .. 15
BunchKaufman-class ... 16
BunchKaufman-methods ... 19
CAex ... 20
cbind2-methods .. 21
CHMfactor-class ... 23
chol-methods .. 27
chol2inv-methods ... 30
Cholesky-class ... 32
Cholesky-methods .. 34
cooerce-methods-graph ... 40
cooerce-methods-SparseM 42
colSums-methods .. 42
compMatrix-class ... 44
condest .. 45
CsparsesMatrix-class ... 47
ddenseMatrix-class ... 49
ddiMatrix-class .. 49
denseLU-class ... 50
denseMatrix-class ... 52
dgCMatrix-class .. 53
dgEMatrix-class .. 54
dgRMatrix-class .. 56
dgTMatrix-class ... 57
Diagonal .. 58
diagonalMatrix-class .. 60
diagU2N .. 61
dimScale .. 63
dMatrix-class ... 64
R topics documented:

- dmperm .. 65
- dpoMatrix-class 67
- drop0 ... 69
- dsCMatrix-class 70
- dsparseMatrix-class 72
- dsRMatrix-class 73
- dsyMatrix-class 74
- dtCMatrix-class 75
- dtpMatrix-class 77
- dtRMatrix-class 79
- expand-methods 81
- expm-methods 84
- externalFormats 85
- facmul-methods 87
- fastMisc ... 88
- forceSymmetric-methods 92
- formatSparseM 93
- generalMatrix-class 94
- Hilbert ... 95
- image-methods 96
- index-class 98
- indMatrix-class 99
- invertPerm 101
- is.na-methods 103
- is.null.DN 104
- isSymmetric-methods 105
- isTriangular-methods 107
- KhatriRao .. 108
- KNex ... 110
- kronecker-methods 111
- ldenseMatrix-class 112
- ldiMatrix-class 113
- lgeMatrix-class 114
- lsparseMatrix-classes 115
- lsyMatrix-class 117
- ltrMatrix-class 118
- lu-methods 119
- mat2triplet 121
- matmult-methods 122
- Matrix .. 124
- Matrix-class 126
- Matrix-notyet 128
- MatrixClass 129
- MatrixFactorization-class 130
- ndenseMatrix-class 131
- nearPD ... 132
- ngeMatrix-class 135
R topics documented:

<table>
<thead>
<tr>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>nMatrix-class</td>
<td>136</td>
</tr>
<tr>
<td>nnzero-methods</td>
<td>137</td>
</tr>
<tr>
<td>norm-methods</td>
<td>139</td>
</tr>
<tr>
<td>nsparseMatrix-classes</td>
<td>140</td>
</tr>
<tr>
<td>nsyMatrix-class</td>
<td>142</td>
</tr>
<tr>
<td>ntrMatrix-class</td>
<td>143</td>
</tr>
<tr>
<td>number-class</td>
<td>144</td>
</tr>
<tr>
<td>pack</td>
<td>144</td>
</tr>
<tr>
<td>packedMatrix-class</td>
<td>146</td>
</tr>
<tr>
<td>pMatrix-class</td>
<td>147</td>
</tr>
<tr>
<td>printSpMatrix</td>
<td>149</td>
</tr>
<tr>
<td>qr-methods</td>
<td>151</td>
</tr>
<tr>
<td>rankMatrix</td>
<td>155</td>
</tr>
<tr>
<td>rcond-methods</td>
<td>158</td>
</tr>
<tr>
<td>rep2abI</td>
<td>160</td>
</tr>
<tr>
<td>replValue-class</td>
<td>161</td>
</tr>
<tr>
<td>rleDiff-class</td>
<td>161</td>
</tr>
<tr>
<td>rsparsematrix</td>
<td>162</td>
</tr>
<tr>
<td>RsparseMatrix-class</td>
<td>163</td>
</tr>
<tr>
<td>Schur-class</td>
<td>164</td>
</tr>
<tr>
<td>Schur-methods</td>
<td>166</td>
</tr>
<tr>
<td>solve-methods</td>
<td>168</td>
</tr>
<tr>
<td>sparse.model.matrix</td>
<td>171</td>
</tr>
<tr>
<td>sparseLU-class</td>
<td>173</td>
</tr>
<tr>
<td>sparseMatrix</td>
<td>175</td>
</tr>
<tr>
<td>sparseMatrix-class</td>
<td>179</td>
</tr>
<tr>
<td>sparseQR-class</td>
<td>181</td>
</tr>
<tr>
<td>sparseVector</td>
<td>185</td>
</tr>
<tr>
<td>sparseVector-class</td>
<td>186</td>
</tr>
<tr>
<td>spMatrix</td>
<td>189</td>
</tr>
<tr>
<td>Subassign-methods</td>
<td>191</td>
</tr>
<tr>
<td>Subscript-methods</td>
<td>192</td>
</tr>
<tr>
<td>symmetricMatrix-class</td>
<td>193</td>
</tr>
<tr>
<td>symmpart-methods</td>
<td>194</td>
</tr>
<tr>
<td>triangularMatrix-class</td>
<td>195</td>
</tr>
<tr>
<td>TsparseMatrix-class</td>
<td>196</td>
</tr>
<tr>
<td>uniqTspars</td>
<td>197</td>
</tr>
<tr>
<td>unpackedMatrix-class</td>
<td>199</td>
</tr>
<tr>
<td>updown-methods</td>
<td>200</td>
</tr>
<tr>
<td>USCounties</td>
<td>201</td>
</tr>
<tr>
<td>wrld_1deg</td>
<td>202</td>
</tr>
</tbody>
</table>

Index

204
Class "abIndex" of Abstract Index Vectors

Description

The "abIndex" class, short for "Abstract Index Vector", is used for dealing with large index vectors more efficiently, than using integer (or numeric) vectors of the kind 2:1000000 or c(0:1e5, 1000:1e6).

Note that the current implementation details are subject to change, and if you consider working with these classes, please contact the package maintainers (packageDescription("Matrix")$Maintainer).

Objects from the Class

Objects can be created by calls of the form new("abIndex", ...), but more easily and typically either by as(x, "abIndex") where x is an integer (valued) vector, or directly by abIseq() and combination c(...) of such.

Slots

- kind: a character string, one of ("int32", "double", "rleDiff"), denoting the internal structure of the abIndex object.
- x: Object of class "numLike"; is used (i.e., not of length 0) only iff the object is not compressed, i.e., currently exactly when kind != "rleDiff".
- rleD: object of class "rleDiff", used for compression via rle.

Methods

- as.numeric, as.integer, as.vector signature(x = "abIndex"): ...
- [signature(x = "abIndex", i = "index", j = "ANY", drop = "ANY"): ...
- coerce signature(from = "numeric", to = "abIndex"): ...
- coerce signature(from = "abIndex", to = "numeric"): ...
- coerce signature(from = "abIndex", to = "integer"): ...
- length signature(x = "abIndex"): ...
- Ops signature(e1 = "numeric", e2 = "abIndex"): These and the following arithmetic and logic operations are not yet implemented; see Ops for a list of these (S4) group methods.
- Ops signature(e1 = "abIndex", e2 = "abIndex"): ...
- Ops signature(e1 = "abIndex", e2 = "numeric"): ...
- Summary signature(x = "abIndex"): ...
- show ("abIndex"): simple show method, building on show(<rleDiff>).
- is.na ("abIndex"): works analogously to regular vectors.
- is.finite, is.infinite ("abIndex"): ditto.
Note

This is currently experimental and not yet used for our own code. Please contact us (packageDescription("Matrix")$Maintainer) if you plan to make use of this class.

Partly builds on ideas and code from Jens Oehlschlaegel, as implemented (around 2008, in the GPL'ed part of) package ff.

See Also

rle (base) which is used here; numeric

Examples

showClass("abIndex")
ii <- c(-3:40, 20:70)
str(ai <- as(ii, "abIndex")) # note
ai # -> show() method

stopifnot(identical(-3:20,
as(abIseq1(-3,20), "vector")))

abIseq

Sequence Generation of "abIndex", Abstract Index Vectors

Description

Generation of abstract index vectors, i.e., objects of class "abIndex".

abIseq() is designed to work entirely like seq, but producing "abIndex" vectors.
abIseq1() is its basic building block, where abIseq1(n,m) corresponds to n:m.
c(x,...) will return an "abIndex" vector, when x is one.

Usage

abIseq1(from = 1, to = 1)
abIseq (from = 1, to = 1, by = ((to - from)/(length.out - 1)),
 length.out = NULL, along.with = NULL)

S3 method for class 'abIndex'
c(...)

Arguments
rom, to the starting and (maximal) end value of the sequence.
by number: increment of the sequence.
all-methods

length.out desired length of the sequence. A non-negative number, which for seq and
seq.int will be rounded up if fractional.
along.with take the length from the length of this argument.
... in general an arbitrary number of R objects; here, when the first is an "abIndex"
vector, these arguments will be concatenated to a new "abIndex" object.

Value
An abstract index vector, i.e., object of class "abIndex".

See Also
the class abIndex documentation; rep2abI() for another constructor; rle (base).

Examples
stopifnot(identical(-3:20,
			as(abIseq1(-3,20), "vector")))

try(## (arithmetic) not yet implemented
	abIseq(1, 50, by = 3)
)

all-methods "Matrix" Methods for Functions all() and any()

Description
The basic R functions all and any now have methods for Matrix objects and should behave as for
matrix ones.

Methods

all signature(x = "Matrix", ..., na.rm = FALSE): ...
any signature(x = "Matrix", ..., na.rm = FALSE): ...
all signature(x = "ldenseMatrix", ..., na.rm = FALSE): ...
all signature(x = "lsparseMatrix", ..., na.rm = FALSE): ...
Examples

```r
M <- Matrix(1:12 + 0, 3, 4)
all(M >= 1) # TRUE
any(M < 0) # FALSE
MN <- M; MN[2,3] <- NA; MN
all(MN >= 0) # NA
any(MN < 0) # NA
any(MN < 0, na.rm = TRUE) # -> FALSE
```

Description

Methods for function `all.equal()` (from R package `base`) are defined for all `Matrix` classes.

Methods

```r
target = "Matrix", current = "Matrix" \t
target = "ANY", current = "Matrix" \t
target = "Matrix", current = "ANY"  \tthese three methods are simply using `all.equal.numeric` directly and work via `as.vector()`.
```

There are more methods, notably also for "sparseVector"'s, see `showMethods("all.equal")`.

Examples

```r
showMethods("all.equal")

(A <- spMatrix(3,3, i= c(1:3,2:1), j=c(3:1,1:2), x = 1:5))
ex <- expand(lu. <- lu(A))
stopifnot(all.equal(as(A[lu.@p + 1L, lu.@q + 1L], "CsparseMatrix"),
lu.@L %%% lu.@U),
with(ex, all.equal(as(P %*% A %*% t(Q), "CsparseMatrix"),
L %*% U)),
with(ex, all.equal(as(A, "CsparseMatrix"),
t(P) %*% L %*% U %*% Q)))
```
atomicVector-class

Virtual Class "atomicVector" of Atomic Vectors

Description

The class "atomicVector" is a virtual class containing all atomic vector classes of base R, as also implicitly defined via is.atomic.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

In the Matrix package, the "atomicVector" is used in signatures where typically "old-style" "matrix" objects can be used and can be substituted by simple vectors.

Extends

The atomic classes "logical", "integer", "double", "numeric", "complex", "raw" and "character" are extended directly. Note that "numeric" already contains "integer" and "double", but we want all of them to be direct subclasses of "atomicVector".

Author(s)

Martin Maechler

See Also

is.atomic, integer, numeric, complex, etc.

Examples

showClass("atomicVector")

band-methods

Extract bands of a matrix

Description

Return the matrix obtained by setting to zero elements below a diagonal (triu), above a diagonal (tril), or outside of a general band (band).
Usage

band(x, k1, k2, ...)
triu(x, k = 0L, ...)
tril(x, k = 0L, ...)

Arguments

x a matrix-like object
k, k1, k2 integers specifying the diagonals that are not set to zero. These are interpreted relative to the main diagonal, which is k=0. Positive and negative values of k indicate diagonals above and below the main diagonal, respectively.
...
optional arguments passed methods (currently unused by package Matrix)

Details

triu(x, k) is equivalent to band(x, k, dim(x)[2]). Similarly, tril(x, k) is equivalent to band(x, ~dim(x)[1], k).

Value

An object of a suitable matrix class, inheriting from triangularMatrix where appropriate. It inherits from sparseMatrix if and only if x does.

Methods

x = "CsparseMatrix" method for compressed, sparse, column-oriented matrices.
x = "RsparseMatrix" method for compressed, sparse, row-oriented matrices.
x = "TsparseMatrix" method for sparse matrices in triplet format.
x = "diagonalMatrix" method for diagonal matrices.
x = "denseMatrix" method for dense matrices in packed or unpacked format.
x = "matrix" method for traditional matrices of implicit class matrix.

See Also

bandSparse for the construction of a banded sparse matrix directly from its non-zero diagonals.

Examples

A random sparse matrix :
set.seed(7)
m <- matrix(0, 5, 5)
m[sample(length(m), size = 14)] <- rep(1:9, length=14)
(mm <- as(m, "CsparseMatrix"))
tril(mm) # lower triangle
tril(mm, -1) # strict lower triangle
triu(mm, 1) # strict upper triangle
bandSparse

Construct Sparse Banded Matrix from (Sup-/Super-) Diagonals

Description

Construct a sparse banded matrix by specifying its non-zero sup- and super-diagonals.

Usage

bandSparse(n, m = n, k, diagonals, symmetric = FALSE, repr = "C", giveCsparse = (repr == "C"))

Arguments

n,m the matrix dimension \((n, m) = (nrow, ncol)\).
k integer vector of "diagonal numbers", with identical meaning as in band(*, k), i.e., relative to the main diagonal, which is \(k=0\).
diagonals optional list of sub-/super- diagonals; if missing, the result will be a pattern matrix, i.e., inheriting from class nMatrix. diagonals can also be \(n' \times d\) matrix, where \(d \leq \text{length}(k)\) and \(n' \geq \text{min}(n, m)\). In that case, the sub-/super- diagonals are taken from the columns of diagonals, where only the first several rows will be used (typically) for off-diagonals.
symmetric logical; if true the result will be symmetric (inheriting from class symmetricMatrix) and only the upper or lower triangle must be specified (via k and diagonals).
repr character string, one of "C", "T", or "R", specifying the sparse representation to be used for the result, i.e., one from the super classes CsparseMatrix, TsparseMatrix, or RsparseMatrix.
giveCsparse (deprecated, replaced with repr): logical indicating if the result should be a CsparseMatrix or a TsparseMatrix, where the default was TRUE, and now is determined from repr; very often Csparse matrices are more efficient subsequently, but not always.

Value

a sparse matrix (of class CsparseMatrix) of dimension \(n \times m \) with diagonal “bands” as specified.

See Also

band, for extraction of matrix bands; bdiag, diag, sparseMatrix, Matrix.

Examples

diags <- list(1:30, 10*(1:20), 100*(1:20))
s1 <- bandSparse(13, k = -c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
s1
s2 <- bandSparse(13, k = c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
stopifnot(identical(s1, t(s2)), is(s1,"dsCMatrix"))

a pattern Matrix of *full* (sub-)diagonals:
bk <- c(0:4, 7,9)
(s3 <- bandSparse(30, k = bk, symm = TRUE))

If you want a pattern matrix, but with "sparse"-diagonals,
you currently need to go via logical sparse:
lLis <- lapply(list(rpois(20, 2), rpois(20, 1), rpois(20, 3))[c(1:3, 2:3, 3:2)],
as.logical)
(s4 <- bandSparse(20, k = bk, symm = TRUE, diag = lLis))
(s4. <- as(drop0(s4), "nsparseMatrix"))

n <- 1e4
bk <- c(0:5, 7,11)
bMat <- matrix(1:8, n, 8, byrow=TRUE)
bLis <- as.data.frame(bMat)
B <- bandSparse(n, k = bk, diag = bLis)
Bs <- bandSparse(n, k = bk, diag = bLis, symmetric=TRUE)
B [1:15, 1:30]
Bs[1:15, 1:30]
can use a list *or* a matrix for specifying the diagonals:
stopifnot(identical(B, bandSparse(n, k = bk, diag = bMat)),
identical(Bs, bandSparse(n, k = bk, diag = bMat, symmetric=TRUE)),
inherits(B, "dtCMatrix") # triangular!)
Construct a Block Diagonal Matrix

Description

Build a block diagonal matrix given several building block matrices.

Usage

bdiag(...)
.bdiag(lst)

Arguments

... individual matrices or a list of matrices.
1st non-empty list of matrices.

Details

For non-trivial argument list, bdiag() calls .bdiag(). The latter maybe useful to programmers.

Value

A sparse matrix obtained by combining the arguments into a block diagonal matrix.

The value of bdiag() inherits from class CsparseMatrix, whereas .bdiag() returns a TsparseMatrix.

Note

This function has been written and is efficient for the case of relatively few block matrices which are typically sparse themselves.

It is currently inefficient for the case of many small dense block matrices. For the case of many dense $k \times k$ matrices, the bdiag_m() function in the ‘Examples’ is an order of magnitude faster.

Author(s)

Martin Maechler, built on a version posted by Berton Gunter to R-help; earlier versions have been posted by other authors, notably Scott Chasalow to S-news. Doug Bates’s faster implementation builds on TsparseMatrix objects.

See Also

Diagonal for constructing matrices of class diagonalMatrix, or kronecker which also works for "Matrix" inheriting matrices.

bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals.

Note that other CRAN R packages have own versions of bdiag() which return traditional matrices.
Examples

```r
library(Matrix)

# Examples

bdiag(matrix(1:4, 2), diag(3))
## combine "Matrix" class and traditional matrices:
bdiag(Diagonal(2), matrix(1:3, 3, 4), diag(3:2))

mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1,3:6), 100:101)
bdiag(mlist)
stopifnot(identical(bdiag(mlist),
                   bdiag(lapply(mlist, as.matrix))))

ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"),
         rep(list(Diagonal(2, x=TRUE)), 3))
mln <- c(ml, Diagonal(x = 1:3))
stopifnot(is(bdiag(ml), "lsparseMatrix"),
          is(bdiag(mln),"dsparseMatrix") )

## random (diagonal-)block-triangular matrices:
rblockTri <- function(nb, max.ni, lambda = 3) {
  .bdiag(replicate(nb, {
    n <- sample.int(max.ni, 1)
    tril(Matrix(rpois(n * n, lambda = lambda), n, n))
  }))
}

(T4 <- rblockTri(4, 10, lambda = 1))
(image(T1 <- rblockTri(12, 20)))
```

```r
##' Fast version of Matrix :: .bdiag() -- for the case of *many* (k x k) matrices:
##' @param lmat list(<mat1>, <mat2>, ..., <mat_N>) where each mat_j is a k x k 'matrix'
##' @return a sparse (N*k x N*k) matrix of class \code{"dgCMatrix"}.

bdiag_m <- function(lmat) {
  ## Copyright (C) 2016 Martin Maechler, ETH Zurich
  if(!length(lmat)) return(new("dgCMatrix"))

  stopifnot(is.list(lmat), is.matrix(lmat[[1]]),
            (k <- (d <- dim(lmat[[1]])[1]) == d[2], # k x k
             all(vapply(lmat, dim, integer(2)) == k)) # all of them

  N <- length(lmat)
  if(N * k > .Machine$integer.max)
    stop("resulting matrix too large; would be M x M, with M=", N*k)
  M <- as.integer(N * k)

  new("dgCMatrix", Dim = c(M,M),
       i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]),
       p = k * 0L:M,
       x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE)))
}
```

```r
l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4, 4),
                   simplify=FALSE)
(dim(T12 <- bdiag_m(l12))# 48 x 48
```
Description

For boolean or “pattern” matrices, i.e., R objects of class `nMatrix`, it is natural to allow matrix products using boolean instead of numerical arithmetic.

In package *Matrix*, we use the binary operator `%%` (aka “infix”) function for this and provide methods for all our matrices and the traditional R matrices (see `matrix`).

Value

a pattern matrix, i.e., inheriting from "nMatrix", or an "ldiMatrix" in case of a diagonal matrix.

Methods

We provide methods for both the “traditional” (R base) matrices and numeric vectors and conceptually all matrices and `sparseVectors` in package *Matrix*.

signature(x = "ANY", y = "ANY")
signature(x = "ANY", y = "Matrix")
signature(x = "Matrix", y = "ANY")
signature(x = "mMatrix", y = "mMatrix")
signature(x = "nMatrix", y = "nMatrix")
signature(x = "nMatrix", y = "nsparseMatrix")
signature(x = "nsparseMatrix", y = "nMatrix")
signature(x = "nsparseMatrix", y = "nsparseMatrix")
signature(x = "sparseVector", y = "mMatrix")
signature(x = "mMatrix", y = "sparseVector")
signature(x = "sparseVector", y = "sparseVector")

Note

These boolean arithmetic matrix products had been newly introduced for *Matrix* 1.2.0 (March 2015). Its implementation has still not been tested extensively.

Originally, it was left unspecified how non-structural zeros, i.e., 0’s as part of the `M@x` slot should be treated for numeric ("dMatrix") and logical ("lMatrix") sparse matrices. We now specify that boolean matrix products should behave as if applied to `drop0(M)`, i.e., as if dropping such zeros from the matrix before using it.

Equivalently, for all matrices M, boolean arithmetic should work as if applied to M != 0 (or M != FALSE).

The current implementation ends up coercing both x and y to (virtual) class `nsparseMatrix` which may be quite inefficient for dense matrices. A future implementation may well return a matrix with different class, but the “same” content, i.e., the same matrix entries m_{i,j}.
BunchKaufman-class

Dense Bunch-Kaufman Factorizations

Description

Classes BunchKaufman and pBunchKaufman represent Bunch-Kaufman factorizations of $n \times n$ real, symmetric matrices A, having the general form

$$A = UD_UU' = LD_LL'$$

where D_U and D_L are symmetric, block diagonal matrices composed of b_U and b_L 1×1 or 2×2 diagonal blocks; $U = \prod_{k=1}^{b_U} P_k U_k$ is the product of b_U row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and $L = \prod_{k=1}^{b_L} P_k L_k$ is the product of b_L row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in 1 or 2 columns.

These classes store the nonzero entries of the $2b_U + 1$ or $2b_L + 1$ factors, which are individually sparse, in a dense format as a vector of length nn (BunchKaufman) or $n(n+1)/2$ (pBunchKaufman), the latter giving the “packed” representation.

Slots

Dim, Dimnames inherited from virtual class MatrixFactorization.
BunchKaufman-class

uplo a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn how the x slot is partitioned.

x a numeric vector of length \(n^2\) (BunchKaufman) or \(n(n+1)/2\) (pBunchKaufman), where \(n=\text{Dim}[1]\).

The details of the representation are specified by the manual for LAPACK routines dsytrf and dsytrf.

perm an integer vector of length \(n=\text{Dim}[1]\) specifying row and column interchanges as described in the manual for LAPACK routines dsytrf and dsytrf.

Extends

Class BunchKaufmanFactorization, directly. Class MatrixFactorization, by class BunchKaufmanFactorization, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("BunchKaufman", ...)` or `new("pBunchKaufman", ...), but they are more typically obtained as the value of `BunchKaufman(x)` for x inheriting from dsyMatrix or dspMatrix.

Methods

coerce signature(from = "BunchKaufman", to = "dtrMatrix"): returns a dtrMatrix, useful for inspecting the internal representation of the factorization; see 'Note'.

coerce signature(from = "pBunchKaufman", to = "dtpMatrix"): returns a dtpMatrix, useful for inspecting the internal representation of the factorization; see 'Note'.

determinant signature(from = "p?BunchKaufman", logarithm = "logical"): computes the determinant of the factorized matrix \(A\) or its logarithm.

expand1 signature(x = "p?BunchKaufman"): see expand1-methods.

expand2 signature(x = "p?BunchKaufman"): see expand2-methods.

solve signature(a = "p?BunchKaufman", b = .): see solve-methods.

Note

In Matrix < 1.6-0, class BunchKaufman extended dtrMatrix and class pBunchKaufman extended dtpMatrix, reflecting the fact that the internal representation of the factorization is fundamentally triangular: there are \(n(n+1)/2\) “parameters”, and these can be arranged systematically to form an \(n \times n\) triangular matrix. Matrix 1.6-0 removed these extensions so that methods would no longer be inherited from dtrMatrix and dtpMatrix. The availability of such methods gave the wrong impression that BunchKaufman and pBunchKaufman represent a (singular) matrix, when in fact they represent an ordered set of matrix factors.

The coercions as(., "dtrMatrix") and as(., "dtpMatrix") are provided for users who understand the caveats.
BunchKaufman-class

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.

See Also

Class dsyMatrix and its packed counterpart.

Generic functions BunchKaufman, expand1, and expand2.

Examples

showClass("BunchKaufman")
set.seed(1)

n <- 6L
(A <- forceSymmetric(Matrix(rnorm(n * n), n, n)))

With dimnames, to see that they are propagated :
dimnames(A) <- rep.int(list(paste0("x", seq_len(n))), 2L)

(bk.A <- BunchKaufman(A))
str(e.bk.A <- expand2(bk.A, complete = FALSE), max.level = 2L)
str(E.bk.A <- expand2(bk.A, complete = TRUE), max.level = 2L)

Underlying LAPACK representation
(m.bk.A <- as(bk.A, "dtrMatrix"))
stopifnot(identical(as(m.bk.A, "matrix"), `dim<-(bk.A@x, bk.A@Dim)))

Number of factors is 2*b+1, b <= n, which can be nontrivial ...
(b <- (length(E.bk.A) - 1L) %/% 2L)
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ U DU U', U := prod(Pk Uk) in floating point
stopifnot(exprs = {
 identical(names(e.bk.A), c("U", "DU", "U."))
 identical(e.bk.A[['U']], Reduce("%*%", E.bk.A[seq_len(b)]))
 identical(e.bk.A[['U.']], t(e.bk.A[['U']]))
 ae1(A, with(e.bk.A, U %*% DU %*% U.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(bk.A)),
 identical(solve(A, b), solve(bk.A, b)))
Description

Computes the Bunch-Kaufman factorization of an $n \times n$ real, symmetric matrix A, which has the general form

$$A = U D_U U' = L D_L L'$$

where D_U and D_L are symmetric, block diagonal matrices composed of b_{U} and b_{L} 1×1 or 2×2 diagonal blocks; $U = \prod_{k=1}^{b_{U}} P_k U_k$ is the product of b_{U} row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and $L = \prod_{k=1}^{b_{L}} P_k L_k$ is the product of b_{L} row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in 1 or 2 columns.

Methods are built on LAPACK routines dsytrf and dsptrf.

Usage

```r
BunchKaufman(x, ...)  
## S4 method for signature 'dsyMatrix'
BunchKaufman(x, warnSing = TRUE, ...)  
## S4 method for signature 'dspMatrix'
BunchKaufman(x, warnSing = TRUE, ...)  
## S4 method for signature 'matrix'
BunchKaufman(x, uplo = "U", ...)  
```

Arguments

- **x** a finite symmetric matrix or Matrix to be factorized. If x is square but not symmetric, then it will be treated as symmetric; see uplo.
- **warnSing** a logical indicating if a warning should be signaled for singular x.
- **uplo** a string, either "U" or "L", indicating which triangle of x should be used to compute the factorization.
- ... further arguments passed to or from methods.

Value

An object representing the factorization, inheriting from virtual class BunchKaufmanFactorization. The specific class is BunchKaufman unless x inherits from virtual class packedMatrix, in which case it is pBunchKaufman.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.

See Also

Classes `BunchKaufman` and `pBunchKaufman` and their methods.
Classes `dsyMatrix` and `dspMatrix`.
Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.
Generic functions `Cholesky`, `Schur`, `lu`, and `qr`, for computing other factorizations.

Examples

```r
showMethods("BunchKaufman", inherited = FALSE)
set.seed(0)
data(CAex, package = "Matrix")
class(CAex) # dgCMatrix
isSymmetric(CAex) # symmetric, but not formally

A <- as(CAex, "symmetricMatrix")
class(A) # dsCMatrix

## Have methods for denseMatrix (unpacked and packed),
## but not yet sparseMatrix ...
## Not run:
(bk.A <- BunchKaufman(A))

## End(Not run)
(bk.A <- BunchKaufman(as(A, "unpackedMatrix")))

## A ~ U DU U' in floating point
str(e.bk.A <- expand2(bk.A), max.level = 2L)
stopifnot(all.equal(as(A, "matrix"), as(Reduce("%*%", e.bk.A), "matrix")))
```

Description

An example of a sparse matrix for which `eigen()` seemed to be difficult, an unscaled version of this has been posted to the web, accompanying an E-mail to R-help (https://stat.ethz.ch/mailman/listinfo/r-help), by Casper J Albers, Open University, UK.

Usage

data(CAex)

Format

This is a 72×72 symmetric matrix with 216 non-zero entries in five bands, stored as sparse matrix of class `dgCMatrix`.
cbind2-methods

Details

Historical note (2006-03-30): In earlier versions of R, `eigen(CAex)` fell into an infinite loop whereas `eigen(CAex, EISPACK=TRUE)` had been okay.

Examples

data(CAex, package = "Matrix")
str(CAex) # of class "dgCMatrix"

image(CAex)# -> it's a simple band matrix with 5 bands
and the eigen values are basically 1 (42 times) and 0 (30 x):
zapsmall(ev <- eigen(CAex, only.values=TRUE)$values)
i.e., the matrix is symmetric, hence
sCA <- as(CAex, "symmetricMatrix")
and
stopifnot(class(sCA) == "dsCMatrix",
as(sCA, "matrix") == as(CAex, "matrix"))

cbind2-methods 'cbind()' and 'rbind()' recursively built on cbind2/rbind2

Description

The base functions `cbind` and `rbind` are defined for an arbitrary number of arguments and hence have the first formal argument ... Now, when S4 objects are found among the arguments, base `cbind()` and `rbind()` internally “dispatch” *recursively*, calling `cbind2` or `rbind2` respectively, where these have methods defined and so should dispatch appropriately.

`cbind2()` and `rbind2()` are from the `methods` package, i.e., standard R, and have been provided for binding together *two* matrices, where in Matrix, we have defined methods for these and the 'Matrix' matrices.

Usage

```r
## cbind(..., deparse.level = 1)
## rbind(..., deparse.level = 1)

## S4 method for signature 'denseMatrix,sparseMatrix'
cbind2(x, y, sparse = NA, ...)
## S4 method for signature 'sparseMatrix,denseMatrix'
cbind2(x, y, sparse = NA, ...)
## S4 method for signature 'denseMatrix,sparseMatrix'
rbind2(x, y, sparse = NA, ...)
## S4 method for signature 'sparseMatrix,denseMatrix'
rbind2(x, y, sparse = NA, ...)
```
Arguments

... for \texttt{[cb]bind}, vector- or matrix-like \texttt{R} objects to be bound together; for \texttt{[cb]bind2}, further arguments passed to or from methods; see \texttt{cbind} and \texttt{cbind2}.

deparse.level integer controlling the construction of labels in the case of non-matrix-like arguments; see \texttt{cbind}.

x, y vector- or matrix-like \texttt{R} objects to be bound together.

sparse \texttt{logical} indicating if the result should be formally sparse, i.e., if it should inherit from virtual class \texttt{sparseMatrix}. \texttt{NA}, the default, decides based on the “sparsity” of \texttt{x} and \texttt{y}; see, e.g., \texttt{selectMethod(cbind2, c("sparseMatrix", "denseMatrix")}.

Value

typically a ‘matrix-like’ object of a similar \texttt{class} as the first argument in \ldots

Note that sometimes by default, the result is a \texttt{sparseMatrix} if one of the arguments is (even in the case where this is not efficient). In other cases, the result is chosen to be sparse when there are more zero entries than non-zero ones (as the default \texttt{sparse} in \texttt{Matrix()}).

Author(s)

Martin Maechler

See Also

\texttt{cbind, cbind2}.

Our class definition help pages mentioning \texttt{cbind2()} and \texttt{rbind2()} methods: “\texttt{denseMatrix}”, “\texttt{diagonalMatrix}”, “\texttt{indMatrix}”.

Examples

(a <- matrix(c(2:1,1:2), 2,2))

(M1 <- cbind(0, rbind(a, 7))) # a traditional matrix

D <- Diagonal(2)

(M2 <- cbind4(a, D, -1, D, 0)) # a sparse Matrix

stopifnot(validObject(M2), inherits(M2, "sparseMatrix"),
 dim(M2) == c(2,9))
Description

CHMfactor is the virtual class of sparse Cholesky factorizations of $n \times n$ real, symmetric matrices A, having the general form

$$P_1 A P_1' = L_1 D L_1' \quad D_{ij} \geq 0 \quad LL'$$

or (equivalently)

$$A = P_1' L_1 D L_1' P_1 \quad D_{ij} \geq 0 \quad L_1' L_1$$

where P_1 is a permutation matrix, L_1 is a unit lower triangular matrix, D is a diagonal matrix, and $L = L_1 \sqrt{D}$. The second equalities hold only for positive semidefinite A, for which the diagonal entries of D are non-negative and \sqrt{D} is well-defined.

The implementation of class CHMfactor is based on CHOLMOD’s C-level cholmod_factor_struct.

Virtual subclasses CHMsimpl and CHMsuper separate the simplicial and supernodal variants. These have nonvirtual subclasses [dn]CHMsimpl and [dn]CHMsuper, where prefix ‘d’ and prefix ‘n’ are reserved for numeric and symbolic factorizations, respectively.

Usage

isLDL(x)

Arguments

x an object inheriting from virtual class CHMfactor, almost always the result of a call to generic function Cholesky.

Value

isLDL(x) returns TRUE or FALSE: TRUE if x stores the lower triangular entries of $L_1 - I + D$, FALSE if x stores the lower triangular entries of L.

Slots

Of CHMfactor:

Dim, Dimnames inherited from virtual class MatrixFactorization.

colcount an integer vector of length Dim[1] giving an estimate of the number of nonzero entries in each column of the lower triangular Cholesky factor. If symbolic analysis was performed prior to factorization, then the estimate is exact.

perm a 0-based integer vector of length Dim[1] specifying the permutation applied to the rows and columns of the factorized matrix. perm of length 0 is valid and equivalent to the identity permutation, implying no pivoting.
type an integer vector of length 6 specifying details of the factorization. The elements correspond to members ordering, is_ll, is_super, is_monotonic, maxcsize, and maxesize of the original cholmod_factor_struct. Simplicial and supernodal factorizations are distinguished by is_super. Simplicial factorizations do not use maxcsize or maxesize. Supernodal factorizations do not use is_ll or is_monotonic.

Of CHMsimpl (all unused by nCHMsimpl):

nz an integer vector of length Dim[1] giving the number of nonzero entries in each column of the lower triangular Cholesky factor. There is at least one nonzero entry in each column, because the diagonal elements of the factor are stored explicitly.

p an integer vector of length Dim[1]+1. Row indices of nonzero entries in column j of the lower triangular Cholesky factor are obtained as i[p[j]+seq_len(nz[j])+1].

i an integer vector of length greater than or equal to sum(nz) containing the row indices of nonzero entries in the lower triangular Cholesky factor. These are grouped by column and sorted within columns, but the columns themselves need not be ordered monotonically. Columns may be overallocated, i.e., the number of elements of i reserved for column j may exceed nz[j].

prv, nxt integer vectors of length Dim[1]+2 indicating the order in which the columns of the lower triangular Cholesky factor are stored in i and x. Starting from j <- Dim[1]+2, the recursion j <- nxt[j+1]+1 traverses the columns in forward order and terminates when nxt[j+1] = -1. Starting from j <- Dim[1]+1, the recursion j <- prv[j+1]+1 traverses the columns in backward order and terminates when prv[j+1] = -1.

Of dCHMsimpl:

x a numeric vector parallel to i containing the corresponding nonzero entries of the lower triangular Cholesky factor L or (if and only if type[2] is 0) of the lower triangular matrix $L_1 - I + D$.

Of CHMsuper:

super, pi, px integer vectors of length nsuper+1, where nsuper is the number of supernodes. super[j]+1 is the index of the leftmost column of supernode j. The row indices of supernode j are obtained as s[pi[j]+seq_len(pi[j+1]-pi[j])+1]. The numeric entries of supernode j are obtained as x[px[j]+seq_len(px[j+1]-px[j])+1] (if slot x is available).

s an integer vector of length greater than or equal to Dim[1] containing the row indices of the supernodes. s may contain duplicates, but not within a supernode, where the row indices must be increasing.

Of dCHMsuper:

x a numeric vector of length less than or equal to prod(Dim) containing the numeric entries of the supernodes.

Extends

Class MatrixFactorization, directly.
Instantiation

Objects can be generated directly by calls of the form `new("dCHMsimpl", ...)`, etc., but `dCHMsimpl` and `dCHMsuper` are more typically obtained as the value of `Cholesky(x, ...)` for `x` inheriting from `sparseMatrix` (often `dsCMatrix`).

There is currently no API outside of calls to `new` for generating `nCHMsimpl` and `nCHMsuper`. These classes are vestigial and may be formally deprecated in a future version of `Matrix`.

Methods

- `coerce signature(from = "CHMsimpl", to = "dtCMatrix")`: returns a `dtCMatrix` representing the lower triangular Cholesky factor `L` or the lower triangular matrix `L_1 - I + D`, the latter if and only if `from@type[2]` is 0.
- `coerce signature(from = "CHMsuper", to = "dgCMatrix")`: returns a `dgCMatrix` representing the lower triangular Cholesky factor `L`. Note that, for supernodes spanning two or more columns, the supernodal algorithm by design stores non-structural zeros above the main diagonal, hence `dgCMatrix` is indeed more appropriate than `dtCMatrix` as a coercion target.
- `determinant signature(from = "CHMfactor", logarithm = "logical")`: behaves according to an optional argument `sqrt`. If `sqrt = FALSE`, then this method computes the determinant of the factorized matrix `A` or its logarithm. If `sqrt = TRUE`, then this method computes the determinant of the factor `L = L_1 sqrt(D)` or its logarithm, giving NaN for the modulus when `D` has negative diagonal elements. For backwards compatibility, the default value of `sqrt` is TRUE, but that can be expected change in a future version of `Matrix`, hence defensive code will always set `sqrt` (to TRUE, if the code must remain backwards compatible with `Matrix < 1.6-0`). Calls to this method not setting `sqrt` may warn about the pending change. The warnings can be disabled with `options(Matrix.warnSqrtDefault = 0)`.
- `diag signature(x = "CHMfactor")`: returns a numeric vector of length `n` containing the diagonal elements of `D`, which (if they are all non-negative) are the squared diagonal elements of `L`.
- `expand signature(x = "CHMfactor")`: see `expand-methods`.
- `expand1 signature(x = "CHMsimpl")`: see `expand1-methods`.
- `expand1 signature(x = "CHMsuper")`: see `expand1-methods`.
- `expand2 signature(x = "CHMsimpl")`: see `expand2-methods`.
- `expand2 signature(x = "CHMsuper")`: see `expand2-methods`.
- `image signature(x = "CHMfactor")`: see `image-methods`.
- `nnzero signature(x = "CHMfactor")`: see `nnzero-methods`.
- `solve signature(a = "CHMfactor", b = .)`: see `solve-methods`.
- `update signature(object = "CHMfactor")`: returns a copy of object with the same nonzero pattern but with numeric entries updated according to additional arguments `parent` and `mult`, where `parent` is (coercible to) a `dsCMatrix` or a `dgCMatrix` and `mult` is a numeric vector of positive length.

 The numeric entries are updated with those of the Cholesky factor of `F(parent) + mult[1] * I`, i.e., `F(parent)` plus `mult[1]` times the identity matrix, where `F = identity` for symmetric parent and `F = tcrossprod` for other parent. The nonzero pattern of `F(parent)` must match that of `S` if `object = Cholesky(S, ...)`, or `object = "CHMfactor")`: see `updown-methods`.
- `updown signature(update = ., C = ., object = "CHMfactor")`: see `updown-methods`.

References

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

See Also

Class dscMatrix.

Generic functions Cholesky, updown, expand1 and expand2.

Examples

```r
showClass("dCHMsimpl")
showClass("dCHMsuper")
set.seed(2)

m <- 1000L
n <- 200L
M <- rsparsematrix(m, n, 0.01)
A <- crossprod(M)

## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)

(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
  identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
  identical(names(E.ch.A), c("P1.", "L", "L.", "P1"))
  identical(e.ch.A["P1"],
    new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
       margin = 2L, perm = invertPerm(ch.A@perm, 0L, 1L)))
  identical(e.ch.A["P1."], t(e.ch.A["P1"]))
  identical(e.ch.A["L1."], t(e.ch.A["L1"]))
  identical(E.ch.A["L."], t(E.ch.A["L" ]))
  identical(e.ch.A["D"], Diagonal(x = diag(ch.A)))
})
```
Chol-methods

Compute the Cholesky Factor of a Matrix

Description

Computes the upper triangular Cholesky factor of an \(n \times n \) real, symmetric, positive semidefinite matrix \(A \), optionally after pivoting. That is the factor \(L' \) in

\[
P_1 A P_1' = LL'
\]

or (equivalently)

\[
A = P_1' LL' P_1
\]

where \(P_1 \) is a permutation matrix.

Methods for `denseMatrix` are built on LAPACK routines `dpstrf`, `dpotrf`, and `dpptrf`. The latter two do not permute rows or columns, so that \(P_1 \) is an identity matrix.

Methods for `sparseMatrix` are built on CHOLMOD routines `cholmod_analyze` and `cholmod_factorize_p`.

Usage

```r
chol(x, ...)  # S4 method for signature 'dsyMatrix'
chol(x, pivot = FALSE, tol = -1, ...)  # S4 method for signature 'dspMatrix'
chol(x, ...)  # S4 method for signature 'dsCMatrix'
chol(x, pivot = FALSE, ...)  # S4 method for signature 'ddiMatrix'
chol(x, ...)  # S4 method for signature 'generalMatrix'
chol(x, uplo = "U", ...)  # S4 method for signature 'triangularMatrix'
chol(x, uplo = "U", ...)  # S4 method for signature 'triangularMatrix'
```

```r
all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %% sqrt(D)))
ae1(A, with(e.ch.A, P1. %% L1 %% D %% L1. %% P1))
ae1(A, with(E.ch.A, P1. %% L %% L. %% P1))
ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(e.ch.A, L1 %% D %% L1.))
ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(E.ch.A, L %% L.))
}
```

Factorization handled as factorized matrix

(in some cases only optionally, depending on arguments)

```r
b <- rnorm(n)
stopifnot(identical(det(A), det(ch.A, sqrt = FALSE)),
          identical(solve(A, b), solve(ch.A, b, system = "A")))
```

```r
u1 <- update(ch.A, A, mult = sqrt(2))
u2 <- update(ch.A, t(M), mult = sqrt(2))  # updating with crossprod(M), not M
stopifnot(all.equal(u1, u2, tolerance = 1e-14))
```
Arguments

- **x**: a finite, symmetric, positive semidefinite matrix or `Matrix` to be factorized. If x is square but not symmetric, then it will be treated as symmetric; see `uplo`. Methods for dense x require positive definiteness when `pivot = FALSE`. Methods for sparse (but not diagonal) x require positive definiteness unconditionally.

- **pivot**: a logical indicating if the rows and columns of x should be pivoted. Methods for sparse x employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability.

- **tol**: a finite numeric tolerance, used only if `pivot = TRUE`. The factorization algorithm stops if the pivot is less than or equal to tol. Negative tol is equivalent to `nrow(x) * .Machine$double.eps * max(diag(x))`.

- **uplo**: a string, either "U" or "L", indicating which triangle of x should be used to compute the factorization. The default is "U", even for lower triangular x, to be consistent with `chol` from base.

- ... further arguments passed to or from methods.

Details

For x inheriting from `diagonalMatrix`, the diagonal result is computed directly and without pivoting, i.e., bypassing CHOLMOD.

For all other x, `chol(x, pivot = value)` calls `Cholesky(x, perm = value, ...)` under the hood. If you must know the permutation P_1 in addition to the Cholesky factor L', then call `Cholesky` directly, as the result of `chol(x, pivot = TRUE)` specifies L' but not P_1.

Value

A matrix, `triangularMatrix`, or `diagonalMatrix` representing the upper triangular Cholesky factor L'. The result is a traditional matrix if x is a traditional matrix, dense if x is dense, and sparse if x is sparse.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/double/dpptrf.f.

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file 'CHOLMOD/Include/cholmod.h' defining cholmod_factor_struct.

See Also

The default method from base, chol, called for traditional matrices x.

Generic function Cholesky, for more flexibility notably when computing the Cholesky factorization and not only the factor L'.

Examples

showMethods("chol", inherited = FALSE)
set.seed(0)

---- Dense --
chol(x, pivot = value) wrapping Cholesky(x, perm = value)
selectMethod("chol", "dsyMatrix")
Except in packed cases where pivoting is not yet available
selectMethod("chol", "dspMatrix")
.... Positive definite ..
(A1 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 5)))
(R1.nopivot <- chol(A1))
(R1 <- chol(A1, pivot = TRUE))
In 2-by-2 cases, we know that the permutation is 1:2 or 2:1,
even if in general 'chol' does not say ...
stopifnot(exprs = {
 all.equal(A1 , as(crossprod(R1.nopivot), "dsyMatrix"))
 all.equal(t(A1[2:1, 2:1]), as(crossprod(R1), "dsyMatrix"))
 identical(Cholesky(A1)@perm, 2:1) # because 5 > 1
})
.... Positive semidefinite but not positive definite
(A2 <- new("dpoMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 4)))
try(R2.nopivot <- chol(A2)) # fails as not positive definite
(R2 <- chol(A2, pivot = TRUE)) # returns, with a warning and ...
stopifnot(exprs = {
 all.equal(t(A2[2:1, 2:1]), as(crossprod(R2), "dsyMatrix"))
 identical(Cholesky(A2)@perm, 2:1) # because 4 > 1
})
.... Not positive semidefinite
(A3 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 3)))
try(R3.nopivot <- chol(A3)) # fails as not positive definite
(R3 <- chol(A3, pivot = TRUE)) # returns, with a warning and ...
Not equal: see details and examples in help("Cholesky")
all.equal(t(A3[,2:1, 2:1]), as(crossprod(R3), "dsyMatrix"))

---- Sparse ---
chol(x, pivot = value) wrapping
Cholesky(x, perm = value, LDL = FALSE, super = FALSE)
selectMethod("chol", "dsCMatrix")

Except in diagonal cases which are handled "directly"
selectMethod("chol", "ddiMatrix")

(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))

(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(A4))
(R4 <- chol(A4, pivot = TRUE))

det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)

stopifnot(exprs = {
identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
identical(R4, expand1(ch.A4, "L."))
all.equal(A4, crossprod(R4.nopivot))
all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
all.equal(diag(R4), sqrt(diag(ch.A4)))
all.equal(sqrt(det4), sqrt(diag(ch.A4.nopivot)))
all.equal(sqrt(det4), sqrt(diag(R4.nopivot)))
all.equal(sqrt(det4), det(R4))
all.equal(sqrt(det4), det(R4.nopivot))
all.equal(sqrt(det4), det(R4.nopivot))
all.equal(sqrt(det4, det(R4.nopivot), sqrt = FALSE))
all.equal(sqrt(det4, det(ch.A4.nopivot, sqrt = FALSE))
all.equal(sqrt(det4, det(ch.A4, sqrt = FALSE))
all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
all.equal(x4, solve(ch.A4.nopivot, b4))
all.equal(x4, solve(ch.A4, b4))
})

chol2inv-methods: Inverse from Cholesky Factor

Description

Given formally upper and lower triangular matrices U and L, compute $(U'U)^{-1}$ and $(LL')^{-1}$, respectively.

This function can be seen as way to compute the inverse of a symmetric positive definite matrix given its Cholesky factor. Equivalently, it can be seen as a way to compute $(X'X)^{-1}$ given the R part of the QR factorization of X.

Usage

chol2inv(x, ...)
S4 method for signature 'dtrMatrix'
chol2inv(x, ...)
S4 method for signature 'dtCMatrix'
chol2inv(x, ...)
S4 method for signature 'generalMatrix'
chol2inv(x, uplo = "U", ...)

Arguments

x a square matrix or Matrix, typically the result of a call to chol. If x is square but not (formally) triangular, then only the upper or lower triangle is considered, depending on optional argument uplo if x is a Matrix.

uplo a string, either "U" or "L", indicating which triangle of x contains the Cholesky factor. The default is "U", to be consistent with chol2inv from base.

... further arguments passed to or from methods.

Value

A matrix, symmetricMatrix, or diagonalMatrix representing the inverse of the positive definite matrix whose Cholesky factor is x. The result is a traditional matrix if x is a traditional matrix, dense if x is dense, and sparse if x is sparse.

See Also

The default method from base, chol2inv, called for traditional matrices x.

Generic function chol, for computing the upper triangular Cholesky factor L' of a symmetric positive semidefinite matrix.

Generic function solve, for solving linear systems and (as a corollary) for computing inverses more generally.

Examples

(A <- Matrix(cbind(c(1, 1, 1), c(1, 2, 4), c(1, 4, 16))))
(R <- chol(A))
(L <- t(R))
(R2i <- chol2inv(R))
(L2i <- chol2inv(R))
stopifnot(exprs = {
 all.equal(R2i, tcrossprod(solve(R)))
 all.equal(L2i, crossprod(solve(L)))
 all.equal(as(R2i %*% A, "matrix"), diag(3L)) # the identity
 all.equal(as(L2i %*% A, "matrix"), diag(3L)) # ditto
})
Description

Classes Cholesky and pCholesky represent dense, pivoted Cholesky factorizations of \(n \times n \) real, symmetric, positive semidefinite matrices \(A \), having the general form

\[
P_1 A P_1' = L_1 D L_1' = L L'
\]

or (equivalently)

\[
A = P_1' L_1 D L_1' P_1 = P_1' L L' P_1
\]

where \(P_1 \) is a permutation matrix, \(L_1 \) is a unit lower triangular matrix, \(D \) is a non-negative diagonal matrix, and \(L = L_1 \sqrt{D} \).

These classes store the entries of the Cholesky factor \(L \) or its transpose \(L' \) in a dense format as a vector of length \(n n \) (Cholesky) or \(n(n+1)/2 \) (pCholesky), the latter giving the “packed” representation.

Slots

- \texttt{Dim, Dimnames} inherited from virtual class \texttt{MatrixFactorization}.
- \texttt{uplo} a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn whether \texttt{x} stores \(L' \) or \(L \).
- \texttt{x} a numeric vector of length \(n n \) (Cholesky) or \(n(n+1)/2 \) (pCholesky), where \(n = \text{Dim}[1] \), listing the entries of the Cholesky factor \(L \) or its transpose \(L' \) in column-major order.
- \texttt{perm} a 1-based integer vector of length \(\text{Dim}[1] \) specifying the permutation applied to the rows and columns of the factorized matrix. \texttt{perm} of length 0 is valid and equivalent to the identity permutation, implying no pivoting.

Extends

Class \texttt{CholeskyFactorization}, directly. Class \texttt{MatrixFactorization}, by class \texttt{CholeskyFactorization}, distance 2.

Instantiation

Objects can be generated directly by calls of the form \texttt{new("Cholesky", ...)} or \texttt{new("pCholesky", ...)}, but they are more typically obtained as the value of \texttt{Cholesky(x)} for \(x \) inheriting from \texttt{dsyMatrix} or \texttt{dspMatrix} (often the subclasses of those reserved for positive semidefinite matrices, namely \texttt{dpoMatrix} and \texttt{dppMatrix}).
Methods

coerce signature(from = "Cholesky", to = "dtrMatrix"): returns a dtrMatrix representing the Cholesky factor L or its transpose L'; see ‘Note’.

coerce signature(from = "pCholesky", to = "dtpMatrix"): returns a dtpMatrix representing the Cholesky factor L or its transpose L'; see ‘Note’.

determinant signature(from = "pCholesky", logarithm = "logical"): computes the determinant of the factorized matrix A or its logarithm.

diag signature(x = "pCholesky"): returns a numeric vector of length n containing the diagonal elements of D, which are the squared diagonal elements of L.

expand1 signature(x = "pCholesky"): see expand1-methods.

expand2 signature(x = "pCholesky"): see expand2-methods.

solve signature(a = "pCholesky", b = .): see solve-methods.

Note

In Matrix < 1.6-0, class Cholesky extended dtrMatrix and class pCholesky extended dtpMatrix, reflecting the fact that the factor L is indeed a triangular matrix. Matrix 1.6-0 removed these extensions so that methods would no longer be inherited from dtrMatrix and dtpMatrix. The availability of such methods gave the wrong impression that Cholesky and pCholesky represent a (singular) matrix, when in fact they represent an ordered set of matrix factors.

The coercions as(.,"dtrMatrix") and as(.,"dtpMatrix") are provided for users who understand the caveats.

References

See Also

Class CHMfactor for sparse Cholesky factorizations.

Classes dpoMatrix and dppMatrix.

Generic functions Cholesky, expand1 and expand2.

Examples

```r
showClass("Cholesky")
set.seed(1)

m <- 30L
```
n <- 6L
(A <- crossprod(Matrix(rnorm(m * n), m, n)))

With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)

(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

Underlying LAPACK representation
(m.ch.A <- as(ch.A, "dtrMatrix")) # which is L', not L, because
A@uplo == "U"
stopifnot(identical(as(m.ch.A, "matrix"), 'dim<-'(ch.A@x, ch.A@Dim)))

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
 identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
 identical(names(E.ch.A), c("P1.", "L", "L.", "P1"))
 identical(e.ch.A[["P1."]],
 new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
 margin = 2L, perm = invertPerm(ch.A@perm)))
 identical(e.ch.A[["D"]], t(e.ch.A[["D"]]))
 identical(E.ch.A[["L."]], t(E.ch.A[["L"]]))
 identical(E.ch.A[["L."]], Diagonal(x = diag(ch.A)))
 all.equal(E.ch.A[["L."]], with(e.ch.A, L1 %*% sqrt(D)))
 ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
 ae1(A, with(E.ch.A, P1. %*% L L %*% L. %*% P1))
 ae2(A[ch.A@perm, ch.A@perm], with(e.ch.A, L1 %*% D %*% L1.))
 ae2(A[ch.A@perm, ch.A@perm], with(E.ch.A, L L %*% L.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
all.equal(det(A), det(ch.A), tolerance = 0)
all.equal(solve(A, b), solve(ch.A, b), tolerance = 0)

For identical results, we need the _unpivoted_ factorization
computed by det(A) and solve(A, b)
(ch.A.nopivot <- Cholesky(A, perm = FALSE))
stopifnot(identical(det(A), det(ch.A.nopivot)),
 identical(solve(A, b), solve(ch.A.nopivot, b)))
Description

Computes the pivoted Cholesky factorization of an \(n \times n \) real, symmetric matrix \(A \), which has the general form

\[
P_1 A P_1' = L_1 D L_1' \quad \text{with} \quad D_{jj} \geq 0 \quad LL'
\]

or (equivalently)

\[
A = L_1' D_{11} L_1 P_1', \quad P_1 D_{jj} \geq 0 \quad P_1' L_1' P_1
\]

where \(P_1 \) is a permutation matrix, \(L_1 \) is a unit lower triangular matrix, \(D \) is a diagonal matrix, and \(L = L_1 \sqrt{D} \). The second equalities hold only for positive semidefinite \(A \), for which the diagonal entries of \(D \) are non-negative and \(\sqrt{D} \) is well-defined.

Methods for \texttt{denseMatrix} are built on LAPACK routines \texttt{dpstrf}, \texttt{dpotrf}, and \texttt{dpptrf}. The latter two do not permute rows or columns, so that \(P_1 \) is an identity matrix.

Methods for \texttt{sparseMatrix} are built on CHOLMOD routines \texttt{cholmod_analyze} and \texttt{cholmod_factorize_p}.

Usage

Cholesky(A, ...)
S4 method for signature 'dsyMatrix'
Cholesky(A, perm = TRUE, tol = -1, ...)
S4 method for signature 'dspMatrix'
Cholesky(A, ...)
S4 method for signature 'dsCMatrix'
Cholesky(A, perm = TRUE, LDL = !super, super = FALSE,
Imult = 0, ...)
S4 method for signature 'ddiMatrix'
Cholesky(A, ...)
S4 method for signature 'generalMatrix'
Cholesky(A, uplo = "U", ...)
S4 method for signature 'triangularMatrix'
Cholesky(A, uplo = "U", ...)
S4 method for signature 'matrix'
Cholesky(A, uplo = "U", ...)

Arguments

\(A \)
a finite, symmetric matrix or \texttt{Matrix} to be factorized. If \(A \) is square but not symmetric, then it will be treated as symmetric; see \texttt{uplo}. Methods for dense \(A \) require positive definiteness when \texttt{perm = FALSE} and positive semidefiniteness when \texttt{perm = TRUE}. Methods for sparse \(A \) require positive definiteness when \texttt{LDL = TRUE} and nonzero leading principal minors (after pivoting) when \texttt{LDL = FALSE}. Methods for sparse, diagonal \(A \) are an exception, requiring positive semidefiniteness unconditionally.

\texttt{perm}
a logical indicating if the rows and columns of \(A \) should be pivoted. Methods for sparse \(A \) employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability. Pivoting for sparsity may introduce nonpositive leading principal minors, causing the factorization to fail, in which case it may be necessary to set \texttt{perm = FALSE}.
tol a finite numeric tolerance, used only if perm = TRUE. The factorization algorithm stops if the pivot is less than or equal to tol. Negative tol is equivalent to nrow(A) * .Machine$double.eps * max(diag(A)).

LDL a logical indicating if the simplicial factorization should be computed as $P_1' L_1 D L_1' P_1$, such that the result stores the lower triangular entries of $L_1 - I + D$. The alternative is $P_1' L L' P_1$, such that the result stores the lower triangular entries of $L = L_1 \sqrt{D}$. This argument is ignored if super = TRUE (or if super = NA and the supernodal algorithm is chosen), as the supernodal code does not yet support the LDL = TRUE variant.

super a logical indicating if the factorization should use the supernodal algorithm. The alternative is the simplicial algorithm. Setting super = NA leaves the choice to a CHOLMOD-internal heuristic.

Imult a finite number. The matrix that is factorized is $A + \text{Imult} \times \text{diag}(\text{nrow}(A))$, i.e., A plus Imult times the identity matrix. This argument is useful for symmetric, indefinite A, as $\text{Imult} > \max(\text{rowSums}(|A|) - \text{diag}(\text{abs}(A)))$ ensures that $A + \text{Imult} \times \text{diag}(\text{nrow}(A))$ is diagonally dominant. (Symmetric, diagonally dominant matrices are positive definite.)

uplo a string, either "U" or "L", indicating which triangle of A should be used to compute the factorization. The default is "U", even for lower triangular A, to be consistent with chol from base.

... further arguments passed to or from methods.

Details

Note that the result of a call to Cholesky inherits from CholeskyFactorization but not Matrix. Users who just want a matrix should consider using chol, whose methods are simple wrappers around Cholesky returning just the upper triangular Cholesky factor L', typically as a triangularMatrix. However, a more principled approach would be to construct factors as needed from the CholeskyFactorization object, e.g., with expand1(x, "L"), if x is the object.

The behaviour of Cholesky$(A, \text{perm} = \text{TRUE})$ for dense A is somewhat exceptional, in that it expects without checking that A is positive semidefinite. By construction, if A is positive semidefinite and the exact algorithm encounters a zero pivot, then the unfactorized trailing submatrix is the zero matrix, and there is nothing left to do. Hence when the finite precision algorithm encounters a pivot less than tol, it signals a warning instead of an error and zeros the trailing submatrix in order to guarantee that $P' L L' P$ is positive semidefinite even if A is not. It follows that one way to test for positive semidefiniteness of A in the event of a warning is to analyze the error

$$\frac{\|A - P' L L' P\|}{\|A\|}.$$

See the examples and LAPACK Working Note ("LAWN") 161 for details.

Value

An object representing the factorization, inheriting from virtual class CholeskyFactorization. For a traditional matrix A, the specific class is Cholesky. For A inheriting from unpackedMatrix, packedMatrix, and sparseMatrix, the specific class is Cholesky, pCholesky, and dCHMsimpl or dCHMsuper, respectively.
References

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

See Also

Classes Cholesky, pCholesky, dCHMsimpl and dCHMsuper and their methods.

Classes dpoMatrix, dppMatrix, and dsCMatrix.

Generic function chol, for obtaining the upper triangular Cholesky factor L' as a matrix or Matrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions BunchKaufman, Schur, lu, and qr, for computing other factorizations.

Examples

```r
showMethods("Cholesky", inherited = FALSE)
set.seed(0)

## ---- Dense ----------------------------------------------------------
## .... Positive definite ..............................................

n <- 6L
(A1 <- crossprod(Matrix(rnorm(n * n), n, n)))
(ch.A1.nopivot <- Cholesky(A1, perm = FALSE))
(ch.A1 <- Cholesky(A1))
stopifnot(exprs = {
  length(ch.A1@perm) == ncol(A1)
  isPerm(ch.A1@perm)
  is.unsorted(ch.A1@perm) # typically not the identity permutation
  length(ch.A1.nopivot@perm) == 0L
})

## A ~ P1' L D L' P1 ~ P1' L L' P1 in floating point
```
str(e.ch.A1 <- expand2(ch.A1, LDL = TRUE), max.level = 2L)
str(E.ch.A1 <- expand2(ch.A1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {
 all.equal(as(A1, "matrix"), as(Reduce("%*%", e.ch.A1), "matrix"))
 all.equal(as(A1, "matrix"), as(Reduce("%*%", E.ch.A1), "matrix"))
})

... Positive semidefinite but not positive definite
A2 <- A1
A2[1L,] <- A2[, 1L] <- 0
A2
try(Cholesky(A2, perm = FALSE)) # fails as not positive definite
ch.A2 <- Cholesky(A2) # returns, with a warning and ...
A2.hat <- Reduce("%*%", expand2(ch.A2, LDL = FALSE))
norm(A2 - A2.hat, "2") / norm(A2, "2") # 7.670858e-17

... Not positive semidefinite
A3 <- A1
A3[1L,] <- A3[, 1L] <- -1
A3
try(Cholesky(A3, perm = FALSE)) # fails as not positive definite
ch.A3 <- Cholesky(A3) # returns, with a warning and ...
A3.hat <- Reduce("%*%", expand2(ch.A3, LDL = FALSE))
norm(A3 - A3.hat, "2") / norm(A3, "2") # 1.781568

Indeed, 'A3' is not positive semidefinite, but 'A3.hat' _is_
ch.A3.hat <- Cholesky(A3.hat)
A3.hat.hat <- Reduce("%*%", expand2(ch.A3.hat, LDL = FALSE))

---- Sparse ---
Really just three cases modulo permutation :
##
type factorization minors of P1 A P1'
1 simplicial P1 A P1' = L1 D L1' nonzero
2 simplicial P1 A P1' = L L' positive
3 supernodal P1 A P2' = L L' positive

data(KNex, package = "Matrix")
A4 <- crossprod(KNex[["mm"]])

ch.A4 <-
list(pivoted =
 list(simp1 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = TRUE),
 simp0 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = FALSE),
 super0 = Cholesky(A4, perm = TRUE, super = TRUE)),
 unpivoted =
 list(simp1 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = TRUE),
 simp0 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = FALSE),
 super0 = Cholesky(A4, perm = FALSE, super = TRUE)))
ch.A4

s <- simplify2array
rapply2 <- function(object, f, ...) rapply(object, f, , , how = "list", ...)

s(rapply2(ch.A4, isLDL))
s(m.ch.A4 <- rapply2(ch.A4, expand1, "L")) # giving L = L1 \sqrt{D}

By design, the pivoted and simplicial factorizations
are more sparse than the unpivoted and supernodal ones ...
s(rapply2(m.ch.A4, object.size))

Which is nicely visualized by lattice-based methods for 'image'
inn <- c("pivoted", "unpivoted")
jnm <- c("simpl1", "simpl0", "super0")
for(i in 1:2)
 for(j in 1:3)
 print(image(m.ch.A4[[c(i, j)]], main = paste(innm[i], jnm[j])),
 split = c(j, i, 3L, 2L), more = i * j < 6L)
simpl1 <- ch.A4[[c("pivoted", "simpl1")]]
stopifnot(exprs = {
 length(simpl1@perm) == ncol(A4)
 isPerm(simpl1@perm, 0L)
 is.unsorted(simpl1@perm) # typically not the identity permutation
})

One can expand with and without D regardless of isLDL(.)
but "without" requires L = L1 \sqrt{D}, which is conditional
on min(diag(D)) >= 0, hence "with" is the default
isLDL(simpl1)
stopifnot(min(diag(simpl1)) >= 0)
str(e.ch.A4 <- expand2(simpl1, LDL = TRUE), max.level = 2L) # default
str(E.ch.A4 <- expand2(simpl1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {
 all.equal(E.ch.A4["L"], e.ch.A4["L1"] %*% sqrt(e.ch.A4["D"]))
 all.equal(E.ch.A4["L."] , sqrt(e.ch.A4["D")]) %*% e.ch.A4["L1."]
 all.equal(A4, as(Reduce("%*%", e.ch.A4), "symmetricMatrix"))
 all.equal(A4, as(Reduce("%*%", E.ch.A4), "symmetricMatrix"))
})

The "same" permutation matrix with "alternate" representation
[i, perm[i]] (margin=1) <-> [invertPerm(perm)[j], j] (margin=2)
alt <- function(P) {
 P@margin <- 1L + !(P@margin - 1L) # 1 <-> 2
 P@perm <- invertPerm(P@perm)
P
}

Expansions are elegant but inefficient (transposes are redundant)
hence programmers should consider methods for 'expand1' and 'diag'
stopifnot(exprs = {
 identical(expand1(simpl1, "P1"), alt(e.ch.A4["P1"]))})
identical(expand1(simpl1, "L"), E.ch.A4["L"])
identical(Diagonal(x = diag(simpl1)), e.ch.A4["D"])
})

chol(A, pivot = value) is a simple wrapper around
Cholesky(A, perm = value, LDL = FALSE, super = FALSE),
returning L' = sqrt(D) L' _but_ giving no information
about the permutation P1
selectMethod("chol", "dsCMatrix")
stopifnot(all.equal(chol(A4, pivot = TRUE), E.ch.A4["L."])))

Now a symmetric matrix with positive _and_ negative eigenvalues,
hence _not_ positive semidefinite
A5 <- new("dsCMatrix",
 Dim = c(7L, 7L),
 p = c(0:1, 3L, 6:7, 10:11, 15L),
 i = c(0L, 0:1, 0:3, 2:5, 3:6),
 x = c(1, 6, 38, 10, 60, 103, -4, 6, -32, -247, -2, -16, -128, -2, -67))
(ev <- eigen(A5, only.values = TRUE)$values)
(t.ev <- table(factor(sign(ev), -1:1))) # the matrix "inertia"

ch.A5 <- Cholesky(A5)
isLDL(ch.A5)
(d.A5 <- diag(ch.A5)) # diag(D) is partly negative

Sylvester's law of inertia holds here, but not in general
in finite precision arithmetic
stopifnot(identical(table(factor(sign(d.A5), -1:1)), t.ev))

try(expand1(ch.A5, "L")) # unable to compute L = L1 sqrt(D)
try(expand2(ch.A5, LDL = FALSE)) # ditto
try(chol(A5, pivot = TRUE)) # ditto

The default expansion is "square root free" and still works here
str(e.ch.A5 <- expand2(ch.A5, LDL = TRUE), max.level = 2L)
stopifnot(all.equal(A5, as(Reduce("%*%", e.ch.A5), "symmetricMatrix")))

Version of the SuiteSparse library, which includes CHOLMOD
SuiteSparse_version()

Description

Since 2005, package Matrix has supported coercions to and from class graph from package graph. Since 2013, this functionality has been exposed via functions T2graph and graph2T, which, unlike methods for as(from, "<Class>"), support optional arguments.
Usage

```r
graph2T(from, use.weights = )
T2graph(from, need.uniq = is_not_uniqT(from), edgemode = NULL)
```

Arguments

- **from**
 - for `graph2T()`, an R object of class "graph";
 - for `T2graph()`, a sparse matrix inheriting from "TsparseMatrix".
- **use.weights**
 - logical indicating if weights should be used, i.e., equivalently the result will be numeric, i.e. of class `dgTMatrix`; otherwise the result will be `ngTMatrix` or `nsTMatrix`, the latter if the graph is undirected. The default looks if there are weights in the graph, and if any differ from 1, weights are used.
- **need.uniq**
 - a logical indicating if `from` may need to be internally “uniqified”; do not set this and hence rather use the default, unless you know what you are doing!
- **edgemode**
 - one of `NULL`, "directed", or "undirected". The default `NULL` looks if the matrix is symmetric and assumes "undirected" in that case.

Value

- For `graph2T()`, a sparse matrix inheriting from "TsparseMatrix".
- For `T2graph()`, an R object of class "graph".

See Also

Package `igraph`, which provides similar coercions to and from its class igraph via functions `graph_from_adjacency_matrix` and `as_adjacency_matrix`.

Examples

```r
if(requireNamespace("graph")) {
  n4 <- LETTERS[1:4]; dns <- list(n4,n4)
  show(a1 <- sparseMatrix(i= c(1:4), j=c(2:4,1), x = 2, dimnames=dns))
  show(g1 <- as(a1, "graph")) # directed
  unlist(graph::edgeWeights(g1)) # all '2'

  show(a2 <- sparseMatrix(i= c(1:4,4), j=c(2:4,1:2), x = TRUE, dimnames=dns))
  show(g2 <- as(a2, "graph")) # directed
  # now if you want it undirected:
  show(g3 <- T2graph(as(a2,"TsparseMatrix"), edgemode="undirected"))
  show(m3 <- as(g3,"Matrix"))
  show( graph2T(g3) ) # a "pattern Matrix" (nsTMatrix)

  a. <- sparseMatrix(i=4:1, j=1:4, dimnames=list(n4, n4), repr="T") # no 'x'
  show(a.) # "ngTMatrix"
  show(g. <- as(a., "graph"))
}
```
Description

Methods for coercion from and to sparse matrices from package **SparseM** are provided here, for ease of porting functionality to the **Matrix** package, and comparing functionality of the two packages. All these work via the usual `as(., "<class>")` coercion,

\[
\text{as(from, Class)}
\]

Methods

- `from = "matrix.csr", to = "dgRMatrix"` ...
- `from = "matrix.csc", to = "dgCMatrix"` ...
- `from = "matrix.coo", to = "dgTMatrix"` ...
- `from = "dgRMatrix", to = "matrix.csr"` ...
- `from = "dgCMatrix", to = "matrix.csc"` ...
- `from = "dgTMatrix", to = "matrix.coo"` ...
- `from = "Matrix", to = "matrix.csr"` ...
- `from = "matrix.csr", to = "dgCMatrix"` ...
- `from = "matrix.coo", to = "dgCMatrix"` ...
- `from = "matrix.csr", to = "Matrix"` ...
- `from = "matrix.csc", to = "Matrix"` ...
- `from = "matrix.coo", to = "Matrix"` ...

See Also

The documentation in CRAN package **SparseM**, such as **SparseM.ontology**, and one important class, **matrix.csr**.

colSums-methods

Description

Form row and column sums and means for objects, for **sparseMatrix** the result may optionally be sparse (**sparseVector**), too. Row or column names are kept respectively as for **base** matrices and **colSums** methods, when the result is **numeric** vector.
colSums-methods

Usage

colSums(x, na.rm = FALSE, dims = 1L, ...)
rowSums(x, na.rm = FALSE, dims = 1L, ...)
colMeans(x, na.rm = FALSE, dims = 1L, ...)
rowMeans(x, na.rm = FALSE, dims = 1L, ...)

S4 method for signature 'CsparseMatrix'
colSums(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
S4 method for signature 'CsparseMatrix'
rowSums(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
S4 method for signature 'CsparseMatrix'
colMeans(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
S4 method for signature 'CsparseMatrix'
rowMeans(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)

Arguments

x a Matrix, i.e., inheriting from Matrix.
na.rm logical. Should missing values (including NaN) be omitted from the calculations?
dims completely ignored by the Matrix methods.
... potentially further arguments, for method <-> generic compatibility.
sparseResult logical indicating if the result should be sparse, i.e., inheriting from class sparseVector. Only applicable when x is inheriting from a sparseMatrix class.

Value

returns a numeric vector if sparseResult is FALSE as per default. Otherwise, returns a sparseVector.
dimnames(x) are only kept (as names(v)) when the resulting v is numeric, since sparseVectors do not have names.

See Also

colSums and the sparseVector classes.

Examples

(M <- bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))) # 7 x 8
colSums(M)
d <- Diagonal(10, c(0,0,10,0,2,rep(0,5)))
MM <- kronecker(d, M)
dim(MM) # 70 80
length(MM@x) # 160, but many are '0' ; drop those:
MM <- drop0(MM)
length(MM@x) # 32
cm <- colSums(MM)
(scm <- colSums(MM, sparseResult = TRUE))
stopifnot(is(scm, "sparseVector"),
 identical(cm, as.numeric(scm)))
rowSums(MM, sparseResult = TRUE) # 14 of 70 are not zero
colMeans(MM, sparseResult = TRUE) # 16 of 80 are not zero
Since we have no 'NA' s, these two are equivalent :
stopifnot(identical(rowMeans(MM, sparseResult = TRUE),
 rowMeans(MM, sparseResult = TRUE, na.rm = TRUE)),
 rowMeans(Diagonal(16)) == 1/16,
 colSums(Diagonal(7)) == 1)

dimnames(x) --> names(<value>) :
dimnames(M) <- list(paste0("r", 1:7), paste0("V",1:8))
M
colSums(M)
rowMeans(M)
Assertions :
stopifnot(exprs = {
 all.equal(colSums(M),
 structure(c(1,1,6,6,6,6,3,2), names = colnames(M)))
 all.equal(rowMeans(M),
 structure(c(1,1,4,8,12,3,2)/8, names = paste0("r", 1:7)))
})

Description

Virtual class of composite matrices; i.e., matrices that can be factorized, typically as a product of simpler matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

factors: Object of class "list" - a list of factorizations of the matrix. Note that this is typically empty, i.e., list(), initially and is updated automatically whenever a matrix factorization is computed.

Dim, Dimnames: inherited from the Matrix class, see there.

Extends

Class "Matrix", directly.
Methods
dimnames<- signature(x = "compMatrix", value = "list"): set the dimnames to a list of length 2, see dimnames<-. The factors slot is currently reset to empty, as the factorization dimnames would have to be adapted, too.

See Also
The matrix factorization classes "MatrixFactorization" and their generators, lu(), qr(), chol() and Cholesky(), BunchKaufman(), Schur().

condest

Compute Approximate CONDition number and 1-Norm of (Large) Matrices

Description
“Estimate”, i.e. compute approximately the CONDition number of a (potentially large, often sparse) matrix A. It works by apply a fast randomized approximation of the 1-norm, norm(A, "1"), through onenormest(.)

Usage
condest(A, t = min(n, 5), normA = norm(A, "1"),
 silent = FALSE, quiet = TRUE)
onenormest(A, t = min(n, 5), A.x, At.x, n,
 silent = FALSE, quiet = silent,
 iter.max = 10, eps = 4 * .Machine$double.eps)

Arguments
A
 a square matrix, optional for onenormest(), where instead of A, A.x and At.x can be specified, see there.
t
 number of columns to use in the iterations.
normA
 number; (an estimate of) the 1-norm of A, by default norm(A, "1"); may be replaced by an estimate.
silent
 logical indicating if warning and (by default) convergence messages should be displayed.
quiet
 logical indicating if convergence messages should be displayed.
A.x, At.x
 when A is missing, these two must be given as functions which compute A x, or t(A) x, respectively.
n
 == nrow(A), only needed when A is not specified.
itert.max
 maximal number of iterations for the 1-norm estimator.
eps
 the relative change that is deemed irrelevant.
Details

`condest()` calls `lu(A)`, and subsequently `onenormest(A.x =, At.x =)` to compute an approximate norm of the inverse of A, A^{-1}, in a way which keeps using sparse matrices efficiently when A is sparse.

Note that `onenormest()` uses random vectors and hence both functions’ results are random, i.e., depend on the random seed, see, e.g., `set.seed()`.

Value

Both functions return a list; `condest()` with components,

- `est` a number > 0, the estimated (1-norm) condition number $\hat{\kappa}$; when $r := rcond(A)$, $1/\hat{\kappa} \approx r$.
- `v` the maximal Ax column, scaled to norm(v) = 1. Consequently, norm(Av) = norm(A)/`est`; when `est` is large, `v` is an approximate null vector.

The function `onenormest()` returns a list with components,

- `est` a number > 0, the estimated norm(A, "1").
- `v` 0-1 integer vector length n, with an 1 at the index j with maximal column A[,] in A.
- `w` numeric vector, the largest Ax found.
- `iter` the number of iterations used.

Author(s)

This is based on octave’s `condest()` and `onenormest()` implementations with original author Jason Riedy, U Berkeley; translation to R and adaption by Martin Maechler.

References

See Also

`norm`, `rcond`.

Examples

```r
data(KNex, package = "Matrix")
mtm <- with(KNex, crossprod(mm))
system.time(ce <- condest(mtm))
sum(abs(ce$v)) # || v ||_1 == 1
## Prove that || A v || = || A || / est (as ||v|| = 1):
stopifnot(all.equal(norm(mtm %*% ce$v),
                   norm(mtm) / ce$est))```
## reciprocal

```r
1 / ce$est
```

```r
system.time(rc <- rcond(mtm)) # takes ca 3 x longer
```

```r
rc
```

```r
all.equal(rc, 1/ce$est) # TRUE -- the approximation was good
```

```r
one <- onenormest(mtm)
```

```r
str(one) ## est = 12.3
```  
  ```r
the maximal column:
which(one$v == 1) # mostly 4, rarely 1, depending on random seed
```  

---

### CsparseMatrix-class

**Description**

The "CsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed column-oriented form. Since it is a virtual class, no objects may be created from it. See `showClass("CsparseMatrix")` for its subclasses.

**Slots**

- **i**: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the 0-based row numbers for each non-zero element in the matrix, i.e., `i` must be in `0:(nrow(.)-1)`.

- **p**: `integer` vector for providing pointers, one for each column, to the initial (zero-based) index of elements in the column. `.@p` is of length `ncol(.) + 1`, with `p[1] == 0` and `p[length(p)] == nnzero`, such that in fact, `diff(.@p)` are the number of non-zero elements for each column.

  In other words, `m@p[1:ncol(m)]` contains the indices of those elements in `m@x` that are the first elements in the respective column of `m`.

**Dim, Dimnames**: inherited from the superclass, see the `sparseMatrix` class.

**Extends**

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

**Methods**

- matrix products `%*%`, `crossprod()` and `tcrossprod()`, several `solve` methods, and other matrix methods available:

  ```r
 signature(e1 = "CsparseMatrix", e2 = "numeric"): ...
  ```

  ```r
 AddArith signature(e1 = "numeric", e2 = "CsparseMatrix"): ...
  ```

  ```r
 Math signature(x = "CsparseMatrix"): ...
  ```

  ```r
 band signature(x = "CsparseMatrix"): ...
  ```

  ```r
 - signature(e1 = "CsparseMatrix", e2 = "numeric"): ...
  ```
CsparseMatrix-class

- signature(e1 = "numeric", e2 = "CsparseMatrix"): ...
+ signature(e1 = "CsparseMatrix", e2 = "numeric"): ...
+ signature(e1 = "numeric", e2 = "CsparseMatrix"): ...
coerce signature(from = "CsparseMatrix", to = "TsparseMatrix"): ...
coerce signature(from = "CsparseMatrix", to = "denseMatrix"): ...
coerce signature(from = "CsparseMatrix", to = "matrix"): ...
coerce signature(from = "TsparseMatrix", to = "CsparseMatrix"): ...
coerce signature(from = "denseMatrix", to = "CsparseMatrix"): ...
diag signature(x = "CsparseMatrix"): ...
gamma signature(x = "CsparseMatrix"): ...
lgamma signature(x = "CsparseMatrix"): ...
log signature(x = "CsparseMatrix"): ...
t signature(x = "CsparseMatrix"): ...
tril signature(x = "CsparseMatrix"): ...
triu signature(x = "CsparseMatrix"): ...

Note

All classes extending CsparseMatrix have a common validity (see validObject) check function. That function additionally checks the i slot for each column to contain increasing row numbers. In earlier versions of Matrix (<= 0.999375-16), validObject automatically re-sorted the entries when necessary, and hence new() calls with somewhat permuted i and x slots worked, as new(...) (with slot arguments) automatically checks the validity.

Now, you have to use sparseMatrix to achieve the same functionality or know how to use .validateCsparse() to do so.

See Also
colSums, kronecker, and other such methods with own help pages.

Further, the super class of CsparseMatrix, sparseMatrix, and, e.g., class dgCMatrix for the links to other classes.

Examples

class <- getClass("CsparseMatrix")

## The common validity check function (based on C code):
valid <- getValidity(class)

valid <- getValidity(class)
**ddenseMatrix-class**

Virtual Class "ddenseMatrix" of Numeric Dense Matrices

**Description**

This is the virtual class of all dense numeric (i.e., double, hence "dense") S4 matrices. Its most important subclass is the `dgeMatrix` class.

**Extends**

Class "dMatrix" directly; class "Matrix", by the above.

**Slots**

the same slots at its subclass `dgeMatrix`, see there.

**Methods**

Most methods are implemented via `as(*, "generalMatrix")` and are mainly used as "fallbacks" when the subclass doesn’t need its own specialized method.

Use `showMethods(class = "ddenseMatrix", where = "package:Matrix")` for an overview.

**See Also**

The virtual classes `Matrix`, `dMatrix`, and `dsparseMatrix`.

**Examples**

```r
showClass("ddenseMatrix")
showMethods(class = "ddenseMatrix", where = "package:Matrix")
```

**ddiMatrix-class**

Class "ddiMatrix" of Diagonal Numeric Matrices

**Description**

The class "ddiMatrix" of numerical diagonal matrices.

Note that diagonal matrices now extend `sparseMatrix`, whereas they did extend dense matrices earlier.

**Objects from the Class**

Objects can be created by calls of the form `new("ddiMatrix", ...)` but typically rather via `Diagonal`. 
denseLU-class

Slots

x: numeric vector. For an \( n \times n \) matrix, the x slot is of length \( n \) or 0, depending on the diag slot:

diag: "character" string, either "U" or "N" where "U" denotes unit-diagonal, i.e., identity matrices.

Dim, Dimnames: matrix dimension and dimnames, see the Matrix class description.

Extends

Class "diagonalMatrix", directly. Class "dMatrix", directly. Class "sparseMatrix", indirectly, see showClass("ddiMatrix").

Methods

\%

signature(x = "ddiMatrix", y = "ddiMatrix"): ...

See Also

Class diagonalMatrix and function Diagonal.

Examples

\[(d2 <- Diagonal(x = c(10, 1)))\]
\[\text{str}(d2)\]
\[\text{## slightly larger in internal size:}\]
\[\text{str(as(d2, "sparseMatrix"))}\]

\[M <- \text{Matrix}(\text{cbind}(1, 2:4))\]
\[M \%\% d2 \# \text{'fast' multiplication}\]

\[\text{chol}(d2) \# \text{trivial}\]
\[\text{stopifnot}(\text{is}(cd2 <- \text{chol}(d2), "ddiMatrix"),\]
\[\text{all.equal}(\text{cd2@x}, \text{c}(\text{sqrt}(10), 1)))\]

---

denseLU-class Dense LU Factorizations

Description

denseLU is the class of dense, row-pivoted LU factorizations of \( m \times n \) real matrices \( A \), having the general form

\[P_1 A = LU\]

or (equivalently)

\[A = P_1^T L U\]

where \( P_1 \) is an \( m \times m \) permutation matrix, \( L \) is an \( m \times \min(m, n) \) unit lower trapezoidal matrix, and \( U \) is a \( \min(m, n) \times n \) upper trapezoidal matrix. If \( m = n \), then the factors \( L \) and \( U \) are triangular.
denseLU-class

Slots

- Dim, Dimnames inherited from virtual class MatrixFactorization.
- x a numeric vector of length prod(Dim) storing the triangular L and U factors together in a packed format. The details of the representation are specified by the manual for LAPACK routine dgetrf.
- perm an integer vector of length min(Dim) specifying the permutation \( P_1 \) as a product of transpositions. The corresponding permutation vector can be obtained as asPerm(perm).

Extends

Class LU, directly. Class MatrixFactorization, by class LU, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("denseLU", ...), but they are more typically obtained as the value of lu(x) for x inheriting from denseMatrix (often dgeMatrix).

Methods

- coerce signature(from = "denseLU", to = "dgeMatrix"): returns a dgeMatrix with the dimensions of the factorized matrix \( A \), equal to \( L \) below the diagonal and equal to \( U \) on and above the diagonal.
- determinant signature(from = "denseLU", logarithm = "logical"): computes the determinant of the factorized matrix \( A \) or its logarithm.
- expand signature(x = "denseLU"): see expand-methods.
- expand1 signature(x = "denseLU"): see expand1-methods.
- expand2 signature(x = "denseLU"): see expand2-methods.
- solve signature(a = "denseLU", b = "missing"): see solve-methods.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgetrf.f.


See Also

- Class sparseLU for sparse LU factorizations.
- Class dgeMatrix.
- Generic functions lu, expand1 and expand2.
Examples

```r
showClass("denseLU")
set.seed(1)

n <- 3L
(A <- Matrix(round(rnorm(n * n), 2L), n, n))
With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
 paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

Underlying LAPACK representation
(m.lu.A <- as(lu.A, "dgeMatrix")) # which is L and U interlaced
stopifnot(identical(as(m.lu.A, "matrix"), 'dim<-(lu.A@x, lu.A@Dim)))

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' L U in floating point
stopifnot(exprs = {
 identical(names(e.lu.A), c("P1.`", "L", "U"))
 identical(e.lu.A[["P1."]],
 new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
 margin = 1L, perm = invertPerm(asPerm(lu.A@perm))))
 identical(e.lu.A[["L"]],
 new("dtrMatrix", Dim = c(n, n), Dimnames = list(NULL, NULL),
 diag = "U", x = lu.A@x))
 identical(e.lu.A[["U"]],
 new("dtrMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
 diag = "U", x = lu.A@x))
 ae1(A, with(e.lu.A, P1. %*% L %*% U))
 ae2(A[asPerm(lu.A@perm),], with(e.lu.A, L %*% U))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
 identical(solve(A, b), solve(lu.A, b)))
```

denseMatrix-class  
Virtual Class "denseMatrix" of All Dense Matrices

Description

This is the virtual class of all dense (S4) matrices. It partitions into two subclasses packedMatrix and unpackedMatrix. Alternatively into the (currently) three subclasses ddenseMatrix, ldenseMatrix, and ndenseMatrix.
denseMatrix is (hence) the direct superclass of these \((2 + 3 = 5)\) classes.

**Extends**

class "Matrix" directly.

**Slots**

exactly those of its superclass "Matrix", i.e., "Dim" and "Dimnames".

**Methods**

Use `showMethods(class = "denseMatrix", where = "package:Matrix")` for an overview of methods.

Extraction ("\["] methods, see \([-\text{methods}.\]

**See Also**

colSums, kronecker, and other such methods with own help pages.

Its superclass `Matrix`, and main subclasses, `ddenseMatrix` and `sparseMatrix`.

**Examples**

`showClass("denseMatrix")`

---

**Description**

The `dgCMatrix` class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order. `dgCMatrix` is the "standard" class for sparse numeric matrices in the `Matrix` package.

**Objects from the Class**

Objects can be created by calls of the form `new("dgCMatrix", ...)`, more typically via `as(*, "CsparseMatrix")` or similar. Often however, more easily via `Matrix(*, sparse = TRUE)`, or most efficiently via `sparseMatrix()`.

**Slots**

`x`: Object of class "numeric" - the non-zero elements of the matrix.

... all other slots are inherited from the superclass "CsparseMatrix".
Methods
Matrix products (e.g., `crossprod-methods`), and (among other)

`coerce` signature(from = "matrix", to = "dgCMatrix")
`diag` signature(x = "dgCMatrix"): returns the diagonal of x
`dim` signature(x = "dgCMatrix"): returns the dimensions of x
`image` signature(x = "dgCMatrix"): plots an image of x using the `levelplot` function
`solve` signature(a = "dgCMatrix", b = "."): see `solve-methods`, notably the extra argument sparse.
`lu` signature(x = "dgCMatrix"): computes the LU decomposition of a square dgCMatrix object

See Also
Classes `dsCMatrix`, `dtCMatrix`, `lu`

Examples

```r
(m <- Matrix(c(0,0,2:0), 3,5))
str(m)
m[,1]
```
Methods

The are group methods (see, e.g., `Arith`)

`Arith` signature(e1 = "dgeMatrix", e2 = "dgeMatrix"): ...
`Arith` signature(e1 = "dgeMatrix", e2 = "numeric"): ...
`Arith` signature(e1 = "numeric", e2 = "dgeMatrix"): ...
`Math` signature(x = "dgeMatrix"): ...
`Math2` signature(x = "dgeMatrix", digits = "numeric"): ...

matrix products `%*%`, `crossprod()` and `tcrossprod()`, several `solve` methods, and other matrix methods available:

`Schur` signature(x = "dgeMatrix", vectors = "logical"): ...
`Schur` signature(x = "dgeMatrix", vectors = "missing"): ...
`chol` signature(x = "dgeMatrix"): see `chol`.
`colMeans` signature(x = "dgeMatrix"): columnwise means (averages)
`colSums` signature(x = "dgeMatrix"): columnwise sums
`diag` signature(x = "dgeMatrix"): ...
`dim` signature(x = "dgeMatrix"): ...
`dimnames` signature(x = "dgeMatrix"): ...
`eigen` signature(x = "dgeMatrix", only.values = "logical"): ...
`eigen` signature(x = "dgeMatrix", only.values = "missing"): ...
`norm` signature(x = "dgeMatrix", type = "character"): ...
`norm` signature(x = "dgeMatrix", type = "missing"): ...
`rcond` signature(x = "dgeMatrix", norm = "character") or norm = "missing": the reciprocal condition number, `rcond()`.
`rowMeans` signature(x = "dgeMatrix"): rowwise means (averages)
`rowSums` signature(x = "dgeMatrix"): rowwise sums
`t` signature(x = "dgeMatrix"): matrix transpose

See Also

Classes `Matrix`, `dtrMatrix`, and `dsyMatrix`.
dgRMatrix-class

Sparse Compressed, Row-oriented Numeric Matrices

Description

The dgRMatrix class is a class of sparse numeric matrices in the compressed, sparse, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Note: The column-oriented sparse classes, e.g., dgCMatrix, are preferred and better supported in the Matrix package.

Objects from the Class

Objects can be created by calls of the form new("dgRMatrix", ...).

Slots

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.

x: Object of class "numeric" - the non-zero elements of the matrix.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

diag signature(x = "dgRMatrix"): returns the diagonal of x

dim signature(x = "dgRMatrix"): returns the dimensions of x

image signature(x = "dgRMatrix"): plots an image of x using the levelplot function

See Also

the RsparseMatrix class, the virtual class of all sparse compressed row-oriented matrices, with its methods. The dgCMatrix class (column compressed sparse) is really preferred.
Description

The "dgTMatrix" class is the class of sparse matrices stored as (possibly redundant) triplets. The internal representation is not at all unique, contrary to the one for class dgCMatrix.

Objects from the Class

Objects can be created by calls of the form new("dgTMatrix", ...), but more typically via spMatrix() or sparseMatrix(*, repr = "T").

Slots

i: integer row indices of non-zero entries in 0-base, i.e., must be in 0:(nrow(.)-1).

j: integer column indices of non-zero entries. Must be the same length as slot i and 0-based as well, i.e., in 0:(ncol(.)-1).

x: numeric vector - the (non-zero) entry at position (i,j). Must be the same length as slot i. If an index pair occurs more than once, the corresponding values of slot x are added to form the element of the matrix.

Dim: Object of class "integer" of length 2 - the dimensions of the matrix.

Methods

+ signature(e1 = "dgTMatrix", e2 = "dgTMatrix")

image signature(x = "dgTMatrix"): plots an image of x using the levelplot function

t signature(x = "dgTMatrix"): returns the transpose of x

Note

Triplet matrices are a convenient form in which to construct sparse matrices after which they can be coerced to dgCMatrix objects.

Note that both new(.) and spMatrix constructors for "dgTMatrix" (and other "TsparseMatrix" classes) implicitly add x_k's that belong to identical (i_k, j_k) pairs.

However this means that a matrix typically can be stored in more than one possible "TsparseMatrix" representations. Use uniqTsparse() in order to ensure uniqueness of the internal representation of such a matrix.

See Also

Class dgCMatrix or the superclasses dsparseMatrix and TsparseMatrix; uniqTsparse.
Examples

```r
m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
str(mT)
mT[1,]
mT[4, drop = FALSE]
stopifnot(identical(mT[lower.tri(mT)],
 m [lower.tri(m)]))
mT[lower.tri(mT, diag=TRUE)] <- 0
mT

Triplet representation with repeated (i,j) entries
adds the corresponding x's:
T2 <- new("dgTMatrix",
 i = as.integer(c(1,1,0,3,3)),
 j = as.integer(c(2,2,4,0,0)), x=10*1:5, Dim=4:5)
str(T2) # contains (i,j,x) slots exactly as above, but
T2 ## has only three non-zero entries, as for repeated (i,j)'s,
the corresponding x's are "implicitly" added
stopifnot(nnzero(T2) == 3)
```

Diagonal

**Construct a Diagonal Matrix**

**Description**

Construct a formally diagonal Matrix, i.e., an object inheriting from virtual class diagonalMatrix (or, if desired, a mathematically diagonal CsparseMatrix).

**Usage**

```r
Diagonal(n, x = NULL, names = FALSE)
.sparseDiagonal(n, x = NULL, uplo = "U", shape = "t", unitri = TRUE, kind, cols)
.trDiagonal(n, x = NULL, uplo = "U", unitri = TRUE, kind)
.symDiagonal(n, x = NULL, uplo = "U", kind)
```

**Arguments**

- `n` integer indicating the dimension of the (square) matrix. If missing, then `length(x)` is used.
- `x` numeric or logical vector listing values for the diagonal entries, to be recycled as necessary. If `NULL` (the default), then the result is a unit diagonal matrix. `.sparseDiagonal()` and friends ignore non-NULL `x` when `kind = "n"`. 
Diagonal

names

either logical TRUE or FALSE or then a character vector of length n. If true and names(x) is not NULL, use that as both row and column names for the resulting matrix. When a character vector, use it for both dimnames.

uplo

one of c("U", "L"), specifying the uplo slot of the result if the result is formally triangular of symmetric.

shape

one of c("t", "s", "g"), indicating if the result should be formally triangular, symmetric, or "general". The result will inherit from virtual class triangularMatrix, symmetricMatrix, or generalMatrix, respectively.

unitri

logical indicating if a formally triangular result with ones on the diagonal should be formally unit triangular, i.e., with diag slot equal to "U" rather than "N".

kind

one of c("d", "l", "n"), indicating the “mode” of the result: numeric, logical, or pattern. The result will inherit from virtual class dsparseMatrix, lsparseMatrix, or nsparseMatrix, respectively. Values other than "n" are ignored when x is non-NULL; in that case the mode is determined by typeof(x).

cols

optional integer vector with values in 0:(n-1), indexing columns of the specified diagonal matrix. If specified, then the result is (mathematically) D[, cols+1] rather than D, where D = Diagonal(n, x), and it is always "general" (i.e., shape is ignored).

Value

Diagonal() returns an object inheriting from virtual class diagonalMatrix.

.sparseDiagonal() returns a CsparseMatrix representation of Diagonal(n, x) or, if cols is given, of Diagonal(n, x)[, cols+1]. The precise class of the result depends on shape and kind.

.trDiagonal() and .symDiagonal() are simple wrappers, for .sparseDiagonal(shape = "t") and .sparseDiagonal(shape = "s"), respectively.

.sparseDiagonal() exists primarily to leverage efficient C-level methods available for CsparseMatrix.

Author(s)

Martin Maechler

See Also

the generic function diag for extraction of the diagonal from a matrix works for all “Matrices”.
bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals. band(A) returns a band matrix containing some sub-/super - diagonals of A.

Matrix for general matrix construction; further, class diagonalMatrix.

Examples

Diagonal(3)
Diagonal(x = 10^(3:1))
Diagonal(x = (1:4) >= 2) #-> "ldiMatrix"

## Use Diagonal() + kronecker() for "repeated-block" matrices:
```r
M1 <- Matrix(0+0:5, 2,3)
(M <- kronecker(Diagonal(3), M1))

(S <- crossprod(Matrix(rbinom(60, size=1, prob=0.1), 10,6)))
(SI <- S + 10*.symDiagonal(6)) # sparse symmetric still
stopifnot(is(SI, "dsCMatrix"))
(I4 <- .sparseDiagonal(4, shape="t")) # now (2012-10) unitriangular
stopifnot(I4@diag == "U", all(I4 == diag(4)))
```

---

diagonalMatrix-class  
Class "diagonalMatrix" of Diagonal Matrices

Description

Class "diagonalMatrix" is the virtual class of all diagonal matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

diag: character string, either "U" or "N", where "U" means ‘unit-diagonal’.

Dim: matrix dimension, and

Dimnames: the dimnames, a list, see the Matrix class description. Typically list(NULL,NULL) for diagonal matrices.

Extends

Class "sparseMatrix", directly.

Methods

These are just a subset of the signature for which defined methods. Currently, there are (too) many explicit methods defined in order to ensure efficient methods for diagonal matrices.

coerce signature(from = "matrix", to = "diagonalMatrix"):

coerce signature(from = "Matrix", to = "diagonalMatrix"):

coerce signature(from = "diagonalMatrix", to = "generalMatrix"):

coerce signature(from = "diagonalMatrix", to = "triangularMatrix"):

coerce signature(from = "diagonalMatrix", to = "nMatrix"):

coerce signature(from = "diagonalMatrix", to = "matrix"):

coerce signature(from = "diagonalMatrix", to = "sparseVector"):

t signature(x = "diagonalMatrix"):

and many more methods
```
solve signature(a = "diagonalMatrix", b, ...): is trivially implemented, of course; see also solve-methods.

which signature(x = "nMatrix"), semantically equivalent to base function which(x, arr.ind).

"Math" signature(x = "diagonalMatrix"): all these group methods return a "diagonalMatrix", apart from cumsum() etc which return a vector also for base matrix.

* signature(e1 = "ddiMatrix", e2="denseMatrix"): arithmetic and other operators from the Ops group have a few dozen explicit method definitions, in order to keep the results diagonal in many cases, including the following:

/ signature(e1 = "ddiMatrix", e2="denseMatrix"): the result is from class ddiMatrix which is typically very desirable. Note that when e2 contains off-diagonal zeros or NAs, we implicitly use 0/x = 0, hence differing from traditional R arithmetic (where 0/0 ↦ NaN), in order to preserve sparsity.

summary (object = "diagonalMatrix"): Returns an object of S3 class "diagSummary" which is the summary of the vector object@x plus a simple heading, and an appropriate print method.

See Also

Diagonal() as constructor of these matrices, and isDiagonal. ddiMatrix and ldiMatrix are “actual” classes extending "diagonalMatrix".

Examples

I5 <- Diagonal(5)
D5 <- Diagonal(x = 10*(1:5))
trivial (but explicitly defined) methods:
stopifnot(identical(crossprod(I5), I5),
identical(tcrossprod(I5), I5),
identical(crossprod(I5, D5), D5),
identical(tcrossprod(D5, I5), D5),
identical(solve(D5), solve(D5, I5)),
all.equal(D5, solve(solve(D5)), tolerance = 1e-12)
)
solve(D5)# efficient as is diagonal

an unusual way to construct a band matrix:
rbind2(cbind2(I5, D5),
cbind2(D5, I5))
Description

Transform a triangular matrix \(x \), i.e., of class `triangularMatrix`, from (internally!) unit triangular ("unitriangular") to "general" triangular (\(\text{diagU2N}(x) \)) or back (\(\text{diagN2U}(x) \)). Note that the latter, \(\text{diagN2U}(x) \), also sets the diagonal to one in cases where \(\text{diag}(x) \) was not all one.

\(\text{diagU2N}(x) \) and \(\text{diagN2U}(x) \) assume \textit{without} checking that \(x \) is a `triangularMatrix` with suitable \texttt{diag} slot ("U" and "N", respectively), hence they should be used with care.

Usage

\begin{verbatim}
\text{diagU2N}(x, cl = \text{getClassDef(class(x)), checkDense = FALSE})
\text{diagN2U}(x, cl = \text{getClassDef(class(x)), checkDense = FALSE})
\end{verbatim}

Arguments

\begin{itemize}
 \item \(x \) a `triangularMatrix`, often sparse.
 \item \(cl \) (optional, for speedup only:) class (definition) of \(x \).
 \item \texttt{checkDense} logical indicating if dense (see `denseMatrix`) matrices should be considered at all; i.e., when false, as per default, the result will be sparse even when \(x \) is dense.
\end{itemize}

Details

The concept of unit triangular matrices with a \texttt{diag} slot of "U" stems from LAPACK.

Value

a triangular matrix of the same \texttt{class} but with a different \texttt{diag} slot. For \(\text{diagU2N} \) (semantically) with identical entries as \(x \), whereas in \(\text{diagN2U}(x) \), the off-diagonal entries are unchanged and the diagonal is set to all 1 even if it was not previously.

Note

Such internal storage details should rarely be of relevance to the user. Hence, these functions really are rather \textit{internal} utilities.

See Also

"triangularMatrix", "dtCMatrix".

Examples

\begin{verbatim}
(T <- Diagonal(7) + triu(Matrix(rpois(49, 1/4), 7, 7), k = 1))
(uT <- diagN2U(T)) # "unitriangular"
(t.u <- diagN2U(10*T))# changes the diagonal!
stopifnot(all(T == uT), diag(t.u) == 1,
 identical(T, diagU2N(uT)))
\end{verbatim}
dimScale

Scale the Rows and Columns of a Matrix

Description

dimScale, rowScale, and colScale implement \(D_1 A \% \% A D_2 \) for diagonal matrices \(D_1 \), \(D_2 \), and \(D \) with diagonal entries \(d_1 \), \(d_2 \), and \(d \), respectively. Unlike the explicit products, these functions preserve dimnames(x) and symmetry where appropriate.

Usage

dimScale(x, d1 = sqrt(1/diag(x, names = FALSE)), d2 = d1)
rowScale(x, d)
colScale(x, d)

Arguments

- **x**: a matrix, possibly inheriting from virtual class Matrix.
- **d1, d2, d**: numeric vectors giving factors by which to scale the rows or columns of \(x \); they are recycled as necessary.

Details

dimScale(x) (with \(d_1 \) and \(d_2 \) unset) is only roughly equivalent to cov2cor(x). cov2cor sets the diagonal entries of the result to 1 (exactly); dimScale does not.

Value

The result of scaling \(x \), currently always inheriting from virtual class dMatrix.

It inherits from triangularMatrix if and only if \(x \) does. In the special case of dimScale(\(x, d_1, d_2 \)) with identical \(d_1 \) and \(d_2 \), it inherits from symmetricMatrix if and only if \(x \) does.

Author(s)

Mikael Jagan

See Also

cov2cor
Examples

```r
n <- 6L
(x <- forceSymmetric(matrix(1, n, n)))
dimnames(x) <- rep.int(list(letters[seq_len(n)]), 2L)

d <- seq_len(n)
(D <- Diagonal(x = d))

(scx <- dimScale(x, d)) # symmetry and 'dimnames' kept
(mm <- D %*% x %*% D) # symmetry and 'dimnames' lost
stopifnot(identical(unname(as(scx, "generalMatrix")), mm))

rowScale(x, d)
colScale(x, d)
```

dMatrix-class

(Virtual) Class "dMatrix" of "double" Matrices

Description

The `dMatrix` class is a virtual class contained by all actual classes of numeric matrices in the `Matrix` package. Similarly, all the actual classes of logical matrices inherit from the `lMatrix` class.

Slots

Common to all matrix object in the package:

- **Dim**: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
- **Dimnames**: list of length two; each component containing NULL or a character vector length equal the corresponding Dim element.

Methods

There are (relatively simple) group methods (see, e.g., `Arith`):

- **Arith** signature(e1 = "dMatrix", e2 = "dMatrix"): ...
- **Arith** signature(e1 = "dMatrix", e2 = "numeric"): ...
- **Arith** signature(e1 = "numeric", e2 = "dMatrix"): ...
- **Math** signature(x = "dMatrix"): ...
- **Math2** signature(x = "dMatrix", digits = "numeric"): this group contains `round()` and `signif()`.
- **Compare** signature(e1 = "numeric", e2 = "dMatrix"): ...
- **Compare** signature(e1 = "dMatrix", e2 = "numeric"): ...
- **Compare** signature(e1 = "dMatrix", e2 = "dMatrix"): ...
- **Summary** signature(x = "dMatrix"): The "Summary" group contains the seven functions `max()`, `min()`, `range()`, `prod()`, `sum()`, `any()`, and `all()`.
The following methods are also defined for all double matrices:

expm signature(x = "dMatrix"): computes the “Matrix Exponential”, see expm.

zapsmall signature(x = "dMatrix"): ...

The following methods are defined for all logical matrices:

which signature(x = "lsparseMatrix") and many other subclasses of "lMatrix": as the base function which(x, arr.ind) returns the indices of the TRUE entries in x; if arr.ind is true, as a 2-column matrix of row and column indices. Since Matrix version 1.2-9, if useNames is true, as by default, with dimnames, the same as base::which.

See Also

The nonzero-pattern matrix class nMatrix, which can be used to store non-NA logical matrices even more compactly.

The numeric matrix classes dgeMatrix, dgCMatrix, and Matrix.

Examples

```r
showClass("dMatrix")
set.seed(101)
round(Matrix(rnorm(28), 4, 7), 2)
M <- Matrix(rlnorm(56, sd=10), 4, 14)
(M. <- zapsmall(M))
table(as.logical(M. == 0))
```

dmperm

Dulmage-Mendelsohn Permutation / Decomposition

Description

For any \(n \times m \) (typically) sparse matrix \(x \) compute the Dulmage-Mendelsohn row and columns permutations which at first splits the \(n \) rows and \(m \) columns into coarse partitions each; and then a finer one, reordering rows and columns such that the permutated matrix is “as upper triangular” as possible.

Usage

```r
dmperm(x, nAns = 6L, seed = 0L)
```
Arguments

- **x**: a typically sparse matrix; internally coerced to either "dgCMatrix" or "dtCMatrix".
- **nAns**: an integer specifying the length of the resulting list. Must be 2, 4, or 6.
- **seed**: an integer code in -1, 0, 1; determining the (initial) permutation; by default, seed = 0, no (or the identity) permutation; seed = -1 uses the "reverse" permutation k:1; for seed = 1, it is a random permutation (using R’s RNG, seed, etc).

Details

See the book section by Tim Davis; page 122–127, in the References.

Value

A named list with (by default) 6 components,

- **p**: integer vector with the permutation p, of length nrow(x).
- **q**: integer vector with the permutation q, of length ncol(x).
- **r**: integer vector of length nb+1, where block k is rows r[k] to r[k+1]-1 in A[p,q].
- **s**: integer vector of length nb+1, where block k is cols s[k] to s[k+1]-1 in A[p,q].
- **rr5**: integer vector of length 5, defining the coarse row decomposition.
- **cc5**: integer vector of length 5, defining the coarse column decomposition.

Author(s)

Martin Maechler, with a lot of “encouragement” by Mauricio Vargas.

References

See Also

Schur, the class of permutation matrices; "pMatrix".

Examples

```r
set.seed(17)
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
str( dm9 <- dmperm(S9) )
(S9p <- with(dm9, S9[p, q]))
## looks good, but *not* quite upper triangular; these, too:
str( dm9.0 <- dmperm(S9, seed=-1)) # non-random too.
str( dm9_1 <- dmperm(S9, seed= 1)) # a random one
## The last two permutations differ, but have the same effect!
(S9p0 <- with(dm9.0, S9[p, q])) # .. hmm ..
```
stopifnot(all.equal(S9p0, S9p)) # same as as default, but different from the random one

set.seed(11)
(M <- triu(rsparsematrix(9, 11, 1/4)))
dM <- dmperm(M); with(dM, M[p, q])
(Mp <- M[sample.int(nrow(M)), sample.int(ncol(M))])
dMp <- dmperm(Mp); with(dMp, Mp[p, q])

set.seed(7)
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
str(dm.7 <- dmperm(n7))
stopifnot(exprs = {
 lengths(dm.7[1:2]) == dim(n7)
 identical(dm.7, dmperm(as(n7, "dMatrix")))
 identical(dm.7[1:4], dmperm(n7, nAns=4))
 identical(dm.7[1:2], dmperm(n7, nAns=2))
})

dpoMatrix-class

Positive Semi-definite Dense (Packed | Non-packed) Numeric Matrices

Description

- The "dpoMatrix" class is the class of positive-semidefinite symmetric matrices in nonpacked storage.
- The "dppMatrix" class is the same except in packed storage. Only the upper triangle or the lower triangle is required to be available.
- The "corMatrix" and "pcorMatrix" classes represent correlation matrices. They extend "dpoMatrix" and "dppMatrix", respectively, with an additional slot sd allowing restoration of the original covariance matrix.

Objects from the Class

Objects can be created by calls of the form new("dpoMatrix", ...) or from crossprod applied to an "dgeMatrix" object.

Slots

- uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order.
- Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector of non-negative integers.
Dimnames: inherited from class "Matrix"

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

sd: (for "corMatrix" and "pcorMatrix") a numeric vector of length n containing the (original) \(\sqrt{\text{var}(\cdot)} \) entries which allow reconstruction of a covariance matrix from the correlation matrix.

Extends

Class "dsyMatrix", directly.
Classes "dgeMatrix", "symmetricMatrix", and many more by class "dsyMatrix".

Methods

chol signature(x = "dpoMatrix"): Returns (and stores) the Cholesky decomposition of x, see chol.
determinant signature(x = "dpoMatrix"): Returns the determinant of x, via chol(x), see above.
rcond signature(x = "dpoMatrix", norm = "character"): Returns (and stores) the reciprocal of the condition number of x. The norm can be "O" for the one-norm (the default) or "I" for the infinity-norm. For symmetric matrices the result does not depend on the norm.
solve signature(a = "dpoMatrix", b = "...."). and
solve signature(a = "dppMatrix", b = "....") work via the Cholesky composition, see also the Matrix solve-methods.

Arith signature(e1 = "dpoMatrix", e2 = "numeric") (and quite a few other signatures): The result of ("elementwise" defined) arithmetic operations is typically not positive-definite anymore. The only exceptions, currently, are multiplications, divisions or additions with positive length(.) == 1 numbers (or logicals).

Note

Currently the validity methods for these classes such as getValidity(getClass("dpoMatrix")) for efficiency reasons only check the diagonal entries of the matrix – they may not be negative. This is only necessary but not sufficient for a symmetric matrix to be positive semi-definite.

A more reliable (but often more expensive) check for positive semi-definiteness would look at the signs of diag(BunchKaufman(.)) (with some tolerance for very small negative values), and for (strict) positive definiteness at something like !inherits(tryCatch(chol(.), error=identity), "error") . Indeed, when coercing to these classes, a version of Cholesky() or chol() is typically used, e.g., see selectMethod("coerce", c(from="dsyMatrix", to="dpoMatrix"))

See Also

Classes dsyMatrix and dgeMatrix; further, Matrix, rcond, chol, solve, crossprod.
Examples

```r
h6 <- Hilbert(6)
rcond(h6)
str(h6)
h6 * 27720 # is `integer'
solve(h6)
str(hp6 <- as(h6, "dppMatrix"))
```

```r
### Note that as(*, "corMatrix") *scales* the matrix
(ch6 <- as(h6, "corMatrix"))
stopifnot(all.equal(h6 * 27720, round(27720 * h6), tolerance = 1e-14),
  all.equal(ch6@sd^(-2), 2*(1:6)-1, tolerance= 1e-12))
chch <- Cholesky(ch6, perm = FALSE)
stopifnot(identical(chch, ch6@factors$Cholesky),
  all(abs(crossprod(as(chch, "dtrMatrix")) - ch6) < 1e-10))
```

drop0

Drop Non-Structural Zeros from a Sparse Matrix

Description

Deletes “non-structural” zeros (i.e., zeros stored explicitly, in memory) from a sparse matrix and returns the result.

Usage

```r
drop0(x, tol = 0, is.Csparse = NA, give.Csparse = TRUE)
```

Arguments

- **x**: a Matrix, typically inheriting from virtual class sparseMatrix. denseMatrix and traditional vectors and matrices are coerced to CsparseMatrix, with zeros dropped automatically, hence users passing such x should consider as(x, "CsparseMatrix") instead, notably in the tol = 0 case.
- **tol**: a non-negative number. If x is numeric, then entries less than or equal to tol in absolute value are deleted.
- **is.Csparse**: a logical used only if give.Csparse is TRUE, indicating if x already inherits from virtual class CsparseMatrix, in which case coercion is not attempted, permitting some (typically small) speed-up.
- **give.Csparse**: a logical indicating if the result must inherit from virtual class CsparseMatrix. If FALSE and x inherits from RsparseMatrix, TsparseMatrix, or indMatrix, then the result preserves the class of x. The default value is TRUE only for backwards compatibility.

Value

A sparseMatrix, the result of deleting non-structural zeros from x, possibly after coercion.
dsCMatrix-class

Note

drop0 is sometimes called in conjunction with zapsmall, e.g., when dealing with sparse matrix products; see the example.

See Also

Function sparseMatrix, for constructing objects inheriting from virtual class sparseMatrix; nnzero.

Examples

(m <- sparseMatrix(i = 1:8, j = 2:9, x = c(0:2, 3:-1),
 dims = c(10L, 20L)))
drop0(m)

A larger example:
t5 <- new("dtCMatrix", Dim = c(5L, 5L), uplo = "L",
 x = c(10, 1, 3, 10, 1, 10, 1, 10, 10),
 i = c(0L, 2L, 4L, 1L, 3L, 2L, 4L, 3L, 4L),
 p = c(0L, 3L, 5L, 7:9))
TT <- kronecker(t5, kronecker(kronecker(t5, t5), t5))
IT <- solve(TT)
I. <- TT %*% IT ; nnzero(I.) # 697 (== 625 + 72)
I.0 <- drop0(zapsmall(I.))
which actually can be more efficiently achieved by
I.. <- drop0(I., tol = 1e-15)
stopifnot(all(I.0 == Diagonal(625)), nnzero(I..) == 625)

dsCMatrix-class Numeric Symmetric Sparse (column compressed) Matrices

Description

The dsCMatrix class is a class of symmetric, sparse numeric matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order.

The dsTMatrix class is the class of symmetric, sparse numeric matrices in triplet format.

Objects from the Class

Objects can be created by calls of the form new("dsCMatrix", ...) or new("dsTMatrix", ...), or automatically via e.g., as(*, "symmetricMatrix"), or (for dsCMatrix) also from Matrix(.).

Creation “from scratch” most efficiently happens via sparseMatrix(*, symmetric=TRUE).
Slots

uplo: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored.

i: Object of class "integer" of length nnZ (half number of non-zero elements). These are the row numbers for each non-zero element in the lower triangle of the matrix.

p: (only in class "dsCMatrix"): an integer vector for providing pointers, one for each column, see the detailed description in CsparseMatrix.

j: (only in class "dsTMatrix"): Object of class "integer" of length nnZ (as i). These are the column numbers for each non-zero element in the lower triangle of the matrix.

x: Object of class "numeric" of length nnZ – the non-zero elements of the matrix (to be duplicated for full matrix).

factors: Object of class "list" - a list of factorizations of the matrix.

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.

Extends

Both classes extend classes and symmetricMatrix dsparseMatrix directly; dsCMatrix further directly extends CsparseMatrix, where dsTMatrix does TsparseMatrix.

Methods

solve signature(a = "dsCMatrix", b = "..."): x <- solve(a,b) solves $Ax = b$ for x; see solve-methods.

chol signature(x = "dsCMatrix", pivot = "logical"): Returns (and stores) the Cholesky decomposition of x, see chol.

Cholesky signature(A = "dsCMatrix", \ldots): Computes more flexibly Cholesky decompositions, see Cholesky.

determinant signature(x = "dsCMatrix", logarithm = "missing"): Evaluate the determinant of x on the logarithm scale. This creates and stores the Cholesky factorization.

determinant signature(x = "dsCMatrix", logarithm = "logical"): Evaluate the determinant of x on the logarithm scale or not, according to the logarithm argument. This creates and stores the Cholesky factorization.

t signature(x = "dsCMatrix"): Transpose. As for all symmetric matrices, a matrix for which the upper triangle is stored produces a matrix for which the lower triangle is stored and vice versa, i.e., the uplo slot is swapped, and the row and column indices are interchanged.

t signature(x = "dsTMatrix"): Transpose. The uplo slot is swapped from "U" to "L" or vice versa, as for a "dsCMatrix", see above.

See Also

Classes dgCMatrix, dgTMatrix, dgeMatrix and those mentioned above.
Examples

```r
mm <- Matrix(toeplitz(c(10, 0, 1, 0, 3)), sparse = TRUE)
mm # automatically dsCMatrix
str(mm)
mT <- as(mm, "generalMatrix"), "TsparseMatrix")

## Either
(symM <- as(mT, "symmetricMatrix")) # dsT
(symC <- as(symM, "CsparseMatrix")) # dsC
## or
sT <- Matrix(mT, sparse=TRUE, forceCheck=TRUE) # dsT

sym2 <- as(symC, "TsparseMatrix")
## --&gt; the same as 'symM', a "TsparseMatrix"
```

Description

The Class "dsparseMatrix" is the virtual (super) class of all numeric sparse matrices.

Slots

- **Dim**: the matrix dimension, see class "Matrix".
- **Dimnames**: see the "Matrix" class.
- **x**: a numeric vector containing the (non-zero) matrix entries.

Extends

Class "dMatrix" and "sparseMatrix", directly.
Class "Matrix", by the above classes.

See Also

the documentation of the (non virtual) sub classes, see `showClass("dsparseMatrix")`; in particular, `dgTMatrix`, `dgCMatrix`, and `dgRMatrix`.

Examples

`showClass("dsparseMatrix")`
The `dsRMatrix` class is a class of symmetric, sparse matrices in the compressed, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Objects from the Class

These "..RMatrix" classes are currently still mostly unimplemented!

Objects can be created by calls of the form `new("dsRMatrix", ...)`.

Slots

- **uplo**: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored. At present only the lower triangle form is allowed.
- **j**: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- **p**: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.
- **factors**: Object of class "list" - a list of factorizations of the matrix.
- **x**: Object of class "numeric" - the non-zero elements of the matrix.
- **Dim**: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
- **Dimnames**: List of length two, see `Matrix`.

Extends

Classes `RsparseMatrix`, `dsparseMatrix` and `symmetricMatrix`, directly.

Class "dMatrix", by class "dsparseMatrix", class "sparseMatrix", by class "dsparseMatrix" or "RsparseMatrix"; class "compMatrix" by class "symmetricMatrix" and of course, class "Matrix".

Methods

- `forceSymmetric` signature(x = "dsRMatrix", uplo = "missing"): a trivial method just returning `x`
- `forceSymmetric` signature(x = "dsRMatrix", uplo = "character"): if `uplo == x@uplo`, this trivially returns `x`; otherwise `t(x)`.

See Also

the classes `dgCMatrix`, `dgTMatrix`, and `dgeMatrix`.
Examples

(m0 <- new("dsRMatrix"))
m2 <- new("dsRMatrix", Dim = c(2L,2L),
 x = c(3,1), j = c(1L,1L), p = 0:2)
m2
stopifnot(colSums(as(m2, "TsparseMatrix")) == 3:4)
str(m2)
(ds2 <- forceSymmetric(diag(2))) # dsy*
dR <- as(ds2, "RsparseMatrix")
dR # dsRMatrix

dsyMatrix-class Symmetric Dense (Packed or Unpacked) Numeric Matrices

Description

• The "dsyMatrix" class is the class of symmetric, dense matrices in non-packed storage and
• "dspMatrix" is the class of symmetric dense matrices in packed storage, see pack(). Only
 the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("dsyMatrix", ...) or new("dspMatrix", ...),
respectively.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
triangular.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
major order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
Matrix.

factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends

"dsyMatrix" extends class "dgeMatrix", directly, whereas
"dspMatrix" extends class "ddenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use
showClass("dsyMatrix"), e.g., for details.
Methods

norm signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing": Computes the matrix norm of the desired type, see, norm.

rcond signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing": Computes the reciprocal condition number, rcond().

solve signature(a = "dspMatrix", b = "....."), and

solve signature(a = "dsyMatrix", b = "....."): x <- solve(a,b) solves Ax = b for x; see solve-methods.

t signature(x = "dsyMatrix"): Transpose; swaps from upper triangular to lower triangular storage, i.e., the uplo slot from "U" to "L" or vice versa, the same as for all symmetric matrices.

See Also

The positive (Semi-)definite dense (packed or non-packed numeric matrix classes dpoMatrix, dppMatrix and corMatrix,

Classes dgeMatrix and Matrix; solve, norm, rcond.t

Examples

```r
## Only upper triangular part matters (when uplo == "U" as per default)
(sy2 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, NA, 32, 77)))
str(t(sy2)) # uplo = "L", and the lower tri. (i.e. NA is replaced).

chol(sy2) #-> "Cholesky" matrix
(sp2 <- pack(sy2)) # a "dspMatrix"

## Coercing to dpoMatrix gives invalid object:
sy3 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, -1, 2, -7))
try(as(sy3, "dpoMatrix")) # -> error: not positive definite

## 4x4 example
m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(sym <- m+t(m)+diag(11:14, 4))
(S1 <- pack(sym))
(S2 <- t(S1))
stopifnot(all(S1 == S2)) # equal "seen as matrix", but differ internally :
str(S1)
S2@x
```

dtCMatrix-class

Triangular, (compressed) sparse column matrices
Description
The "dtCMatrix" class is a class of triangular, sparse matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order.

The "dtTMatrix" class is a class of triangular, sparse matrices in triplet format.

Objects from the Class
Objects can be created by calls of the form `new("dtCMatrix", ...)` or calls of the form `new("dtTMatrix", ...)`, but more typically automatically via `Matrix()` or coercions such as `as(x, "triangularMatrix")`.

Slots
uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
p: (only present in "dtCMatrix") an integer vector for providing pointers, one for each column, see the detailed description in `CsparseMatrix`.
i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
j: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix. (Only present in the dtTMatrix class.)
x: Object of class "numeric" - the non-zero elements of the matrix.
Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the `Matrix`, see there.

Extends
Class "dgCMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix", "sparseMatrix", and more by class "dgCMatrix" etc, see the examples.

Methods
solve signature(a = "dtCMatrix", b = "..."): sparse triangular solve (aka “backsolve” or “forwardsolve”), see `solve-methods`.
t signature(x = "dtCMatrix"): returns the transpose of x
t signature(x = "dtTMatrix"): returns the transpose of x

See Also
Classes `dgCMatrix`, `dgTMatrix`, `dgeMatrix`, and `dtrMatrix`.
Examples

showClass("dtCMatrix")
showClass("dtTMatrix")
t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))
t1
from 0-diagonal to unit-diagonal (low-level step):
tu <- t1 ; tu@diag <- "U"
tu
(cu <- as(tu, "CsparseMatrix"))
str(cu)# only two entries in @i and @x
stopifnot(cu@i == 1:0,
 all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu)))

t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
(it1 <- solve(t1))
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)

2nd example
U5 <- new("dtCMatrix", i= c(1L, 0:3), p=c(0L,0L,0L:2, 5L), Dim = c(5L, 5L),
 x = rep(1, 5), diag = "U")
U5
(iu <- solve(U5)) # contains one '0'
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions

I5 <- iu %*% U5 # should equal the identity matrix
i5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(
 all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
 all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
 identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))
)

dtpMatrix-class

Packed Triangular Dense Matrices - "dtpMatrix"

Description

The "dtpMatrix" class is the class of triangular, dense, numeric matrices in packed storage. The "dtrMatrix" class is the same except in nonpacked storage.

Objects from the Class

Objects can be created by calls of the form new("dtpMatrix", ...) or by coercion from other classes of matrices.
Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.
x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order. For a packed square matrix of dimension \(d \times d\), \text{length}(x)\ is of length \(d(d+1)/2\) (also when diag == "U"!).

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there.

Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix" and more by class "ddenseMatrix" etc, see the examples.

Methods

\%
\%

signature(x = "dtpMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several other signature combinations, see showMethods("%\%\%, class = "dtpMatrix").
determinant signature(x = "dtpMatrix", logarithm = "logical"): the determinant(x) trivially is \text{prod}(\text{diag}(x)), but computed on log scale to prevent over- and underflow.
diag signature(x = "dtpMatrix"): ...
norm signature(x = "dtpMatrix", type = "character"): ...
rcord signature(x = "dtpMatrix", norm = "character"): ...
solve signature(a = "dtpMatrix", b = ".\."): efficiently using internal backsolve or forward-solve, see solve-methods.
t signature(x = "dtpMatrix"): t(x) remains a "dtpMatrix", lower triangular if x is upper triangular, and vice versa.

See Also

Class dtrMatrix

Examples

showClass("dtrMatrix")

demonstrate("dtrMatrix-class", echo=FALSE)
(p1 <- pack(T2))
str(p1)
(pp <- pack(T))
ip1 <- solve(p1)
stopifnot(length(p1@x) == 3, length(pp@x) == 3,
 p1 @ uplo == T2 @ uplo, pp @ uplo == T @ uplo,
 identical(t(pp), p1), identical(t(p1), pp),
Description

The `dtRMatrix` class is a class of triangular, sparse matrices in the compressed, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Objects from the Class

This class is currently still mostly unimplemented!

Objects can be created by calls of the form `new("dtRMatrix", ...)`.

Slots

- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. At present only the lower triangle form is allowed.
- `diag`: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`
- `j`: Object of class "integer" of length `nnzero(.)` (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- `p`: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row. (Only present in the `dsRMatrix` class.)
- `x`: Object of class "numeric" - the non-zero elements of the matrix.
- `Dim`: The dimension (a length-2 "integer")
- `Dimnames`: corresponding names (or `NULL`), inherited from the `Matrix`, see there.

Extends

Class "dgRMatrix", directly. Class "dsparseMatrix", by class "dgRMatrix". Class "dMatrix", by class "dgRMatrix". Class "sparseMatrix", by class "dgRMatrix". Class "Matrix", by class "dgRMatrix".

Methods

No methods currently with class "dsRMatrix" in the signature.

See Also

Classes `dgCMatrix, dgTMatrix, dgeMatrix`
Examples

(m0 <- new("dtRMatrix"))
(m2 <- new("dtRMatrix", Dim = c(2L,2L),
 x = c(5, 1:2), p = c(0L,2:3), j= c(0:1,1L)))
str(m2)
(m3 <- as(Diagonal(2), "RsparseMatrix"))# --> dtRMatrix

dtrMatrix-class Triangular, dense, numeric matrices

Description

The "dtrMatrix" class is the class of triangular, dense, numeric matrices in nonpacked storage. The "dtpMatrix" class is the same except in packed storage, see pack().

Objects from the Class

Objects can be created by calls of the form new("dtrMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.
x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order.
Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector of non-negative integers.

Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "Matrix" and others, by class "ddenseMatrix".

Methods

Among others (such as matrix products, e.g. ?crossprod-methods),

`norm` signature(x = "dtrMatrix", type = "character")

`rcond` signature(x = "dtrMatrix", norm = "character")

`solve` signature(a = "dtrMatrix", b = "....")efficiently use a “forwardsolve” or backsolve for a lower or upper triangular matrix, respectively, see also solve-methods.

+,-,*,==,>=,... all the Ops group methods are available. When applied to two triangular matrices, these return a triangular matrix when easily possible.
See Also

Classes `ddenseMatrix`, `dtpMatrix`, `triangularMatrix`

Examples

```r
(m <- rbind(2:3, 0:-1))
(M <- as(m, "generalMatrix"))

(T <- as(M, "triangularMatrix")) # formally upper triangular
(T2 <- as(t(M), "triangularMatrix"))
stopifnot(T@uplo == "U", T2@uplo == "L", identical(T2, t(T)))

m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(t1 <- Matrix(m+diag(4)))
str(t1p <- pack(t1))
(t1pu <- diagN2U(t1p))
stopifnot(exprs = {
  inherits(t1, "dtrMatrix"); validObject(t1)
  inherits(t1p, "dtpMatrix"); validObject(t1p)
  inherits(t1pu,"dtCMatrix"); validObject(t1pu)
  t1pu@x == 1:6
  all(t1pu == t1p)
  identical((t1pu - t1)@x, numeric())# sparse all-0
})
```

Description

`expand1` and `expand2` construct matrix factors from objects specifying matrix factorizations. Such objects typically do not store the factors explicitly, employing instead a compact representation to save memory.

Usage

```r
expand1(x, which, ...)  
expand2(x, ...)  
expand (x, ...)  
```

Arguments

- `x` a matrix factorization, typically inheriting from virtual class `MatrixFactorization`
- `which` a character string indicating a matrix factor.
- `...` further arguments passed to or from methods.
Details

Methods for expand are retained only for backwards compatibility with Matrix < 1.6-0. New code should use expand1 and expand2, whose methods provide more control and behave more consistently. Notably, expand2 obeys the rule that the product of the matrix factors in the returned list should reproduce (within some tolerance) the factorized matrix, including its dimnames.

Hence if \(x \) is a matrix and \(y \) is its factorization, then

\[
\text{all.equal(as}(x, \text{"matrix"}), \text{as(Reduce(\%\%\%, expand2(y)), \text{"matrix"}))}
\]

should in most cases return TRUE.

Value

expand1 returns an object inheriting from virtual class Matrix, representing the factor indicated by which, always without row and column names.

expand2 returns a list of factors, typically with names using conventional notation, as in list(L=, U=). The first and last factors get the row and column names of the factorized matrix, which are preserved in the Dimnames slot of \(x \).

Methods

The following table lists methods for expand1 together with allowed values of argument which.

<table>
<thead>
<tr>
<th>class(x)</th>
<th>which</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schur</td>
<td>c("Q", "T", "Q-")</td>
</tr>
<tr>
<td>denseLU</td>
<td>c("P1", "P1-", "L", "U")</td>
</tr>
<tr>
<td>sparseLU</td>
<td>c("P1", "P1-", "P2", "P2-", "L", "U")</td>
</tr>
<tr>
<td>sparseQR</td>
<td>c("P1", "P1-", "P2", "P2-", "Q", "Q1", "R", "R1")</td>
</tr>
<tr>
<td>BunchKaufman,pBunchKaufman</td>
<td>c("U", "DU", "U-", "L", "DL", "L-")</td>
</tr>
<tr>
<td>Cholesky,pCholesky</td>
<td>c("P1", "P1-", "L1", "D", "L1-", "L", "L")</td>
</tr>
<tr>
<td>CHMsimpl,CHMsimpl</td>
<td>c("P1", "P1-", "L1", "D", "L1-", "L", "L")</td>
</tr>
</tbody>
</table>

Methods for expand2 and expand are described below. Factor names and classes apply also to expand1.

expand2 signature(x = "CHMsimpl"): expands the factorization \(A = P_1 L_1 D_1 L_1' P_1 = P_2 L L' P_1 \) as list(P1, L1, D, L1, P1) (the default) or as list(P1, L, L, P1), depending on optional logical argument LDL. P1 and P1 are pMatrix, L1, L1, L, and L are dtCMatrix, and D is a ddiMatrix.

expand2 signature(x = "CHMsuper"): as CHMsimpl, but the triangular factors are stored as dgCMatrix.

expand2 signature(x = "p?Cholesky") expands the factorization \(A = L_1 D L_1' = L L' \) as list(L1, D, L1) (the default) or as list(L, L), depending on optional logical argument LDL. L1, L1, L, and L are dtrMatrix or dtpMatrix, and D is a ddiMatrix.

expand2 signature(x = "p?BunchKaufman"): expands the factorization \(A = U D_0 U' = L D L' \) where \(U = \prod_{k=1}^{b_U} P_k U_k \) and \(L = \prod_{k=1}^{b_L} P_k L_k \) as list(U, DU, U) or list(L, DL, L), depending on x@uplo. If optional argument complete is TRUE, then an unnamed list giving the full expansion with \(2b_U + 1 \) or \(2b_L + 1 \) matrix factors is returned instead. \(P_k \) are represented
as \(pMatrix, U_k \) and \(L_k \) are represented as \(dCMatrix \), and \(D_U \) and \(D_L \) are represented as \(dsCMatrix \).

expand2 signature (\(x = \text{"Schur"} \)): expands the factorization \(A = QTQ' \) as \(\text{list}(Q, T, Q') \). \(Q \) and \(Q' \) are \(x@Q \) and \(t(x@Q) \) modulo \(\text{Dimnames} \), and \(T \) is \(x@T \).

expand2 signature (\(x = \text{"sparseLU"} \)): expands the factorization \(A = P_1LUP_2' \) as \(\text{list}(P_1, L, U, P_2) \). \(P_1 \) and \(P_2 \) are \(pMatrix \), and \(L \) and \(U \) are \(dtCMatrix \).

expand2 signature (\(x = \text{"denseLU"} \)): expands the factorization \(A = P_1LU \) as \(\text{list}(P_1, L, U) \). \(P_1 \) is a \(pMatrix \), and \(L \) and \(U \) are \(dtRMatrix \) if square and \(dgeMatrix \) otherwise.

expand2 signature (\(x = \text{"sparseQR"} \)): expands the factorization \(A = P_1QRP_2' \) as \(\text{list}(P_1, Q_1, R_1, P_2, Q, R) \), depending on optional logical argument \(\text{complete} \). \(P_1 \) and \(P_2 \) are \(pMatrix \), \(Q \) and \(Q_1 \) are \(dgeMatrix \), \(R \) is a \(dcGMatrix \), and \(R_1 \) is a \(dtCMatrix \).

expand signature (\(x = \text{"CHMfactor"} \)): as \(\text{expand2} \), but returning \(\text{list}(P, L) \).

\(\text{expand}(x)[[\text{"P"}]] \) and \(\text{expand2}(x)[[\text{"P1"}]] \) represent the same permutation matrix \(P_1 \) but have opposite margin slots and inverted perm slots. The components of \(\text{expand}(x) \) do not preserve \(x@\text{Dimnames} \).

expand signature (\(x = \text{"sparseLU"} \)): as \(\text{expand2} \), but returning \(\text{list}(P, L, U, Q) \).

\(\text{expand}(x)[[\text{"P"}]] \) and \(\text{expand2}(x)[[\text{"P2"}]] \) represent the same permutation matrix \(P_2 \) but have opposite margin slots and inverted perm slots. \(\text{expand}(x)[[\text{"L"}]] \) represents the permutation matrix \(P_1 \) rather than its transpose \(P_1' \); it is \(\text{expand2}(x)[[\text{"P1"}]] \) with an inverted perm slot. \(\text{expand}(x)[[\text{"L"}]] \) and \(\text{expand2}(x)[[\text{"L"}]] \) represent the same unit lower triangular matrix \(L \), but with diag slot equal to \(\text{"N"} \) and \(\text{"U"} \), respectively. \(\text{expand}(x)[[\text{"L"}]] \) and \(\text{expand}(x)[[\text{"U"}]] \) store the permuted first and second components of \(x@\text{Dimnames} \) in their Dimnames slots.

expand signature (\(x = \text{"denseLU"} \)): as \(\text{expand2} \), but returning \(\text{list}(L, U, P) \).

\(\text{expand}(x)[[\text{"P"}]] \) and \(\text{expand2}(x)[[\text{"P1"}]] \) are identical modulo \(\text{Dimnames} \). The components of \(\text{expand}(x) \) do not preserve \(x@\text{Dimnames} \).

See Also

The virtual class \texttt{compMatrix} of factorizable matrices.

The virtual class \texttt{MatrixFactorization} of matrix factorizations.

Generic functions \texttt{Cholesky, BunchKaufman, Schur, lu, and qr} for computing factorizations.

Examples

```r
showMethods("expand1", inherited = FALSE)
showMethods("expand2", inherited = FALSE)
set.seed(0)

(A <- Matrix(rnorm(9L, 0, 10), 3L, 3L))
(lu.A <- lu(A))
(e.lu.A <- expand2(lu.A))
stopifnot(exprs = {
is.list(e.lu.A)
identical(names(e.lu.A), c("P1.", "L", "U"))
all(sapply(e.lu.A, is, "Matrix"))
all.equal(as(A, "matrix"), as(Reduce("%*%", e.lu.A), "matrix"))
```


expm-methods

Description

Compute the exponential of a matrix.

Usage

```r
expm(x)
```

Arguments

- `x`:
 - a matrix, typically inheriting from the `dMatrix` class.

Details

The exponential of a matrix is defined as the infinite Taylor series $\expm(A) = I + A + A^2/2! + A^3/3! + \ldots$ (although this is definitely not the way to compute it). The method for the `dgeMatrix` class uses Ward’s diagonal Padé approximation with three step preconditioning, a recommendation from Moler & Van Loan (1978) “Nineteen dubious ways…”.

Value

The matrix exponential of `x`.

Author(s)

This is a translation of the implementation of the corresponding Octave function contributed to the Octave project by A. Scottedward Hodel (A.S.Hodel@Eng.Auburn.EDU). A bug in there has been fixed by Martin Maechler.
References

https://en.wikipedia.org/wiki/Matrix_exponential

for historical reference mostly:

See Also

Package `expm`, which provides newer (in some cases faster, more accurate) algorithms for computing the matrix exponential via its own (non-generic) function `expm()`. `expm` also implements `logm()`, `sqrtm()`, etc.

Generic function `Schur`.

Examples

```r
(m1 <- Matrix(c(1,0,1,1), ncol = 2))
(e1 <- expm(m1)); e <- exp(1)
stopifnot(all.equal(e1@x, c(e,0,e,e), tolerance = 1e-15))
(m2 <- Matrix(c(-49, -64, 24, 31), ncol = 2))
(e2 <- expm(m2))
(m3 <- Matrix(cbind(0, rbind(6*diag(3),0))))# sparse!
(e3 <- expm(m3)) # upper triangular
```

externalFormats

Read and write external matrix formats

Description

Read matrices stored in the Harwell-Boeing or MatrixMarket formats or write `sparseMatrix` objects to one of these formats.

Usage

```r
readHB(file)
readMM(file)
writeMM(obj, file, ...)
```
Arguments

obj a real sparse matrix
file for writeMM - the name of the file to be written. For readHB and readMM the name of the file to read, as a character scalar. The names of files storing matrices in the Harwell-Boeing format usually end in ".rua" or ".rsa". Those storing matrices in the MatrixMarket format usually end in ".mtx". Alternatively, readHB and readMM accept connection objects.

... optional additional arguments. Currently none are used in any methods.

Value

The readHB and readMM functions return an object that inherits from the "Matrix" class. Methods for the writeMM generic functions usually return NULL and, as a side effect, the matrix obj is written to file in the MatrixMarket format (writeMM).

Note

The Harwell-Boeing format is older and less flexible than the MatrixMarket format. The function writeHB was deprecated and has now been removed. Please use writeMM instead.

Note that these formats do not know anything about dimnames, hence these are dropped by writeMM().

A very simple way to export small sparse matrices S, is to use summary(S) which returns a data.frame with columns i, j, and possibly x, see summary in sparseMatrix-class, and an example below.

References

https://math.nist.gov/MatrixMarket/
https://sparse.tamu.edu/

Examples

```r
str(pores <- readMM(system.file("external/pores_1.mtx", package = "Matrix")))
str(utm <- readHB(system.file("external/utm300.rua", package = "Matrix")))
str(lundA <- readMM(system.file("external/lund_a.mtx", package = "Matrix")))
str(lundA <- readHB(system.file("external/lund_a.rsa", package = "Matrix")))
## https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/counterx/counterx.htm
str(jgl <- readMM(system.file("external/jgl009.mtx", package = "Matrix")))
## NOTE: The following examples take quite some time
## ---- even on a fast internet connection:
if(FALSE) {
## The URL has been corrected, but we need an untar step:
  u. <- url("https://www.cise.ufl.edu/research/sparse/RB/Boeing/msc00726.tar.gz")
  str(sm <- readHB(gzcon(u.)))
}
data(KNex, package = "Matrix")
## Store as MatrixMarket (".mtx") file, here inside temporary dir./folder:
(MMfile <- file.path(tempdir(), "mmMM.mtx"))
```
writeMM(KNex$mm, file=MMfile)
file.info(MMfile)[,c("size", "ctime")]] # (some confirmation of the file's)

very simple export - in triplet format - to text file:
data(CAex, package = "Matrix")
s.CA <- summary(CAex)
s.CA # shows (i, j, x) [columns of a data frame]
message("writing to ", outf <- tempfile())
write.table(s.CA, file = outf, row.names=FALSE)
and read it back -- showing off sparseMatrix():
str(dd <- read.table(outf, header=TRUE))
has columns (i, j, x) -> we can use via do.call() as arguments to sparseMatrix():
mm <- do.call(sparseMatrix, dd)
stopifnot(all.equal(mm, CAex, tolerance=1e-15))

facmul-methods

Multiplication by Factors from Matrix Factorizations

Description

Multiplying a matrix or vector on the left or right by a factor from a matrix factorization or its transpose.

Usage

facmul(x, factor, y, trans = FALSE, left = TRUE, ...)

Arguments

- **x**: A `MatrixFactorization` object.
- **factor**: A character string indicating a factor in the factorization represented by x, typically an element of names(`expand2`(x, ...)).
- **y**: A matrix or vector to be multiplied on the left or right by the factor or its transpose.
- **trans**: A logical indicating if the transpose of the factor should be used, rather than the factor itself.
- **left**: A logical indicating if the y should be multiplied on the left by the factor, rather than on the right.
- **...**: Further arguments passed to or from methods.

Details

Facmul is experimental and currently no methods are exported from `Matrix`.

Value

The value of `op(M) %*% y` or `y %*% op(M)`, depending on `left`, where `M` is the factor (always without dimnames) and `op(M)` is `M` or `t(M)`, depending on `trans`.
Examples

```r
## Conceptually, methods for 'facmul' _would_ behave as follows ...
## Not run:
n <- 3L
x <- lu(Matrix(rnorm(n * n), n, n))
y <- rnorm(n)
L <- unname(expand2(x)[[nm <- "L"]])
stopifnot(exprs = {
  all.equal(facmul(x, nm, y, trans = FALSE, left = TRUE), L %*% y)
  all.equal(facmul(x, nm, y, trans = FALSE, left = FALSE), y %*% L)
  all.equal(facmul(x, nm, y, trans = TRUE, left = TRUE), crossprod(L, y))
  all.equal(facmul(x, nm, y, trans = TRUE, left = FALSE), tcrossprod(y, L))
})
## End(Not run)
```

fastMisc

"Low Level" Coercions and Methods

Description

"Semi-API" functions used internally by Matrix, often to bypass S4 dispatch and avoid the associated overhead. These are exported to provide this capability to expert users. Typical users should continue to rely on S4 generic functions to dispatch suitable methods, by calling, e.g., `as(.,, <class>)` for coercions.

Usage

```r
.M2kind(from, kind = ".", sparse = NA)
.M2gen(from, kind = ".")
.M2sym(from, ...)
.M2tri(from, ...)
.M2diag(from)

.M2v(from)
.M2m(from)
.M2unpacked(from)
.M2packed(from)
.M2C(from)
.M2R(from)
.M2T(from)

.sparse2dense(from, packed = FALSE)
.diag2dense(from, shape = "t", packed = FALSE, uplo = "U")
.ind2dense(from, kind = "n")
.m2dense(from, class, uplo = "U", diag = "N")
```
.dense2sparse(from, repr = "C")
.diag2sparse(from, shape = "t", repr = "C", uplo = "U")
.ind2sparse(from, kind = "n", repr = ".")
.m2sparse(from, class, uplo = "U", diag = "N")

tCRT(x, lazy = TRUE)
.diag.dsC(x, Chx = Cholesky(x, LDL = TRUE), res.kind = "diag")
.solvedgC.lu (a, b, tol = .Machine$double.eps, check = TRUE)
.solvedgC.qr (a, b, order = 3L, check = TRUE)
.solvedgC.chol(a, b, check = TRUE)
.updateCHMfactor(object, parent, mult = 0)

Arguments

from, x, a, b a Matrix, matrix, or vector.
kind a string ("." or "1") specifying the “kind” of the result. "." indicates that the kind of from should be preserved. "1" indicates that the result should inherit from nMatrix (and so on).
shape a string (".", "g", "s", or "t") specifying the “shape” of the result. "." indicates that the shape of from should be preserved. "g" indicates that the result should inherit from generalMatrix (and so on).
repr a string (".", "C", "R", or "T") specifying the sparse representation of the result. "." is accepted only by .ind2sparse and indicates the most efficient representation, which is "C" ("R") for margin = 2 (1). "C" indicates that the result should inherit from CsparseMatrix (and so on).
packed a logical indicating if the result should inherit from packedMatrix rather than from unpackedMatrix. It is ignored for from inheriting from generalMatrix.
sparse a logical indicating if the result should inherit from sparseMatrix rather than from denseMatrix. If NA, then the result will be formally sparse if and only if from is.
uplo a string ("U" or "L") indicating whether the result (if symmetric or triangular) should store the upper or lower triangle of from. The elements of from in the opposite triangle are ignored.
diag a string ("N" or "U") indicating whether the result (if triangular) should be formally nonunit or unit triangular. In the unit triangular case, the diagonal elements of from are ignored.
class a string whose first three characters specify the class of the result. It should match the pattern "^[.nld](ge|sy|tr|sp|tp)" for.m2dense and "^[.nld][gst][CRT]" for.m2sparse, where "." in the first position is equivalent to "1" for logical arguments and "d" for numeric arguments.
... optional arguments passed to isSymmetric or isTriangular.
lazy

a logical indicating if the transpose should be constructed with minimal allocation, but possibly without preserving representation.

Chx

optionally, the Cholesky(x, ...) factorization of x. If supplied, then x is unused.

res.kind

a string in c("trace", "sumLog", "prod", "min", "max", "range", "diag", "diagBack").

tol

see lu-methods.

order

see qr-methods.

check

a logical indicating if the first argument should be tested for inheritance from dgCMatrix and coerced if necessary. Set to FALSE for speed only if it is known to already inherit from dgCMatrix.

object

a Cholesky factorization inheriting from virtual class CHMfactor, almost always the result of a call to generic function Cholesky.

parent

an object of class dsCMatrix or class dgCMatrix.

mult

a numeric vector of postive length. Only the first element is used, and that must be finite.

Details

Functions with names of the form .<A>2 implement coercions from virtual class A to the “nearest” non-virtual subclass of virtual class B, where the virtual classes are abbreviated as follows:

M Matrix
m matrix or vector
v vector
dense denseMatrix
unpacked unpackedMatrix
packed packedMatrix
sparse CsparseMatrix, RsparseMatrix, or TsparseMatrix
C CsparseMatrix
R RsparseMatrix
T TsparseMatrix
gen generalMatrix
sym symmetricMatrix
tri triangularMatrix
diag diagonalMatrix
ind indMatrix

Abbreviations should be seen as a guide, rather than as an exact description of behaviour. For example, .m2dense and .m2sparse accept vectors in addition to matrices.

.tCRT(x): If lazy = TRUE, then .tCRT constructs the transpose of x using the most efficient representation, which for ‘CRT’ is ‘RCT’. If lazy = FALSE, then .tCRT preserves the representation of x, behaving as the corresponding methods for generic function t.
.diag.dsC(x): .diag.dsC computes (or uses if Chx is supplied) the Cholesky factorization of x as \(LDL'\) in order to calculate one of several possible statistics from the diagonal entries of \(D\). See res.kind under ‘Arguments’.

.solve.dgC.*(a, b): .solve.dgC.lu(a, b) needs a square matrix a. .solve.dgC.qr(a, b) needs a “long” matrix a, with nrow(a) >= ncol(a). .solve.dgC.chol(a, b) needs a “wide” matrix a, with nrow(a) <= ncol(a).

All three may be used to solve sparse linear systems directly. Only .solve.dgC.qr and .solve.dgC.chol be used to solve sparse least squares problems.

.updateCHMfactor(object, parent, mult): .updateCHMfactor updates object with the result of Cholesky factorizing \(F(parent) + mult[1] \times \text{diag(nrow(parent))}\), i.e., \(F(parent)\) plus mult[1] times the identity matrix, where \(F = \text{identity}\) if parent is a dsCMatrix and \(F = \text{tcrossprod}\) if parent is a dgCMatrix. The nonzero pattern of \(F(parent)\) must match that of \(S\) if object = Cholesky(S, ...).

Examples

\[
D. \leftarrow \text{diag(x = c(1, 1, 2, 3, 5, 8))}
\]
\[
D.0 \leftarrow \text{Diagonal(x = c(0, 0, 0, 3, 5, 8))}
\]
\[
S. \leftarrow \text{toeplitz(as.double(1:6))}
\]
\[
C. \leftarrow \text{new("dgCMatrix", Dim = c(3L, 4L),}
\]
\[
p = c(0L, 1L, 1L, 1L, 3L), i = c(1L, 0L, 2L), x = c(-8, 2, 3))
\]
stopifnot(exprs = {
 identical(.M2tri (D.), as(D., "triangularMatrix"))
 identical(.M2sym (D.), as(D., "symmetricMatrix"))
 identical(.M2diag(D.), as(D., "diagonalMatrix"))
 identical(.M2kind(C., "l"),
 as(C., "lMatrix"))
 identical(.M2kind(.sparse2dense(C.), "l"),
 as(as(C., "denseMatrix"), "lMatrix"))
 identical(.diag2sparse(D.0, "t", "C"),
 .dense2sparse(.diag2dense(D.0, "t", TRUE), "C"))
 identical(.M2gen(.diag2dense(D.0, "s", FALSE)),
 .sparse2dense(.M2gen(.diag2sparse(D.0, "s", "T"))))
 identical(S.,
 .M2m(.m2sparse(S., ",sR"))
 identical(S. * lower.tri(S.) + diag(1, 6L),
 .M2m(.m2dense (S., ",tr", "L", "U")))
 identical(.M2R(C.), .M2R(.M2T(C.)))
 identical(.tCRT(C.), .M2R(t(C.)))
})

A <- tcrossprod(C.)/6 + Diagonal(3, 1/3); A[1,2] <- 3; A
stopifnot(exprs = {
 is.numeric(x. \leftarrow c(2.2, 0, -1.2)
 all.equal(x., .solve.dgC.lu(A, c(1,0,0), check=FALSE))
 all.equal(x., .solve.dgC.qr(A, c(1,0,0), check=FALSE))
})
Solving sparse least squares:

```r
X <- rbind(A, Diagonal(3)) # design matrix X (for L.S.)
Xt <- t(X) # transposed X (for L.S.)
(y <- drop(crossprod(Xt, 1:3)) + c(-1,1)/1000) # small rand.err.
str(solveCh <- .solve.dgC.chol(Xt, y, check=FALSE)) # Xt *is* dgC..
stopifnot(exprs = {
  all.equal(solveCh$coef, 1:3, tol = 1e-3)# rel.err ~ 1e-4
  all.equal(solveCh$coef, drop(solve(tcrossprod(Xt), Xt %*% y)))
  all.equal(solveCh$coef, .solve.dgC.qr(X, y, check=FALSE))
})
```

forceSymmetric-methods

Force a Matrix to 'symmetricMatrix' Without Symmetry Checks

Description

Force a square matrix `x` to a `symmetricMatrix`, **without** a symmetry check as it would be applied for `as(x, "symmetricMatrix")`.

Usage

```r
forceSymmetric(x, uplo)
```

Arguments

- `x` any square matrix (of numbers), either "traditional" (matrix) or inheriting from `Matrix`.
- `uplo` optional string, "U" or "L" indicating which "triangle" half of `x` should determine the result. The default is "U" unless `x` already has a `uplo` slot (i.e., when it is `symmetricMatrix`, or `triangularMatrix`), where the default will be `x@uplo`.

Value

a square matrix inheriting from class `symmetricMatrix`.

See Also

- `symmpart` for the symmetric part of a matrix, or the coercions `as(x, <symmetricMatrix class>)`.

Examples

```r
## Hilbert matrix
i <- 1:6
h6 <- 1/outer(i - 1L, i, "+")
sd <- sqrt(diag(h6))
hh <- t(h6/sd)/sd # theoretically symmetric
isSymmetric(hh, tol=0) # FALSE; hence
```
try(as(hh, "symmetricMatrix")) # fails, but this works fine:
H6 <- forceSymmetric(hh)

result can be pretty surprising:
(M <- Matrix(1:36, 6))
forceSymmetric(M) # symmetric, hence very different in lower triangle
(tm <- tril(M))
forceSymmetric(tm)

formatSparseM

Formatting Sparse Numeric Matrices Utilities

Description

Utilities for formatting sparse numeric matrices in a flexible way. These functions are used by the `format` and `print` methods for sparse matrices and can be applied as well to standard R matrices. Note that all arguments but the first are optional.

`formatSparseM()` is the main “workhorse” of `formatSpMatrix`, the format method for sparse matrices.

`.formatSparseSimple()` is a simple helper function, also dealing with (short/empty) column names construction.

Usage

```r
formatSparseM(x, zero.print = ".", align = c("fancy", "right"),
m = as(x,"matrix"), asLogical=NULL, uniDiag=NULL,
digits=NULL, cx, iN0, dn = dimnames(m))

.formatSparseSimple(m, asLogical=FALSE, digits=NULL,
col.names, note.dropping.colnames = TRUE,
                dn=dimnames(m))
```

Arguments

- **x**: an R object inheriting from class `sparseMatrix`.
- **zero.print**: character which should be used for structural zeroes. The default "." may occasionally be replaced by " " (blank); using "0" would look almost like `print()`ing of non-sparse matrices.
- **align**: a string specifying how the zero.print codes should be aligned, see `formatSpMatrix`.
- **m**: (optional) a (standard R) matrix version of x.
- **asLogical**: should the matrix be formatted as a logical matrix (or rather as a numeric one); mostly for `formatSparseM()`.
- **uniDiag**: logical indicating if the diagonal entries of a sparse unit triangular or unit-diagonal matrix should be formatted as "1" instead of "1" (to emphasize that the 1’s are "structural").
generalMatrix-class

Class "generalMatrix" of General Matrices

Description

Virtual class of “general” matrices; i.e., matrices that do not have a known property such as symmetric, triangular, or diagonal.
Objects from the Class

A virtual Class: No objects may be created from it.

Slots

- factors ,
- Dim ,

Dimnames: all slots inherited from `compMatrix`; see its description.

Extends

Class "compMatrix", directly. Class "Matrix", by class "compMatrix".

See Also

Classes `compMatrix`, and the non-general virtual classes: `symmetricMatrix, triangularMatrix, diagonalMatrix`.

Hilbert

Generate a Hilbert matrix

Description

Generate the n by n symmetric Hilbert matrix. Because these matrices are ill-conditioned for moderate to large n, they are often used for testing numerical linear algebra code.

Usage

`Hilbert(n)`

Arguments

- `n` a non-negative integer.

Value

the n by n symmetric Hilbert matrix as a "dpoMatrix" object.

See Also

the class `dpoMatrix`

Examples

`Hilbert(6)`
Methods for function `image` in package `Matrix`. An image of a matrix simply color codes all matrix
entries and draws the $n \times m$ matrix using an $n \times m$ grid of (colored) rectangles.

The `Matrix` package image methods are based on `levelplot()` from package `lattice`; hence these
methods return an “object” of class “trellis”, producing a graphic when (auto-) `print()`ed.

Usage

```r
## S4 method for signature 'dgTMatrix'
image(x,
  xlim = c(1, di[2]),
  ylim = c(di[1], 1), aspect = "iso",
  sub = sprintf("Dimensions: %d x %d", di[1], di[2]),
  xlab = "Column", ylab = "Row", cuts = 15,
  useRaster = FALSE,
  useAbs = NULL, colorkey = !useAbs,
  col.regions = NULL,
  lwd = NULL, border.col = NULL, ...)
```

Arguments

- **x**: a Matrix object, i.e., fulfilling `is(x, "Matrix")`.
- **xlim**, **ylim**: x- and y-axis limits; may be used to “zoom into” matrix. Note that x, y “feel reversed”: ylim is for the rows (= 1st index) and xlim for the columns (= 2nd index). For convenience, when the limits are integer valued, they are both extended by 0.5; also, ylim is always used decreasingly.
- **aspect**: aspect ratio specified as number (y/x) or string; see `levelplot`.
- **sub**, **xlab**, **ylab**: axis annotation with sensible defaults; see `plot.default`.
- **cuts**: number of levels the range of matrix values would be divided into.
- **useRaster**: logical indicating if raster graphics should be used (instead of the tradition rectangle vector drawing). If true, `panel.levelplot.raster` (from `lattice` package) is used, and the colorkey is also done via rasters, see also `levelplot` and possibly `grid.raster`.

Note that using raster graphics may often be faster, but can be slower, depending on the matrix dimensions and the graphics device (dimensions).

- **useAbs**: logical indicating if `abs(x)` should be shown; if TRUE, the former (implicit) default, the default `col.regions` will be `grey` colors (and no colorkey drawn). The default is FALSE unless the matrix has no negative entries.
colorkey logical indicating if a color key aka ‘legend’ should be produced. Default is to draw one, unless useAbs is true. You can also specify a list, see `levelplot`, such as `list(raster=TRUE)` in the case of rastering.

col.regions vector of gradually varying colors; see `levelplot`.

lwd (only used when `useRaster` is false:) non-negative number or `NULL` (default), specifying the line-width of the rectangles of each non-zero matrix entry (drawn by `grid.rect`). The default depends on the matrix dimension and the device size.

border.col color for the border of each rectangle. NA means no border is drawn. When NULL as by default, `border.col <- if(lwd < .01) NA else NULL` is used. Consider using an opaque color instead of `NULL` which corresponds to `grid::get.gpar("col")`.

... further arguments passed to methods and `levelplot`, notably for specifying (possibly non equidistant) cut values for dividing the matrix values (superseding `cuts` above).

Value

as all `lattice` graphics functions, `image(<Matrix>)` returns a "trellis" object, effectively the result of `levelplot()`.

Methods

All methods currently end up calling the method for the `dgTMatrix` class. Use `showMethods(image)` to list them all.

See Also

`levelplot`, and `print.trellis` from package `lattice`.

Examples

```r
showMethods(image) # And if you want to see the method definitions: showMethods(image, includeDefs = TRUE, inherited = FALSE)
data(CAex, package = "Matrix") image(CAex, main = "image(CAex)") -> imgC; imgC stopifnot(!is.null(leg <- imgC$legend), is.list(imgC$right)) # failed for 2 days ..
image(CAex, useAbs=TRUE, main = "image(CAex, useAbs=TRUE)"

cCA <- Cholesky(crossprod(CAex), Imult = .01) # See ?print.trellis --- place two image() plots side by side:
print(image(cCA, main="Cholesky(crossprod(CAex), Imult = .01)"), split=c(x=1,y=1,nx=2, ny=1), more=TRUE)
print(image(cCA, useAbs=TRUE), split=c(x=2,y=1,nx=2, ny=1))
data(USCounties, package = "Matrix") image(USCounties) # huge
```
image(sign(USCounties))## just the pattern
 # how the result looks, may depend heavily on
 # the device, screen resolution, antialiasing etc
 # e.g. x11(type="Xlib") may show very differently than cairo-based

Drawing borders around each rectangle;
 # again, viewing depends very much on the device:
image(USCounties[1:400,1:200], lwd=.1)
Using (xlim,ylim) has advantage: matrix dimension and (col/row) indices:
image(USCounties, c(1,200), c(1,400), lwd=.1)
image(USCounties, c(1,300), c(1,200), lwd=.5)
image(USCounties, c(1,300), c(1,200), lwd=.01)
These 3 are all equivalent:
(I1 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE))
I2 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, border.col=NA)
I3 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=2, border.col=NA)
stopifnot(all.equal(I1, I2, check.environment=FALSE),
 all.equal(I2, I3, check.environment=FALSE))
using an opaque border color
image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=3, border.col = adjustcolor("skyblue", 1/2))

if(interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))) {
 ## Using raster graphics: For PDF this would give a 77 MB file,
 ## however, for such a large matrix, this is typically considerably
 ## *slower* (than vector graphics rectangles) in most cases:
 if(doPNG <- !dev.interactive())
 png("image-USCounties-raster.png", width=3200, height=3200)
 image(USCounties, useRaster = TRUE) # should not suffer from anti-aliasing
 if(doPNG)
 dev.off()
 ## and now look at the *.png image in a viewer you can easily zoom in and out
}#only if(doExtras)

index-class

Virtual Class "index" - Simple Class for Matrix Indices

Description

The class "index" is a virtual class used for indices (in signatures) for matrix indexing and sub-assignment of `Matrix` matrices.

In fact, it is currently implemented as a simple class union (`setClassUnion`) of "numeric", "logical" and "character".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

See Also

`[-methods`, and
`Subassign-methods`, also for examples.

Examples

```r
showClass("index")
```

Description

The `indMatrix` class is the class of row and column *index* matrices, stored as 1-based integer index vectors. A row (column) index matrix is a matrix whose rows (columns) are standard unit vectors. Such matrices are useful when mapping observations to discrete sets of covariate values.

Multiplying a matrix on the left by a row index matrix is equivalent to indexing its rows, i.e., sampling the rows “with replacement”. Analogously, multiplying a matrix on the right by a column index matrix is equivalent to indexing its columns. Indeed, such products are implemented in `Matrix` as indexing operations; see ‘Details’ below.

A matrix whose rows and columns are standard unit vectors is called a *permutation* matrix. This special case is designated by the `pMatrix` class, a direct subclass of `indMatrix`.

Details

The transpose of an index matrix is an index matrix with identical `perm` but opposite `margin`. Hence the transpose of a row index matrix is a column index matrix, and vice versa.

The cross product of a row index matrix `R` and itself is a diagonal matrix whose diagonal entries are the number of entries in each column of `R`.

Given a row index matrix `R` with `perm` slot `p`, a column index matrix `C` with `perm` slot `q`, and a matrix `M` with conformable dimensions, we have

```
RM = R %*% M = M[, p]
MC = M %*% C = M[, q]
C'M = crossprod(C, M) = M[q, ]
MR' = tcrossprod(M, R) = M[, p]
R'R = crossprod(R) = Diagonal(x=tabulate(p, ncol(R)))
CC' = tcrossprod(C) = Diagonal(x=tabulate(q, nrow(C)))
```

Operations on index matrices that result in index matrices will accordingly return an `indMatrix`. These include products of two column index matrices and (equivalently) column-indexing of a column index matrix (when dimensions are not dropped). Most other operations on `indMatrix` treat them as sparse nonzero pattern matrices (i.e., inheriting from virtual class `nsparseMatrix`). Hence vector-valued subsets of `indMatrix`, such as those given by `diag`, are always of type "logical".

Objects from the Class

Objects can be created explicitly with calls of the form `new("indMatrix",...)`, but they are more commonly created by coercing 1-based integer index vectors, with calls of the form `as(., "indMatrix")`; see ‘Methods’ below.
indMatrix-class

Slots

- margin: an integer, either 1 or 2, specifying whether the matrix is a row (1) or column (2) index.
- perm: a 1-based integer index vector, i.e., a vector of length Dim[margin] with elements taken from 1:Dim[1+margin%%2].

Dim, Dimnames inherited from virtual superclass **Matrix**.

Extends

Classes "**sparseMatrix**" and "**generalMatrix**", directly.

Methods

- `%*%` signature(x = "indMatrix", y = "Matrix") and others listed by `showMethods("%*%", classes = "indMatrix")`: matrix products implemented where appropriate as indexing operations.
- `coerce` signature(from = "numeric", to = "indMatrix"): supporting typical `indMatrix` construction from a vector of positive integers. Row indexing is assumed.
- `coerce` signature(from = "list", to = "indMatrix"): supporting `indMatrix` construction for row and column indexing, including index vectors of length 0 and index vectors whose maximum is less than the number of rows or columns being indexed.
- `coerce` signature(from = "indMatrix", to = "matrix"): coercion to a traditional `matrix` of logical type, with FALSE and TRUE in place of 0 and 1.
- `t` signature(x = "indMatrix"): the transpose, which is an `indMatrix` with identical `perm` but opposite `margin`.
- `rowSums, rowMeans, colSums, colMeans` signature(x = "indMatrix"): row and column sums and means.
- `rbind2, cbind2` signature(x = "indMatrix", y = "indMatrix"): row-wise catenation of two row index matrices with equal numbers of columns and column-wise catenation of two column index matrices with equal numbers of rows.
- `kronecker` signature(X = "indMatrix", Y = "indMatrix"): Kronecker product of two row index matrices or two column index matrices, giving the row or column index matrix corresponding to their “interaction”.

Author(s)

Fabian Scheipl and Uni Muenchen, building on the existing class `pMatrix` after a nice hike’s conversation with Martin Maechler. Methods for `crossprod(x, y)` and `kronecker(x, y)` with both arguments inheriting from `indMatrix` were made considerably faster thanks to a suggestion by Boris Vaillant. Diverse tweaks by Martin Maechler and Mikael Jagan, notably the latter’s implementation of `margin`, prior to which the `indMatrix` class was designated only for row index matrices.

See Also

Subclass `pMatrix` of permutation matrices, a special case of index matrices; virtual class `nMatrix` of nonzero pattern matrices, and its subclasses.
Examples

```r
pl <- as(c(2,3,1), "pMatrix")
(sm1 <- as(rep(c(2,3,1), e=3), "indMatrix"))
stopifnot(all(sm1 == pl[rep(1:3, each=3),]))

## row-indexing of a <pMatrix> turns it into an <indMatrix>:
class(pl[rep(1:3, each=3),])

set.seed(12) # so we know '10' is in sample
## random index matrix for 30 observations and 10 unique values:
(s10 <- as(sample(10, 30, replace=TRUE), "indMatrix"))

## Sample rows of a numeric matrix :
(mm <- matrix(1:10, nrow=10, ncol=3))
s10 %*% mm

set.seed(27)
IM1 <- as(sample(1:20, 100, replace=TRUE), "indMatrix")
IM2 <- as(sample(1:18, 100, replace=TRUE), "indMatrix")
(c12 <- crossprod(IM1,IM2))

## same as cross-tabulation of the two index vectors:
stopifnot(all(c12 - unclass(table(IM1@perm, IM2@perm)) == 0))

# 3 observations, 4 implied values, first does not occur in sample:
as(2:4, "indMatrix")
# 3 observations, 5 values, first and last do not occur in sample:
as(list(2:4, 5), "indMatrix")

as(sm1, "nMatrix")
s10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)
s10[1:4, ] # preserves "indMatrix"-class

I1 <- as(c(5:1,6:4,7:3), "indMatrix")
I2 <- as(7:1, "pMatrix")
(I12 <- rbind(I1, I2))
stopifnot(is(I12, "indMatrix"), identical(I12, rbind(I1, I2)),
colSums(I12) == c(2L,2:4,4:2))
```

invertPerm

Utilities for Permutation Vectors

Description

invertPerm and signPerm compute the inverse and sign of a length-n permutation vector. isPerm tests if a length-n integer vector is a valid permutation vector. asPerm coerces a length-m transposition vector to a length-n permutation vector, where m <= n.
invertPerm

Usage

invertPerm(p, off = 1L, ioff = 1L)
signPerm(p, off = 1L)
isPerm(p, off = 1L)
asPerm(pivot, off = 1L, ioff = 1L, n = length(pivot))

invPerm(p, zero.p = FALSE, zero.res = FALSE)

Arguments

p an integer vector of length n.
pivot an integer vector of length m.
off an integer offset, indicating that p is a permutation of off+0:(n-1) or that
pivot contains m values sampled with replacement from off+0:(n-1).
ioff an integer offset, indicating that the result should be a permutation of ioff+0:(n-1).
n a integer greater than or equal to m, indicating the length of the result. Transpo-
sitions are applied to a permutation vector vector initialized as seq_len(n).
zero.p a logical. Equivalent to off=0 if TRUE and off=1 if FALSE.
zero.res a logical. Equivalent to ioff=0 if TRUE and ioff=1 if FALSE.

Details

invertPerm(p, off, ioff=1) is equivalent to order(p) or sort.list(p) for all values of off.
For the default value off=1, it returns the value of p after p[p] <- seq_along(p).

invPerm is a simple wrapper around invertPerm, retained for backwards compatibility.

Value

By default, i.e., with off=1 and ioff=1:
invertPerm(p) returns an integer vector of length length(p) such that p[invertPerm(p)] and
invertPerm(p)[p] are both seq_along(p), i.e., the identity permutation.
signPerm(p) returns 1 if p is an even permutation and -1 otherwise (i.e., if p is odd).
isPerm(p) returns TRUE if p is a permutation of seq_along(p) and FALSE otherwise.
asPerm(pivot) returns the result of transposing elements i and pivot[i] of a permutation vector
initialized as seq_len(n), for i in seq_along(pivot).

See Also

Class pMatrix of permutation matrices.

Examples

p <- sample(10L) # a random permutation vector
ip <- invertPerm(p)
s <- signPerm(p)
'p' and 'ip' are indeed inverses:
stopifnot(exprs = {
 isPerm(p)
 isPerm(ip)
 identical(s, 1L) || identical(s, -1L)
 identical(s, signPerm(ip))
 identical(p[ip], 1:10)
 identical(ip[p], 1:10)
 identical(invertPerm(ip), p)
})

Product of transpositions (1 2)(2 1)(4 3)(6 8)(10 1) = (3 4)(6 8)(1 10)
pivot <- c(2L, 1L, 3L, 3L, 5L, 8L, 7L, 8L, 9L, 1L)
q <- asPerm(pivot)
stopifnot(exprs = {
 identical(q, c(10L, 2L, 4L, 3L, 5L, 8L, 7L, 6L, 9L, 1L))
 identical(q[q], seq_len(10L)) # because the permutation is odd:
 signPerm(q) == -1L
})

invPerm # a less general version of 'invertPerm'

is.na()-methods

is.na(), **is.finite()** Methods for 'Matrix' Objects

Description
Methods for generic functions **is.na()**, **is.nan()**, **is.finite()**, **is.infinite()**, and **anyNA()**, for objects inheriting from virtual class **Matrix** or **sparseVector**.

Usage

```r
## S4 method for signature 'dsparseMatrix'
is.na(x)
## S4 method for signature 'dsparseMatrix'
is.nan(x)
## S4 method for signature 'dsparseMatrix'
is.finite(x)
## S4 method for signature 'dsparseMatrix'
is.infinite(x)
## S4 method for signature 'dsparseMatrix'
anyNA(x)
## ...
## and for other classes
```

Arguments

- **x** an R object, here a sparse or dense matrix or vector.
is.null.DN

Value

For is.*(), an nMatrix or nsparseVector matching the dimensions of x and specifying the positions in x of (some subset of) NA, NaN, Inf, and -Inf. For anyNA(), TRUE if x contains NA or NaN and FALSE otherwise.

See Also

NA, NaN, Inf

Examples

(M <- Matrix(1:6, nrow = 4, ncol = 3,
dimnames = list(letters[1:4], LETTERS[1:3])))
stopifnot(!anyNA(M), !any(is.na(M)))
M[2:3, 2] <- NA
(inM <- is.na(M))
stopifnot(anyNA(M), sum(inM) == 2)

(A <- spMatrix(nrow = 10, ncol = 20,
 i = c(1, 3:8), j = c(2, 9, 6:10), x = 7 * (1:7)))
stopifnot(!anyNA(A), !any(is.na(A)))
(inA <- is.na(A))
stopifnot(anyNA(A), sum(inA) == 1 + 1 + 5)

is.null.DN

Are the Dimnames dn NULL-like?

Description

Are the dimnames dn NULL-like?
is.null.DN(dn) is less strict than is.null(dn), because it is also true (TRUE) when the dimnames dn are “like” NULL, or list(NULL,NULL), as they can easily be for the traditional R matrices (matrix) which have no formal class definition, and hence much freedom in how their dimnames look like.

Usage

is.null.DN(dn)

Arguments

dn dimnames() of a matrix-like R object.

Value

logical TRUE or FALSE.
Note
This function is really to be used on “traditional” matrices rather than those inheriting from Matrix, as the latter will always have dimnames list(NULL,NULL) exactly, in such a case.

Author(s)
Martin Maechler

See Also
is.null, dimnames, matrix.

Examples

m1 <- m2 <- m3 <- m4 <- m <-
matrix(round(100 * rnorm(6)), 2, 3)
dimnames(m1) <- list(NULL, NULL)
dimnames(m2) <- list(NULL, character())
dimnames(m3) <- rev(dimnames(m2))
dimnames(m4) <- rep(list(character()),2)

m4 # prints absolutely identically to m

c.o <- capture.output
cm <- c.o(m)
stopifnot(exprs = {
m == m1; m == m2; m == m3; m == m4
identical(cm, c.o(m1)); identical(cm, c.o(m2))
identical(cm, c.o(m3)); identical(cm, c.o(m4))
})

hasNoDimnames <- function(.) is.null.DN(dimnames(.))
stopifnot(exprs = {
hasNoDimnames(m)
hasNoDimnames(m1); hasNoDimnames(m2)
hasNoDimnames(m3); hasNoDimnames(m4)
hasNoDimnames(Matrix(m) -> M)
hasNoDimnames(as(M, "sparseMatrix"))
})

Description
isSymmetric tests whether its argument is a symmetric square matrix, by default tolerating some numerical fuzz and requiring symmetric [dD]imnames in addition to symmetry in the mathematical sense. isSymmetric is a generic function in base, which has a method for traditional matrices
of implicit class "matrix". Methods are defined here for various proper and virtual classes in Matrix, so that isSymmetric works for all objects inheriting from virtual class "Matrix".

Usage

S4 method for signature 'symmetricMatrix'
isSymmetric(object, ...)
S4 method for signature 'triangularMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'diagonalMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'indMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'dgeMatrix'
isSymmetric(object, tol = 100 * .Machine$double.eps, tol1 = 8 * tol, checkDN = TRUE, ...)
S4 method for signature 'lgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'dgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'lgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'dgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'lgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'dgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
S4 method for signature 'lgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)

Arguments

object a "Matrix".
tol, tol1 numerical tolerances allowing approximate symmetry of numeric (rather than logical) matrices. See also isSymmetric.matrix.
checkDN a logical indicating whether symmetry of the Dimnames slot of object should be checked.
... further arguments passed to methods (typically methods for all.equal).

Details

The Dimnames slot of object, say dn, is considered to be symmetric if and only if

- dn[[1]] and dn[[2]] are identical or one is NULL; and
- ndn <- names(dn) is NULL or ndn[1] and ndn[2] are identical or one is the empty string "".

Hence list(a=nms, a=nms) is considered to be symmetric, and so too are list(a=nms, NULL) and list(NULL, a=nms).

Note that this definition is looser than that employed by isSymmetric.matrix, which requires dn[1] and dn[2] to be identical, where dn is the dimnames attribute of a traditional matrix.
Value

A logical, either TRUE or FALSE (never NA).

See Also
orceSymmetric; symmpart and skewpart: virtual class "symmetricMatrix" and its subclasses.

Examples

```r
isSymmetric(Diagonal(4)) # TRUE of course
M <- Matrix(c(1,2,2,1), 2,2)
isSymmetric(M) # TRUE (and of formal class "dsyMatrix")
isSymmetric(as(M, "generalMatrix")) # still symmetric, even if not "formally"
isSymmetric(triu(M)) # FALSE
```

Look at implementations:
showMethods("isSymmetric", includeDefs = TRUE) # includes S3 generic from base

Description

isTriangular and isDiagonal test whether their argument is a triangular or diagonal matrix, respectively. Unlike the analogous isSymmetric, these two functions are generically from Matrix rather than base. Hence Matrix defines methods for traditional matrices of implicit class "matrix" in addition to matrices inheriting from virtual class "Matrix".

By our definition, triangular and diagonal matrices are square, i.e., they have the same number of rows and columns.

Usage

```r
isTriangular(object, upper = NA, ...)
isDiagonal(object)
```

Arguments

- **object**
 - an R object, typically a matrix.
- **upper**
 - a logical, either TRUE or FALSE, in which case TRUE is returned only for upper or lower triangular object; or otherwise NA (the default), in which case TRUE is returned for any triangular object.
- **...**
 - further arguments passed to methods (currently unused by Matrix).
Value

A logical, either TRUE or FALSE (never NA).

If object is triangular and upper is NA, then isTriangular returns TRUE with an attribute kind, either "U" or "L", indicating that object is upper or lower triangular, respectively. Users should not rely on how kind is determined for diagonal matrices, which are both upper and lower triangular.

See Also

isSymmetric; virtual classes "triangularMatrix" and "diagonalMatrix" and their subclasses.

Examples

isTriangular(Diagonal(4))
is TRUE: a diagonal matrix is also (both upper and lower) triangular
(M <- Matrix(c(1,2,0,1), 2,2))
isTriangular(M) # TRUE (*and* of formal class "dtrMatrix")
isTriangular(as(M, "generalMatrix")) # still triangular, even if not "formally"
isTriangular(crossprod(M)) # FALSE

isDiagonal(matrix(c(2,0,0,1), 2,2)) # TRUE

Look at implementations:
showMethods("isTriangular", includeDefs = TRUE)
showMethods("isDiagonal", includeDefs = TRUE)

KhatriRao

Khatri-Rao Matrix Product

Description

Computes Khatri-Rao products for any kind of matrices.

The Khatri-Rao product is a column-wise Kronecker product. Originally introduced by Khatri and Rao (1968), it has many different applications, see Liu and Trenkler (2008) for a survey. Notably, it is used in higher-dimensional tensor decompositions, see Bader and Kolda (2008).

Usage

KhatriRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)

Arguments

X, Y matrices of with the same number of columns.
FUN the (name of the) function to be used for the column-wise Kronecker products, see kronecker, defaulting to the usual multiplication.
sparseY logical specifying if Y should be coerced and treated as sparseMatrix. Set this to FALSE, e.g., to distinguish structural zeros from zero entries.
make.dimnames logical indicating if the result should inherit dimnames from X and Y in a simple way.
Value

a "CsparseMatrix", say R, the Khatri-Rao product of X (n × k) and Y (m × k), is of dimension (n × m) × k, where the j-th column, R[,j] is the kronecker product kronecker(X[,j], Y[,j]).

Note

The current implementation is efficient for large sparse matrices.

Author(s)

Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.

References

See Also

kronecker.

Examples

```r
## Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
KhatriRao(m,d)
KhatriRao(d,m)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))
nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)

stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
## border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),
         all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))
```

Knitr output for a custom function `KhatriRao` which computes the Khatri-Rao product of two matrices. It takes two matrices `X` and `Y`, performs the Kronecker product between each column of `X` and each column of `Y`, and returns a new matrix with the resulting columns. The function is demonstrated with several examples, including the computation on small matrices, and checks for correctness with border cases.
d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),
 all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
 all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
 all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
 identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))

a matrix with "structural" and non-structural zeros:
m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
 Dim = 3:4, x = c(1, 0, 1, 0))
D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5 <- KhatriRao(d, m01))
K5d <- KhatriRao(d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
K5Ud <- KhatriRao(DU, m01, sparseY=FALSE)
(K6 <- KhatriRao(diag(3), t(m01)))
K6D <- KhatriRao(Diagonal(3), t(m01))
K6d <- KhatriRao(diag(3), t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)

stopifnot(exprs = {
 all(K5 == K5d)
 identical(cbind(c(7L, 10L), c(3L, 4L)),
 which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
 identical(K5d, K5Dd)
 identical(K6, K6D)
 all(K6 == K6d)
 identical(cbind(3:4, 1L),
 which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
 identical(K6d, K6Dd)
})

KNex

Koenker-Ng Example Sparse Model Matrix and Response Vector

Description

A model matrix `mm` and corresponding response vector `y` used in an example by Koenker and Ng. The matrix `mm` is a sparse matrix with 1850 rows and 712 columns but only 8758 non-zero entries. It is a "dgCMatrix" object. The vector `y` is just numeric of length 1850.

Usage

```r
data(KNex)
```

References

kronecker-methods

Examples

data(KNex, package = "Matrix")
class(KNex$mm)
dim(KNex$mm)
image(KNex$mm)
str(KNex)

system.time(# a fraction of a second
 sparse.sol <- with(KNex, solve(crossprod(mm), crossprod(mm, y))))

head(round(sparse.sol,3))

Compare with QR-based solution ("more accurate, but slightly slower"):
system.time(
 sp.sol2 <- with(KNex, qr.coef(qr(mm), y)))

all.equal(sparse.sol, sp.sol2, tolerance = 1e-13) # TRUE

kronecker-methods

Methods for Function 'kronecker()' in Package 'Matrix'

Description

Computes Kronecker products for objects inheriting from "Matrix".

In order to preserve sparseness, we treat 0 * NA as 0, not as NA as usually in R (and as used for the base function kronecker).

Methods

kronecker signature(X = "Matrix", Y = "ANY")
kronecker signature(X = "ANY", Y = "Matrix")
kronecker signature(X = "diagonalMatrix", Y = "ANY")
kronecker signature(X = "sparseMatrix", Y = "ANY")
kronecker signature(X = "TsparseMatrix", Y = "TsparseMatrix")
kronecker signature(X = "dgTMatrix", Y = "dgTMatrix")
kronecker signature(X = "dtTMatrix", Y = "dtTMatrix")
kronecker signature(X = "indMatrix", Y = "indMatrix")

Examples

(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4
(t2 <- kronecker(Diagonal(3,2:4), t1)) # 15 x 12

should also work with special-cased logical matrices
l3 <- upper.tri(matrix(,3,3))
ldenseMatrix-class

ldenseMatrix is the virtual class of all dense logical (S4) matrices. It extends both denseMatrix and lMatrix directly.

Slots

x: logical vector containing the entries of the matrix.

Dim, Dimnames: see Matrix.

Extends

Class "lMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "lMatrix". Class "Matrix", by class "denseMatrix".

Methods

as.vector signature(x = "ldenseMatrix", mode = "missing"): ...

which signature(x = "ndenseMatrix"), semantically equivalent to base function which(x, arr.ind); for details, see the lMatrix class documentation.

See Also

Class lgeMatrix and the other subclasses.

Examples

showClass("ldenseMatrix")

as(diag(3) > 0, "ldenseMatrix")
ldiMatrix-class

Class "ldiMatrix" of Diagonal Logical Matrices

Description

The class "ldiMatrix" of logical diagonal matrices.

Objects from the Class

Objects can be created by calls of the form `new("ldiMatrix", ...)` but typically rather via `Diagonal`.

Slots

- `x`: "logical" vector.
- `diag`: "character" string, either "U" or "N", see `ddiMatrix`.
- `Dim`, `Dimnames`: matrix dimension and `dimnames`, see the `Matrix` class description.

Extends

Class "diagonalMatrix" and class "lMatrix", directly.

Class "sparseMatrix", by class "diagonalMatrix".

See Also

Classes `ddiMatrix` and `diagonalMatrix`; function `Diagonal`.

Examples

```r
(lM <- Diagonal(x = c(TRUE, FALSE, FALSE)))
str(lM)#> gory details (slots)
crossprod(lM) # numeric
(nM <- as(lM, "nMatrix"))# -> sparse (not formally \texttt{`diagonal'})
crossprod(nM) # logical sparse
```
Class "lgeMatrix" of General Dense Logical Matrices

Description

This is the class of general dense logical matrices.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Class "ldenseMatrix", directly. Class "lMatrix", by class "ldenseMatrix". Class "denseMatrix", by class "ldenseMatrix". Class "Matrix", by class "ldenseMatrix".

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="lgeMatrix") for details.

See Also

Non-general logical dense matrix classes such as ltrMatrix, or lsyMatrix; sparse logical classes such as lgCMatrix.

Examples

showClass("lgeMatrix")
str(new("lgeMatrix"))
set.seed(1)
(lM <- Matrix(matrix(rnorm(28), 4, 7) > 0))# a simple random lgeMatrix
set.seed(11)
(lC <- Matrix(matrix(rnorm(28), 4, 7) > 0))# a simple random lgCMatrix
as(lM, "CsparseMatrix")
Description

The `lsparseMatrix` class is a virtual class of sparse matrices with TRUE/FALSE or NA entries. Only the positions of the elements that are TRUE are stored.

These can be stored in the “triplet” form (class `TsparseMatrix`, subclasses `lgTMatrix`, `lsTMatrix`, and `ltTMatrix`) or in compressed column-oriented form (class `CsparseMatrix`, subclasses `lgCMatrix`, `lsCMatrix`, and `ltCMatrix`) or—rarely—in compressed row-oriented form (class `RsparseMatrix`, subclasses `lgRMatrix`, `lsRMatrix`, and `ltRMatrix`). The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.

Details

Note that triplet stored (`TsparseMatrix`) matrices such as `lgTMatrix` may contain duplicated pairs of indices \((i, j)\) as for the corresponding numeric class `dgTMatrix` where for such pairs, the corresponding \(x\) slot entries are added. For logical matrices, the \(x\) entries corresponding to duplicated index pairs \((i, j)\) are “added” as well if the addition is defined as logical or, i.e., “TRUE + TRUE \(\rightarrow\) TRUE” and “TRUE + FALSE \(\rightarrow\) TRUE”. Note the use of `uniqTsparse()` for getting an internally unique representation without duplicated \((i, j)\) entries.

Objects from the Class

Objects can be created by calls of the form `new("lgCMatrix", ...)` and so on. More frequently objects are created by coercion of a numeric sparse matrix to the logical form, e.g. in an expression `x != 0`.

The logical form is also used in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zero elements in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence any numeric sparse matrices can be treated as logical sparse matrices.

Slots

- `x`: Object of class "logical", i.e., either TRUE, NA, or FALSE.
- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.
- `diag`: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The implicit diagonal elements are not explicitly stored when `diag` is "U". Present in the triangular classes only.
- `p`: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.
i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

coerce signature(from = "dgCMatrix", to = "lgCMatrix")
t signature(x = "lgCMatrix") : returns the transpose of x
which signature(x = "lsparseMatrix"), semantically equivalent to base function which(x, arr.ind); for details, see the lMatrix class documentation.

See Also
the class dgCMatrix and dgTMatrix

Examples

(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
(lm <- (m > 1)) # lgC
!lm # no longer sparse
stopifnot(is(lm,"lsparseMatrix"),
 identical(!lm, m <= 1))

data(KNex, package = "Matrix")
str(mmG.1 <- (KNex $ mm) > 0.1)# "lgC..."
table(mmG.1@x)# however with many "non-structural zeros"
from logical to nz_pattern -- okay when there are no NA's :
nmG.1 <- as(mmG.1, "nMatrix") # <<< has "TRUE" also where mmG.1 had FALSE
from logical to "double"
dmG.1 <- as(mmG.1, "dMatrix") # has '0' and back:
lmG.1 <- as(dmG.1, "lMatrix")
stopifnot(identical(mmG.1, as((KNex $ mm) != 0,"nMatrix")),
 validObject(lmG.1),
 identical(lmG.1, mmG.1))

class(xnx <- crossprod(nmG.1))# "nsC.."
class(xlx <- crossprod(mmG.1))# "dsC.." : numeric
is0 <- (xlx == 0)
mean(as.vector(is0))# 99.3% zeros: quite sparse, but
table(xlx@x == 0)# more than half of the entries are (non-structural!) 0
stopifnot(isSymmetric(xlx), isSymmetric(xnx),
compare xnx and xlx : have the *same* non-structural 0s :
 sapply(slotNames(xnx),
 function(n) identical(slot(xnx, n), slot(xlx, n))))
lsyMatrix-class

Symmetric Dense Logical Matrices

Description

The "lsyMatrix" class is the class of symmetric, dense logical matrices in non-packed storage and "lspMatrix" is the class of of these in packed storage. In the packed form, only the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("lsyMatrix", ...).

Slots

- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- **x**: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
- **Dim,Dimnames**: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.
- **factors**: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Both extend classes "ldenseMatrix" and "symmetricMatrix", directly; further, class "Matrix" and others, indirectly. Use `showClass("lsyMatrix")`, e.g., for details.

Methods

Currently, mainly `t()` and coercion methods (for `as(.)`; use, e.g., `showMethods(class="lsyMatrix")` for details.

See Also

`lgeMatrix`, `Matrix`, `t`

Examples

```r
(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
str(M2)
# can
(sM <- M2 | t(M2)) # "lge"
as(sM, "symmetricMatrix")
str(sM <- as(sM, "packedMatrix")) # packed symmetric
```
ltrMatrix-class

Triangular Dense Logical Matrices

Description

The "ltrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The "ltrpMatrix" class is the same except in packed storage.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Both extend classes "ldenseMatrix" and "triangularMatrix", directly; further, class "Matrix", "lMatrix" and others, indirectly. Use showClass("ltrMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="ltrMatrix") for details.

See Also

Classes lgeMatrix, Matrix; function t

Examples

showClass("ltrMatrix")

str(new("ltrpMatrix"))
(lutr <- as(upper.tri(matrix(, 4, 4)), "ldenseMatrix"))
str(lutp <- pack(lutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!lutp # the logical negation (is *not* logical triangular !)
but this one is:
stopifnot(all.equal(lutp, pack(!lutp)))
lu-methods

Methods for LU Factorization

Description

Computes the pivoted LU factorization of an \(m \times n \) real matrix \(A \), which has the general form

\[
P_1 A P_2 = LU
\]
or (equivalently)

\[
A = P'_1 L U P'_2
\]

where \(P_1 \) is an \(m \times m \) permutation matrix, \(P_2 \) is an \(n \times n \) permutation matrix, \(L \) is an \(m \times \min(m,n) \) unit lower trapezoidal matrix, and \(U \) is a \(\min(m,n) \times n \) upper trapezoidal matrix.

Methods for \texttt{denseMatrix} are built on LAPACK routine \texttt{dgetrf}, which does not permute columns, so that \(P_2 \) is an identity matrix.

Methods for \texttt{sparseMatrix} are built on CSparse routine \texttt{cs_lu}, which requires \(m = n \), so that \(L \) and \(U \) are triangular matrices.

Usage

```
lu(x, ...)
```

S4 method for signature 'dgeMatrix'
lu(x, warnSing = TRUE, ...)

S4 method for signature 'dgCMatrix'
lu(x, errSing = TRUE, order = NA_integer_,
 tol = 1, ...)

S4 method for signature 'dsyMatrix'
lu(x, cache = TRUE, ...)

S4 method for signature 'dsCMatrix'
lu(x, cache = TRUE, ...)

S4 method for signature 'matrix'
lu(x, ...)

Arguments

\(x \)

a \texttt{finite} matrix or \texttt{Matrix} to be factorized, which must be square if sparse.

\texttt{warnSing}

a logical indicating if a \texttt{warning} should be signaled for singular \(x \). Used only by methods for dense matrices.

\texttt{errSing}

a logical indicating if an \texttt{error} should be signaled for singular \(x \). Used only by methods for sparse matrices.

\texttt{order}

an integer in \(0:3 \) passed to CSparse routine \texttt{cs_sqr}, indicating a strategy for choosing the column permutation \(P_2 \). 0 means no column permutation. 1, 2, and 3 indicate a fill-reducing ordering of \(A + A', \tilde{A}' \tilde{A} \), and \(A' A \), where \(\tilde{A} \) is \(A \) with “dense” rows removed. NA (the default) is equivalent to 2 if tol == 1 and 1 otherwise. Do not set to 0 unless you know that the column order of \(A \) is already sensible.
tol a number. The original pivot element is used if its absolute value exceeds \(\text{tol} \times a\), where \(a\) is the maximum in absolute value of the other possible pivot elements. Set \(\text{tol} < 1\) only if you know what you are doing.

cache a logical indicating if the result should be cached in \(x@\text{factors}[[\text{"LU"]}]\). Note that caching is experimental and that only methods for classes extending \textbf{compMatrix} will have this argument.

... further arguments passed to or from methods.

Details

What happens when \(x\) is determined to be near-singular differs by method. The method for class \textbf{dgeMatrix} completes the factorization, warning if \texttt{warnSing = TRUE} and in any case returning a valid \textbf{denseLU} object. Users of this method can detect singular \(x\) with a suitable warning handler; see \texttt{tryCatch}. In contrast, the method for class \textbf{dgCMatrix} abandons further computation, throwing an error if \texttt{errSing = TRUE} and otherwise returning \(\text{NA}\). Users of this method can detect singular \(x\) with an error handler or by setting \texttt{errSing = FALSE} and testing for a formal result with \texttt{is(.,, \text{"sparseLU")}}.

Value

An object representing the factorization, inheriting from virtual class \textbf{LU}. The specific class is \textbf{denseLU} unless \(x\) inherits from virtual class \textbf{sparseMatrix}, in which case it is \textbf{sparseLU}.

References

The LAPACK source code, including documentation; see \url{https://netlib.org/lapack/double/dgetrf.f}.

See Also

Classes \textbf{denseLU} and \textbf{sparseLU} and their methods.

Classes \textbf{dgeMatrix} and \textbf{dgCMatrix}.

Generic functions \texttt{expand1} and \texttt{expand2}, for constructing matrix factors from the result.

Generic functions \texttt{Cholesky}, \texttt{BunchKaufman}, \texttt{Schur}, and \texttt{qr}, for computing other factorizations.

Examples

```r
showMethods("lu", inherited = FALSE)
set.seed(0)

## ---- Dense ----------------------------------------------------------
(A1 <- Matrix(rnorm(9L), 3L, 3L))
```

(lu.A1 <- lu(A1))
(A2 <- round(10 * A1[, -3L]))
(lu.A2 <- lu(A2))

A ~ P1’ L U in floating point
str(e.lu.A2 <- expand2(lu.A2), max.level = 2L)
stopifnot(all.equal(A2, Reduce("%*%", e.lu.A2)))

---- Sparse ---
A3 <- as(readMM(system.file("external/pores_1.mtx", package = "Matrix")),
 "CsparseMatrix")
(lu.A3 <- lu(A3))

A ~ P1’ L U P2’ in floating point
str(e.lu.A3 <- expand2(lu.A3), max.level = 2L)
stopifnot(all.equal(A3, Reduce("%*%", e.lu.A3)))

mat2triplet Map Matrix to its Triplet Representation

Description
From an R object coercible to "TsparseMatrix", typically a (sparse) matrix, produce its triplet representation which may collapse to a “Duplet” in the case of binary aka pattern, such as "nMatrix" objects.

Usage
mat2triplet(x, uniqT = FALSE)

Arguments
x any R object for which as(x, "TsparseMatrix") works; typically a matrix of one of the Matrix package matrices.
uniqT logical indicating if the triplet representation should be ‘unique’ in the sense of uniqTsparse().

Value
A list, typically with three components,

i vector of row indices for all non-zero entries of x
i vector of columns indices for all non-zero entries of x
x vector of all non-zero entries of x; exists only when as(x, "TsparseMatrix") is not a "nsparseMatrix".

Note that the order of the entries is determined by the coercion to "TsparseMatrix" and hence typically with increasing j (and increasing i within ties of j).
Note

The mat2triplet() utility was created to be a more efficient and more predictable substitute for summary(<sparseMatrix>). UseRs have wrongly expected the latter to return a data frame with columns i and j which however is wrong for a "diagonalMatrix".

See Also

The summary() method for "sparseMatrix", summary,sparseMatrix-method. mat2triplet() is conceptually the inverse function of spMatrix and (one case of) sparseMatrix.

Examples

mat2triplet # simple definition

i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(Ax <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
str(trA <- mat2triplet(Ax))
stopifnot(i == sort(trA$i), sort(j) == trA$j, x == sort(trA$x))

D <- Diagonal(x=4:2)
summary(D)
str(mat2triplet(D))

Description

The basic matrix product, %*% is implemented for all our Matrix and also for sparseVector classes, fully analogously to R’s base matrix and vector objects.

The functions crossprod and tcrossprod are matrix products or “cross products”, ideally implemented efficiently without computing t(.)’s unnecessarily. They also return symmetricMatrix classed matrices when easily detectable, e.g., in crossprod(m), the one argument case.

tcrossprod() takes the cross-product of the transpose of a matrix. tcrossprod(x) is formally equivalent to, but faster than, the call x %*% t(x), and so is tcrossprod(x, y) instead of x %*% t(y).

Boolean matrix products are computed via either %&% or boolArith = TRUE.

Usage

S4 method for signature 'CsparseMatrix,diagonalMatrix'
x %*% y

S4 method for signature 'dgeMatrix,missing'
crossprod(x, y = NULL, boolArith = NA, ...)
S4 method for signature 'CsparseMatrix,diagonalMatrix'
crossprod(x, y = NULL, boolArith = NA, ...)
.... and for many more signatures

tcrossprod(x, y = NULL, boolArith = NA, ...)
S4 method for signature 'CsparseMatrix,ddenseMatrix'
tcrossprod(x, y = NULL, boolArith = NA, ...)
.... and for many more signatures

Arguments

x a matrix-like object
y a matrix-like object, or for [t]crossprod() NULL (by default); the latter case is formally equivalent to y = x.
boolArith logical, i.e., NA, TRUE, or FALSE. If true the result is (coerced to) a pattern matrix, i.e., "nMatrix", unless there are NA entries and the result will be a "lMatrix". If false the result is (coerced to) numeric. When NA, currently the default, the result is a pattern matrix when x and y are "nsparseMatrix" and numeric otherwise.

... potentially more arguments passed to and from methods.

Details

For some classes in the Matrix package, such as dgCMatrix, it is much faster to calculate the cross-product of the transpose directly instead of calculating the transpose first and then its cross-product. boolArith = TRUE for regular ("non cross") matrix products, %*% cannot be specified. Instead, we provide the %&% operator for boolean matrix products.

Value

A Matrix object, in the one argument case of an appropriate symmetric matrix class, i.e., inheriting from symmetricMatrix.

Methods

%*% signature(x = "dgeMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several other signature combinations, see showMethods("%*%", class = "dgeMatrix").
%*% signature(x = "dtrMatrix", y = "matrix") and other signatures (use showMethods("%*%", class="dtrMatrix"): matrix multiplication. Multiplication of (matching) triangular matrices now should remain triangular (in the sense of class triangularMatrix).
crossprod signature(x = "dgeMatrix", y = "dgeMatrix"): ditto for several other signatures, use showMethods("crossprod", class = "dgeMatrix"), matrix crossproduct, an efficient version of t(x) %*% y.
crossprod signature(x = "CsparseMatrix", y = "missing") returns t(x) %*% x as an dsCMatrix object.
crossprod signature(x = "TsparseMatrix", y = "missing") returns t(x) %*% x as an dsCMatrix object.
crossprod, tcrossprod signature(x = "dtrMatrix", y = "matrix") and other signatures, see "%*%" above.

Note
boolArith = TRUE, FALSE or NA has been newly introduced for Matrix 1.2.0 (March 2015). Its implementation has still not been tested extensively. Notably the behaviour for sparse matrices with x slots containing extra zeros had not been documented previously, see the %&% help page. Currently, boolArith = TRUE is implemented via CsparseMatrix coercions which may be quite inefficient for dense matrices. Contributions for efficiency improvements are welcome.

See Also
tcrossprod in R's base, and crossprod and %*%. Matrix package %&% for boolean matrix product methods.

Examples

```r
## A random sparse "incidence" matrix :
m <- matrix(0, 400, 500)
set.seed(12)
m[runif(314, 0, length(m))] <- 1
mm <- as(m, "CsparseMatrix")
object.size(m) / object.size(mm) # smaller by a factor of > 200

## tcrossprod() is very fast:
system.time(tCmm <- tcrossprod(mm)) #  0 (PIII, 933 MHz)
system.time(cm <- crossprod(t(m))) #  0.16
system.time(cm. <- tcrossprod(m)) #  0.02

stopifnot(cm == as(tCmm, "matrix"))

## show sparse sub matrix
tCmm[1:16, 1:30]
```

Matrix Construct a Classed Matrix

Description

Construct a Matrix of a class that inherits from Matrix.

Usage

Matrix(data=NA, nrow=1, ncol=1, byrow=FALSE, dimnames=NULL, sparse = NULL, doDiag = TRUE, forceCheck = FALSE)
Arguments

- **data**: an optional numeric data vector or matrix.
- **nrow**: when data is not a matrix, the desired number of rows.
- **ncol**: when data is not a matrix, the desired number of columns.
- **byrow**: logical. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is filled by rows.
- **dimnames**: a dimnames attribute for the matrix: a list of two character components. They are set if not NULL (as per default).
- **sparse**: logical or NULL, specifying if the result should be sparse or not. By default, it is made sparse when more than half of the entries are 0.
- **doDiag**: logical indicating if a diagonalMatrix object should be returned when the resulting matrix is diagonal (mathematically). As class diagonalMatrix extends sparseMatrix, this is a natural default for all values of sparse. Otherwise, if doDiag is false, a dense or sparse (depending on sparse) symmetric matrix will be returned.
- **forceCheck**: logical indicating if the checks for structure should even happen when data is already a "Matrix" object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of data and the other parameter. Further, Matrix() makes efforts to keep logical matrices logical, i.e., inheriting from class lMatrix, and to determine specially structured matrices such as symmetric, triangular or diagonal ones. Note that a symmetric matrix also needs symmetric dimnames, e.g., by specifying dimnames = list(NULL,NULL), see the examples.

Most of the time, the function works via a traditional (full) matrix. However, Matrix(0, nrow, ncol) directly constructs an “empty” sparseMatrix, as does Matrix(FALSE, *).

Although it is sometime possible to mix unclassed matrices (created with matrix) with ones of class "Matrix", it is much safer to always use carefully constructed ones of class "Matrix".

Value

Returns matrix of a class that inherits from "Matrix". Only if data is not a matrix and does not already inherit from class Matrix are the arguments nrow, ncol and byrow made use of.

See Also

The classes Matrix, symmetricMatrix, triangularMatrix, and diagonalMatrix; further, matrix. Special matrices can be constructed, e.g., via sparseMatrix (sparse), bdiag (block-diagonal), bandSparse (banded sparse), or Diagonal.

Examples

Matrix(0, 3, 2) # 3 by 2 matrix of zeros -> sparse
Matrix(0, 3, 2, sparse=FALSE)# -> 'dense'
4 cases - 3 different results:
Matrix(0, 2, 2) # diagonal!
Matrix(0, 2, 2, sparse=FALSE) # (ditto)
Matrix(0, 2, 2, doDiag=FALSE) # -> sparse symm. "dsCMatrix"
Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE) -> dense symm. "dsyMatrix"

Matrix(1:6, 3, 2) # a 3 by 2 matrix (+ integer warning)
Matrix(1:6 + 1, nrow=3)

logical ones:
Matrix(diag(4) > 0) # -> "ldiMatrix" with diag = "U"
Matrix(diag(4) > 0, sparse=TRUE) # (ditto)
Matrix(diag(4) >= 0) # -> "lsyMatrix" (of all 'TRUE')

triangular
l3 <- upper.tri(matrix(,3,3))
(M <- Matrix(l3)) # -> "ltCMatrix"
Matrix(! l3) # -> "ltrMatrix"
as(l3, "CsparseMatrix") # "lgCMatrix"

Matrix(1:9, nrow=3,
 dimnames = list(c("a", "b", "c"), c("A", "B", "C")))
(I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix"
str(I3) # note 'diag = "U"' and the empty 'x' slot

(A <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames
Matrix(A) # hence 'dgeMatrix'
(As <- Matrix(A, dimnames = list(NULL,NULL)))# -> symmetric
forceSymmetric(As) # also symmetric, w/ symm. dimnames
stopifnot(is(As, "symmetricMatrix"),
 is(Matrix(0, 3,3), "sparseMatrix"),
 is(Matrix(FALSE, 1,1), "sparseMatrix"))

Matrix-class

Virtual Class "Matrix" of Matrices

Description

The Matrix class is a class contained by all actual classes in the Matrix package. It is a “virtual” class.

Slots

- **Dim** an integer vector of length 2 giving the dimensions of the matrix.
- **Dimnames** a list of length 2. Each element must be NULL or a character vector of length equal to the corresponding element of Dim.
Methods

determinant signature(x = "Matrix", logarithm = "missing"): and

determinant signature(x = "Matrix", logarithm = "logical"): compute the (log) determinant of x. The method chosen depends on the actual Matrix class of x. Note that **det** also works for all our matrices, calling the appropriate determinant() method. The Matrix::det is an exact copy of base::det, but in the correct namespace, and hence calling the S4-aware version of determinant().).

diff signature(x = "Matrix"): As **diff**() for traditional matrices, i.e., applying **diff**() to each column.

dim signature(x = "Matrix"): extract matrix dimensions **dim**.

dim<- signature(x = "Matrix", value = "ANY"): where value is integer of length 2. Allows to *reshape* Matrix objects, but only when prod(value) == prod(dim(x)).

dimnames signature(x = "Matrix"): extract **dimnames**.

dimnames<- signature(x = "Matrix", value = "list"): set the **dimnames** to a **list** of length 2, see **dimnames<-**.

length signature(x = "Matrix"): simply defined as prod(dim(x)) (and hence of mode "double").

show signature(object = "Matrix"): **show** method for printing. For printing sparse matrices, see **printSpMatrix**.

image signature(object = "Matrix"): draws an **image** of the matrix entries, using **levelplot**() from package **lattice**.

head signature(object = "Matrix"): return only the "head", i.e., the first few rows.

tail signature(object = "Matrix"): return only the "tail", i.e., the last few rows of the respective matrix.

as.matrix, as.array signature(x = "Matrix"): the same as as(x, "matrix"); see also the note below.

as.vector signature(x = "Matrix", mode = "missing"): **as.vector**(m) should be identical to **as.vector**(as(m,"matrix")), implemented more efficiently for some subclasses.

as(x, "vector"), as(x, "numeric") etc, similarly.

coerce signature(from = "ANY", to = "Matrix"): This relies on a correct **as.matrix**() method for from.

There are many more methods that (conceptually should) work for all "Matrix" objects, e.g., **colSums, rowMeans**. Even **base** functions may work automagically (if they first call **as.matrix**() on their principal argument), e.g., **apply, eigen, svd** or **kappa** all do work via coercion to a "traditional" (dense) **matrix**.

Note

Loading the Matrix namespace “overloads” **as.matrix** and **as.array** in the **base** namespace by the equivalent of function(x) as(x, "matrix"). Consequently, as.matrix(m) or as.array(m) will properly work when m inherits from the "Matrix" class — also for functions in package **base** and other packages. E.g., **apply** or **outer** can therefore be applied to "Matrix" matrices.
Author(s)
Douglas Bates <bates@stat.wisc.edu> and Martin Maechler

See Also
the classes `dgeMatrix`, `dgCMatrix`, and function `Matrix` for construction (and examples).
Methods, e.g., for `kronecker`.

Examples

```r
slotNames("Matrix")

cl <- getClass("Matrix")
names(cl@subclasses) # more than 40 ..

showClass("Matrix") #> output with slots and all subclasses

(M <- Matrix(c(0,1,0,0), 6, 4))
dim(M)
diag(M)
cm <- M[1:4,] + 10*Diagonal(4)
diff(M)
## can reshape it even :
dim(M) <- c(2, 12)
M
stopifnot(identical(M, Matrix(c(0,1,0,0), 2,12)),
          all.equal(det(cm),
                     determinant(as(cm,"matrix"), log=FALSE)$modulus,
                     check.attributes=FALSE))
```

Description

`iMatrix` is the virtual class of all integer (S4) matrices. It extends the `Matrix` class directly.

`zMatrix` is the virtual class of all complex (S4) matrices. It extends the `Matrix` class directly.

Examples

```r
showClass("iMatrix")
showClass("zMatrix")
```
MatrixClass

The Matrix (Super-) Class of a Class

Description

Return the (maybe super-)class of class cl from package Matrix, returning character(0) if there is none.

Usage

MatrixClass(cl, cld = getClassDef(cl), ...Matrix = TRUE,
 dropVirtual = TRUE, ...)

Arguments

c1 string, class name
cld its class definition
...Matrix logical indicating if the result must be of pattern "[dlniz]..Matrix" where the first letter "[dlniz]" denotes the content kind.
dropVirtual logical indicating if virtual classes are included or not.
... further arguments are passed to .selectSuperClasses().

Value

a character string

Author(s)

Martin Maechler, 24 Mar 2009

See Also

Matrix, the mother of all Matrix classes.

Examples

mkA <- setClass("A", contains="dgCMatrix")
(A <- mkA())
stopifnot(identical(
 MatrixClass("A"),
 "dgCMatrix")
)
MatrixFactorization-class

Virtual Class "MatrixFactorization" of Matrix Factorizations

Description

MatrixFactorization is the virtual class of factorizations of $m \times n$ matrices A, having the general form

$$P_1AP_2 = A_1 \cdots A_p$$

or (equivalently)

$$A = P'_1A_1 \cdots A_pP'_2$$

where P_1 and P_2 are permutation matrices. Factorizations requiring symmetric A have the constraint $P_2 = P'_1$, and factorizations without row or column pivoting have the constraints $P_1 = I_m$ and $P_2 = I_n$, where I_m and I_n are the $m \times m$ and $n \times n$ identity matrices.

CholeskyFactorization, BunchKaufmanFactorization, SchurFactorization, LU, and QR are the virtual subclasses of MatrixFactorization containing all Cholesky, Bunch-Kaufman, Schur, LU, and QR factorizations, respectively.

Slots

- Dim an integer vector of length 2 giving the dimensions of the factorized matrix.
- Dimnames a list of length 2 preserving the dimnames of the factorized matrix. Each element must be NULL or a character vector of length equal to the corresponding element of Dim.

Methods

determinant signature(x = "MatrixFactorization", logarithm = "missing"): sets logarithm = TRUE and recalls the generic function.
dim signature(x = "MatrixFactorization"): returns x@Dim.
dimnames signature(x = "MatrixFactorization"): returns x@Dimnames.
dimnames<- signature(x = "MatrixFactorization", value = "NULL"): returns x with x@Dimnames set to list(NULL, NULL).
dimnames<- signature(x = "MatrixFactorization", value = "list"): returns x with x@Dimnames set to value.

length signature(x = "MatrixFactorization"): returns prod(x@Dim).

show signature(object = "MatrixFactorization"): prints the internal representation of the factorization using str.
solve signature(a = "MatrixFactorization", b = .): see solve-methods.

unname signature(obj = "MatrixFactorization"): returns obj with obj@Dimnames set to list(NULL, NULL).
ndenseMatrix-class

See Also

The virtual class `compMatrix` of factorizable matrices.
Classes extending CholeskyFactorization, namely `Cholesky`, `pCholesky`, and `CHMfactor`.
Classes extending BunchKaufmanFactorization, namely `BunchKaufman` and `pBunchKaufman`.
Classes extending SchurFactorization, namely `Schur`.
Classes extending LU, namely `denseLU` and `sparseLU`.
Classes extending QR, namely `sparseQR`.
Generic functions `Cholesky`, `BunchKaufman`, `Schur`, `lu`, and `qr` for computing factorizations.
Generic functions `expand1` and `expand2` for constructing matrix factors from `MatrixFactorization` objects.

Examples

```
showClass("MatrixFactorization")
```

ndenseMatrix-class Virtual Class "ndenseMatrix" of Dense Logical Matrices

Description

`ndenseMatrix` is the virtual class of all dense logical (S4) matrices. It extends both `denseMatrix` and `lMatrix` directly.

Slots

- `x`: logical vector containing the entries of the matrix.
- `Dim`, `Dimnames`: see `Matrix`.

Extends

Class "nMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "nMatrix". Class "Matrix", by class "denseMatrix".

Methods

```
%*% signature(x = "nsparseMatrix", y = "ndenseMatrix"): ...
%*% signature(x = "ndenseMatrix", y = "nsparseMatrix"): ...
crossprod signature(x = "nsparseMatrix", y = "ndenseMatrix"): ...
crossprod signature(x = "ndenseMatrix", y = "nsparseMatrix"): ...
as.vector signature(x = "ndenseMatrix", mode = "missing"): ...
diag signature(x = "ndenseMatrix"): extracts the diagonal as for all matrices, see the generic `diag()`.
diag signature(x = "ndenseMatrix"): extracts the diagonal as for all matrices, see the generic `diag()`.
which signature(x = "ndenseMatrix"), semantically equivalent to base function `which(x, arr.ind)`; for details, see the `lMatrix` class documentation.
```
nearPD

Near Positive Definite Matrix

Description

Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.

Usage

nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)

Arguments

x numeric \(n \times n\) approximately positive definite matrix, typically an approximation to a correlation or covariance matrix. If \(x\) is not symmetric (and ensureSymmetry is not false), \(\text{symmpart}(x)\) is used.
corr logical indicating if the matrix should be a correlation matrix.
keepDiag logical, generalizing corr: if TRUE, the resulting matrix should have the same diagonal (\(\text{diag}(x)\)) as the input matrix.
base.matrix logical indicating if the resulting mat component should be a base matrix or (by default) a \text{Matrix} of class \text{dpoMatrix}.
do2eigen logical indicating if \(\text{posdefify}()\) eigen step should be applied to the result of the Higham algorithm.
doSym logical indicating if \(X \leftarrow (X + t(X))/2\) should be done, after \(X \leftarrow t\text{crossprod}(Qd, Q)\); some doubt if this is necessary.
doDykstra logical indicating if Dykstra's correction should be used; true by default. If false, the algorithm is basically the direct fixpoint iteration \(Y_k = P_U(P_S(Y_{k-1}))\).
only.values logical; if TRUE, the result is just the vector of eigenvalues of the approximating matrix.

See Also

Class \text{ngeMatrix} and the other subclasses.

Examples

showClass("ndenseMatrix")
as(diag(3) > 0, "ndenseMatrix")# -> "nge"
nearPD

ensureSymmetry

ensureSymmetry logical; by default, symmpart(x) is used whenever isSymmetric(x) is not true. The user can explicitly set this to TRUE or FALSE, saving the symmetry test. Beware however that setting it FALSE for an asymmetric input x, is typically nonsense!

eig.tol
defines relative positiveness of eigenvalues compared to largest one, λ_1. Eigenvalues λ_k are treated as if zero when $\lambda_k/\lambda_1 \leq \text{eig.tol}$.

conv.tol

conv.tol convergence tolerance for Higham algorithm.

posd.tol
tolerance for enforcing positive definiteness (in the final posdefify step when do2eigen is TRUE).

maxit

maxit maximum number of iterations allowed.

conv.norm.type convergence norm type ($\text{norm}(\ast, \text{type})$) used for Higham algorithm. The default is “I” (infinity), for reasons of speed (and back compatibility); using “F” is more in line with Higham’s proposal.

trace

trace logical or integer specifying if convergence monitoring should be traced.

Details

This implements the algorithm of Higham (2002), and then (if do2eigen is true) forces positive definiteness using code from posdefify. The algorithm of Knol and ten Berge (1989) (not implemented here) is more general in that it allows constraints to (1) fix some rows (and columns) of the matrix and (2) force the smallest eigenvalue to have a certain value.

Note that setting corr = TRUE just sets diag(.) <- 1 within the algorithm.

Higham (2002) uses Dykstra’s correction, but the version by Jens Oehlschlägel did not use it (accidentally), and still gave reasonable results; this simplification, now only used if doDykstra = FALSE, was active in nearPD() up to Matrix version 0.999375-40.

Value

If only.values = TRUE, a numeric vector of eigenvalues of the approximating matrix; Otherwise, as by default, an S3 object of class “nearPD”, basically a list with components

mat

a matrix of class dpoMatrix, the computed positive-definite matrix.

eigenvalues

numeric vector of eigenvalues of mat.

corr

logical, just the argument corr.

normF

the Frobenius norm ($\text{norm}(x-X, "F")$) of the difference between the original and the resulting matrix.

iterations

number of iterations needed.

converged

logical indicating if iterations converged.

Author(s)

Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.
References

See Also

A first version of this (with non-optional corr=TRUE) has been available as *nearcor*(); and more simple versions with a similar purpose *posdefify*(), both from package *sfsmisc*.

Examples

```r
## Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
stopifnot(exprs = {
  all.equal(n.A$mat[1,2], 0.760689917)
  all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
  all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15) # seen rel.d. = 1.46e-16
})
set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102 / 1.08

if(requireNamespace("sfsmisc")) {
m2 <- sfsmisc::posdefify(m) # a simpler approach
  norm(m - m2) # 1.185, i.e., slightly "less near"
}
```

```r
round(nearPD(m, only.values=TRUE), 9)
```

A longer example, extended from Jens' original,
showing the effects of some of the options:
```r
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826, 0.477, 1, 0.516, 0.233, 0.682, 0.75, 0.644, 0.516, 1, 0.599, 0.581, 0.742, 0.478, 0.233, 0.599, 1, 0.741, 0.8, 0.651, 0.682, 0.581, 0.741, 1, 0.798), 1)
```
ngeMatrix-class

Class "ngeMatrix" of General Dense Nonzero-pattern Matrices

Description

This is the class of general dense nonzero-pattern matrices, see nMatrix.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.
factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Class "ndenseMatrix", directly. Class "lmatrix", by class "ndenseMatrix". Class "denseMatrix", by class "ndenseMatrix". Class "Matrix", by class "ndenseMatrix". Class "Matrix", by class "ndenseMatrix".

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="ngeMatrix") for details.

See Also

Non-general logical dense matrix classes such as ntrMatrix, or nsyMatrix; sparse logical classes such as ngCMatrix.

Examples

showClass("ngeMatrix")
"lgeMatrix" is really more relevant

nMatrix-class

Class "nMatrix" of Non-zero Pattern Matrices

Description

The nMatrix class is the virtual “mother” class of all non-zero pattern (or simply pattern) matrices in the Matrix package.

Slots

Common to all matrix object in the package:

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.

Dimnames: list of length two; each component containing NULL or a character vector length equal the corresponding Dim element.

Methods

coerce signature(from = "matrix", to = "nMatrix"): Note that these coercions (must) coerce NAs to non-zero, hence conceptually TRUE. This is particularly important when sparseMatrix objects are coerced to "nMatrix" and hence to nsparseMatrix.

Additional methods contain group methods, such as
nnzero-methods

The Number of Non-Zero Values of a Matrix

Description

Returns the number of non-zero values of a numeric-like R object, and in particular an object x inheriting from class Matrix.

Usage

nnzero(x, na.counted = NA)

Arguments

x

an R object, typically inheriting from class Matrix or numeric.

na.counted

a logical describing how NAs should be counted. There are three possible settings for na.counted:

TRUE NAs are counted as non-zero (since “they are not zero”).

NA (default) the result will be NA if there are NA’s in x (since “NA’s are not known, i.e., may be zero”).

FALSE NAs are omitted from x before the non-zero entries are counted.

For sparse matrices, you may often want to use na.counted = TRUE.

See Also

The classes lMatrix, nsparseMatrix, and the mother class, Matrix.

Examples

getClass("nMatrix")

L3 <- Matrix(upper.tri(diag(3)))
L3 # an "ltCMatrix"
as(L3, "nMatrix") # -> ntC*

similar, not using Matrix()
as(upper.tri(diag(3)), "nMatrix")# currently "ngTMatrix"
Value

the number of non zero entries in x (typically integer).

Note that for a symmetric sparse matrix S (i.e., inheriting from class symmetricMatrix), nnzero(S) is typically twice the length(S@x).

Methods

signature(x = "ANY") the default method for non-Matrix class objects, simply counts the number 0s in x, counting NA's depending on the na.counted argument, see above.

signature(x = "denseMatrix") conceptually the same as for traditional matrix objects, care has to be taken for "symmetricMatrix" objects.

signature(x = "diagonalMatrix"), and signature(x = "indMatrix") fast simple methods for these special "sparseMatrix" classes.

signature(x = "sparseMatrix") typically, the most interesting method, also carefully taking "symmetricMatrix" objects into account.

See Also

The Matrix class also has a length method; typically, length(M) is much larger than nnzero(M) for a sparse matrix M, and the latter is a better indication of the size of M.

drop0, zapsmall.

Examples

m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))

nnzero(mT)
(S <- crossprod(mT))

nnzero(S)

str(S) # slots are smaller than nnzero()

stopifnot(nnzero(S) == sum(as.matrix(S) != 0)) # failed earlier

data(KNex, package = "Matrix")

M <- KNex$mm
class(M)
dim(M)

length(M); stopifnot(length(M) == prod(dim(M)))

nnzero(M) # more relevant than length

the above are also visible from

str(M)
Matrix Norms

Description
Computes a matrix norm of \(x \), using Lapack for dense matrices. The norm can be the one ("O", or "1") norm, the infinity ("I") norm, the Frobenius ("F") norm, the maximum modulus ("M") among elements of a matrix, or the spectral norm or 2-norm ("2"), as determined by the value of type.

Usage
\[
norm(x, \text{type}, \ldots)
\]

Arguments
- \(x \) a real or complex matrix.
- \(\text{type} \) A character indicating the type of norm desired.
 - "O", "o" or "1" specifies the one norm (maximum absolute column sum);
 - "I" or "i" specifies the infinity norm (maximum absolute row sum);
 - "F" or "f" specifies the Frobenius norm (the Euclidean norm of \(x \) treated as if it were a vector);
 - "M" or "m" specifies the maximum modulus of all the elements in \(x \); and
 - "2" specifies the “spectral norm” or 2-norm, which is the largest singular value (\(\text{svd} \)) of \(x \).

The default is "O". Only the first character of \(\text{type}[1] \) is used.

... further arguments passed to or from other methods.

Details
For dense matrices, the methods eventually call the Lapack functions \(\text{dlange}, \text{dlansy}, \text{dlantr}, \text{zlange}, \text{zlansy}, \text{zlantr} \).

Value
A numeric value of class "norm", representing the quantity chosen according to type.

References

See Also
- \(\text{onenormest()} \), an approximate randomized estimate of the 1-norm condition number, efficient for large sparse matrices.
- The \(\text{norm()} \) function from R’s base package.
Examples

```r
x <- Hilbert(9)
norm(x)# = "O" = "1"
stopifnot(identical(norm(x), norm(x, "1")))
norm(x, "1")# the same, because 'x' is symmetric

allnorms <- function(d) vapply(c("1","I","F","M","2"),
    norm, x = d, double(1))
allnorms(x)
allnorms(Hilbert(10))
```

```r
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x) ## 8 x 10 "dgCMatrix"
(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
(allnorms(A) -> nA)
allnorms(sA)
allnorms(tA)
stopifnot(all.equal(nA, allnorms(as(A, "matrix"))),
    all.equal(nA, allnorms(tA))) # because tA == rbind(A, 0, 0)
A. <- A; A.[1,3] <- NA
stopifnot(is.na(allnorms(A.))) # gave error
```

Description

The `nsparseMatrix` class is a virtual class of sparse "pattern" matrices, i.e., binary matrices conceptually with TRUE/FALSE entries. Only the positions of the elements that are TRUE are stored.

These can be stored in the "triplet" form (`TsparseMatrix`, subclasses `ngTMatrix`, `nsTMatrix`, and `ntTMatrix` which really contain pairs, not triplets) or in compressed column-oriented form (class `CsparseMatrix`, subclasses `ngCMatrix`, `nsCMatrix`, and `ntCMatrix`) or--rarely--in compressed row-oriented form (class `RsparseMatrix`, subclasses `ngRMatrix`, `nsRMatrix`, and `ntRMatrix`).

The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.

Objects from the Class

Objects can be created by calls of the form `new("ngMatrix", ...)` and so on. More frequently objects are created by coercion of a numeric sparse matrix to the pattern form for use in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence numeric sparse matrices can be treated as sparse pattern matrices.
Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The implicit diagonal elements are not explicitly stored when diag is "U". Present in the triangular classes only.

p: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

coerce signature(from = "dgCMatrix", to = "ngCMatrix"), and many similar ones; typically you should coerce to "nsparseMatrix" (or "nMatrix"). Note that coercion to a sparse pattern matrix records all the potential non-zero entries, i.e., explicit ("non-structural") zeroes are coerced to TRUE, not FALSE, see the example.

t signature(x = "ngCMatrix"): returns the transpose of x

which signature(x = "lsparseMatrix"), semantically equivalent to base function which(x, arr.ind); for details, see the lMatrix class documentation.

See Also

the class dgCMatrix

Examples

(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))

`extract the nonzero-pattern of (m) into an nMatrix`:

nm <- as(m, "nsparseMatrix") ## -> will be a "ngCMatrix"

str(nm) # no 'x' slot

nm <- !nm # no longer sparse

consistency check:

stopifnot(xor(as(nm, "matrix"),

as(nnm, "matrix")))

low-level way of adding "non-structural zeros" :

nm <- as(nnm, "lsparseMatrix") # "lgCMatrix"

nm@x[2:4] <- c(FALSE, NA, NA)

nm

as(nnm, "nMatrix") # NAs *and* non-structural 0 |----> 'TRUE'
nsyMatrix-class

Symmetric Dense Nonzero-Pattern Matrices

Description

The "nsyMatrix" class is the class of symmetric, dense nonzero-pattern matrices in non-packed storage and "nspMatrix" is the class of these in packed storage. Only the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("nsyMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

"nsyMatrix" extends class "ngeMatrix", directly, whereas "nspMatrix" extends class "ndenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use showClass("nsyMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="nsyMatrix") for details.

See Also

ngeMatrix, Matrix, t
Examples

(s0 <- new("nsyMatrix"))

(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
(sM <- M2 & t(M2)) # -> "lge"
class(sM <- as(sM, "nMatrix")) # -> "nge"
(sM <- as(sM, "symmetricMatrix")) # -> "nsy"
str(sM <- as(sM, "packedMatrix")) # -> "nsp", i.e., packed symmetric

ntrMatrix-class Triangular Dense Logical Matrices

Description

The "ntrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The "ntpMatrix" class is the same except in packed storage.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

"ntrMatrix" extends class "ngeMatrix", directly, whereas "ntpMatrix" extends class "ndenseMatrix", directly.

Both extend Class "triangularMatrix", directly, and class "denseMatrix", "lMatrix" and others, indirectly, use showClass("nsyMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="ntrMatrix") for details.

See Also

Classes ngeMatrix, Matrix; function t
Examples

```r
showClass("ntrMatrix")
str(new("ntpMatrix"))
(nutr <- as(upper.tri(matrix(, 4, 4), "ndenseMatrix"))
str(nutp <- pack(nutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!nutp # the logical negation (is *not* logical triangular !)
## but this one is:
stopifnot(all.equal(nutp, pack(!nutp)))
```

number-class

Class “number” of Possibly Complex Numbers

Description

The class "number" is a virtual class, currently used for vectors of eigen values which can be "numeric" or "complex".

It is a simple class union (setClassUnion) of "numeric" and "complex".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

```r
showClass("number")
stopifnot( is(1i, "number"), is(pi, "number"), is(1:3, "number") )
```

pack

Representation of Packed and Unpacked Dense Matrices

Description

pack() coerces dense symmetric and dense triangular matrices from unpacked format (storing the full matrix) to packed format (storing only one of the upper and lower triangles). unpack() performs the reverse coercion. The two formats are formalized by the virtual classes "packedMatrix" and "unpackedMatrix".
Usage

pack(x, ...)
S4 method for signature 'dgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'lgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'ngeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'matrix'
pack(x, symmetric = NA, upperTri = NA, ...)

unpack(x, ...)

Arguments

x
A dense symmetric or dense triangular matrix.

For pack(): typically an "unpackedMatrix" or a standard "matrix", though "packedMatrix" are allowed and returned unchanged.

For unpack(): typically a "packedMatrix", though "unpackedMatrix" are allowed and returned unchanged.

symmetric
logical (including NA) optionally indicating whether x is symmetric (or triangular).

upperTri
(for triangular x only) logical (including NA) indicating whether x is upper (or lower) triangular.

... further arguments passed to or from other methods.

Details

pack(x) checks matrices x not inheriting from one of the virtual classes "symmetricMatrix" "triangularMatrix" for symmetry (via isSymmetric()) then for upper and lower triangularity (via isTriangular()) in order to identify a suitable coercion. Setting one or both of symmetric and upperTri to TRUE or FALSE rather than NA allows skipping of irrelevant tests for large matrices known to be symmetric or (upper or lower) triangular.

Users should not assume that pack() and unpack() are inverse operations. Specifically, y <- unpack(pack(x)) may not reproduce an "unpackedMatrix" x in the sense of identical(). See the examples.

Value

For pack(): a "packedMatrix" giving the condensed representation of x.

For unpack(): an "unpackedMatrix" giving the full storage representation of x.

Examples

showMethods("pack")
(s <- crossprod(matrix(sample(15), 5,3))) # traditional symmetric matrix
(sp <- pack(s))
mt <- as.matrix(tt <- tril(s))
(pt <- pack(mt))
stopifnot(identical(pt, pack(tt)),
dim(s) == dim(sp), all(s == sp),
dim(mt) == dim(pt), all(mt == pt), all(mt == tt))

showMethods("unpack")
(cp4 <- chol(Hilbert(4))) # is triangular
tp4 <- pack(cp4) # [t]riangular [p]acked
str(tp4)
(unpack(tp4))
stopifnot(identical(tp4, pack(unpack(tp4))))

z1 <- new("dsyMatrix", Dim = c(2L, 2L), x = as.double(1:4), uplo = "U")
z2 <- unpack(pack(z1))
stopifnot(!identical(z1, z2), # _not_ identical
all(z1 == z2)) # but mathematically equal
cbind(z1@x, z2@x) # (unused!) lower triangle is "lost" in translation

Description

Class "packedMatrix" is the virtual class of dense symmetric or triangular matrices in "packed" format, storing only the \(\frac{n(n+1)}{2}\) elements of the upper or lower triangle of an \(n\)-by-\(n\) matrix. It is used to define common methods for efficient subsetting, transposing, etc. of its proper subclasses: currently ","[dln]spMatrix" (packed symmetric), "[dln]tpMatrix" (packed triangular), and subclasses of these, such as "dppMatrix", "pCholesky", and "pBunchKaufman".

Slots

- **uplo**: "character"; either "U", for upper triangular, and "L", for lower.
- **Dim, Dimnames**: as all Matrix objects.

Extends

Methods

- pack signature(x = "packedMatrix"): ...
- unpack signature(x = "packedMatrix"): ...
- isSymmetric signature(object = "packedMatrix"): ...
- isTriangular signature(object = "packedMatrix"): ...
isDiagonal signature(object = "packedMatrix"):

isDiagonal signature(object = "packedMatrix"):

t signature(x = "packedMatrix"):

t signature(x = "packedMatrix"):

diag signature(x = "packedMatrix"):

diag signature(x = "packedMatrix"):

diag<- signature(x = "packedMatrix"):

diag<- signature(x = "packedMatrix"):

Author(s)
Mikael Jagan

See Also
pack and unpack; its virtual "complement" "unpackedMatrix"; its proper subclasses "dspMatrix", "ltpMatrix", etc.

Examples

showClass("packedMatrix")
showMethods(classes = "packedMatrix")

Description
The pMatrix class is the class of permutation matrices, stored as 1-based integer permutation vectors. A permutation matrix is a square matrix whose rows and columns are all standard unit vectors. It follows that permutation matrices are a special case of index matrices (hence pMatrix is defined as a direct subclass of indMatrix).

Multiplying a matrix on the left by a permutation matrix is equivalent to permuting its rows. Analogously, multiplying a matrix on the right by a permutation matrix is equivalent to permuting its columns. Indeed, such products are implemented in Matrix as indexing operations; see 'Details' below.

Details
By definition, a permutation matrix is both a row index matrix and a column index matrix. However, the perm slot of a pMatrix cannot be used interchangeably as a row index vector and column index vector. If margin=1, then perm is a row index vector, and the corresponding column index vector can be computed as invPerm(perm), i.e., by inverting the permutation. Analogously, if margin=2, then perm and invPerm(perm) are column and row index vectors, respectively.

Given an n-by-n row permutation matrix P with perm slot p and a matrix M with conformable dimensions, we have

\[PM = P \% \% M = M[p,] \]
\[MP = M \% \% P = M[, i(p)] \]
\[P'M = \text{crossprod}(P, M) = M[i(p),] \]
\[MP' = \text{tcrossprod}(M, P) = M[, p] \]
\[P'P = \text{crossprod}(P) = \text{Diagonal}(n) \]
\[PP' = \text{tcrossprod}(P) = \text{Diagonal}(n) \]
where \(i := \text{invPerm} \).

Objects from the Class

Objects can be created explicitly with calls of the form `new("pMatrix", \ldots)` but they are more commonly created by coercing 1-based integer index vectors, with calls of the form `as(., "pMatrix")`: see ‘Methods’ below.

Slots

\(\text{margin,perm} \) inherited from superclass `indMatrix`. Here, `perm` is an integer vector of length \(\text{Dim}[1] \) and a permutation of \(1:\text{Dim}[1] \).

\(\text{Dim,Dimnames} \) inherited from virtual superclass `Matrix`.

Extends

Class "indMatrix", directly.

Methods

\%\% signature \((x = \text{"pMatrix"}, y = \text{"Matrix"}) \) and others listed by `showMethods("\%\%", classes = \"pMatrix\")`: matrix products implemented where appropriate as indexing operations.

coerce signature \((\text{from} = \text{"numeric"}, \text{to} = \text{"pMatrix"}) \): supporting typical `pMatrix` construction from a vector of positive integers, specifically a permutation of \(1:n \). Row permutation is assumed.

t signature \((x = \text{"pMatrix"}) \): the transpose, which is a `pMatrix` with identical `perm` but opposite `margin`. Coincides with the inverse, as permutation matrices are orthogonal.

solve signature \((a = \text{"pMatrix"}, b = \text{"missing"}) \): the inverse permutation matrix, which is a `pMatrix` with identical `perm` but opposite `margin`. Coincides with the transpose, as permutation matrices are orthogonal. See `showMethods("solve", classes = \"pMatrix\")` for more signatures.

determinant signature \((x = \text{"pMatrix"}, \text{logarithm} = \text{"logical"}) \): always returning 1 or -1, as permutation matrices are orthogonal. In fact, the result is exactly the \text{sign} of the permutation.

See Also

Superclass `indMatrix` of index matrices, for many inherited methods; `invPerm`, for computing inverse permutation vectors.

Examples

```r
(pm1 <- as(as.integer(c(2,3,1)), "pMatrix"))
t(pm1) # is the same as
solve(pm1)
```

pm1 \%\% t(pm1) # check that the transpose is the inverse

```r
stopifnot(all(diag(3) == as(pm1 \%\% t(pm1), "matrix"),
is.logical(as(pm1, "matrix")))
```
set.seed(11)
random permutation matrix :
(p10 <- as(sample(10), "pMatrix"))

Permute rows / columns of a numeric matrix :
(mm <- round(array(rnorm(3 * 3), c(3, 3)), 2))

row-indexing of a <pMatrix> keeps it as an <indMatrix>:
(p10[1:7, 1:4]) # gives an "ngTMatrix" (most economic!)

Permute rows / columns of a numeric matrix :
(mm <- round(array(rnorm(3 * 3), c(3, 3)), 2))

row-indexing of a <pMatrix> keeps it as an <indMatrix>:
(p10[1:3,])

printSpMatrix

Format and Print Sparse Matrices Flexibly

Description

Format and print sparse matrices flexibly. These are the "workhorses" used by the *format*, *show* and *print* methods for sparse matrices. If \(x \) is large, \(\text{printSpMatrix2}(x) \) calls \(\text{printSpMatrix}() \) twice, namely, for the first and the last few rows, suppressing those in between, and also suppresses columns when \(x \) is too wide.

\(\text{printSpMatrix}() \) basically prints the result of \(\text{formatSpMatrix}() \).

Usage

```r
formatSpMatrix(x, digits = NULL, maxp = 1e9,
   cld = getClassDef(class(x)), zero.print = ".",
   col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
   align = c("fancy", "right"))

printSpMatrix(x, digits = NULL, maxp = max(100L, getOption("max.print")),
   cld = getClassDef(class(x)),
   zero.print = ".", col.names, note.dropping.colnames = TRUE,
   uniDiag = TRUE, col.trailer = "",
   align = c("fancy", "right"))

printSpMatrix2(x, digits = NULL, maxp = max(100L, getOption("max.print")),
   zero.print = ".", col.names, note.dropping.colnames = TRUE,
   uniDiag = TRUE, suppRows = NULL, suppCols = NULL,
   col.trailer = if(suppCols) "......" else "",
   align = c("fancy", "right"),
   width = getOption("width"), fitWidth = TRUE)
```
Arguments

x an R object inheriting from class `sparseMatrix`.
digits significant digits to use for printing, see `print.default`, the default, `NULL`, corresponds to using `getOption("digits")`.
maxp integer, default from `options(max.print)`, influences how many entries of large matrices are printed at all. Typically should not be smaller than around 1000; values smaller than 100 are silently “rounded up” to 100.
cld the class definition of x; must be equivalent to `getClassDef(class(x))` and exists mainly for possible speedup.
zero.print character which should be printed for structural zeroes. The default "." may occasionally be replaced by " " (blank); using "0" would look almost like `print()`ing of non-sparse matrices.
col.names logical or string specifying if and how column names of x should be printed, possibly abbreviated. The default is taken from `options("sparse.colnames")` if that is set, otherwise FALSE unless there are less than ten columns. When TRUE the full column names are printed. When col.names is a string beginning with "abb" or "sub" and ending with an integer n (i.e., of the form "abb...<n>"), the column names are `abbreviate()`d or `substring()`ed to (target) length n, see the examples.
note.dropping.colnames logical specifying, when col.names is FALSE if the dropping of the column names should be noted, TRUE by default.
uniDiag logical indicating if the diagonal entries of a sparse unit triangular or unit-diagonal matrix should be formatted as "I" instead of "1" (to emphasize that the 1’s are "structural").
col.trailer a string to be appended to the right of each column; this is typically made use of by `show(<sparseMatrix>)` only, when suppressing columns.
suppRows, suppCols logicals or NULL, for `printSpMatrix2()` specifying if rows or columns should be suppressed in printing. If NULL, sensible defaults are determined from `dim(x)` and `options(c("width", "max.print"))`. Setting both to FALSE may be a very bad idea.
align a string specifying how the zero.print codes should be aligned, i.e., padded as strings. The default, "fancy", takes some effort to align the typical zero.print = ".", with the position of 0, i.e., the first decimal (one left of decimal point) of the numbers printed, whereas align = "right" just makes use of `print(*, right = TRUE)`.
width number, a positive integer, indicating the approximately desired (line) width of the output, see also `fitWidth`.
fitWidth logical indicating if some effort should be made to match the desired width or temporarily enlarge that if deemed necessary.

Details

formatSpMatrix: If x is large, only the first rows making up the approximately first maxp entries is used, otherwise all of x. `.formatSparseSimple()` is applied to (a dense version of) the
matrix. Then, `formatSparseM` is used, unless in trivial cases or for sparse matrices without x slot.

Value

`formatSpMatrix()`

returns a character matrix with possibly empty column names, depending on col.names etc, see above.

`printSpMatrix*()`

return x invisibly, see `invisible`.

Author(s)

Martin Maechler

See Also

the virtual class `sparseMatrix` and the classes extending it; maybe `sparseMatrix` or `spMatrix` as simple constructors of such matrices.

The underlying utilities `formatSparseM` and `.formatSparseSimple()` (on the same page).

Examples

```r
f1 <- gl(5, 3, labels = LETTERS[1:5])
X <- as(f1, "sparseMatrix")
X ## <==> show(X) <==> print(X)
t(X) ## shows column names, since only 5 columns

X2 <- as(gl(12, 3, labels = paste(LETTERS[1:12],"c",sep=".")), "sparseMatrix")
X2

## less nice, but possible:
print(X2, col.names = TRUE) # use [,1] [,2] .. => does not fit

## Possibilities with column names printing:
t(X2) # suppressing column names
print(t(X2), col.names=TRUE)
print(t(X2), zero.print = "", col.names="abbr. 1")
print(t(X2), zero.print = ",", col.names="substring 2")
```

qr-methods
Methods for QR Factorization
Description

Computes the pivoted QR factorization of an $m \times n$ real matrix A, which has the general form

$$P_1 A P_2 = QR$$

or (equivalently)

$$A = P'_1 Q R P'_2$$

where P_1 and P_2 are permutation matrices, $Q = \prod_{j=1}^{n} H_j$ is an $m \times m$ orthogonal matrix equal to the product of n Householder matrices H_j, and R is an $m \times n$ upper trapezoidal matrix.

denseMatrix use the default method implemented in base, namely qr.default. It is built on LINPACK routine dqrdc and LAPACK routine dgeqp3, which do not pivot rows, so that P_1 is an identity matrix.

Methods for sparseMatrix are built on CSparse routines cs_sqr and cs_qr, which require $m \geq n$.

Usage

```r
qr(x, ...)  
## S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)
```

Arguments

- x a finite matrix or Matrix to be factorized, satisfying `nrow(x) >= ncol(x)` if sparse.
- order an integer in 0:3 passed to CSparse routine cs_sqr, indicating a strategy for choosing the column permutation P_2. 0 means no column permutation. 1, 2, and 3 indicate a fill-reducing ordering of $A + A', \tilde{A}'\tilde{A}$, and $A'A$, where \tilde{A} is A with “dense” rows removed. Do not set to 0 unless you know that the column order of A is already sensible.
- ... further arguments passed to or from methods.

Details

If x is sparse and structurally rank deficient, having structural rank $r < n$, then x is augmented with $(n - r)$ rows of (partly non-structural) zeros, such that the augmented matrix has structural rank n. This augmented matrix is factorized as described above:

$$P_1 A P_2 = P_1 \begin{bmatrix} A_0 \\ 0 \end{bmatrix} P_2 = QR$$

where A_0 denotes the original, user-supplied $(m - (n - r)) \times n$ matrix.

Value

An object representing the factorization, inheriting from virtual S4 class QR or S3 class qr. The specific class is qr unless x inherits from virtual class sparseMatrix, in which case it is sparseQR.
qr-methods

References

See Also

Class `sparseQR` and its methods.

Class `dgCMatrix`.

Generic function `qr` from `base`, whose default method `qr.default` “defines” the S3 class `qr` of dense QR factorizations.

Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.

Generic functions `Cholesky`, `BunchKaufman`, `Schur`, and `lu`, for computing other factorizations.

Examples

```r
showMethods("qr", inherited = FALSE)
```

```r
## Rank deficient: columns 3 {b2} and 6 {c3} are "extra"
M <- as(cbind(a1 = 1,
    b1 = rep(c(1, 0), each = 3L),
    b2 = rep(c(0, 1), each = 3L),
    c1 = rep(c(1, 0, 0), 2L),
    c2 = rep(c(0, 1, 0), 2L),
    c3 = rep(c(0, 0, 1), 2L)),
"CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps

## .... [1] full rank ..................................................
## ===> a least squares solution of A x = b exists
## and is unique _in exact arithmetic_

(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))
stopifnot(exprs = {
  rankMatrix(A1) == ncol(A1)
  { d1 <- diag(qr.A1@R); sum(d1 < max(d1) * eps) == 0L }
  rcond(crossprod(A1)) >= eps
  all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b))))
  all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b)
})

## .... [2] numerically rank deficient with full structural rank .......
## ===> a least squares solution of A x = b does not exist or is not unique _in exact arithmetic_
```
(A2 <- M)
(qr.A2 <- qr(A2))

stopifnot(exprs = {
 rankMatrix(A2) == ncol(A2) - 2L
 { d2 <- diag(qr.A2@R); sum(d2 < max(d2) * eps) == 2L }
 rcond(crossprod(A2)) < eps

 ## 'qr.coef' computes unique least squares solution of "nearby" problem
 ## Z x = b for some full rank Z ~ A, currently without warning [FIXME]!
 tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)

 all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})

.... [3] numerically and structurally rank deficient
===> factorization of _augmented_ matrix with
full structural rank proceeds as in [2]

NB: implementation details are subject to change; see (*) below

A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"

stopifnot(exprs = {
 ## sparseQR object preserves the unaugmented dimensions (*)
 dim(qr.A3) == dim(A3)
 dim(qr.A3@V) == dim(A3) + c(2L, 0L)
 dim(qr.A3@R) == dim(A3) + c(2L, 0L)

 ## The augmented matrix remains numerically rank deficient
 rankMatrix(A3) == ncol(A3) - 2L
 { d3 <- diag(qr.A3@R); sum(d3 < max(d3) * eps) == 2L }
 rcond(crossprod(A3)) < eps
})

Auxiliary functions accept and return a vector or matrix
with dimensions corresponding to the unaugmented matrix (*),
in all cases with a warning

qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)

.... [4] yet more examples ...

By disabling column pivoting, one gets the "vanilla" factorization
A = Q^- R, where Q^- := P1' Q is orthogonal because P1 and Q are

(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting
rankMatrix

Rank of a Matrix

Description
Compute ‘the’ matrix rank, a well-defined functional in theory(*), somewhat ambiguous in practice. We provide several methods, the default corresponding to Matlab’s definition.

(*) The rank of a \(n \times m \) matrix \(A, \text{rk}(A) \), is the maximal number of linearly independent columns (or rows); hence \(\text{rk}(A) \leq \min(n,m) \).

Usage
```r
rankMatrix(x, tol = NULL, 
method = c("tolNorm2", "qr", "qrLINPACK", "qr", 
"useGrad", "maybeGrad"), 
sval = svd(x, 0, 0)$d, warn.t = TRUE, warn.qr = TRUE)
qr2rankMatrix(qr, tol = NULL, isBqr = is.qr(qr), do.warn = TRUE)
```

Arguments
- `x` numeric matrix, of dimension \(n \times m \), say.
- `tol` nonnegative number specifying a (relative, “scalefree”) tolerance for testing of “practically zero” with specific meaning depending on method; by default, \(\max(\text{dim}(x)) \times .\text{Machine}$\text{double.eps} \) is according to Matlab’s default (for its only method which is our method="tolNorm2").
- `method` a character string specifying the computational method for the rank, can be abbreviated:
 - "tolNorm2": the number of singular values \(\geq \text{tol} \times \max(\text{sval}) \);
 - "qrLINPACK": for a dense matrix, this is the rank of \(\text{qr}(x, \text{tol}, \text{LAPACK}=\text{FALSE}) \) (which is \(\text{qr}(\ldots)\$\text{rank} \));
 - This ("qr*", dense) version used to be the recommended way to compute a matrix rank for a while in the past.
 - For sparse `x`, this is equivalent to "qr.R".
"qr.R": this is the rank of triangular matrix R, where qr() uses LAPACK or a "sparseQR" method (see qr-methods) to compute the decomposition QR. The rank of R is then defined as the number of "non-zero" diagonal entries d_i of R, and “non-zero”'s fulfill $|d_i| \geq \text{tol} \cdot \max(|d_i|)$.

"qr": is for back compatibility; for dense x, it corresponds to "qrLINPACK", whereas for sparse x, it uses "qr.R".

For all the "qr*" methods, singular values sval are not used, which may be crucially important for a large sparse matrix x, as in that case, when sval is not specified, the default, computing svd() currently coerces x to a dense matrix.

"useGrad": considering the “gradient” of the (decreasing) singular values, the index of the smallest gap.

"maybeGrad": choosing method "useGrad" only when that seems reasonable; otherwise using "tolNorm2".

sval numeric vector of non-increasing singular values of x; typically unspecified and computed from x when needed, i.e., unless method = "qr".

warn.t logical indicating if rankMatrix() should warn when it needs t(x) instead of x. Currently, for method = "qr" only, gives a warning by default because the caller often could have passed t(x) directly, more efficiently.

warn.qr in the QR cases (i.e., if method starts with "qr"), rankMatrix() calls qr2rankMatrix(..., do.warn = warn.qr), see below.

qr an R object resulting from qr(x,...), i.e., typically inheriting from class "qr" or "sparseQR".

isBqr logical indicating if qr is resulting from base qr(). (Otherwise, it is typically from Matrix package sparse qr.)

do.warn logical; if true, warn about non-finite (or in the sparseQR case negative) diagonal entries in the R matrix of the QR decomposition. Do not change lightly!

Details

qr2rankMatrix() is typically called from rankMatrix() for the "qr"* methods, but can be used directly - much more efficiently in case the qr-decomposition is available anyway.

Value

If x is a matrix of all 0 (or of zero dimension), the rank is zero; otherwise, typically a positive integer in 1:min(dim(x)) with attributes detailing the method used.

There are rare cases where the sparse QR decomposition “fails” in so far as the diagonal entries of R, the d_i (see above), end with non-finite, typically NaN entries. Then, a warning is signalled (unless warn.qr / do.warn is not true) and NA (specifically, NA_integer_) is returned.

Note

For large sparse matrices x, unless you can specify sval yourself, currently method = "qr" may be the only feasible one, as the others need sval and call svd() which currently coerces x to a denseMatrix which may be very slow or impossible, depending on the matrix dimensions.
Note that in the case of sparse x, method = "qr", all non-strictly zero diagonal entries d_i where counted, up to including Matrix version 1.1-0, i.e., that method implicitly used tol = 0, see also the set.seed(42) example below.

Author(s)

Martin Maechler; for the "*Grad" methods building on suggestions by Ravi Varadhan.

See Also

qr, svd.

Examples

```r
rankMatrix(cbind(1, 0, 1:3)) # 2

(meths <- eval(formals(rankMatrix)$method))

## a "border" case:
H12 <- Hilbert(12)
rankMatrix(H12, tol = 1e-20) # 12; but 11 with default method & tol.
sapply(meths, function(.m.) rankMatrix(H12, method = .m.))

## The meaning of 'tol' for method="qrLINPACK" and *dense* x is not entirely "scale free"
rmQL <- function(ex, M) rankMatrix(M, method="qrLINPACK", tol = 10^-ex)
rmQR <- function(ex, M) rankMatrix(M, method="qr.R", tol = 10^-ex)
sapply(5:15, rmQL, M = H12) # result is platform dependent
sapply(5:15, rmQL, M = 1000 * H12) # not identical unfortunately
sapply(5:15, rmQR, M = H12)
sapply(5:15, rmQR, M = 1000 * H12) # the *same*

## "sparse" case:
M15 <- kronecker(diag(x=c(100,1,10)), Hilbert(5))
sapply(meths, function(.m.) rankMatrix(M15, method = .m.))
#-- all 15, but 'useGrad' has 14.
sapply(meths, function(.m.) rankMatrix(M15, method = .m., tol = 1e-7)) # all 14

## "large" sparse
n <- 250000; p <- 33; nnz <- 10000
L <- sparseMatrix(i = sample.int(n, nnz, replace=TRUE),
                   j = sample.int(p, nnz, replace=TRUE),
                   x = rnorm(nnz))
(st1 <- system.time(r1 <- rankMatrix(L))) # warning+ ~1.5 sec (2013)
(st2 <- system.time(r2 <- rankMatrix(L, method = "qr"))) # considerably faster!
r1[[1]] == print(r2[[1]]) ## --> ( 33 TRUE )
```
another sparse-"qr" one, which `failed' till 2013-11-23:

```r
set.seed(42)
f1 <- factor(sample(50, 1000, replace=TRUE))
f2 <- factor(sample(50, 1000, replace=TRUE))
f3 <- factor(sample(50, 1000, replace=TRUE))
D <- t(do.call(rbind, lapply(list(f1,f2,f3), as, 'sparseMatrix')))
dim(D); nnzero(D) ## 1000 x 150 // 3000 non-zeros (= 2%)
stopifnot(rankMatrix(D, method='qr') == 148,
         rankMatrix(crossprod(D),method='qr') == 148)
```

zero matrix has rank 0 :

```r
stopifnot(sapply(meths, function(.m.)
             rankMatrix(matrix(0, 2, 2), method = .m.)) == 0)
```

rcond-methods

Estimate the Reciprocal Condition Number

Description

Estimate the reciprocal of the condition number of a matrix.

This is a generic function with several methods, as seen by `showMethods(rcond)`.

Usage

```r
rcond(x, norm, ...)
```

Arguments

- **x**: an R object that inherits from the `Matrix` class.
- **norm**: character string indicating the type of norm to be used in the estimate. The default is "O" for the 1-norm ("O" is equivalent to "1"). For sparse matrices, when `useInv=TRUE`, `norm` can be any of the kinds allowed for `norm`; otherwise, the other possible value is "I" for the infinity norm, see also `norm`.
- **useInv**: logical (or "Matrix" containing `solve(x)`). If not false, compute the reciprocal condition number as $1/(||x|| \cdot ||x^{-1}||)$, where x^{-1} is the inverse of x, `solve(x)`. This may be an efficient alternative (only) in situations where `solve(x)` is fast (or known), e.g., for (very) sparse or triangular matrices.
- **...** further arguments passed to or from other methods.

Value

An estimate of the reciprocal condition number of `x`.
BACKGROUND

The condition number of a regular (square) matrix is the product of the norm of the matrix and the norm of its inverse (or pseudo-inverse).

More generally, the condition number is defined (also for non-square matrices A) as

$$\kappa(A) = \frac{\max_{\|v\|=1} \|Av\|}{\min_{\|v\|=1} \|Av\|}$$

Whenever x is not a square matrix, in our method definitions, this is typically computed via $\text{rcond}(\text{qr.R(qr(X))}, \ldots)$ where X is x or $t(x)$.

The condition number takes on values between 1 and infinity, inclusive, and can be viewed as a factor by which errors in solving linear systems with this matrix as coefficient matrix could be magnified.

$rcond()$ computes the reciprocal condition number $1/\kappa$ with values in $[0,1]$ and can be viewed as a scaled measure of how close a matrix is to being rank deficient (aka “singular”).

Condition numbers are usually estimated, since exact computation is costly in terms of floating-point operations. An (over) estimate of reciprocal condition number is given, since by doing so overflow is avoided. Matrices are well-conditioned if the reciprocal condition number is near 1 and ill-conditioned if it is near zero.

References

See Also

norm, kappa() from package base computes an approximate condition number of a “traditional” matrix, even non-square ones, with respect to the $p = 2$ (Euclidean) norm. solve.

condest, a newer approximate estimate of the (1-norm) condition number, particularly efficient for large sparse matrices.

Examples

```r
x <- Matrix(rnorm(9), 3, 3)
rcond(x)
## typically "the same" (with more computational effort):
1 / (norm(x) * norm(solve(x)))
rcond(Hilbert(9)) # should be about 9.1e-13

## For non-square matrices:
rcond(x1 <- cbind(1,1:10))# 0.05278
rcond(x2 <- cbind(x1, 2:11))# practically 0, since x2 does not have full rank

## sparse
(S1 <- Matrix(rbind(0:1,0, diag(3:-2))))
rcond(S1)
m1 <- as(S1, "denseMatrix")
```
all.equal(rcond(S1), rcond(m1))

wide and sparse
rcond(Matrix(cbind(0, diag(2:-1))))

Large sparse example ----------
m <- Matrix(c(3,0:2), 2,2)
M <- bdiag(kronecker(Diagonal(2), m), kronecker(m,m))
36*(iM <- solve(M)) # still sparse
MM <- kronecker(Diagonal(10), kronecker(Diagonal(5),kronecker(m,M)))
dim(M3 <- kronecker(bdiag(M,M),MM)) # 12'800 ^ 2
if(interactive()) ## takes about 2 seconds if you have >= 8 GB RAM
 system.time(r <- rcond(M3))
whereas this is *fast* even though it computes solve(M3)
 system.time(r. <- rcond(M3, useInv=TRUE))
if(interactive()) ## the values are not the same
 c(r, r.) # 0.05555 0.013888
for all 4 norms available for sparseMatrix :
cbind(rr <- sapply(c("1","I","F","M"),
 function(N) rcond(M3, norm=N, useInv=TRUE)))

rep2abI

Replicate Vectors into 'abIndex' Result

Description

rep2abI(x, times) conceptually computes rep.int(x, times) but with an abIndex class result.

Usage

rep2abI(x, times)

Arguments

- **x**: numeric vector
- **times**: integer (valued) scalar: the number of repetitions

Value

a vector of class abIndex

See Also

rep.int(), the base function; abIseq, abIndex.

Examples

(ab <- rep2abI(2:7, 4))
stopifnot(identical(as(ab, "numeric"),
 rep(2:7, 4)))
replValue-class

Virtual Class "replValue" - Simple Class for Subassignment Values

Description

The class "replValue" is a virtual class used for values in signatures for sub-assignment of `Matrix` matrices.

In fact, it is a simple class union (setClassUnion) of "numeric" and "logical" (and maybe "complex" in the future).

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

See Also

`Subassign-methods`, also for examples.

Examples

```
showClass("replValue")
```

rleDiff-class

Class "rleDiff" of rle(diff(.)) Stored Vectors

Description

Class "rleDiff" is for compactly storing long vectors which mainly consist of linear stretches. For such a vector `x`, `diff(x)` consists of constant stretches and is hence well compressible via `rle()`.

Objects from the Class

Objects can be created by calls of the form `new("rleDiff", ...)`. Currently experimental, see below.

Slots

- `first`: A single number (of class "numLike", a class union of "numeric" and "logical").
- `rle`: Object of class "rle", basically a list with components "lengths" and "values", see `rle()`. As this is used to encode potentially huge index vectors, lengths may be of type `double` here.

Methods

There is a simple `show` method only.
Note

This is currently an experimental auxiliary class for the class abIndex, see there.

See Also

rle, abIndex.

Examples

showClass("rleDiff")

ab <- c(abIseq(2, 100), abIseq(20, -2))
ab@rleD # is "rleDiff"

rsparsematrix

Random Sparse Matrix

Description

Generate a random sparse matrix efficiently. The default has rounded gaussian non-zero entries, and rand.x = NULL generates random pattern matrices, i.e. inheriting from nsparseMatrix.

Usage

rsparsematrix(nrow, ncol, density, nnz = round(density * maxE),
 symmetric = FALSE,
 rand.x = function(n) signif(rnorm(n), 2), ...)

Arguments

nrow, ncol number of rows and columns, i.e., the matrix dimension (dim).
density optional number in [0, 1], the density is the proportion of non-zero entries among all matrix entries. If specified it determines the default for nnz, otherwise nnz needs to be specified.

nnz number of non-zero entries, for a sparse matrix typically considerably smaller than nrow*ncol. Must be specified if density is not.
symmetric logical indicating if result should be a matrix of class symmetricMatrix. Note that in the symmetric case, nnz denotes the number of non zero entries of the upper (or lower) part of the matrix, including the diagonal.

rand.x NULL or the random number generator for the x slot, a function such that rand.x(n) generates a numeric vector of length n. Typical examples are rand.x = rnorm, or rand.x = runif; the default is nice for didactical purposes.

... optionally further arguments passed to sparseMatrix(), notably repr.
Details

The algorithm first samples “encoded” \((i, j)\)s without replacement, via one dimensional indices, if not symmetric \texttt{sample.int(nrow*ncol, nnz)}), then—if rand.\(x\) is not \texttt{NULL}—gets \(x \leftarrow \texttt{rand.x(nnz)}\) and calls \texttt{sparseMatrix(i=i, j=j, x=x, \ldots)}\). When rand.\(x\)=\texttt{NULL}, \texttt{sparseMatrix(i=i, j=j, \ldots)} will return a pattern matrix (i.e., inheriting from \texttt{nsparseMatrix}).

Value

\texttt{a sparseMatrix}, say \(M\) of dimension \((nrow, ncol)\), i.e., with \texttt{dim(M)} == \texttt{c(nrow, ncol)}, if symmetric is not true, with \(nzM \leftarrow \texttt{nnzero(M)}\) fulfilling \(nzM \leq \texttt{nnz}\) and typically, \(nzM = \texttt{nnz}\).

Author(s)

Martin Maechler

Examples

```r
set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M
M1 <- rsparsematrix(1000, 20, nnz = 123, rand.x = runif)
summary(M1)
## a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"
## a random pattern*na* aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
## a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")
head(T2)
```

RsparseMatrix-class

Class "RsparseMatrix" of Sparse Matrices in Row-compressed Form

Description

The "RsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed row-oriented form. Since it is a virtual class, no objects may be created from it. See \texttt{showClass("RsparseMatrix")} for its subclasses.
Schur-class

Slots

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of
elements in the row.

Dim, Dimnames: inherited from the superclass, see sparseMatrix.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Originally, few methods were defined on purpose, as we rather use the CsparseMatrix in Matrix.
Then, more methods were added but beware that these typically do not return "RsparseMatrix"
results, but rather Csparse* or Tsparse* ones; e.g., R[i, j] <- v for an "RsparseMatrix" R works,
but after the assignment, R is a (triplet) "TsparseMatrix".

t signature(x = "RsparseMatrix"): ...

coerce signature(from = "RsparseMatrix", to = "CsparseMatrix"): ...

coerce signature(from = "RsparseMatrix", to = "TsparseMatrix"): ...

See Also

its superclass, sparseMatrix, and, e.g., class dgRMatrix for the links to other classes.

Examples

showClass("RsparseMatrix")

Schur-class Schur Factorizations

Description

Schur is the class of Schur factorizations of \(n \times n \) real matrices \(A \), having the general form

\[
A = QTQ'
\]

where \(Q \) is an orthogonal matrix and \(T \) is a block upper triangular matrix with \(1 \times 1 \) or \(2 \times 2 \)
diagonal blocks specifying the real and complex conjugate eigenvalues of \(A \). The column vectors
of \(Q \) are the Schur vectors of \(A \), and \(T \) is the Schur form of \(A \).

The Schur factorization generalizes the spectral decomposition of normal matrices \(A \), whose Schur
form is block diagonal, to arbitrary square matrices.
Details

The matrix A and its Schur form T are similar and thus have the same spectrum. The eigenvalues are computed trivially as the eigenvalues of the diagonal blocks of T.

Slots

- **Dim, Dimnames** inherited from virtual class `MatrixFactorization`.
- **Q** an orthogonal matrix, inheriting from virtual class `Matrix`.
- **T** a block upper triangular matrix, inheriting from virtual class `Matrix`. The diagonal blocks have dimensions 1-by-1 or 2-by-2.
- **EValues** a numeric or complex vector containing the eigenvalues of the diagonal blocks of T, which are the eigenvalues of T and consequently of the factorized matrix.

Extends

Class `SchurFactorization`, directly. Class `MatrixFactorization`, by class `SchurFactorization`, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("Schur", ...)`, but they are more typically obtained as the value of `Schur(x)` for x inheriting from `Matrix` (often `dgeMatrix`).

Methods

- **determinant** signature(from = "Schur", logarithm = "logical"): computes the determinant of the factorized matrix A or its logarithm.
- **expand1** signature(x = "Schur"): see `expand1-methods`.
- **expand2** signature(x = "Schur"): see `expand2-methods`.
- **solve** signature(a = "Schur", b = .): see `solve-methods`.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.

See Also

Class `dgeMatrix`.

Generic functions `Schur`, `expand1` and `expand2`.
Examples

showClass("Schur")
set.seed(0)

n <- 4L
(A <- Matrix(rnorm(n * n), n, n))

With dimnames, to see that they are propagated :
dimnames(A) <- list(paste0("r", seq_len(n)),
 paste0("c", seq_len(n)))

(sch.A <- Schur(A))
str(e.sch.A <- expand2(sch.A), max.level = 2L)

A ~ Q T Q' in floating point
stopifnot(exprs = {
 identical(names(e.sch.A), c("Q", "T", "Q."))
 all.equal(A, with(e.sch.A, Q %*% T %*% Q.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(all.equal(det(A), det(sch.A)),
 all.equal(solve(A, b), solve(sch.A, b)))

One of the non-general cases:
Schur(Diagonal(6L))

Schur-methods

Methods for Schur Factorization

Description

Computes the Schur factorization of an \(n \times n \) real matrix \(A \), which has the general form

\[
A = QTQ'
\]

where \(Q \) is an orthogonal matrix and \(T \) is a block upper triangular matrix with \(1 \times 1 \) and \(2 \times 2 \) diagonal blocks specifying the real and complex conjugate eigenvalues of \(A \). The column vectors of \(Q \) are the Schur vectors of \(A \), and \(T \) is the Schur form of \(A \).

Methods are built on LAPACK routine dgees.

Usage

Schur(x, vectors = TRUE, ...)

Arguments

- **x**
 a finite square matrix or **Matrix** to be factorized.
- **vectors**
 a logical. If **TRUE** (the default), then Schur vectors are computed in addition to the Schur form.
- ...
 further arguments passed to or from methods.

Value

An object representing the factorization, inheriting from virtual class **SchurFactorization** if **vectors = TRUE**. Currently, the specific class is always **Schur** in that case.

An exception is if **x** is a traditional matrix, in which case the result is a named list containing **Q**, **T**, and **EValues** slots of the **Schur** object.

If **vectors = FALSE**, then the result is the same named list but without **Q**.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.

See Also

Class **Schur** and its methods.

Class **dgeMatrix**.

Generic functions **expand1** and **expand2**, for constructing matrix factors from the result.

Generic functions **Cholesky**, **BunchKaufman**, **lu**, and **qr**, for computing other factorizations.

Examples

```r
showMethods("Schur", inherited = FALSE)
set.seed(0)
Schur(Hilbert(9L)) # real eigenvalues
(A <- Matrix(round(rnorm(25L, sd = 100)), 5L, 5L))
(sch.A <- Schur(A)) # complex eigenvalues

# A ~ Q T Q' in floating point
str(e.sch.A <- expand2(sch.A), max.level = 2L)
stopifnot(all.equal(A, Reduce(`%*%`, e.sch.A)))

(e1 <- eigen(sch.A@T, only.values = TRUE)$values)
(e2 <- eigen(A, only.values = TRUE)$values)
(e3 <- sch.A@EValues)

stopifnot(exprs = {
```
Methods in Package Matrix for Function solve

Description

Methods for generic function solve for solving linear systems of equations, i.e., for \(X \) in \(AX = B \), where \(A \) is a square matrix and \(X \) and \(B \) are matrices with dimensions consistent with \(A \).

Usage

solve(a, b, ...)

S4 method for signature 'dgeMatrix,ANY'
solve(a, b, tol = .Machine$double.eps, ...)

S4 method for signature 'dgCMatrix,missing'
solve(a, b, sparse = TRUE, ...)

S4 method for signature 'dgCMatrix,matrix'
solve(a, b, sparse = FALSE, ...)

S4 method for signature 'dgCMatrix,denseMatrix'
solve(a, b, sparse = FALSE, ...)

S4 method for signature 'dgCMatrix,sparseMatrix'
solve(a, b, sparse = TRUE, ...)

S4 method for signature 'denseLU,dgeMatrix'
solve(a, b, ...)

S4 method for signature 'BunchKaufman,dgeMatrix'
solve(a, b, ...)

S4 method for signature 'Cholesky,dgeMatrix'
solve(a, b, ...)

S4 method for signature 'sparseLU,dgCMatrix'
solve(a, b, tol = .Machine$double.eps, ...)

S4 method for signature 'sparseQR,dgCMatrix'
solve(a, b, ...)

S4 method for signature 'CHMfactor,dgCMatrix'
solve(a, b, system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"), ...)
Arguments

- **a**: a finite square matrix or `Matrix` containing the coefficients of the linear system, or otherwise a `MatrixFactorization`, in which case methods behave (by default) as if the factorized matrix were specified.

- **b**: a vector, `sparseVector`, matrix, or `Matrix` satisfying `NROW(b) == nrow(a)`, giving the right-hand side(s) of the linear system. Vectors `b` are treated as `length(b)`-by-1 matrices. If `b` is missing, then methods take `b` to be an identity matrix.

- **tol**: a non-negative number. For `a` inheriting from `denseMatrix`, an error is signaled if the reciprocal one-norm condition number (see `rcond`) of `a` is less than `tol`, indicating that `a` is near-singular. For a of class `sparseLU`, an error is signaled if the ratio \(\min(d)/\max(d) \) is less than `tol`, where \(d = \text{abs(diag(a@U))} \). (Interpret with care, as this ratio is a cheap heuristic and not in general equal to or even proportional to the reciprocal one-norm condition number.) Setting `tol = 0` disables the test.

- **sparse**: a logical indicating if the result should be formally sparse, i.e., if the result should inherit from virtual class `sparseMatrix`. Only methods for sparse `a` and missing or matrix `b` have this argument. Methods for missing or sparse `b` use `sparse = TRUE` by default. Methods for dense `b` use `sparse = FALSE` by default.

- **system**: a string specifying a linear system to be solved. Only methods for a inheriting from `CHMfactor` have this argument. See ‘Details’.

- ... further arguments passed to or from methods.

Details

Methods for general and symmetric matrices `a` compute a triangular factorization (LU, Bunch-Kaufman, or Cholesky) and call the method for the corresponding factorization class. The factorization is sparse if `a` is. Methods for sparse, symmetric matrices `a` attempt a Cholesky factorization and perform an LU factorization only if that fails (typically because `a` is not positive definite).

Triangular, diagonal, and permutation matrices do not require factorization (they are already “factors”), hence methods for those are implemented directly. For triangular `a`, solutions are obtained by forward or backward substitution; for diagonal `a`, they are obtained by scaling the rows of `b`; and for permutations `a`, they are obtained by permuting the rows of `b`.

Methods for dense `a` are built on 14 LAPACK routines: class `d..Matrix`, where `..=(ge|tr|tp|sy|sp|po|pp)`, uses routines `d..tri` and `d..trs` for missing and non-missing `b`, respectively. A corollary is that these methods always give a dense result.

Methods for sparse `a` are built on CSparse routines `cs_lsolve`, `cs_usolve`, and `cs_spsolve` and CHOLMOD routines `cholmod_solve` and `cholmod_spsolve`. By default, these methods give a vector result if `b` is a vector, a sparse matrix result if `b` is missing or a sparse matrix, and a dense matrix result if `b` is a dense matrix. One can override this behaviour by setting the `sparse` argument, where available, but that should be done with care. Note that a sparse result may be sparse only in the formal sense and not at all in the mathematical sense, depending on the nonzero patterns of `a` and `b`. Furthermore, whereas dense results are fully preallocated, sparse results must be “grown” in a loop over the columns of `b`.

Methods for `a` of class `sparseQR` are simple wrappers around `qr.coef`, giving the least squares solution in overdetermined cases.
Methods for a inheriting from \texttt{CHMfactor} can solve systems other than the default one \(AX = B \). The correspondence between its system argument the system actually solved is outlined in the table below. See \texttt{CHMfactor-class} for a definition of notation.

<table>
<thead>
<tr>
<th>system</th>
<th>isLDL(a)=TRUE</th>
<th>isLDL(a)=FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>(AX = B)</td>
<td>(AX = B)</td>
</tr>
<tr>
<td>"LDt"</td>
<td>(L_{1}DL_{1}'X = B)</td>
<td>(LL'X = B)</td>
</tr>
<tr>
<td>"LD"</td>
<td>(L_{1}D_{1}X = B)</td>
<td>(LX = B)</td>
</tr>
<tr>
<td>"DLt"</td>
<td>(DL_{1}'X = B)</td>
<td>(L'X = B)</td>
</tr>
<tr>
<td>"L"</td>
<td>(L_{1}X = B)</td>
<td>(LX = B)</td>
</tr>
<tr>
<td>"Lt"</td>
<td>(L_{1}'X = B)</td>
<td>(L'X = B)</td>
</tr>
<tr>
<td>"D"</td>
<td>(DX = B)</td>
<td>(X = B)</td>
</tr>
<tr>
<td>"P"</td>
<td>(X = P_{1}B)</td>
<td>(X = P_{1}B)</td>
</tr>
<tr>
<td>"Pt"</td>
<td>(X = P_{1}'B)</td>
<td>(X = P_{1}'B)</td>
</tr>
</tbody>
</table>

\textbf{See Also}

Virtual class \texttt{MatrixFactorization} and its subclasses.

Generic functions \texttt{Cholesky}, \texttt{BunchKaufman}, \texttt{Schur}, \texttt{lu}, and \texttt{qr} for computing factorizations.

Generic function \texttt{solve} from \texttt{base}.

Function \texttt{qr.coef} from \texttt{base} for computing least squares solutions of overdetermined linear systems.

\textbf{Examples}

```r
## A close to symmetric example with "quite sparse" inverse:
N <- 7; N2 <- 3
dd <- data.frame(a = gl(N, N2), b = gl(N2, 1, N*N2))# balanced 2-way
X <- sparse.model.matrix(~ -1 + a + b, dd)# no intercept --> even sparser
Xxt <- tcrossprod(X)
diag(Xxt) <- rep(c(0, 0, 1, 0), length.out = nrow(Xxt))

n <- nrow(ZZ <- kronecker(Xxt, Diagonal(x=c(4,1))))

image(a <- 2*Diagonal(n) + ZZ %*% Diagonal(x=c(10, rep(1, n-1))))
isSymmetric(a) # FALSE
image(drop0(skewpart(a)))
image(ia0 <- solve(a, tol = 0)) # checker board, dense [but really, a is singular!]
try(solve(a, sparse=TRUE))##-> error [ TODO: assertError ]
ia. <- solve(a, sparse=TRUE, tol = 1e-19)#-> *no* error
if(R.version$arch == "x86_64")
  ## Fails on 32-bit [Fedora 19, R 3.0.2] from Matrix 1.1-0 on [FIXME ??] only
  stopifnot(all.equal(as.matrix(ia.), as.matrix(ia0)))
a <- a + Diagonal(n)

Iad <- solve(a)
Ias <- solve(a, sparse=FALSE)
stopifnot(all.equal(as(iad, "denseMatrix"), Ias, tolerance=1e-14))
I. <- Iad %*% a ; image(I.)
I0 <- drop0(zapsmall(I.)); image(I0)
.I <- a %*% Iad
.I0 <- drop0(zapsmall(.I))
```
stopifnot(all.equal(as(I0, "diagonalMatrix"), Diagonal(n)),
all.equal(as(.I0,"diagonalMatrix"), Diagonal(n)))

sparse.model.matrix Construct Sparse Design / Model Matrices

Description
Construct a sparse model or “design” matrix, from a formula and data frame (sparse.model.matrix) or a single factor (fac2sparse).
The fac2[Ss]parse() functions are utilities, also used internally in the principal user level function
sparse.model.matrix().

Usage
sparse.model.matrix(object, data = environment(object),
contrast.arg = NULL, xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE,
sep = "", verbose = FALSE, ...)
fac2sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse)
fac2Sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse,
factorPatt12, contrasts.arg = NULL)

Arguments
object an object of an appropriate class. For the default method, a model formula or
terms object.
data a data frame created with model.frame. If another sort of object, model.frame
is called first.
contrast.arg for sparse.model.matrix(): A list, whose entries are contrasts suitable for
input to the contrasts replacement function and whose names are the
names of columns of data containing factors.
for fac2Sparse(): character string or NULL or (coercable to) "sparseMatrix",
specifying the contrasts to be applied to the factor levels.
xlev to be used as argument of model.frame if data has no "terms" attribute.
transpose logical indicating if the transpose should be returned; if the transposed is used
anyway, setting transpose = TRUE is more efficient.
drop.unused.levels should factors have unused levels dropped? The default for sparse.model.matrix
has been changed to FALSE, 2010-07, for compatibility with R’s standard (dense)
model.matrix().
row.names logical indicating if row names should be used.

sep character string passed to `paste()` when constructing column names from the variable name and its levels.

verbose logical or integer indicating if (and how much) progress output should be printed.

... further arguments passed to or from other methods.

from (for `fac2sparse()`) a `factor`.

to a character indicating the “kind” of sparse matrix to be returned. The default, "d" is for `double`.

giveCsparse deprecated, replaced with `repr`; logical indicating if the result must be a `CsparseMatrix`.

repr character string, one of "C", "T", or "R", specifying the sparse representation to be used for the result, i.e., one from the super classes `CsparseMatrix`, `TsparseMatrix`, or `RsparseMatrix`.

factorPatt12 logical vector, say `fp`, of length two; when `fp[1]` is true, return “contrasted” `t(X)`; when `fp[2]` is true, the original (“dummy”) `t(X)`, i.e, the result of `fac2sparse()`.

Value

a sparse matrix, extending `CsparseMatrix` (for `fac2sparse()` if `repr = "C"` as per default; a `TsparseMatrix` or `RsparseMatrix`, otherwise).

For `fac2Sparse()`, a `list` of length two, both components with the corresponding transposed model matrix, where the corresponding `factorPatt12` is true.

`fac2sparse()`, the basic workhorse of `sparse.model.matrix()`, returns the transpose (`t`) of the model matrix.

Note

`model.Matrix(sparse = TRUE)` from package `MatrixModels` may be nowadays be preferable to `sparse.model.matrix`, as `model.Matrix` returns an object of class `modelMatrix` with additional slots `assign` and `contrasts` relating to the model variables.

Author(s)

Doug Bates and Martin Maechler, with initial suggestions from Tim Hesterberg.

See Also

`model.matrix` in package `stats`, part of base `R`.

`model.Matrix` in package `MatrixModels`; see ‘Note’.

as(f, "sparseMatrix") (see `coerce(from = "factor", ..)` in the class doc `sparseMatrix`) produces the `transposed` sparse model matrix for a single factor `f` (and `no` contrasts).
Examples

dd <- data.frame(a = gl(3,4), b = gl(4,1,12)) # balanced 2-way
options("contrasts") # the default: "contr.treatment"
sparse.model.matrix(~ a + b, dd)
sparse.model.matrix(~ -1 + a + b, dd) # no intercept --> even sparser
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))

Sparse method is equivalent to the traditional one:
stopifnot(all(sparse.model.matrix(~ a + b, dd) ==
Matrix(model.matrix(~ a + b, dd), sparse=TRUE)),
all(sparse.model.matrix(~-0 + a + b, dd) ==
Matrix(model.matrix(~-0 + a + b, dd), sparse=TRUE)))

(ff <- gl(3,4,, c("X","Y", "Z")))
fac2sparse(ff) # 3 x 12 sparse Matrix of class "dgCMatrix"

can also be computed via sparse.model.matrix():
f30 <- gl(3,0)
f12 <- gl(3,0, 12)
stopifnot(
 all.equal(t(fac2sparse(ff)),
 sparse.model.matrix(~-0+ff),
 tolerance = 0, check.attributes=FALSE),
 is(M <- fac2sparse(f30, drop= TRUE),"CsparseMatrix"), dim(M) == c(3, 0),
 is(M <- fac2sparse(f30, drop=FALSE),"CsparseMatrix"), dim(M) == c(3, 0),
 is(M <- fac2sparse(f12, drop= TRUE),"CsparseMatrix"), dim(M) == c(0,12),
 is(M <- fac2sparse(f12, drop=FALSE),"CsparseMatrix"), dim(M) == c(3,12))

sparseLU-class Sparse LU Factorizations

Description

sparseLU is the class of sparse, row- and column-pivoted LU factorizations of \(n \times n \) real matrices \(A \), having the general form

\[
P_1 AP_2 = LU
\]

or (equivalently)

\[
A = P_1' L U P_2'
\]

where \(P_1 \) and \(P_2 \) are permutation matrices, \(L \) is a unit lower triangular matrix, and \(U \) is an upper triangular matrix.
Slots

Dim, Dimnames inherited from virtual class **MatrixFactorization**.

L an object of class **dtCMatrix**, the unit lower triangular \(L \) factor.

U an object of class **dtCMatrix**, the upper triangular \(U \) factor.

\(p, q \) 0-based integer vectors of length \(\text{Dim}[1] \), specifying the permutations applied to the rows and columns of the factorized matrix. \(q \) of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using \(\mathbf{R} \) syntax, the matrix \(P_1 A P_2 \) is precisely \(A[p+1, q+1] (A[p+1,] \text{ when } q \text{ has length 0}) \).

Extends

Class **LU**, directly. Class **MatrixFactorization**, by class **LU**, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("sparseLU", ...)`, but they are more typically obtained as the value of `lu(x)` for \(x \) inheriting from **sparseMatrix** (often **dgCMatrix**).

Methods

- **determinant** signature(`from = "sparseLU", logarithm = "logical"`): computes the determinant of the factorized matrix \(A \) or its logarithm.
- **expand** signature(`x = "sparseLU"`): see **expand-methods**.
- **expand1** signature(`x = "sparseLU"`): see **expand1-methods**.
- **expand2** signature(`x = "sparseLU"`): see **expand2-methods**.
- **solve** signature(`a = "sparseLU", b = .`): see **solve-methods**.

References

See Also

- Class **denseLU** for dense LU factorizations.
- Class **dgCMatrix**.
- Generic functions `lu`, `expand1` and `expand2`.
Examples

```r
showClass("sparseLU")
set.seed(2)

A <- as(readMM(system.file("external", "pores_1.mtx", package = "Matrix"),
"CsparseMatrix")
(n <- A@Dim[1L])

## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' L U P2' in floating point
stopifnot(exprs = {
  identical(names(e.lu.A), c("P1.", "L", "U", "P2."))
  identical(e.lu.A[["P1."]],
    new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
    margin = 1L, perm = invertPerm(lu.A@p, 0L, 1L)))
  identical(e.lu.A[["P2."]],
    new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
    margin = 2L, perm = invertPerm(lu.A@q, 0L, 1L)))
  identical(e.lu.A[["L"]], lu.A@L)
  identical(e.lu.A[["U"]], lu.A@U)
  ae1(A, with(e.lu.A, P1. %*% L %*% U %*% P2.))
  ae2(A[lu.A@p + 1L, lu.A@q + 1L], with(e.lu.A, L %*% U))
})

## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
  identical(solve(A, b), solve(lu.A, b)))
```

sparseMatrix

General Sparse Matrix Construction from Nonzero Entries

Description

User-friendly construction of sparse matrices (inheriting from virtual class CsparseMatrix, RsparseMatrix, or TsparseMatrix) from the positions and values of their nonzero entries.

This interface is recommended over direct construction via calls such as new("...[CRT]Matrix", ...).
sparseMatrix

Usage

```r
sparseMatrix(i, j, p, x, dims, dimnames,
          symmetric = FALSE, triangular = FALSE, index1 = TRUE,
          repr = c("C", "R", "T"), giveCsparse,
          check = TRUE, use.last.ij = FALSE)
```

Arguments

- **i, j**: integer vectors of equal length specifying the positions (row and column indices) of the nonzero (or non-TRUE) entries of the matrix. Note that, when x is non-missing, the \(x_k \) corresponding to repeated pairs \((i_k, j_k) \) are added, for consistency with the definition of class `TsparseMatrix`, unless `use.last.ij` is TRUE, in which case only the last such \(x_k \) is used.
- **p**: integer vector of pointers, one for each column (or row), to the initial (zero-based) index of elements in the column (or row). Exactly one of \(i, j, p \) must be missing.
- **x**: optional, typically nonzero values for the matrix entries. If specified, then the length must equal that of \(i \) (or \(j \)) or equal 1, in which case \(x \) is recycled as necessary. If missing, then the result is a nonzero pattern matrix, i.e., inheriting from class `nsparseMatrix`.
- **dims**: optional length-2 integer vector of matrix dimensions. If missing, then `!index1+c(max(i),max(j))` is used.
- **dimnames**: optional list of `dimnames`; if missing, then `NULL` ones are used.
- **symmetric**: logical indicating if the resulting matrix should be symmetric. In that case, \((i, j, p) \) should specify only one triangle (upper or lower).
- **triangular**: logical indicating if the resulting matrix should be triangular. In that case, \((i, j, p) \) should specify only one triangle (upper or lower).
- **index1**: logical. If TRUE (the default), then \(i \) and \(j \) are interpreted as 1-based indices, following the R convention. That is, counting of rows and columns starts at 1. If FALSE, then they are interpreted as 0-based indices.
- **repr**: character string, one of "C", "R", and "T", specifying the representation of the sparse matrix result, i.e., specifying one of the virtual classes `CsparseMatrix`, `RsparseMatrix`, and `TsparseMatrix`.
- **giveCsparse** (deprecated, replaced by `repr`) logical indicating if the result should inherit from `CsparseMatrix` or `TsparseMatrix`. Note that operations involving `CsparseMatrix` are very often (but not always) more efficient.
- **check**: logical indicating whether to check that the result is formally valid before returning. Do not set to FALSE unless you know what you are doing!
- **use.last.ij**: logical indicating if, in the case of repeated (duplicated) pairs \((i_k, j_k) \), only the last pair should be used. FALSE (the default) is consistent with the definition of class `TsparseMatrix`.

Details

Exactly one of the arguments \(i, j \) and \(p \) must be missing.
In typical usage, p is missing, i and j are vectors of positive integers and x is a numeric vector. These three vectors, which must have the same length, form the triplet representation of the sparse matrix.

If i or j is missing then p must be a non-decreasing integer vector whose first element is zero. It provides the compressed, or “pointer” representation of the row or column indices, whichever is missing. The expanded form of p, rep(seq_along(dp), dp) where dp <- diff(p), is used as the (1-based) row or column indices.

You cannot set both singular and triangular to true; rather use Diagonal() (or its alternatives, see there).

The values of i, j, p and index1 are used to create 1-based index vectors i and j from which a TsparseMatrix is constructed, with numerical values given by x, if non-missing. Note that in that case, when some pairs (i_k, j_k) are repeated (aka “duplicated”), the corresponding x_k are added, in consistency with the definition of the TsparseMatrix class, unless use.last.ij is set to true.

By default, when repr = "C", the CsparseMatrix derived from this triplet form is returned, where repr = "R" now allows to directly get an RsparseMatrix and repr = "T" leaves the result as TsparseMatrix.

The reason for returning a CsparseMatrix object instead of the triplet format by default is that the compressed column form is easier to work with when performing matrix operations. In particular, if there are no zeros in x then a CsparseMatrix is a unique representation of the sparse matrix.

Value

A sparse matrix, by default in compressed sparse column format and (formally) without symmetric or triangular structure, i.e., by default inheriting from both CsparseMatrix and generalMatrix.

Note

You do need to use index1 = FALSE (or add + 1 to i and j) if you want use the 0-based i (and j) slots from existing sparse matrices.

See Also

Matrix(*, sparse=TRUE) for the constructor of such matrices from a dense matrix. That is easier in small sample, but much less efficient (or impossible) for large matrices, where something like sparseMatrix() is needed. Further bdiag and Diagonal for (block-)diagonal and bandSparse for banded sparse matrix constructors.

Random sparse matrices via rsparsematrix().

The standard Rxtabs(*, sparse=TRUE), for sparse tables and sparse.model.matrix() for building sparse model matrices.

Consider CsparseMatrix and similar class definition help files.

Examples

```r
## simple example
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(A <- sparseMatrix(i, j, x = x))    ## 8 x 10 "dgCMatrix"
```
sparseMatrix

summary(A)
str(A) # note that *internally* 0-based row indices are used

(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
stopping(all(sA == tA + t(tA)),
identical(sA, as(tA + t(tA), "symmetricMatrix")))

dims can be larger than the maximum row or column indices
(AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)))
summary(AA)

i, j and x can be in an arbitrary order, as long as they are consistent
set.seed(1); (perm <- sample(1:7))
(A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]))
stopping(identical(A, A1))

The slots are 0-index based, so
try(sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x)))
fails and you should say so: 1-indexing is FALSE:
sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x), index1 = FALSE)

the (i,j) pairs can be repeated, in which case the x's are summed
(args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)))
(Aa <- do.call(sparseMatrix, args))
explicitly ask for elimination of such duplicates, so
that the last one is used:
(A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))))
stopping(Aa[1,2] == 9, # 2+7 == 9
 A.[1,2] == 2) # 2 was *after* 7

for a pattern matrix, of course there is no "summing":
(nA <- do.call(sparseMatrix, args[c("i","j")]))

dn <- list(LETTERS[1:3], letters[1:5])
pointer vectors can be used, and the (i,x) slots are sorted if necessary:
m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
m
str(m)
stopping(identical(dimnames(m), dn))

sparseMatrix(x = 2.72, i=1:3, j=2:4) # recycling x
sparseMatrix(x = TRUE, i=1:3, j=2:4) # recycling x, |--> "lgCMatrix"

no 'x' --> pattern* matrix:
(n <- sparseMatrix(i=1:6, j=rev(2:7)))# -> ngCMatrix

an empty sparse matrix:
(e <- sparseMatrix(dims = c(4,6), i={}, j={}))

a symmetric one:
(sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,
dims = c(7,7), symmetric=TRUE))
sparseMatrix-class

Virtual Class "sparseMatrix" — Mother of Sparse Matrices

Description

Virtual Mother Class of All Sparse Matrices

Slots

- **Dim**: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
- **Dimnames**: a list of length two - inherited from class Matrix, see Matrix.

Extends

Class "Matrix", directly.

Methods

- **show** (object = "sparseMatrix"): The show method for sparse matrices prints "structural" zeroes as "." using `printSpMatrix()` which allows further customization.
- **print** signature(x = "sparseMatrix"),....

The print method for sparse matrices by default is the same as show() but can be called with extra optional arguments, see `printSpMatrix()`.
format signature(x = "sparseMatrix"),
 The format method for sparse matrices, see formatSpMatrix() for details such as the extra
 optional arguments.

summary (object = "sparseMatrix", uniqT=FALSE): Returns an object of S3 class "sparseSummary"
 which is basically a data.frame with columns (i,j,x) (or just (i,j) for nsparseMatrix
 class objects) with the stored (typically non-zero) entries. The print method resembles Mat-
 lab's way of printing sparse matrices, and also the MatrixMarket format, see writeMM.

cbind2 (x = *, y = *): several methods for binding matrices together, column-wise, see the basic
 cbind and rbind functions.
 Note that the result will typically be sparse, even when one argument is dense and larger than
 the sparse one.

rbind2 (x = *, y = *): binding matrices together row-wise, see cbind2 above.

determinant (x = "sparseMatrix", logarithm=TRUE): determinant() methods for sparse ma-
 trices typically work via Cholesky or lu decompositions.

diag (x = "sparseMatrix"): extracts the diagonal of a sparse matrix.

dim<- signature(x = "sparseMatrix", value = "ANY"): allows to reshape a sparse matrix to a
 sparse matrix with the same entries but different dimensions. value must be of length two
 and fulfill prod(value) == prod(dim(x)).

coerce signature(from = "factor", to = "sparseMatrix"): Coercion of a factor to "sparseMatrix"
 produces the matrix of indicator rows stored as an object of class "dgCMatrix". To obtain
 columns representing the interaction of the factor and a numeric covariate, replace the "x" slot
 of the result by the numeric covariate then take the transpose. Missing values (NA) from the
 factor are translated to columns of all 0s.

 See also colSums, norm, ... for methods with separate help pages.

Note

 In method selection for multiplication operations (i.e. %*% and the two-argument form of crossprod)
 the sparseMatrix class takes prevalence in the sense that if one operand is a sparse matrix and the
 other is any type of dense matrix then the dense matrix is coerced to a dgeMatrix and the appropri-
 ate sparse matrix method is used.

See Also

 sparseMatrix, and its references, such as xtabs(*, sparse=TRUE), or sparse.model.matrix(),
 for constructing sparse matrices.

 T2graph for conversion of "graph" objects (package graph) to and from sparse matrices.

Examples

 showClass("sparseMatrix") ## and look at the help() of its subclasses
 M <- Matrix(0, 10000, 100)
 M[1,1] <- M[2,3] <- 3.14
 M ## show(.) method suppresses printing of the majority of rows

 data(CAex, package = "Matrix")
dim(CAex) # 72 x 72 matrix
determinant(CAex) # works via sparse lu(.)

factor -> t(<sparse design matrix>) :
(fact <- gl(5, 3, 30, labels = LETTERS[1:5]))
(Xt <- as(fact, "sparseMatrix")) # indicator rows

missing values --> all-0 columns:
f.mis <- fact
i.mis <- c(3:5, 17)
is.na(f.mis) <- i.mis
Xt != (X. <- as(f.mis, "sparseMatrix")) # differ only in columns 3:5,17
stopifnot(all(X.[,i.mis] == 0), all(Xt[,-i.mis] == X.[,-i.mis]))

Sparse QR Factorizations

Description

sparseQR is the class of sparse, row- and column-pivoted QR factorizations of \(m \times n (m \geq n) \) real matrices, having the general form

\[
P_1AP_2 = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1
\]

or (equivalently)

\[
A = P'_1 Q R P'_2 = P'_1 \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} P'_2 = P'_1 Q_1 R_1 P'_2
\]

where \(P_1 \) and \(P_2 \) are permutation matrices, \(Q = \prod_{j=1}^{n} H_j \) is an \(m \times m \) orthogonal matrix (\(Q_1 \) contains the first \(n \) column vectors) equal to the product of \(n \) Householder matrices \(H_j \), and \(R \) is an \(m \times n \) upper trapezoidal matrix (\(R_1 \) contains the first \(n \) row vectors and is upper triangular) with non-negative diagonal elements.

Usage

\[
\text{qrR(qr, complete = FALSE, backPermute = TRUE, row.names = TRUE)}
\]

Arguments

- **qr** an object of class `sparseQR`, almost always the result of a call to generic function `qr` with sparse `x`.
- **complete** a logical indicating if \(R \) should be returned instead of \(R_1 \).
- **backPermute** a logical indicating if \(R \) or \(R_1 \) should be multiplied on the right by \(P'_2 \).
- **row.names** a logical indicating if `dimnames(qr)[1]` should be propagated unpermuted to the result. If `complete = FALSE`, then only the first \(n \) names are kept.
Details

The method for qr.Q does not return Q but rather the (also orthogonal) product $P_1'Q$. This behaviour is algebraically consistent with the base implementation (see qr), which can be seen by noting that qr.default in base does not pivot rows, constraining P_1 to be an identity matrix. It follows that $\text{qr.Q}(\text{qr.default}(x))$ also returns $P_1'Q$.

Similarly, the methods for qr.qy and qr.qty multiply on the left by $P_1'Q$ and $Q'P_1$ rather than Q and Q'.

It is wrong to expect the values of qr.Q (or qr.R, qr.qy, qr.qty) computed from “equivalent” sparse and dense factorizations (say, qr(x) and qr(as(x, "matrix")) for x of class dgCMatrix) to compare equal. The underlying factorization algorithms are quite different, notably as they employ different pivoting strategies, and in general the factorization is not unique even for fixed P_1 and P_2.

On the other hand, the values of qr.X, qr.coef, qr.fitted, and qr.resid are well-defined, and in those cases the sparse and dense computations should compare equal (within some tolerance).

The method for qr.R is a simple wrapper around qrR, but not back-permuting by default and never giving row names. It did not support backPermute = TRUE until Matrix 1.6-0, hence code needing the back-permuted result should call qrR if Matrix >= 1.6-0 is not known.

Slots

- Dim, Dimnames inherited from virtual class MatrixFactorization.
- beta a numeric vector of length Dim[2], used to construct Householder matrices; see V below.
- V an object of class dgCMatrix with Dim[2] columns. The number of rows nrow(V) is at least Dim[1] and at most Dim[1]+Dim[2]. V is lower trapezoidal, and its column vectors generate the Householder matrices H_j that compose the orthogonal Q factor. Specifically, H_j is constructed as \(\text{diag}(\text{Dim}[1]) - \beta[j] \times \text{tcrossprod}(V[, j]) \).
- R an object of class dgCMatrix with nrow(V) rows and Dim[2] columns. R is the upper trapezoidal R factor with non-negative diagonal elements.
- p, q 0-based integer vectors of length nrow(V) and Dim[2], respectively, specifying the permutations applied to the rows and columns of the factorized matrix. q of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using R syntax, the matrix $P_1 A P_2$ is precisely A[p+1, q+1] (A[p+1,] when q has length 0).

Extends

Class QR, directly. Class MatrixFactorization, by class QR, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("sparseQR", ...)`, but they are more typically obtained as the value of `qr(x)` for x inheriting from sparseMatrix (often dgCMatrix).

Methods

- determinant signature(from = "sparseQR", logarithm = "logical") computes the determinant of the factorized matrix A or its logarithm.
- expand1 signature(x = "sparseQR") see expand1-methods.
sparseQR-class

```r
expand2 signature(x = "sparseQR"): see expand2-methods.
qr.Q signature(qr = "sparseQR"): returns as a dgeMatrix either \( P_1'Q \) or \( P_1'Q_1 \), depending on optional argument complete. The default is FALSE, indicating \( P_1'Q_1 \).
qr.R signature(qr = "sparseQR"): qrR returns \( R, R_1, RP_2', \) or \( R_1P_2' \), depending on optional arguments complete and backPermute. The default in both cases is FALSE, indicating \( R_1 \), for compatibility with base. The class of the result in that case is dtCMatrix. In the other three cases, it is dgCMatrix.
qr.X signature(qr = "sparseQR"): returns \( A \) as a dgeMatrix, by default. If \( m > n \) and optional argument ncol is greater than \( n \), then the result is augmented with \( P_1'QJ \), where \( J \) is composed of columns \((n + 1)\) through ncol of the \( m \times m \) identity matrix.
qr.coef signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_2R_1^{-1}Q_1'P_1 \).
qr.fitted signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_1'Q_1Q_1'P_1 \).
qr.resid signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_1'Q_2Q_2'P_1 \).
qr.qty signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( Q_1'P_1 \).
qr.qy signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_1'Q \).
solve signature(a = "sparseQR", b = .): see solve-methods.
```

References

See Also

Class \texttt{dgCMatrix}.

Generic function \texttt{qr} from base, whose default method \texttt{qr.default} “defines” the S3 class \texttt{qr} of dense QR factorizations.

\texttt{qr-methods} for methods defined in \texttt{Matrix}.

Generic functions \texttt{expand1} and \texttt{expand2}.

The many auxiliary functions for QR factorizations: \texttt{qr.Q}, \texttt{qr.R}, \texttt{qr.X}, \texttt{qr.coef}, \texttt{qr.fitted}, \texttt{qr.resid}, \texttt{qr.qty}, \texttt{qr.qy}, and \texttt{qr.solve}.

Examples

```r
showClass("sparseQR")
set.seed(2)
```
m <- 300L
n <- 60L
A <- rsparsematrix(m, n, 0.05)

With dimnames, to see that they are propagated:
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),
 paste0("c", seq_len(n)))

(qr.A <- qr(A))
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)

t(sapply(e.qr.A, dim))
t(sapply(E.qr.A, dim))

Horribly inefficient, but instructive:
slowQ <- function(V, beta) {
 d <- dim(V)
 Q <- diag(d[1L])
 if(d[2L] > 0L) {
 for(j in d[2L]:1L) {
 cat(j, "\n", sep = "")
 Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q
 }
 }
 Q
}

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1' Q R P2' = P1' Q1 R1 P2' in floating point
stopifnot(exprs = {
 identical(names(e.qr.A), c("P1.", "Q1", "R1", "P2."))
 identical(names(E.qr.A), c("P1.", "Q", "R", "P2."))
 identical(e.qr.A[["P1."]],
 new("pMatrix", Dim = c(m, m), Dimnames = c(dn[1L], list(NULL)),
 margin = 1L, perm = invertPerm(qr.A@p, 0L, 1L)))
 identical(e.qr.A[["P2."]],
 new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
 margin = 2L, perm = invertPerm(qr.A@q, 0L, 1L)))
 identical(e.qr.A[["R1"]], triu(E.qr.A["R"][seq_len(n),]))
 identical(e.qr.A[["Q1"]], E.qr.A["Q"][, seq_len(n)])
 identical(E.qr.A["R"], qr.A@R)
 ## ae1(E.qr.A["Q"], slowQ(qr.A@V, qr.A@beta))
 ae1(crossprod(E.qr.A["Q"]), diag(m))
 ae1(A, with(e.qr.A, P1. %*% Q1 %*% R1 %*% P2.))
 ae1(A, with(E.qr.A, P1. %*% Q %*% R %*% P2.))
 ae2(A.perm <- A[qr.A@p + 1L, qr.A@q + 1L], with(e.qr.A, Q1 %*% R1))
 ae2(A.perm , with(E.qr.A, Q %*% R))
})

More identities
b <- rnorm(m)
stopifnot(exprs = {
 ae1(qrX <- qr.X (qr.A), A)
 ae2(qrQ <- qr.Q (qr.A), with(e.qr.A, P1. %*% Q1))
 ae2(qr.R (qr.A), with(e.qr.A, R1))
 ae2(qrc <- qr.coef (qr.A, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b))
 ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% b))
 ae2(qrr <- qr.resid (qr.A, b - qrf)
 ae2(qrq <- qr.qy (qr.A, b), with(E.qr.A, P1. %*% Q %*% b))
 ae2(qr.qty(qr.A, qrq), b)
})

Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <=> qr.default(A)
stopifnot(exprs = {
 ae2(qrX, qr.X (qr.Am))
 ae2(qrc, qr.coef (qr.Am, b))
 ae2(qrf, qr.fitted(qr.Am, b))
 ae2(qrr, qr.resid (qr.Am, b))
})

sparseVector
Sparse Vector Construction from Nonzero Entries

Description

User friendly construction of sparse vectors, i.e., objects inheriting from class `sparseVector`, from indices and values of its non-zero entries.

Usage

sparseVector(x, i, length)

Arguments

- `x`
 vector of the non zero entries; may be missing in which case a "nsparseVector" will be returned.

- `i`
 integer vector (of the same length as `x`) specifying the indices of the non-zero (or non-TRUE) entries of the sparse vector.

- `length`
 length of the sparse vector.

Details

Zero entries in `x` are dropped automatically, analogously as `drop0()` acts on sparse matrices.

Value

A sparse vector, i.e., inheriting from class `sparseVector`.
Author(s)

Martin Maechler

See Also

sparseMatrix() constructor for sparse matrices; the class sparseVector.

Examples

```r
str(sv <- sparseVector(x = 1:10, i = sample(999, 10), length=1000))

sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
ss <- as(sx, "sparseVector")
stopifnot(identical(ss,
  sparseVector(x = c(2, -1, -2, 3, 1, -3, 5, 3.2),
  i = c(15L, 10:9, 3L,12L,8L,18L, 4L), length = 20L)))

(ns <- sparseVector(i= c(7, 3, 2), length = 10))
stopifnot(identical(ns,
  new("nsparseVector", length = 10, i = c(2, 3, 7))))
```

sparseVector-class

Sparse Vector Classes

Description

Sparse Vector Classes: The virtual mother class "sparseVector" has the five actual daughter classes "dsparseVector", "isparseVector", "lsparseVector", "nsparseVector", and "zsparseVector", where we’ve mainly implemented methods for the d*, l* and n* ones.

Slots

- **length**: class "numeric" - the length of the sparse vector. Note that "numeric" can be considerably larger than the maximal "integer", .Machine$integer.max, on purpose.
- **i**: class "numeric" - the (1-based) indices of the non-zero entries. Must not be NA and strictly sorted increasingly. Note that "integer" is “part of” "numeric", and can (and often will) be used for non-huge sparseVectors.
- **x**: (for all but "nsparseVector"): the non-zero entries. This is of class "numeric" for class "dsparseVector", "logical" for class "lsparseVector", etc. Note that "nsparseVector"'s have no x slot. Further, mainly for ease of method definitions, we've defined the class union (see setClassUnion) of all sparse vector classes which have an x slot, as class "xsparseVector".
Methods

length signature(x = "sparseVector"): simply extracts the length slot.

show signature(object = "sparseVector"): The show method for sparse vectors prints “structural” zeroes as "." using the non-exported prSpVector function which allows further customization such as replacing "." by " " (blank).

Note that options(max.print) will influence how many entries of large sparse vectors are printed at all.

as.vector signature(x = "sparseVector", mode = "character") coerces sparse vectors to “regular”, i.e., atomic vectors. This is the same as as(x, "vector").

as ..: see coerce below

coerce signature(from = "sparseVector", to = "sparseMatrix"). and

coerce signature(from = "sparseMatrix", to = "sparseVector"). etc: coercions to and from sparse matrices (sparseMatrix) are provided and work analogously as in standard R, i.e., a vector is coerced to a 1-column matrix.

dim<-. signature(x = "sparseVector", value = "integer") coerces a sparse vector to a sparse Matrix, i.e., an object inheriting from sparseMatrix, of the appropriate dimension.

head signature(x = "sparseVector"): as with R’s (package util) head, head(x, n) (for $n \geq 1$) is equivalent to $x[1:n]$, but here can be much more efficient, see the example.

tail signature(x = "sparseVector"): analogous to head, see above.

toeplitz signature(x = "sparseVector"): as toeplitz(x), produce the $n \times n$ Toeplitz matrix from x, where $n = \text{length}(x)$.

rep signature(x = "sparseVector") repeat x, with the same argument list (x, times, length.out, each,...) as the default method for rep().

which signature(x = "nsparseVector") and

which signature(x = "lsparseVector") return the indices of the non-zero entries (which is trivial for sparse vectors).

Ops signature(e1 = "sparseVector", e2 = "+") define arithmetic, compare and logic operations, (see Ops).

Summary signature(x = "sparseVector"): define all the Summary methods.

[signature(x = "atomicVector", i = ...): not only can you subset (aka “index into”) sparseVectors x[i] using sparseVectors i, but we also support efficient subsetting of traditional vectors x by logical sparse vectors (i.e., i of class "nsparseVector" or "lsparseVector").

is.na, is.finite, is.infinite (x = "sparseVector"), and

is.na, is.finite, is.infinite (x = "nsparseVector"): return logical or "nsparseVector" of the same length as x, indicating if/where x is NA (or NaN), finite or infinite, entirely analogously to the corresponding base R functions.

c.sparseVector() is an S3 method for all "sparseVector"s, but automatic dispatch only happens for the first argument, so it is useful also as regular R function, see the examples.

See Also

erspVector() for friendly construction of sparse vectors (apart from as(*, "sparseVector")).
Examples

```r
getClass("sparseVector")
getClass("dsparseVector")
getClass("xsparseVector") # those with an 'x' slot
sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0) (ss <- as(sx, "sparseVector"))
ix <- as.integer(round(sx))
(is <- as(ix, "sparseVector")) ## an "isparseVector" (!)
(ns <- sparseVector(i= c(7, 3, 2), length = 10)) # "nsparseVector"
# rep() works too:
(ri <- rep(is, length.out= 25))

## Using `dim<-` as in base R:
r <- ss
dim(r) <- c(4,5) # becomes a sparse Matrix:
r
## or coercion (as.as.matrix() in base R):
as(ss, "Matrix")
stopifnot(all(ss == print(as(ss, "CsparseMatrix"))))

## currently has "non-structural" FALSE -- printing as ":" (lis <- is & FALSE) (nn <- is[is == 0]) # all "structural" FALSE

## NA-case
sN <- sx; sN[4] <- NA (svN <- as(sN, "sparseVector"))
v <- as(c(0,0,3, 3.2, rep(0,9),-3,0,-1, rep(0,20),5,0), "sparseVector")
v <- rep(rep(v, 50), 5000)
set.seed(1); v[sample(v@i, 1e6)] <- 0
str(v)
```

```
system.time(for(i in 1:4) hv <- head(v, 1e6))
## user system elapsed
## 0.033 0.000 0.032
system.time(for(i in 1:4) h2 <- v[1:1e6])
## user system elapsed
## 1.317 0.000 1.319
stopifnot(identical(hv, h2),
          identical(is | FALSE, is != 0),
          validObject(svN), validObject(lis), as.logical(is.na(svN[4])),
          identical(is^2 > 0, is & TRUE),
          all(!lis), !any(lis), length(nn@i) == 0, !any(nn), all(!nn),
```

```
sum(lis) == 0, !prod(lis), range(lis) == c(0,0))

## create and use the t(.) method:
t(x20 <- sparseVector(c(9,3:1), i=c(1:2,4,7), length=20))
(T20 <- toeplitz(x20))
stopifnot(is(T20, "symmetricMatrix"), is(T20, "sparseMatrix"),
  identical(unname(as.matrix(T20)),
  toeplitz(as.vector(x20))))

## c() method for "sparseVector" - also available as regular function
(c1 <- c(x20, 0,0,0, -10*x20))
(c2 <- c(ns, is, FALSE))
(c3 <- c(ns, !ns, TRUE, NA, FALSE))
(c4 <- c(ns, rev(ns)))
## here, c() would produce a list {not dispatching to c.sparseVector()}
(c5 <- c.sparseVector(0,0, x20))

## checking (consistency)
.v <- as.vector
.s <- function(v) as(v, "sparseVector")
stopifnot(
  all.equal(c1, .s(c(.v(x20), 0,0,0, -10*.v(x20))), tol=0),
  all.equal(c2, .s(c(.v(ns), .v(is), FALSE)), tol=0),
  all.equal(c3, .s(c(.v(ns), !.v(ns), TRUE, NA, FALSE)), tol=0),
  all.equal(c4, .s(c(.v(ns), rev(.v(ns)))))
  tol=0),
  all.equal(c5, .s(c(0,0, .v(x20))), tol=0)
)

#---

spMatrix

## Sparse Matrix Constructor From Triplet

### Description

User friendly construction of a sparse matrix (inheriting from class TsparseMatrix) from the triplet representation.

This is much less flexible than sparseMatrix() and hence somewhat deprecated.

### Usage

spMatrix(nrow, ncol, i = integer(), j = integer(), x = double())

### Arguments

- **nrow, ncol**: integers specifying the desired number of rows and columns.
- **i, j**: integer vectors of the same length specifying the locations of the non-zero (or non-TRUE) entries of the matrix.
- **x**: atomic vector of the same length as i and j, specifying the values of the non-zero entries.
Value

A sparse matrix in triplet form, as an \texttt{R} object inheriting from both \texttt{TsparseMatrix} and \texttt{generalMatrix}.

The matrix \( M \) will have \( M[i[k], j[k]] = x[k] \), for \( k = 1, 2, \ldots, n \), where \( n = \text{length}(i) \) and \( M[i', j'] = 0 \) for all other pairs \((i', j')\).

See Also

\texttt{Matrix}(\*, sparse=\texttt{TRUE}) for the more usual constructor of such matrices. Then, \texttt{sparseMatrix} is more general and flexible than \texttt{spMatrix()} and by default returns a \texttt{CsparseMatrix} which is often slightly more desirable. Further, \texttt{bdiag} and \texttt{Diagonal} for (block-)diagonal matrix constructors.

Consider \texttt{TsparseMatrix} and similar class definition help files.

Examples

```r
simple example
A <- spMatrix(10, 20, i = c(1,3:8), j = c(2,9,6:10), x = 7 * (1:7))
A # a "dgTMatrix"
summary(A)
str(A) # note that *internally* 0-based indices \((i,j)\) are used

L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27, (1:27) %% 4 != 1)
L # an "lgTMatrix"

A simplified predecessor of \texttt{Matrix}' \texttt{rsparsematrix()} function:

rSpMatrix <- function(nrow, ncol, nnz, rand.x = function(n) round(rnorm(nnz), 2)) {
 ## Purpose: random sparse matrix
 ## --
 ## Arguments: (nrow,ncol): dimension
 ## nnz : number of non-zero entries
 ## rand.x: random number generator for 'x' slot
 ## --
 ## Author: Martin Maechler, Date: 14.-16. May 2007
 stopifnot((nnz <- as.integer(nnz)) >= 0,
nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
 spMatrix(nrow, ncol,
i = sample(nrow, nnz, replace = \texttt{TRUE}),
 j = sample(ncol, nnz, replace = \texttt{TRUE}),
 x = rand.x(nnz))
}

M1 <- rSpMatrix(100000, 20, nnz = 200)
summary(M1)
```
Description

Methods for "[<-", i.e., extraction or subsetting mostly of matrices, in package `Matrix`.

**Note:** Contrary to standard matrix assignment in base R, in `x[..] <- val` it is typically an error (see `stop`) when the type or class of `val` would require the class of `x` to be changed, e.g., when `x` is logical, say "lsparseMatrix", and `val` is numeric. In other cases, e.g., when `x` is a "nsparseMatrix" and `val` is not TRUE or FALSE, a warning is signalled, and `val` is "interpreted" as logical, and (logical) NA is interpreted as TRUE.

Methods

There are many many more than these:

- `x = "Matrix", i = "missing", j = "missing", value= "ANY"` is currently a simple fallback method implementation which ensures "readable" error messages.
- `x = "Matrix", i = "ANY", j = "ANY", value= "ANY"` currently gives an error
- `x = "denseMatrix", i = "index", j = "missing", value= "numeric"` ...
- `x = "denseMatrix", i = "index", j = "index", value= "numeric"` ...
- `x = "denseMatrix", i = "missing", j = "index", value= "numeric"` ...

See Also

`[-methods` for subsetting "Matrix" objects; the `index` class; `Extract` about the standard subset assignment (and extraction).

Examples

```r
set.seed(101)
(a <- m <- Matrix(round(rnorm(7*4),2), nrow = 7))

a[] <- 2.2 # <<- replaces **every** entry
a
as do these:
a[,] <- 3 ; a[TRUE,] <- 4

m[2, 3] <- 3.14 # simple number
m[3, 3:4]<- 3:4 # simple numeric of length 2

sub matrix assignment:
m[-(4:7), 3:4] <- cbind(1,2:4) #-> upper right corner of 'm'
m[3:5, 2:3] <- 0
m[6:7, 1:2] <- Diagonal(2)
```
m

## rows or columns only:
m[,1] <- 10
m[,2] <- 1:7
m[-(1:6), ] <- 3:0    # not the first 6 rows, i.e. only the 7th
as(m, "sparseMatrix")

---

**Description**

Methods for "[", i.e., extraction or subsetting mostly of matrices, in package `Matrix`.

**Methods**

There are more than these:

- `x = "Matrix", i = "missing", j = "missing", drop= "ANY"` ...
- `x = "Matrix", i = "numeric", j = "missing", drop= "missing"` ...
- `x = "Matrix", i = "missing", j = "numeric", drop= "missing"` ...
- `x = "dsparseMatrix", i = "missing", j = "numeric", drop= "logical"` ...
- `x = "dsparseMatrix", i = "numeric", j = "missing", drop= "logical"` ...
- `x = "dsparseMatrix", i = "numeric", j = "numeric", drop= "logical"` ...

**See Also**

`[<-methods` for subassignment to "Matrix" objects. `Extract` about the standard extraction.

**Examples**

```r
str(m <- Matrix(round(rnorm(7*4),2), nrow = 7))
stopifnot(identical(m, m[]))
m[2, 3] # simple number
m[2, 3:4] # simple numeric of length 2
m[2, 3:4, drop=FALSE] # sub matrix of class 'dgeMatrix'
rows or columns only:
m[1,] # first row, as simple numeric vector
m[,1:2] # sub matrix of first two columns

showMethods("[", inherited = FALSE)
```
symmetricMatrix-class

Virtual Class of Symmetric Matrices in Package Matrix

Description

The virtual class of symmetric matrices, "symmetricMatrix", from the package Matrix contains numeric and logical, dense and sparse matrices, e.g., see the examples with the “actual” subclasses.

The main use is in methods (and C functions) that can deal with all symmetric matrices, and in as(*, "symmetricMatrix").

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there. See below, about storing only one of the two Dimnames components.

factors: a list of matrix factorizations, also from the Matrix class.

Extends

Class "Matrix", directly.

Methods

dimnames signature(object = "symmetricMatrix"): returns symmetric dimnames, even when the Dimnames slot only has row or column names. This allows to save storage for large (typically sparse) symmetric matrices.

isSymmetric signature(object = "symmetricMatrix"): returns TRUE trivially.

There’s a C function symmetricMatrix_validate() called by the internal validity checking functions, and also from getValidity(getClass("symmetricMatrix")).

Validity and dimnames

The validity checks do not require a symmetric Dimnames slot, so it can be list(NULL, <character>), e.g., for efficiency. However, dimnames() and other functions and methods should behave as if the dimnames were symmetric, i.e., with both list components identical.

See Also

isSymmetric which has efficient methods (isSymmetric-methods) for the Matrix classes. Classes triangularMatrix, and, e.g., dsyMatrix for numeric dense matrices, or lsCMatrix for a logical sparse matrix class.
Examples

```r
An example about the symmetric Dimnames:
sy <- sparseMatrix(i = c(2,4,3:5), j = c(4,7:5,5), x = 1:5, dims = c(7,7),
 symmetric=TRUE, dimnames = list(NULL, letters[1:7]))
sy # shows symmetrical dimnames
sy@Dimnames # internally only one part is stored
dimnames(sy) # both parts - as sy *is* symmetrical

showClass("symmetricMatrix")

The names of direct subclasses:
scl <- getClass("symmetricMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]

Methods -- applicable to all subclasses above:
showMethods(classes = "symmetricMatrix")
```

---

**symmpart-methods**  
*Symmetric Part and Skew(symmetric) Part of a Matrix*

**Description**

`symmpart(x)` computes the symmetric part \((x + t(x))/2\) and `skewpart(x)` the skew symmetric part \((x - t(x))/2\) of a square matrix \(x\), more efficiently for specific Matrix classes.

Note that \(x = \text{symmpart}(x) + \text{skewpart}(x)\) for all square matrices – apart from extraneous `NA` values in the RHS.

**Usage**

```r
symmpart(x)
skewpart(x)
```

**Arguments**

- `x`  
  A *square* matrix; either “traditional” of class "matrix", or typically, inheriting from the *Matrix* class.

**Details**

These are generic functions with several methods for different matrix classes, use e.g., `showMethods(symmpart)` to see them.

If the row and column names differ, the result will use the column names unless they are (partly) `NULL` where the row names are non-`NULL` (see also the examples).
Value

symmpart() returns a symmetric matrix, inheriting from symmetricMatrix iff x inherited from Matrix.
skewpart() returns a skew-symmetric matrix, typically of the same class as x (or the closest "general" one, see generalMatrix).

See Also

isSymmetric.

Examples

m <- Matrix(1:4, 2,2)
symmpart(m)
skewpart(m)

stopifnot(all(m == symmpart(m) + skewpart(m)))

dn <- dimnames(m) <- list(row = c("r1", "r2"), col = c("var.1", "var.2"))
stopifnot(all(m == symmpart(m) + skewpart(m)))
colnames(m) <- NULL
stopifnot(all(m == symmpart(m) + skewpart(m)))
dimnames(m) <- unname(dn)
stopifnot(all(m == symmpart(m) + skewpart(m)))

## investigate the current methods:
showMethods(skewpart, include = TRUE)

triangularMatrix-class

Virtual Class of Triangular Matrices in Package Matrix

Description

The virtual class of triangular matrices,"triangularMatrix", the package Matrix contains square (nrow == ncol) numeric and logical, dense and sparse matrices, e.g., see the examples. A main use of the virtual class is in methods (and C functions) that can deal with all triangular matrices.

Slots

uplo: String (of class "character"). Must be either "U", for upper triangular, and "L", for lower triangular.
diag: String (of class "character"). Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The diagonal elements are not accessed internally when diag is "U". For denseMatrix classes, they need to be allocated though, such that the length of the x slot does not depend on diag.
Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there.
TsparseMatrix-class

Class "TsparseMatrix" of Sparse Matrices in Triplet Form

Description

The "TsparseMatrix" class is the virtual class of all sparse matrices coded in triplet form. Since it is a virtual class, no objects may be created from it. See showClass("TsparseMatrix") for its subclasses.

Slots

- Dim, Dimnames: from the "Matrix" class,
- i: Object of class "integer" - the row indices of non-zero entries in 0-base, i.e., must be in 0:(nrow(.)-1).
- j: Object of class "integer" - the column indices of non-zero entries. Must be the same length as slot i and 0-based as well, i.e., in 0:(ncol(.)-1). For numeric Tsparse matrices, (i,j) pairs can occur more than once, see dgTMatrix.
uniqTsparse

**Extends**

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

**Methods**

Extraction ("[" methods, see \[-methods].

**Note**

Most operations with sparse matrices are performed using the compressed, column-oriented or CsparseMatrix representation. The triplet representation is convenient for creating a sparse matrix or for reading and writing such matrices. Once it is created, however, the matrix is generally coerced to a CsparseMatrix for further operations.

Note that all new(.), spMatrix and sparseMatrix(*, repr="T") constructors for "TsparseMatrix" classes implicitly add (i.e., “sum up”) \( x_k \)'s that belong to identical \( (i_k,j_k) \) pairs, see, the example below, or also "dgTMatrix".

For convenience, methods for some operations such as \( \%\% \) and crossprod are defined for TsparseMatrix objects. These methods simply coerce the TsparseMatrix object to a CsparseMatrix object then perform the operation.

**See Also**

its superclass, sparseMatrix, and the dgTMatrix class, for the links to other classes.

**Examples**

```
showClass("TsparseMatrix")
or just the subclasses' names
names(getClass("TsparseMatrix")@subclasses)

T3 <- spMatrix(3,4, i=c(1,3:1), j=c(2,4:2), x=1:4)
T3 # only 3 non-zero entries, 5 = 1+4 !
```

---

**uniqTsparse**

**Unique (Sorted) TsparseMatrix Representations**

**Description**

Detect or “unify” (or “standardize”) non-unique TsparseMatrix matrices, producing unique \( (i,j,x) \) triplets which are sorted, first in \( j \), then in \( i \) (in the sense of order\( (j,i) \)).

Note that new(., ), spMatrix or sparseMatrix constructors for "dgTMatrix" (and other "TsparseMatrix" classes) implicitly add \( x_k \)'s that belong to identical \( (i_k,j_k) \) pairs.

anyDuplicatedT() reports the index of the first duplicated pair, or 0 if there is none.

uniqTsparse(x) replaces duplicated index pairs \( (i,j) \) and their corresponding \( x \) slot entries by the triple \( (i,j,sx) \) where \( sx = \text{sum}(x \ [\text{<all pairs matching } (i,j)>]) \), and for logical \( x \), addition is replaced by logical or.
uniqTsparse(x, class.x = c(class(x)))
anyDuplicatedT(x, di = dim(x))

Arguments

x a sparse matrix stored in triplet form, i.e., inheriting from class TsparseMatrix.
class.x optional character string specifying class(x).
di the matrix dimension of x, dim(x).

Value

uniqTsparse(x) returns a TsparseMatrix "like x", of the same class and with the same elements,
just internally possibly changed to "unique" (i,j,x) triplets in sorted order.

anyDuplicatedT(x) returns an integer as anyDuplicated, the index of the first duplicated entry
(from the (i,j) pairs) if there is one, and 0 otherwise.

See Also

TsparseMatrix, for uniqueness, notably dgTMatrix.

Examples

eexample("dgTMatrix-class", echo=FALSE)
## -> 'T2' with (i,j,x) slots of length 5 each
T2u <- uniqTsparse(T2)
stopifnot(# They "are" the same (and print the same):
  all.equal(T2, T2u, tol=0),
  # but not internally:
  anyDuplicatedT(T2) == 2,
  anyDuplicatedT(T2u) == 0,
  length(T2 @x) == 5,
  length(T2u@x) == 3)

## is 'x' a "uniq Tsparse" Matrix? [requires x to be TsparseMatrix!]
non_uniqT <- function(x, di = dim(x))
  is.unsorted(x@j) || anyDuplicatedT(x, di)
non_uniqT(T2 ) # TRUE
non_uniqT(T2u) # FALSE

T3 <- T2u
T3[1, c(1,3)] <- 10; T3[2, c(1,5)] <- 20
T3u <- uniqTsparse(T3)
str(T3u) # sorted in 'j', and within j, sorted in i
stopifnot(!non_uniqT(T3u))

## Logical l.TMatrix and n.TMatrix :
(L2 <- T2 > 0)
validObject(L2u <- uniqTsparse(L2))
unpackedMatrix-class

Virtual Class "unpackedMatrix" of Unpacked Dense Matrices

Description

Class "unpackedMatrix" is the virtual class of dense matrices in "unpacked" format, storing all m*n elements of an m-by-n matrix. It is used to define common methods for efficient subsetting, transposing, etc. of its proper subclasses: currently "[dln]geMatrix" (unpacked general), "[dln]syMatrix" (unpacked symmetric), "[dln]trMatrix" (unpacked triangular), and subclasses of these, such as "dpoMatrix", "Cholesky", and "BunchKaufman".

Slots

- Dim, Dimnames: as all Matrix objects.

Extends


Methods

- pack signature(x = "unpackedMatrix"):
- unpack signature(x = "unpackedMatrix"):
- isSymmetric signature(object = "unpackedMatrix"):
- isTriangular signature(object = "unpackedMatrix"):
- isDiagonal signature(object = "unpackedMatrix"):
- t signature(x = "unpackedMatrix"):
- diag signature(x = "unpackedMatrix"):
- diag<- signature(x = "unpackedMatrix"):
Author(s)

Mikael Jagan

See Also

pack and unpack; its virtual "complement" "packedMatrix"; its proper subclasses "dsyMatrix", "ltrMatrix", etc.

Examples

showClass("unpackedMatrix")
showMethods(classes = "unpackedMatrix")

Description

Computes a rank-$k$ update or downdate of a sparse Cholesky factorization

$$P_1AP_1' = L_1DL_1' = LL'$$

which for some $k$-column matrix $C$ is the factorization

$$P_1(A + sCC')P_1' = \tilde{L}_1\tilde{D}\tilde{L}_1' = \tilde{L}L'$$

Here, $s = 1$ for an update and $s = -1$ for a downdate.

Usage

updown(update, C, L)

Arguments

update a logical (TRUE or FALSE) or character ("+" or "-") indicating if $L$ should be updated (or otherwise downdated).
C a finite matrix or Matrix such that tcrossprod(C) has the dimensions of $L$.
L an object of class dCHMsimpl or dCHMsuper specifying a sparse Cholesky factorization.

Value

A sparse Cholesky factorization with dimensions matching $L$, typically of class dCHMsimpl.

Author(s)

Initial implementation by Nicholas Nagle, University of Tennessee.
References


See Also

Classes `dCHMsimpl` and `dCHMsuper` and their methods, notably for generic function `update`, which is *not* equivalent to `updown(update = TRUE).

Generic function `Cholesky`.

Examples

```r
m <- sparseMatrix(i = c(3, 1, 3:2, 2:1), p = c(0:2, 4, 4, 6), x = 1:6,
 dimnames = list(LETTERS[1:3], letters[1:5]))
uc0 <- Cholesky(A <- crossprod(m) + Diagonal(5))
uc1 <- updown("+", Diagonal(5, 1), uc0)
uc2 <- updown("-", Diagonal(5, 1), uc1)
stopifnot(all.equal(uc0, uc2))
```

USCounties

**Contiguity Matrix of U.S. Counties**

Description

This matrix gives the contiguities of 3111 U.S. counties, using the queen criterion of at least one shared vertex or edge.

Usage

```r
data(USCounties)
```

Format

A $3111 \times 3111$ sparse, symmetric matrix of class `dsCMatrix`, with 9101 nonzero entries.

Source

GAL lattice file `usc_q.GAL` (retrieved in 2008 from `http://sal.uiuc.edu/weights/zips/usc.zip` with permission from Luc Anselin for use and distribution) was read into `R` using function `read.gal` from package `spdep`.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights, using functions `nb2listw` and `similar.listw` from packages `spdep` and `spatialreg`. The resulting `listw` object was coerced to class `dsTMatrix` using `as_dsTMatrix_listw` from `spatialreg`, and subsequently to class `dsCMatrix`.
References


Examples

data(USCounties, package = "Matrix")
(n <- ncol(USCounties))
I <- .symDiagonal(n)

c <- .symDiagonal(n)
set.seed(1)
r <- 50L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
  determinant(USCounties + mult * I, logarithm = TRUE)$modulus))

## Can be done faster by updating the Cholesky factor:

C1 <- Cholesky(USCounties, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)
  determinant(update(C1, USCounties, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(USCounties, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)
  determinant(update(C2, USCounties, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ2))

contig1

Contiguity Matrix of World One-Degree Grid Cells

Description

This matrix gives the contiguities of 15260 one-degree grid cells of world land areas, using a criterion based on the great-circle distance between centers.

Usage

data(wrld_1deg)

Format

A 15260 × 15260 sparse, symmetric matrix of class *dsCMatrix*, with 55973 nonzero entries.
Source
Shoreline data were read into R from the GSHHS database using function Rgshhs from package maptools. Antarctica was excluded. An approximately one-degree grid was generated using function Sobj_SpatialGrid, also from maptools. Grid cells with centers on land were identified using the over method for classes SpatialPolygons and SpatialGrid, defined in package sp. Neighbours of these were identified by passing the resulting SpatialPixels object to function dnearneigh from package spdep, using as a cut-off a great-circle distance of $\sqrt{2}$ kilometers between centers.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights, using functions nb2listw and similar.listw from packages spdep and spatialreg. The resulting listw object was coerced to class dsTMatrix using as_dsTMatrix_listw from spatialreg, and subsequently to class dsCMatrix.

References

Examples

```r
data(wrld_1deg, package = "Matrix")
(n <- ncol(wrld_1deg))
I <- .symDiagonal(n)

doExtras <- interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))
set.seed(1)
r <- if(doExtras) 20L else 3L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
 determinant(wrld_1deg + mult * I, logarithm = TRUE)$modulus))

Can be done faster by updating the Cholesky factor:
C1 <- Cholesky(wrld_1deg, Imult = 2)

system.time(MJ1 <- sapply(rho, function(mult)
 determinant(update(C1, wrld_1deg, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(wrld_1deg, super = TRUE, Imult = 2)

system.time(MJ2 <- sapply(rho, function(mult)
 determinant(update(C2, wrld_1deg, mult), sqrt = FALSE)$modulus))

stopifnot(all.equal(MJ0, MJ2))
```
Index

!,. Matrix-method (Matrix-class), 126
!,. ldiMatrix-method (ldiMatrix-class), 113
!,. lgeMatrix-method (lgeMatrix-class), 114
!,. lspMatrix-method (lsyMatrix-class), 117
!,. lsparseMatrix-method (lsparseMatrix-classes), 115
!,. lsyMatrix-method (lsyMatrix-class), 117
!,. ltpMatrix-method (ltrMatrix-class), 118
!,. ltrMatrix-method (ltrMatrix-class), 118
!,. ngeMatrix-method (ngeMatrix-class), 135
!,. nspMatrix-method (nsyMatrix-class), 142
!,. nsparseMatrix-method (nsparseMatrix-classes), 140
!,. nsyMatrix-method (nsyMatrix-class), 142
!,. ntpMatrix-method (ntrMatrix-class), 143
!,. ntrMatrix-method (ntrMatrix-class), 143
!,. sparseVector-method (sparseVector-class), 186

* Choleski
  Cholesky-methods, 34
* NA
  is.na-methods, 103
* algebra
  boolmatmult-methods, 15
  BunchKaufman-class, 16
  BunchKaufman-methods, 19
  CHMfactor-class, 23
  chol-methods, 27
  chol2inv-methods, 30
  Cholesky-class, 32
  Cholesky-methods, 34
  colSums-methods, 42
  compMatrix-class, 44
  condest, 45
  denseLU-class, 50
  dimScale, 63
dmperm, 65
  expand-methods, 81
  KhatriRao, 108
  kronecker-methods, 111
  lu-methods, 119
  matmult-methods, 122
  MatrixFactorization-class, 130
  nearPD, 132
  norm-methods, 139
  qr-methods, 151
  rankMatrix, 155
  rcond-methods, 158
  Schur-class, 164
  Schur-methods, 166
  solve-methods, 168
  sparseLU-class, 173
  sparseQR-class, 181
  symmpart-methods, 194
  updown-methods, 200

* arith
  all.equal-methods, 8
  colSums-methods, 42
dimScale, 63
  facmul-methods, 87
  KhatriRao, 108
  kronecker-methods, 111
  matmult-methods, 122
  symmpart-methods, 194

* array
  band-methods, 9
  bandSparse, 11

204
INDEX

bdig, 13
boolmatmult-methods, 15
BunchKaufman-class, 16
BunchKaufman-methods, 19
cbind2-methods, 21
CHMfactor-class, 23
chol-methods, 27
chol2inv-methods, 30
Cholesky-class, 32
Cholesky-methods, 34
colSums-methods, 42
compMatrix-class, 44
CsparseMatrix-class, 47
ddenseMatrix-class, 49
ddiMatrix-class, 49
denseLU-class, 50
denseMatrix-class, 52
dgCMatrix-class, 53
dgeMatrix-class, 54
dgRMatrix-class, 56
dgTMatrix-class, 57
Diagonal, 58
diagonalMatrix-class, 60
diagU2N, 61
dimScale, 63
dMatrix-class, 64
dmperm, 65
dpoMatrix-class, 67
drop0, 69
dscMatrix-class, 70
dspMatrix-class, 72
dsrMatrix-class, 73
dsyMatrix-class, 74
dtCMatrix-class, 75
dtspMatrix-class, 77
dtrMatrix-class, 79
dtrMatrix-class, 80
expand-methods, 81
expm-methods, 84
facmul-methods, 87
forceSymmetric-methods, 92
generalMatrix-class, 94
Hilbert, 95
indMatrix-class, 99
is.null.DN, 104
isSymmetric-methods, 105
isTriangular-methods, 107
KhatriRao, 108
kronecker-methods, 111
ldenseMatrix-class, 112
ldiMatrix-class, 112
lgeMatrix-class, 114
lsparseMatrix-classes, 115
lsyMatrix-class, 117
ltrMatrix-class, 118
lu-methods, 119
mat2triplet, 121
matmult-methods, 122
Matrix, 124
Matrix-class, 126
Matrix-notyet, 128
MatrixFactorization-class, 130
ndenseMatrix-class, 131
nearPD, 132
ngeMatrix-class, 135
nMatrix-class, 136
nnzero-methods, 137
nsparseMatrix-classes, 140
nsyMatrix-class, 142
ntrMatrix-class, 143
pack, 144
packedMatrix-class, 146
pMatrix-class, 147
qr-methods, 151
rsparsematrix, 162
RsparseMatrix-class, 163
Schur-class, 164
Schur-methods, 166
solve-methods, 168
sparse.model.matrix, 171
sparseLU-class, 173
sparseMatrix, 175
sparseMatrix-class, 179
sparseQR-class, 181
spMatrix, 189
Subassign-methods, 191
Subscript-methods, 192
symmetricMatrix-class, 193
symmpart-methods, 194
triangularMatrix-class, 195
TsparseMatrix-class, 196
uniqTsparse, 197
unpackedMatrix-class, 199
updown-methods, 200
* attribute
diagU2N, 61
is.null.DN, 104

* character

formatSparseM, 93
printSpMatrix, 149

* classes

abIndex-class, 5
atomicVector-class, 9
BunchKaufman-class, 16
CHMfactor-class, 23
Cholesky-class, 32
compMatrix-class, 44
CsparseMatrix-class, 47
denseMatrix-class, 52
dgCMatrix-class, 53
dgeMatrix-class, 54
dgRMatrix-class, 56
dgTMatrix-class, 57
diagonalMatrix-class, 60
dMatrix-class, 64
dpoMatrix-class, 67
dgCMatrix-class, 70
dspMatrix-class, 72
dRMatrix-class, 73
dsyMatrix-class, 74
dtCMatrix-class, 75
dtpMatrix-class, 77
dtrMatrix-class, 79
dtrMatrix-class, 80
generalMatrix-class, 94
index-class, 98
indMatrix-class, 99
ldenseMatrix-class, 112
ldiMatrix-class, 113
dlgeMatrix-class, 114
lsparseMatrix-classes, 115
lsyMatrix-class, 117
ltrMatrix-class, 118
Matrix-class, 126
Matrix-notyet, 128
MatrixFactorization-class, 130
ndenseMatrix-class, 131
ngeMatrix-class, 135
mMatrix-class, 136
nsparseMatrix-classes, 140
nsyMatrix-class, 142
ntrMatrix-class, 143
number-class, 143
packedMatrix-class, 146
pMatrix-class, 147
replValue-class, 161
rleDiff-class, 161
RsparseMatrix-class, 163
Schur-class, 164
sparseLU-class, 173
sparseMatrix-class, 179
sparseQR-class, 181
sparseVector-class, 186
symmetricMatrix-class, 193
triangularMatrix-class, 195
TsparseMatrix-class, 196
unpackedMatrix-class, 199

* connection

externalFormats, 85

* datasets

CAex, 20
KNex, 110
USCounties, 201
wrld_1deg, 202

* distribution

rsparsematrix, 162

* file

externalFormats, 85

* hplot

image-methods, 96

* logic

all-methods, 7
all.equal-methods, 8
boolmatmult-methods, 15
nnzero-methods, 137
uniqTsparse, 197

* manip

abIseq, 6
cbind2-methods, 21
drop0, 69
rep2abI, 160
sparseVector-class, 186
uniqTsparse, 197

* math

condest, 45
dexpm-methods, 84
is.na-methods, 103
norm-methods, 139
rcond-methods, 158
## Index

### Methods
- all-methods, 7
- all.equal-methods, 8
- band-methods, 9
- boolmatmult-methods, 15
- BunchKaufman-methods, 19
- cbind2-methods, 21
- chol-methods, 27
- chol2inv-methods, 30
- Cholesky-methods, 34
- coerce-methods-SparseM, 42
- colSums-methods, 42
- expand-methods, 81
- expm-methods, 84
- externalFormats, 85
- facmul-methods, 87
- forceSymmetric-methods, 92
- image-methods, 96
- is.na-methods, 103
- isSymmetric-methods, 105
- isTriangular-methods, 107
- kronecker-methods, 111
- lu-methods, 119
- nnzero-methods, 137
- norm-methods, 139
- pack, 144
- qr-methods, 151
- rcond-methods, 158
- Schur-methods, 166
- solve-methods, 168
- Subassign-methods, 191
- Subscript-methods, 192
- symmpart-methods, 194
- updown-methods, 200

### Models
- sparse.model.matrix, 171

### Print
- formatSparseM, 93
- printSpMatrix, 149

### Programming
- all.equal-methods, 8
- CHMFactor-class, 23
- is.na-methods, 103
- is.null.DN, 104
- isSymmetric-methods, 105
- isTriangular-methods, 107

### Utilities
- abIseq, 6
- bandSparse, 11
- bdiag, 13
- CHMfactor-class, 23
- coerce-methods-graph, 40
- condest, 45
- Diagonal, 58
- diagU2N, 61
- dimScale, 63
- dmperm, 65
- drop0, 69
- externalFormats, 85
- fastMisc, 88
- formatSparseM, 93
- Hilbert, 95
- invertPerm, 101
- is.null.DN, 104
- KhatriRao, 108
- mat2triplet, 121
- Matrix, 124
- MatrixClass, 129
- nearPD, 132
- printSpMatrix, 149
- rankMatrix, 155
- rep2abI, 160
- rsparsematrix, 162
- sparse.model.matrix, 171
- sparseMatrix, 175
- sparseQR-class, 181
- sparseVector, 185
- spMatrix, 189
- uniqTsparse, 197

### Packages
- Matrix, ddMatrix-method
  (Matrix-class), 126
- Matrix, ldMatrix-method
  (Matrix-class), 126
- ddMatrix, ddMatrix-method
  (ddMatrix-class), 49
- ddMatrix, ldMatrix-method
  (ddMatrix-class), 49
- ddMatrix, Matrix-method
  (ddMatrix-class), 49
- ddMatrix, ddMatrix-method
  (ddMatrix-class), 49
- ddMatrix, ldMatrix-method
  (ddMatrix-class), 49
- ddMatrix, ndMatrix-method
  (ddMatrix-class), 49
*,ldenseMatrix, ddiMatrix-method
(ldenseMatrix-class), 112
*,ldenseMatrix, ldiMatrix-method
(ldenseMatrix-class), 112
*,ldiMatrix, Matrix-method
(ldiMatrix-class), 113
*,ldiMatrix, ddiMatrix-method
(ldiMatrix-class), 113
*,ldiMatrix, ldenseMatrix-method
(ldiMatrix-class), 113
*,ldiMatrix, ndenseMatrix-method
(ldiMatrix-class), 113
*,ndenseMatrix, ddiMatrix-method
(ndenseMatrix-class), 131
*,ndenseMatrix, ldiMatrix-method
(ndenseMatrix-class), 131
+, Matrix, missing-method (Matrix-class), 126
+, dgTMatrix, dgTMatrix-method
(dgTMatrix-class), 57
-, Matrix, missing-method (Matrix-class), 126
-, ddiMatrix, missing-method
(ddiMatrix-class), 49
-, denseMatrix, missing-method
(denseMatrix-class), 52
-, dsparseVector, missing-method
(sparseVector-class), 186
-, indMatrix, missing-method
(indMatrix-class), 99
-, ldiMatrix, missing-method
(ldiMatrix-class), 113
-, nsparseMatrix, missing-method
(nsparseMatrix-classes), 140
-, sparseMatrix, missing-method
(sparseMatrix-class), 179
.CR2RC (fastMisc), 88
.CR2T (fastMisc), 88
.M2C (fastMisc), 88
.M2R (fastMisc), 88
.M2T (fastMisc), 88
.M2diag (fastMisc), 88
.M2gen (fastMisc), 88
.M2kind (fastMisc), 88
.M2m (fastMisc), 88
.M2packed (fastMisc), 88
.M2sym (fastMisc), 88
.M2tri (fastMisc), 88
.M2unpacked (fastMisc), 88
.M2v (fastMisc), 88
.Machine, 155, 186
.SuiteSparse_version
(Cholesky-methods), 34
.T2CR (fastMisc), 88
.bdiag (bdiag), 13
.dense2g (fastMisc), 88
.dense2kind (fastMisc), 88
.dense2m (fastMisc), 88
.dense2sparse (fastMisc), 88
.dense2v (fastMisc), 88
.diag.dsc (fastMisc), 88
.diag2dense (fastMisc), 88
.diag2sparse (fastMisc), 88
.diagN2U (diagU2N), 61
.diagU2N (diagU2N), 61
.formatSparseSimple, 150
.formatSparseSimple (formatSparseM), 93
.ind2dense (fastMisc), 88
.ind2sparse (fastMisc), 88
.m2dense (fastMisc), 88
.m2sparse (fastMisc), 88
.selectSuperClasses, 129
.solve.dg.chol (fastMisc), 88
.solve.dg.1u (fastMisc), 88
.solve.dg.Cqr (fastMisc), 88
.sparse2dense (fastMisc), 88
.sparse2g (fastMisc), 88
.sparse2kind (fastMisc), 88
.sparse2m (fastMisc), 88
.sparse2v (fastMisc), 88
.sparseDiagonal (Diagonal), 58
.symDiagonal (Diagonal), 58
tCR2RC (fastMisc), 88
tCRT (fastMisc), 88
trDiagonal (Diagonal), 58
.updateCHMfactor (fastMisc), 88
.validateCsparse (CsparseMatrix-class), 47
/, ddiMatrix, Matrix-method
(ddiMatrix-class), 49
/, ddiMatrix, ddiMatrix-method
(ddiMatrix-class), 49
/, ddiMatrix, ldenseMatrix-method
(ddiMatrix-class), 49
/, ddiMatrix, ndenseMatrix-method
(ddiMatrix-class), 49
...
INDEX
(matmult-methods), 122
**%, Matrix, numLike-method
(matmult-methods), 122
**%, Matrix, pMatrix-method
(matmult-methods), 122
**%, RsparseMatrix, diagonalMatrix-method
(matmult-methods), 122
**%, RsparseMatrix, mMatrix-method
(matmult-methods), 122
**%, TsparseMatrix, ANY-method
(matmult-methods), 122
**%, TsparseMatrix, Matrix-method
(matmult-methods), 122
**%, TsparseMatrix, TsparseMatrix-method
(matmult-methods), 122
**%, diagonalMatrix, denseMatrix-method
(matmult-methods), 122
**%, diagonalMatrix, diagonalMatrix-method
(matmult-methods), 122
**%, diagonalMatrix, matrix-method
(matmult-methods), 122
**%, dspMatrix, ddenseMatrix-method
(matmult-methods), 122
**%, dtpMatrix, ddenseMatrix-method
(matmult-methods), 122
**%, dtpMatrix, matrix-method
(matmult-methods), 122
**%, dtrMatrix, ddenseMatrix-method
(matmult-methods), 122
**%, dtrMatrix, dtrMatrix-method
(matmult-methods), 122
**%, dtrMatrix, matrix-method
(matmult-methods), 122
**%, indMatrix, Matrix-method
(matmult-methods), 122
**%, indMatrix, indMatrix-method
(matmult-methods), 122
**%, indMatrix, matrix-method
(matmult-methods), 122
**%, indMatrix, pMatrix-method
(matmult-methods), 122
**%, lMatrix, diagonalMatrix-method
(matmult-methods), 122
**%, lMatrix, dMatrix-method
(matmult-methods), 122
**%, lMatrix, lMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, ddenseMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, diagonalMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, ldenseMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, lMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, ldenseMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, lMatrix-method
(matmult-methods), 122
**%, ldenseMatrix, lMatrix-method
(matmult-methods), 122
%%,ddiMatrix,Matrix-method
(ddiMatrix-class), 49
%%,ddiMatrix,ddenseMatrix-method
(ddiMatrix-class), 49
%%,ddiMatrix,ldenseMatrix-method
(ddiMatrix-class), 49
%%,ddiMatrix,ndenseMatrix-method
(ddiMatrix-class), 49
%%,ldiMatrix,Matrix-method
(ldiMatrix-class), 113
%%,ldiMatrix,ddenseMatrix-method
(ldiMatrix-class), 113
%%,ldiMatrix,ldenseMatrix-method
(ldiMatrix-class), 113
%%,ldiMatrix,ndenseMatrix-method
(ldiMatrix-class), 113
%&% (boolmatmult-methods), 15
%&%,ANY,ANY-method
(boolmatmult-methods), 15
%&%,ANY,Matrix-method
(boolmatmult-methods), 15
%&%,ANY,matrix-method
(boolmatmult-methods), 15
%&%,CsparseMatrix,RsparseMatrix-method
(boolmatmult-methods), 15
%&%,CsparseMatrix,TsparseMatrix-method
(boolmatmult-methods), 15
%&%,CsparseMatrix,diagonalMatrix-method
(boolmatmult-methods), 15
%&%,CsparseMatrix,mMatrix-method
(boolmatmult-methods), 15
%&%,Matrix,ANY-method
(boolmatmult-methods), 15
%&%,Matrix,Matrix-method
(boolmatmult-methods), 15
%&%,Matrix,indMatrix-method
(boolmatmult-methods), 15
%&%,Matrix,pMatrix-method
(boolmatmult-methods), 15
%&%,RsparseMatrix,CsparseMatrix-method
(boolmatmult-methods), 15
%&%,RsparseMatrix,RsparseMatrix-method
(boolmatmult-methods), 15
%&%,RsparseMatrix,TsparseMatrix-method
(boolmatmult-methods), 15
%&%,RsparseMatrix,diagonalMatrix-method
(boolmatmult-methods), 15
%&%,RsparseMatrix,mMatrix-method
(boolmatmult-methods), 15
%&%,TsparseMatrix,CsparseMatrix-method
(boolmatmult-methods), 15
%&%,TsparseMatrix,RsparseMatrix-method
(boolmatmult-methods), 15
%&%,TsparseMatrix,TsparseMatrix-method
(boolmatmult-methods), 15
%&%,TsparseMatrix,diagonalMatrix-method
(boolmatmult-methods), 15
%&%,TsparseMatrix,mMatrix-method
(boolmatmult-methods), 15
%&%,denseMatrix,denseMatrix-method
(boolmatmult-methods), 15
%&%,denseMatrix,diagonalMatrix-method
(boolmatmult-methods), 15
%&%,diagonalMatrix,CsparseMatrix-method
(boolmatmult-methods), 15
%&%,diagonalMatrix,RsparseMatrix-method
(boolmatmult-methods), 15
%&%,diagonalMatrix,TsparseMatrix-method
(boolmatmult-methods), 15
%&%,diagonalMatrix,denseMatrix-method
(boolmatmult-methods), 15
%&%,diagonalMatrix,diagonalMatrix-method
(boolmatmult-methods), 15
%&%,diagonalMatrix,matrix-method
(boolmatmult-methods), 15
%&%,indMatrix,Matrix-method
(boolmatmult-methods), 15
%&%,indMatrix,indMatrix-method
(boolmatmult-methods), 15
%&%,indMatrix,matrix-method
(boolmatmult-methods), 15
%&%,mMatrix,CsparseMatrix-method
(boolmatmult-methods), 15
%&%,mMatrix,RsparseMatrix-method
(boolmatmult-methods), 15
%&%,mMatrix,sparseMatrix-method
(boolmatmult-methods), 15
%&%,mMatrix,sparseVector-method
(boolmatmult-methods), 15
%&%,matrix,ANY-method
(boolmatmult-methods), 15
%&%,matrix,diagonalMatrix-method
(boolmatmult-methods), 15
&, Matrix, ddiMatrix-method
  (Matrix-class), 126
&, Matrix, ldiMatrix-method
  (Matrix-class), 126
&, ddiMatrix, ddiMatrix-method
  (Matrix-class), 49
&, ddiMatrix, Matrix-method
  (ddenseMatrix-class), 49
&, ddiMatrix, ldiMatrix-method
  (ddenseMatrix-class), 49
&, ldiMatrix, Matrix-method
  (ddenseMatrix-class), 112
&, ldiMatrix, ddiMatrix-method
  (ldenseMatrix-class), 112
&, ldiMatrix, ldiMatrix-method
  (ldenseMatrix-class), 112
&, ndenseMatrix, ddiMatrix-method
  (ndenseMatrix-class), 131
&, ndenseMatrix, ldiMatrix-method
  (ndenseMatrix-class), 131
**%**, 16, 47, 55, 124
**%**, 122–124
^, Matrix, ddiMatrix-method
  (Matrix-class), 126
^, Matrix, ldiMatrix-method
  (Matrix-class), 126
^, ddenseMatrix, ddiMatrix-method
  (ddenseMatrix-class), 49
^, ddenseMatrix, ldiMatrix-method
  (ddenseMatrix-class), 49
^, ldenseMatrix, ddiMatrix-method
  (ldenseMatrix-class), 112
^, ldenseMatrix, ldiMatrix-method
  (ldenseMatrix-class), 112
^, ndenseMatrix, ddiMatrix-method
  (ndenseMatrix-class), 131
^, ndenseMatrix, ldiMatrix-method
  (ndenseMatrix-class), 131
%**%, 150
abbreviate, 6, 7, 160, 162
abIseq, 5, 6, 160
abIndex, 6, 7, 160, 162
abIndex-class, 5
INDEX

abIseq1 (abIseq), 6
abs, 96
all (all-methods), 7
all, ddiMatrix-method (all-methods), 7
all, ldiMatrix-method (all-methods), 7
all, lsparseMatrix-method (all-methods), 7
all, Matrix-method (all-methods), 7
all, nspareMatrix-method (all-methods), 7
all-methods, 7
all.equal, 8, 106
all.equal, abIndex, abIndex-method (all.equal-methods), 8
all.equal, abIndex, numLike-method (all.equal-methods), 8
all.equal, ANY, Matrix-method (all.equal-methods), 8
all.equal, ANY, sparseMatrix-method (all.equal-methods), 8
all.equal, ANY, sparseVector-method (all.equal-methods), 8
all.equal, Matrix, ANY-method (all.equal-methods), 8
all.equal, sparseMatrix, ANY-method (all.equal-methods), 8
all.equal, sparseMatrix, sparseMatrix-method (all.equal-methods), 8
all.equal, sparseMatrix, sparseVector-method (all.equal-methods), 8
all.equal, sparseVector, ANY-method (all.equal-methods), 8
all.equal, sparseVector, sparseMatrix-method (all.equal-methods), 8
all.equal, sparseVector, sparseVector-method (all.equal-methods), 8
all.equal-methods, 8
all.equal.numeric, 8
any, 7, 64
any (all-methods), 7
any, ddiMatrix-method (all-methods), 7
any, ldiMatrix-method (all-methods), 7
any, Matrix-method (all-methods), 7
any, nspareMatrix-method (all-methods), 7
any-methods (all-methods), 7
anyDuplicated, 198
anyDuplicatedT (uniqTsparse), 197
anyNA, 103
anyNA (is.na-methods), 103
anyNA, ddenseMatrix-method (is.na-methods), 103
anyNA, diagonalMatrix-method (is.na-methods), 103
anyNA, dsparseMatrix-method (is.na-methods), 103
anyNA, indMatrix-method (is.na-methods), 103
anyNA, ldenseMatrix-method (is.na-methods), 103
anyNA, lsparseMatrix-method (is.na-methods), 103
anyNA, nMatrix-method (is.na-methods), 103
anyNA, sparseVector-method (is.na-methods), 103
anyNA-methods (is.na-methods), 103
apply, 127
Arith, 55, 64
Arith, abIndex, abIndex-method (abIndex-class), 5
Arith, abIndex, numLike-method (abIndex-class), 5
Arith, CsparseMatrix, CsparseMatrix-method (CsparseMatrix-class), 47
Arith, CsparseMatrix, numeric-method (CsparseMatrix-class), 47
Arith, ddenseMatrix, logical-method (ddenseMatrix-class), 49
Arith, ddenseMatrix, numeric-method (ddenseMatrix-class), 49
Arith, ddiMatrix, logical-method (ddiMatrix-class), 49
Arith, ddiMatrix, numeric-method (ddiMatrix-class), 49
Arith, ldiMatrix, logical-method (ldiMatrix-class), 49
Arith, ldiMatrix, numeric-method (ldiMatrix-class), 49

any, 7, 64
any, ddiMatrix-method (all-methods), 7
any, ldiMatrix-method (all-methods), 7
any, Matrix-method (all-methods), 7
any, nspareMatrix-method (all-methods), 7
any-methods (all-methods), 7
anyDuplicated, 198
anyDuplicatedT (uniqTsparse), 197
anyNA, 103
anyNA (is.na-methods), 103
anyNA, ddenseMatrix-method (is.na-methods), 103
anyNA, diagonalMatrix-method (is.na-methods), 103
anyNA, dsparseMatrix-method (is.na-methods), 103
anyNA, indMatrix-method (is.na-methods), 103
anyNA, ldenseMatrix-method (is.na-methods), 103
anyNA, lsparseMatrix-method (is.na-methods), 103
anyNA, nMatrix-method (is.na-methods), 103
anyNA, sparseVector-method (is.na-methods), 103
anyNA-methods (is.na-methods), 103
apply, 127
Arith, 55, 64
Arith, abIndex, abIndex-method (abIndex-class), 5
Arith, abIndex, numLike-method (abIndex-class), 5
Arith, CsparseMatrix, CsparseMatrix-method (CsparseMatrix-class), 47
Arith, CsparseMatrix, numeric-method (CsparseMatrix-class), 47
Arith, ddenseMatrix, logical-method (ddenseMatrix-class), 49
Arith, ddenseMatrix, numeric-method (ddenseMatrix-class), 49
Arith, ddiMatrix, logical-method (ddiMatrix-class), 49
Arith, ddiMatrix, numeric-method (ddiMatrix-class), 49

abIseq1 (abIseq), 6
abs, 96
all (all-methods), 7
all, ddiMatrix-method (all-methods), 7
all, ldiMatrix-method (all-methods), 7
all, lsparseMatrix-method (all-methods), 7
all, Matrix-method (all-methods), 7
all, nspareMatrix-method (all-methods), 7
all-methods, 7
all.equal, 8, 106
all.equal, abIndex, abIndex-method (all.equal-methods), 8
all.equal, abIndex, numLike-method (all.equal-methods), 8
all.equal, ANY, Matrix-method (all.equal-methods), 8
all.equal, ANY, sparseMatrix-method (all.equal-methods), 8
all.equal, ANY, sparseVector-method (all.equal-methods), 8
all.equal, Matrix, ANY-method (all.equal-methods), 8
all.equal, sparseMatrix, ANY-method (all.equal-methods), 8
all.equal, sparseMatrix, sparseMatrix-method (all.equal-methods), 8
all.equal, sparseMatrix, sparseVector-method (all.equal-methods), 8
all.equal, sparseVector, ANY-method (all.equal-methods), 8
all.equal, sparseVector, sparseMatrix-method (all.equal-methods), 8
all.equal, sparseVector, sparseVector-method (all.equal-methods), 8
all.equal-methods, 8
all.equal.numeric, 8
any, 7, 64
any (all-methods), 7
any, ddiMatrix-method (all-methods), 7
any, ldiMatrix-method (all-methods), 7
any, Matrix-method (all-methods), 7
any, nspareMatrix-method (all-methods), 7
any-methods (all-methods), 7
anyDuplicated, 198
anyDuplicatedT (uniqTsparse), 197
anyNA, 103
anyNA (is.na-methods), 103
anyNA, ddenseMatrix-method (is.na-methods), 103
anyNA, diagonalMatrix-method (is.na-methods), 103
anyNA, dsparseMatrix-method (is.na-methods), 103
anyNA, indMatrix-method (is.na-methods), 103
anyNA, ldenseMatrix-method (is.na-methods), 103
anyNA, lsparseMatrix-method (is.na-methods), 103
anyNA, nMatrix-method (is.na-methods), 103
anyNA, sparseVector-method (is.na-methods), 103
anyNA-methods (is.na-methods), 103
apply, 127
Arith, 55, 64
Arith, abIndex, abIndex-method (abIndex-class), 5
Arith, abIndex, numLike-method (abIndex-class), 5
Arith, CsparseMatrix, CsparseMatrix-method (CsparseMatrix-class), 47
Arith, CsparseMatrix, numeric-method (CsparseMatrix-class), 47
Arith, ddenseMatrix, logical-method (ddenseMatrix-class), 49
Arith, ddenseMatrix, numeric-method (ddenseMatrix-class), 49
Arith, ddiMatrix, logical-method (ddiMatrix-class), 49
Arith, ddiMatrix, numeric-method (ddiMatrix-class), 49
<p>| Arith, dgCMatrix, dgCMatrix-method (dgCMatrix-class) | Arith, logical, ddenseMatrix-method (ddenseMatrix-class) |
| Arith, dgCMatrix, logical-method (dgCMatrix-class) | Arith, logical, ddiMatrix-method (ddiMatrix-class) |
| Arith, dgCMatrix, numeric-method (dgCMatrix-class) | Arith, logical, dgCMatrix-method (dgCMatrix-class) |
| Arith, dgeMatrix, dgeMatrix-method (dgeMatrix-class) | Arith, logical, dgeMatrix-method (dgeMatrix-class) |
| Arith, dgeMatrix, logical-method (dgeMatrix-class) | Arith, logical, dpoMatrix-method (dpoMatrix-class) |
| Arith, dgeMatrix, numeric-method (dgeMatrix-class) | Arith, logical, dppMatrix-method (dppMatrix-class) |
| Arith, dpoMatrix, logical-method (dpoMatrix-class) | Arith, logical, dsparseMatrix-method (dsparseMatrix-class) |
| Arith, dpoMatrix, numeric-method (dpoMatrix-class) | Arith, logical, ldiMatrix-method (ldiMatrix-class) |
| Arith, dpoMatrix, numeric-method (dpoMatrix-class) | Arith, logical, lMatrix-method (dMatrix-class) |
| Arith, dpoMatrix, numeric-method (dpoMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, dsCMatrx, dsCMatrx-method (dsCMatrx-class) | Arith, logical, lMatrix-method (Matrix-class) |
| Arith, dsparseMatrix, logical-method (dsparseMatrix-class) | Arith, logical, lMatrix-method (Matrix-class) |
| Arith, dsparseMatrix, numeric-method (dsparseMatrix-class) | Arith, logical, lMatrix-method (Matrix-class) |
| Arith, dsparseVector, dsparseVector-method (dsparseVector-class) | Arith, logical, lMatrix-method (Matrix-class) |
| Arith, dtCMatrix, dtCMatrix-method (dtCMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, ldiMatrix, logical-method (ldiMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, ldiMatrix, numeric-method (ldiMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, lgCMatrix, lgCMatrix-method (lgCMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, lgCMatrix, logical-method (lgCMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, lgCMatrix, numeric-method (lgCMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, lgTMatrix, lgTMatrix-method (lgTMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, lMatrix, logical-method (lMatrix-class) | Arith, logical, nMatrix-method (lMatrix-class) |
| Arith, lMatrix, numeric-method (lMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dcppMatrix-method (dsparseMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dsparseMatrix-method (nsparseMatrix-classes) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dsparseMatrix-method (nsparseMatrix-classes) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dcppMatrix-method (dsparseMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dcppMatrix-method (dsparseMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dcppMatrix-method (dsparseMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dcppMatrix-method (dsparseMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |
| Arith, numeric, dcppMatrix-method (dsparseMatrix-class) | Arith, logical, nMatrix-method (nMatrix-class) |</p>
<table>
<thead>
<tr>
<th>Arith, numeric, dgCMatrix-method (dgCMatrix-class), 53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith, numeric, dgeMatrix-method (dgeMatrix-class), 54</td>
</tr>
<tr>
<td>Arith, numeric, dpoMatrix-method (dpoMatrix-class), 67</td>
</tr>
<tr>
<td>Arith, numeric, dppMatrix-method (dpoMatrix-class), 67</td>
</tr>
<tr>
<td>Arith, numeric, dsparseMatrix-method (dsparseMatrix-class), 72</td>
</tr>
<tr>
<td>Arith, numeric, ldiMatrix-method (ldiMatrix-class), 113</td>
</tr>
<tr>
<td>Arith, numeric, lMatrix-method (dMatrix-class), 64</td>
</tr>
<tr>
<td>Arith, numeric, nMatrix-method (nMatrix-class), 136</td>
</tr>
<tr>
<td>Arith, numLike, abIndex-method (abIndex-class), 5</td>
</tr>
<tr>
<td>Arith, sparseVector, ddenseMatrix-method (sparseVector-class), 186</td>
</tr>
<tr>
<td>Arith, sparseVector, dgeMatrix-method (sparseVector-class), 186</td>
</tr>
<tr>
<td>Arith, sparseVector, sparseVector-method (sparseVector-class), 186</td>
</tr>
<tr>
<td>Arith, triangularMatrix, diagonalMatrix-method (triangularMatrix-class), 195</td>
</tr>
<tr>
<td>as, 40, 42, 114, 117, 118, 136, 142, 143</td>
</tr>
<tr>
<td>as.array, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.complex, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.integer, abIndex-method (abIndex-class), 5</td>
</tr>
<tr>
<td>as.integer, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.logical, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.logical, sparseVector-method (sparseVector-class), 186</td>
</tr>
<tr>
<td>as.matrix, 127</td>
</tr>
<tr>
<td>as.matrix, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.numeric, abIndex-method (abIndex-class), 5</td>
</tr>
<tr>
<td>as.numeric, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.numeric, sparseVector-method (sparseVector-class), 186</td>
</tr>
<tr>
<td>as.vector, 8</td>
</tr>
<tr>
<td>as.vector, abIndex-method (abIndex-class), 5</td>
</tr>
<tr>
<td>as.vector, Matrix-method (Matrix-class), 126</td>
</tr>
<tr>
<td>as.vector, sparseVector-method (sparseVector-class), 186</td>
</tr>
<tr>
<td>asPerm, 51</td>
</tr>
<tr>
<td>asPerm (invertPerm), 101</td>
</tr>
<tr>
<td>atomicVector-class, 9</td>
</tr>
<tr>
<td>attribute, 106, 108</td>
</tr>
<tr>
<td>band, 11, 12, 59</td>
</tr>
<tr>
<td>band (band-methods), 9</td>
</tr>
<tr>
<td>band, CsparseMatrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band, denseMatrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band, diagonalMatrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band, indMatrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band, matrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band, RsparseMatrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band, TsparseMatrix-method (band-methods), 9</td>
</tr>
<tr>
<td>band-methods, 9</td>
</tr>
<tr>
<td>bandSparse, 10, 11, 13, 59, 125, 177</td>
</tr>
<tr>
<td>bdiag, 12, 13, 125, 177, 190</td>
</tr>
<tr>
<td>boolmatmult-methods, 15</td>
</tr>
<tr>
<td>BunchKaufman, 17–20, 37, 45, 68, 82, 83, 120, 131, 153, 167, 170, 199</td>
</tr>
<tr>
<td>BunchKaufman (BunchKaufman-methods), 19</td>
</tr>
<tr>
<td>BunchKaufman, dspMatrix-method (BunchKaufman-methods), 19</td>
</tr>
<tr>
<td>BunchKaufman, dsyMatrix-method (BunchKaufman-methods), 19</td>
</tr>
<tr>
<td>BunchKaufman, matrix-method (BunchKaufman-methods), 19</td>
</tr>
<tr>
<td>BunchKaufmanFactorization, 17, 19</td>
</tr>
<tr>
<td>BunchKaufmanFactorization-class (MatrixFactorization-class), 130</td>
</tr>
<tr>
<td>c, 5</td>
</tr>
<tr>
<td>c.abIndex (abseq), 6</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>c.sparseVector</td>
</tr>
<tr>
<td>CAex</td>
</tr>
<tr>
<td>cbind</td>
</tr>
<tr>
<td>cbind2</td>
</tr>
<tr>
<td>cbind2 (cbind2-methods)</td>
</tr>
<tr>
<td>cbind2, ddiMatrix, matrix-method</td>
</tr>
<tr>
<td>cbind2, ddiMatrix, vector-method</td>
</tr>
<tr>
<td>cbind2, denseMatrix, denseMatrix-method</td>
</tr>
<tr>
<td>cbind2, denseMatrix, matrix-method</td>
</tr>
<tr>
<td>cbind2, denseMatrix, numeric-method</td>
</tr>
<tr>
<td>cbind2, denseMatrix, sparseMatrix-method</td>
</tr>
<tr>
<td>cbind2, diagonalMatrix, sparseMatrix-method</td>
</tr>
<tr>
<td>cbind2, indMatrix, indMatrix-method</td>
</tr>
<tr>
<td>cbind2, ldiMatrix, matrix-method</td>
</tr>
<tr>
<td>cbind2, ldiMatrix, vector-method</td>
</tr>
<tr>
<td>cbind2, matrix, ddiMatrix-method</td>
</tr>
<tr>
<td>cbind2, matrix, denseMatrix-method</td>
</tr>
<tr>
<td>cbind2, matrix, ldiMatrix-method</td>
</tr>
<tr>
<td>cbind2, Matrix, Matrix-method</td>
</tr>
<tr>
<td>cbind2, Matrix, missing-method</td>
</tr>
<tr>
<td>cbind2, Matrix, NULL-method</td>
</tr>
<tr>
<td>cbind2, matrix, sparseMatrix-method</td>
</tr>
<tr>
<td>cbind2, Matrix, vector-method</td>
</tr>
<tr>
<td>cbind2, NULL, Matrix-method</td>
</tr>
<tr>
<td>cbind2, numeric, denseMatrix-method</td>
</tr>
<tr>
<td>cbind2, sparseMatrix, denseMatrix-method</td>
</tr>
<tr>
<td>cbind2, sparseMatrix, diagonalMatrix-method</td>
</tr>
<tr>
<td>chol</td>
</tr>
<tr>
<td>chol (chol-methods)</td>
</tr>
<tr>
<td>chol, ddiMatrix-method</td>
</tr>
<tr>
<td>chol, diagonalMatrix-method</td>
</tr>
<tr>
<td>chol, dsCMatrix-method</td>
</tr>
<tr>
<td>chol, dspMatrix-method</td>
</tr>
<tr>
<td>chol, dsRMatrix-method</td>
</tr>
<tr>
<td>chol, dsTMatrix-method</td>
</tr>
<tr>
<td>chol, dsyMatrix-method</td>
</tr>
<tr>
<td>chol, generalMatrix-method</td>
</tr>
<tr>
<td>chol, symmetricMatrix-method</td>
</tr>
<tr>
<td>chol, triangularMatrix-method</td>
</tr>
<tr>
<td>chol (chol-methods)</td>
</tr>
<tr>
<td>chol12inv</td>
</tr>
<tr>
<td>chol12inv (chol12inv-methods)</td>
</tr>
<tr>
<td>chol12inv, ANY-method</td>
</tr>
<tr>
<td>chol12inv, ddiMatrix-method</td>
</tr>
<tr>
<td>chol12inv, diagonalMatrix-method</td>
</tr>
<tr>
<td>chol12inv, dtCMatrix-method</td>
</tr>
<tr>
<td>chol12inv, dtMatrix-method</td>
</tr>
</tbody>
</table>
chol2inv.dtRMatrix-method
(chol2inv-methods), 30
chol2inv.dtrMatrix-method
(chol2inv-methods), 30
chol2inv.dTMMatrix-method
(chol2inv-methods), 30
chol2inv.generalMatrix-method
(chol2inv-methods), 30
chol2inv.symmetricMatrix-method
(chol2inv-methods), 30
chol2inv.triangularMatrix-method
(chol2inv-methods), 30
chol2inv-methods, 30
Cholesky, 20, 23, 25, 26, 28, 29, 32, 33, 36,
37, 45, 68, 71, 82, 83, 90, 120, 131,
135, 157, 170, 180, 189, 200
Cholesky (Cholesky-methods), 34
Cholesky, ddiMatrix-method
(Cholesky-methods), 34
Cholesky, diagonalMatrix-method
(Cholesky-methods), 34
Cholesky, dsCMatrix-method
(Cholesky-methods), 34
Cholesky, dspMatrix-method
(Cholesky-methods), 34
Cholesky, dsyMatrix-method
(Cholesky-methods), 34
Cholesky, dtrMatrix-method
(Cholesky-methods), 34
Cholesky, symmetricMatrix-method
(Cholesky-methods), 34
Cholesky, triangularMatrix-method
(Cholesky-methods), 34
Cholesky-class, 32
Cholesky-methods, 34
CholeskyFactorization, 32, 36
CholeskyFactorization-class
(MatrixFactorization-class),
130
class, 5, 9, 12, 22, 62, 104, 106, 107, 129,
133, 135, 160, 175, 185, 191
coerce, 196
coerce, abIndex, integer-method
(abIndex-class), 5
coerce, abIndex, numeric-method
(abIndex-class), 5
coerce, abIndex, seqMat-method
(abIndex-class), 5
coerce, abIndex, vector-method
(abIndex-class), 5
coerce, ANY, denseMatrix-method
(denseMatrix-class), 52
coerce, ANY, Matrix-method
(Matrix-class), 126
coerce, ANY, nsposeMatrix-method
(nsposeMatrix-class), 186
coerce, ANY, sparseMatrix-method
(sparseMatrix-class), 179
coerce, ANY, sparseVector-method
(sparseVector-class), 186
coerce, atomicVector, dspMatrix-method
(atomicVector-class), 9
coerce, atomicVector, sparseVector-method
(atomicVector-class), 9
coerce, BunchKaufman, dtrMatrix-method
(BunchKaufman-class), 16
coerce, CHMfactor, dTCMatrix-method
(CHMfactor-class), 23
coerce, CHMsuper, dgCMMatrix-method
(CHMsuper-class), 23
class, 5, 9, 12, 22, 62, 104, 106, 107, 129,
133, 135, 160, 175, 185, 191
coerce, 196
coerce, denseLU, dgeMatrix-method
(denseLU-class), 50
coerce, dgCMMatrix, matrix.csc-method
(coerce-methods-SparseM), 42
coerce, dgRMatrix, matrix.csr-method
(coerce-methods-SparseM), 42
coerce, dgTMatrix, matrix.coo-method
(coerce-methods-SparseM), 42
coerce, dpoMatrix, corMatrix-method
(dpoMatrix-class), 67
coerce, dpoMatrix, corMatrix-method
(dpoMatrix-class), 67
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>coerce, dpoMatrix, dppMatrix-method</code></td>
<td>(dpoMatrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, dppMatrix, dpoMatrix-method</code></td>
<td>(dpoMatrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, dppMatrix, pcorMatrix-method</code></td>
<td>(dpoMatrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, dspMatrix, dpoMatrix-method</code></td>
<td>(dsyMatrix-class), 74</td>
</tr>
<tr>
<td><code>coerce, dspMatrix, dppMatrix-method</code></td>
<td>(dsyMatrix-class), 74</td>
</tr>
<tr>
<td><code>coerce, dpoMatrix, dppMatrix-method</code></td>
<td>(dpoMatrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, factor, sparseMatrix-method</code></td>
<td>(sparseMatrix-class), 179</td>
</tr>
<tr>
<td><code>coerce, generalMatrix, packedMatrix-method</code></td>
<td>(generalMatrix-class), 94</td>
</tr>
<tr>
<td><code>coerce, graph, CsparseMatrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, graph, Matrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, graph, RsparseMatrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, graph, sparseMatrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, graph, TsparseMatrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, graphAM, TsparseMatrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, graphNEL, TsparseMatrix-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, indMatrix, pMatrix-method</code></td>
<td>(indMatrix-class), 99</td>
</tr>
<tr>
<td><code>coerce, indMatrix, sparseVector-method</code></td>
<td>(indMatrix-class), 99</td>
</tr>
<tr>
<td><code>coerce, list, indMatrix-method</code></td>
<td>(indMatrix-class), 99</td>
</tr>
<tr>
<td><code>coerce, logical, abIndex-method</code></td>
<td>(abIndex-class), 5</td>
</tr>
<tr>
<td><code>coerce, Matrix, array-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, Matrix, complex-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, Matrix, corMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, corMatrix-method</code></td>
<td>(Matrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, matrix, CsparseMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, CsparseMatrix-method</code></td>
<td>(CsparseMatrix-class), 47</td>
</tr>
<tr>
<td><code>coerce, matrix, ddenseMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, ddenseMatrix-method</code></td>
<td>(ddenseMatrix-class), 49</td>
</tr>
<tr>
<td><code>coerce, matrix, denseMatrix-method</code></td>
<td>(Matrix-class), 49</td>
</tr>
<tr>
<td><code>coerce, matrix, denseMatrix-method</code></td>
<td>(denseMatrix-class), 52</td>
</tr>
<tr>
<td><code>coerce, matrix, dgCMatrix-method</code></td>
<td>(dgCMatrix-class), 53</td>
</tr>
<tr>
<td><code>coerce, matrix, diagonalMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, diagonalMatrix-method</code></td>
<td>(diagonalMatrix-class), 60</td>
</tr>
<tr>
<td><code>coerce, Matrix, dMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, dMatrix-method</code></td>
<td>(dMatrix-class), 64</td>
</tr>
<tr>
<td><code>coerce, matrix, double-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, dpoMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, dpoMatrix-method</code></td>
<td>(dpoMatrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, matrix, dppMatrix-method</code></td>
<td>(dpoMatrix-class), 67</td>
</tr>
<tr>
<td><code>coerce, matrix, dsparseMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, dsparseMatrix-method</code></td>
<td>(dsparseMatrix-class), 72</td>
</tr>
<tr>
<td><code>coerce, matrix, generalMatrix-method</code></td>
<td>(Matrix-class), 126</td>
</tr>
<tr>
<td><code>coerce, matrix, generalMatrix-method</code></td>
<td>(generalMatrix-class), 94</td>
</tr>
<tr>
<td><code>coerce, matrix, graph-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
<tr>
<td><code>coerce, matrix, graphNEL-method</code></td>
<td>(coerce-methods-graph), 40</td>
</tr>
</tbody>
</table>

**Note:** The list above includes all the methods mentioned in the image for coercion among different matrix classes. Each method is described with its associated class and method, along with a page number where it is mentioned (0-126).
coerce, matrix.csc, CsparseMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csc, dgCMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csc, Matrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csc, RsparseMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csc, sparseMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csr, CsparseMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csr, dgCMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csr, dgRMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csr, Matrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csr, RsparseMatrix-method
(coerce-methods-SparseM), 42

coerce, matrix.csr, sparseMatrix-method
(coerce-methods-SparseM), 42

coerce, pBunchKaufman, dtpMatrix-method
(BunchKaufman-class), 16
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>coerce,vector,dsparseMatrix-method</code></td>
<td>(dsparseMatrix-class), 72</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,generalMatrix-method</code></td>
<td>(generalMatrix-class), 94</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,ldenseMatrix-method</code></td>
<td>(ldenseMatrix-class), 112</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,lMatrix-method</code></td>
<td>(dMatrix-class), 64</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,lsparseMatrix-method</code></td>
<td>(lsparseMatrix-classes), 115</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,Matrix-method</code></td>
<td>(Matrix-class), 126</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,ndenseMatrix-method</code></td>
<td>(ndenseMatrix-class), 131</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,nMatrix-method</code></td>
<td>(nMatrix-class), 136</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,nsparseMatrix-method</code></td>
<td>(nsparseMatrix-classes), 140</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,RsparseMatrix-method</code></td>
<td>(RsparseMatrix-class), 163</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,sparseMatrix-method</code></td>
<td>(sparseMatrix-class), 179</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,TsparseMatrix-method</code></td>
<td>(TsparseMatrix-class), 196</td>
<td></td>
</tr>
<tr>
<td><code>coerce,vector,unpackedMatrix-method</code></td>
<td>(unpackedMatrix-class), 199</td>
<td></td>
</tr>
<tr>
<td><code>coerce-methods-graph</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>coerce-methods-SparseM</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>colMeans</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>colMeans,CsparseMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,denseMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,diagonalMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,dMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,indMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,RsparseMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,triangularMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans,TsparseMatrix-method</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>colMeans-methods-colSums-methods</code></td>
<td>(colSums-methods), 42</td>
<td></td>
</tr>
<tr>
<td><code>condest</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>complex</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>compMatrix</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>compMatrix-class</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>condest</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The page numbers indicate the location of these functions or methods within the document.
contrasts, 171

corMatrix, 75
corMatrix-class (dpoMatrix-class), 67
cov2cor, 63
cov2cor, packedMatrix-method (packedMatrix-class), 146
cov2cor, sparseMatrix-method (sparseMatrix-class), 179
cov2cor, unpackedMatrix-method (unpackedMatrix-class), 199
crossprod, 47, 55, 68, 100, 122, 124, 180
crossprod (matmult-methods), 122
crossprod, ANY, ANY-method (matmult-methods), 122
crossprod, ANY, Matrix-method (matmult-methods), 122
crossprod, ANY, RsparseMatrix-method (matmult-methods), 122
crossprod, ANY, TsparseMatrix-method (matmult-methods), 122
crossprod, CsparseMatrix, CsparseMatrix-method (matmult-methods), 122
crossprod, CsparseMatrix, ddenseMatrix-method (matmult-methods), 122
crossprod, CsparseMatrix, diagonalMatrix-method (matmult-methods), 122
crossprod, CsparseMatrix, matrix-method (matmult-methods), 122
crossprod, CsparseMatrix, missing-method (matmult-methods), 122
crossprod, CsparseMatrix, numLike-method (matmult-methods), 122
crossprod, ddenseMatrix, CsparseMatrix-method (matmult-methods), 122
crossprod, ddenseMatrix, dgeMatrix-method (matmult-methods), 122
crossprod, dtpMatrix, ddenseMatrix-method (matmult-methods), 122
crossprod, dtrMatrix, ddenseMatrix-method (matmult-methods), 122
crossprod, dtrMatrix, dtrMatrix-method (matmult-methods), 122
crossprod, dtpMatrix, dgeMatrix-method (matmult-methods), 122
crossprod, dtrMatrix, dgeMatrix-method (matmult-methods), 122
crossprod, indMatrix, matrix-method (matmult-methods), 122
crossprod, indMatrix, missing-method (matmult-methods), 122
crossprod, ldenseMatrix, ddenseMatrix-method (matmult-methods), 122
crossprod, ltrMatrix, dtrMatrix-method (matmult-methods), 122
crossprod, ldenseMatrix, ldenseMatrix-method (matmult-methods), 225
crossprod, ldenseMatrix, ldenseMatrix-method (matmult-methods), 222
crossprod, ldenseMatrix, lsparseMatrix-method (matmult-methods), 122
crossprod, ldenseMatrix, matrix-method (matmult-methods), 122
crossprod, ldenseMatrix, missing-method (matmult-methods), 122
crossprod, ldenseMatrix, ndenseMatrix-method (matmult-methods), 122
crossprod, lsparseMatrix, ldenseMatrix-method (matmult-methods), 122
crossprod, lsparseMatrix, lsparseMatrix-method (matmult-methods), 122
crossprod, Matrix, ANY-method (matmult-methods), 122
crossprod, matrix, CsparseMatrix-method (matmult-methods), 122
crossprod, matrix, dgeMatrix-method (matmult-methods), 122
crossprod, matrix, diagonalMatrix-method (matmult-methods), 122
crossprod, matrix, dtrMatrix-method (matmult-methods), 122
crossprod, Matrix, indMatrix-method (matmult-methods), 122
crossprod, matrix, indMatrix-method (matmult-methods), 122
crossprod, Matrix, Matrix-method (matmult-methods), 122
crossprod, Matrix, matrix-method (matmult-methods), 122
crossprod, Matrix, matrix-method (matmult-methods), 122
crossprod, Matrix, missing-method (matmult-methods), 122
crossprod, Matrix, numLike-method (matmult-methods), 122
crossprod, Matrix, pMatrix-method (matmult-methods), 122
crossprod, matrix, pMatrix-method (matmult-methods), 122
crossprod, Matrix, TsparseMatrix-method (matmult-methods), 122
crossprod, mMatrix, RsparseMatrix-method (matmult-methods), 122
crossprod, mMatrix, sparseVector-method (matmult-methods), 122

crossprod, ndenseMatrix, ddenseMatrix-method (matmult-methods), 122
crossprod, ndenseMatrix, ldenseMatrix-method (matmult-methods), 122
crossprod, ndenseMatrix, matrix-method (matmult-methods), 122
crossprod, ndenseMatrix, missing-method (matmult-methods), 122
crossprod, ndenseMatrix, ndenseMatrix-method (matmult-methods), 122
crossprod, ndenseMatrix, nsparseMatrix-method (matmult-methods), 122
crossprod, nsparseMatrix, ndenseMatrix-method (matmult-methods), 122
crossprod, nsparseMatrix, nsparseMatrix-method (matmult-methods), 122
crossprod, numLike, CsparseMatrix-method (matmult-methods), 122
crossprod, numLike, dgeMatrix-method (matmult-methods), 122
crossprod, numLike, Matrix-method (matmult-methods), 122
crossprod, numLike, sparseVector-method (matmult-methods), 122
crossprod, pMatrix, missing-method (matmult-methods), 122
crossprod, RsparseMatrix, ANY-method (matmult-methods), 122
crossprod, RsparseMatrix, diagonalMatrix-method (matmult-methods), 122
crossprod, RsparseMatrix, mMatrix-method (matmult-methods), 122
crossprod, sparseVector, missing-method (matmult-methods), 122
crossprod, sparseVector, mMatrix-method (matmult-methods), 122
crossprod, sparseVector, numLike-method (matmult-methods), 122
crossprod, sparseVector, sparseVector-method (matmult-methods), 122

crossprod, symmetricMatrix, ANY-method (matmult-methods), 122
crossprod, symmetricMatrix, Matrix-method (matmult-methods), 122
crossprod, symmetricMatrix, missing-method (matmult-methods), 122

crossprod, TsparseMatrix, ANY-method (matmult-methods), 122
crossprod, TsparseMatrix, diagonalMatrix-method
determinant, dgTMatrix, logical-method (dgTMatrix-class), 57
crossprod, TsparseMatrix, Matrix-method (matmult-methods), 122
crossprod, TsparseMatrix, Matrix-method (matmult-methods), 122
crossprod, TsparseMatrix, missing-method (matmult-methods), 122
crossprod, TsparseMatrix, TsparseMatrix-method (matmult-methods), 122
crossprod-methods, 54
crossprod-methods (matmult-methods), 122
CsparseMatrix, 11–13, 53, 58, 59, 69, 71, 76, 89, 90, 109, 115, 124, 140, 164, 172, 175–177, 190, 197
CsparseMatrix-class, 47
cumsum, 61
data.frame, 86, 180
dCHMsimpl, 36, 37, 200, 201
dCHMsimpl-class (CHMfactor-class), 23
dCHMsuper., 36, 37, 200, 201
dCHMsuper-class (CHMfactor-class), 23
ddenseMatrix, 52, 53, 81
ddenseMatrix-class, 49
ddiMatrix, 61, 82, 113
ddiMatrix-class, 49
denseLU, 82, 120, 131, 174
denseLU-class, 50
denseMatrix, 22, 27, 35, 51, 62, 69, 89, 90, 112, 119, 131, 146, 152, 156, 169, 195, 199
denseMatrix-class, 52
det, 127
det (Matrix-class), 126
determinant, 68, 78, 180
determinant, BunchKaufman, logical-method (BunchKaufman-class), 16
determinant, CHMfactor, logical-method (CHMfactor-class), 23
determinant, Cholesky, logical-method (Cholesky-class), 32
determinant, denseLU, logical-method (denseLU-class), 50
determinant, dgCMatrix, logical-method (dgCMatrix-class), 53
determinant, dgeMatrix, logical-method (dgeMatrix-class), 54
determinant, dgRMatrix, logical-method (dgRMatrix-class), 56
determinant, diagonalMatrix, logical-method (diagonalMatrix-class), 60
determinant, dpoMatrix, logical-method (dpoMatrix-class), 67
determinant, dppMatrix, logical-method (dppMatrix-class), 67
determinant, dsCMatrix, logical-method (dsCMatrix-class), 70
determinant, dspMatrix, logical-method (dsyMatrix-class), 74
determinant, dsRMatrix, logical-method (dsRMatrix-class), 73
determinant, dsTMatrix, logical-method (dsCMatrix-class), 70
determinant, dsyMatrix, logical-method (dsyMatrix-class), 74
determinant, indMatrix, logical-method (indMatrix-class), 99
determinant, Matrix, logical-method (Matrix-class), 126
determinant, Matrix, missing-method (Matrix-class), 126
determinant, MatrixFactorization, missing-method (MatrixFactorization-class), 130
determinant, pBunchKaufman, logical-method (BunchKaufman-class), 16
determinant, pCholesky, logical-method (Cholesky-class), 32
determinant, pMatrix, logical-method (pMatrix-class), 147
determinant, Schur, logical-method (Schur-class), 164
determinant, sparseLU, logical-method (sparseLU-class), 173
determinant, sparseQR, logical-method (sparseQR-class), 181
determinant, triangularMatrix, logical-method (triangularMatrix-class), 195
dgCMatrix-class, 53
dgeMatrix-class, 54
INDEX

convergence diagnostic (concordance), 27

diff, Matrix-method (Matrix-class), 126
dim, 127, 150, 162, 198
dim, Matrix-method (Matrix-class), 126
dim, MatrixFactorization-method (MatrixFactorization-class), 130
dim<-, denseMatrix-method (denseMatrix-class), 52
dim<-, sparseMatrix-method (sparseMatrix-class), 179
dim<-, sparseVector-method (sparseVector-class), 186
dimnames, 43, 50, 60, 65, 86, 94, 104, 105, 108, 113, 125, 127, 176, 193
dimnames, Matrix-method (Matrix-class), 126
dimnames, MatrixFactorization-method (MatrixFactorization-class), 130
dimnames, symmetricMatrix-method (symmetricMatrix-class), 193
dimnames<-, compMatrix, list-method (compMatrix-class), 44
dimnames<-, compMatrix, NULL-method (compMatrix-class), 44
dimnames<-, Matrix, list-method (Matrix-class), 126
dimnames<-, Matrix, NULL-method (Matrix-class), 126
dimnames<-, MatrixFactorization, list-method (MatrixFactorization-class), 130
dimnames<-, MatrixFactorization, NULL-method (MatrixFactorization-class), 130
dimScale, 63
dMatrix, 15, 49, 50, 63, 84
dMatrix-class, 64
dmperm, 65
double, 161, 172
dpoMatrix, 32, 33, 37, 75, 95, 132, 133, 199
dpoMatrix-class, 67
dppMatrix, 32, 33, 37, 75, 146
dppMatrix-class (dpoMatrix-class), 67
drop, abIndex-method (abIndex-class), 5
drop, Matrix-method (Matrix-class), 126
drop0, 15, 65, 69, 138, 185
dsCMatrix, 25, 26, 37, 54, 83, 90, 201–203
dgRMatrix, 72, 164
dgRMatrix-class, 56
dgTMatrix-class, 57
diag, 12, 59, 99, 131, 132
diag, CHMfactor-method (CHMfactor-class), 23
diag, Cholesky-method (Cholesky-class), 32
diag, CsparseMatrix-method (CsparseMatrix-class), 47
diag, diagonalMatrix-method (diagonalMatrix-class), 60
diag, indMatrix-method (indMatrix-class), 99
diag, packedMatrix-method (packedMatrix-class), 146
diag, pCholesky-method (pCholesky-class), 47
diag, packedMatrix-method (packedMatrix-class), 146
diag<-, CsparseMatrix-method (CsparseMatrix-class), 47
diag<-, diagonalMatrix-method (diagonalMatrix-class), 60
diag<-, indMatrix-method (indMatrix-class), 99
diag<-, packedMatrix-method (packedMatrix-class), 146
diag<-, RsparseMatrix-method (RsparseMatrix-class), 163
diag<-, TsparseMatrix-method (TsparseMatrix-class), 196
diag<-, unpackedMatrix-method (unpackedMatrix-class), 199
diag<-, unpackedMatrix-method (unpackedMatrix-class), 199
diagN2U(diagU2N), 61
Diagonal, 13, 49, 50, 58, 61, 113, 125, 177, 190
diagonalMatrix, 13, 22, 28, 31, 50, 58, 59, 90, 95, 108, 113, 122, 125
diagonalMatrix-class, 60
diagU2N, 61
diff, 127, 161
dsCMatrix-class, 70
dspMatrix, 49, 57, 59, 71, 73
dsparseMatrix-class, 72
dsparseVector-class
(sparseVector-class), 186
dspMatrix, 17, 20, 32, 147
dspMatrix-class (dsyMatrix-class), 74
dsrMatrix-class, 73
dstMatrix, 201, 203
dstMatrix-class (dsCMatrix-class), 70
dsyMatrix, 17, 18, 20, 32, 55, 68, 193, 200
dsyMatrix-class, 74
dtCMatrix, 25, 54, 62, 66, 82, 83, 174, 183
dtCMatrix-class, 75
dtpMatrix, 17, 33, 81, 82
dtpMatrix-class, 77
dtrMatrix, 17, 33, 55, 76, 78, 82, 83, 196
dtrMatrix-class, 79
dtrMatrix-class, 80
dtTMatrix-class (dtCMatrix-class), 75
eigen, 20, 21, 127
eigen (expand-methods), 81
expm (expand-methods), 84
expm (expm-methods), 84
expm, dMatrix-method
(expand-methods), 81
expm, dgeMatrix-method (expm-methods), 84
expm, ddMatrix-method (expm-methods), 84
expm, dtrMatrix-method (expm-methods), 84
denseLU-method
(expand-methods), 81
denseLU-method (expand-methods), 81
denseLU-method (expm-methods), 84
expm, dspMatrix-method (expm-methods), 84
expm, dsyMatrix-method (expm-methods), 84
expm, dtpMatrix-method (expm-methods), 84
expm, dtTMatrix-method (expm-methods), 84
expm, dtrMatrix-method (expm-methods), 84
expm, Matrix-method (expm-methods), 84
expm, matrix-method (expm-methods), 84
expm, methods, 84
extends, 125
externalFormats, 85
Extract, 191, 192
expand1, Cholesky-method (expand-methods), 81
expand1, Cholesky-method (expm-methods), 84
expand1, sparsLU-method
(expand-methods), 81
expand1, sparsLU-method
(expand-methods), 81
expand1, sparseLU-method
(expand-methods), 81
INDEX

fac2Sparse (sparse.model.matrix), 171
fac2sparse, 172
fac2sparse (sparse.model.matrix), 171
facmul (facmul-methods), 87
facmul-methods, 87
factor, 171, 172
FALSE, 104
fastMisc, 88
finite, 19, 28, 35, 36, 119, 152, 167, 169, 200
forceSymmetric, 107
forceSymmetric (forceSymmetric-methods), 92
forceSymmetric, CsparseMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, CsparseMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, diagonalMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, diagonalMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, indMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, indMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, matrix, character-method (forceSymmetric-methods), 92
forceSymmetric, matrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, packedMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, packedMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, RsparseMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, RsparseMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, TsparseMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, TsparseMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric, unpackedMatrix, character-method (forceSymmetric-methods), 92
forceSymmetric, unpackedMatrix, missing-method (forceSymmetric-methods), 92
forceSymmetric-methods, 92
format, 93, 94, 149, 180
format, sparseMatrix-method (sparseMatrix-class), 179
formatSparseM, 93, 151
formatSpMatrix, 93, 94, 180
formatSpMatrix (printSpMatrix), 149
function, 108, 162
generalMatrix, 59, 89, 90, 100, 177, 190, 195
generalMatrix-class, 94
get.gpar, 97
classDef, 150
classDef, 150
getValidity, 68, 193
graph, 40

head, Matrix-method (Matrix-class), 126
head, sparseVector-method (sparseVector-class), 186
Hilbert, 95

identical, 145
identity, 25
image, 96, 127
image (image-methods), 96
image, ANY-method (image-methods), 96
image, CHMfactor-method (image-methods), 96

image, dgTMatrix-method (image-methods), 96
image, Matrix-method (image-methods), 96

iMatrix-class (Matrix-notyet), 128
index, 191

index-class, 98
index-class, 98

indMatrix, 22, 69, 90, 147, 148
indMatrix-class, 99

Inf, 104
initialize, Matrix-method (Matrix-class), 128

initialize, sparseVector-method (sparseVector-class), 186
invertPerm, 101
invisible, 151

invPerm, 147, 148
invPerm (invertPerm), 101
is, 96
is.atomic, 9
is.finite, 103
is.finite (is.na-methods), 103
is.finite, abIndex-method (is.na-methods), 103
is.finite, dgeMatrix-method (is.na-methods), 103
is.finite, diagonalMatrix-method (is.na-methods), 103
is.finite, dsparseMatrix-method (is.na-methods), 103
is.finite, dspMatrix-method (is.na-methods), 103
is.finite, dtpMatrix-method (is.na-methods), 103
is.finite, dtrMatrix-method (is.na-methods), 103
is.finite, indMatrix-method (is.na-methods), 103
is.finite, lgeMatrix-method (is.na-methods), 103
is.finite, lspMatrix-method (is.na-methods), 103
is.finite, lsyMatrix-method (is.na-methods), 103
is.finite, ltpMatrix-method (is.na-methods), 103
is.finite, ltrMatrix-method (is.na-methods), 103
is.finite, nMatrix-method (is.na-methods), 103
is.finite, nsparseVector-method (is.na-methods), 103
is.finite, sparseVector-method (is.na-methods), 103
is.finite-methods (is.na-methods), 103
is.infinite, 103
is.infinite (is.na-methods), 103
is.infinite, abIndex-method (is.na-methods), 103
is.infinite, ddiMatrix-method (is.na-methods), 103
is.infinite, dgeMatrix-method (is.na-methods), 103
is.infinite, dsparseMatrix-method (is.na-methods), 103
is.infinite, dspMatrix-method (is.na-methods), 103
is.infinite, dtpMatrix-method (is.na-methods), 103
is.infinite, lMatrix-method (is.na-methods), 103
is.infinite-methods (is.na-methods), 103
is.na, 103
is.na (is.na-methods), 103
is.na, abIndex-method (is.na-methods), 103
is.na, dgeMatrix-method (is.na-methods), 103
is.na, diagonalMatrix-method (is.na-methods), 103
is.na, dsparseMatrix-method (is.na-methods), 103
is.na, dspMatrix-method (is.na-methods), 103
is.na, dtpMatrix-method (is.na-methods), 103
is.na, dtrMatrix-method (is.na-methods), 103
is.na, indMatrix-method (is.na-methods), 103
is.na, lgeMatrix-method (is.na-methods), 103
is.na, lMatrix-method (is.na-methods), 103
is.na, lspMatrix-method (is.na-methods), 103
is.na, lMatrix-method (is.na-methods), 103
is.na, lsyMatrix-method (is.na-methods), 103
is.na, ltpMatrix-method (is.na-methods), 103
is.na, ltrMatrix-method (is.na-methods), 103
is.na, nMatrix-method (is.na-methods), 103
is.na, nsparseVector-method (is.na-methods), 103
is.na, sparseVector-method (is.na-methods), 103
is.na-methods, 103
is.nan, 103
is.nan (is.na-methods), 103
is.nan, ddiMatrix-method (is.na-methods), 103
is.nan, dgeMatrix-method (is.na-methods), 103
is.nan, dspMatrix-method (is.na-methods), 103
is.nan, dsysMatrix-method (is.na-methods), 103
is.nan, dtpMatrix-method (is.na-methods), 103
is.nan, dtmMatrix-method (is.na-methods), 103
is.nan, inMatrix-method (is.na-methods), 103
is.nan, lMatrix-method (is.na-methods), 103
is.nan, lMatrix-method (is.na-methods), 103
is.nan, nMatrix-method (is.na-methods), 103
is.nan, sparseVector-method (is.na-methods), 103
is.nan, sparseVector-method (is.na-methods), 103
is.nan-methods (is.na-methods), 103
is.null, 104, 105
is.null.DN, 104
isDiagonal, 61
isDiagonal (isTriangular-methods), 107
isDiagonal, indMatrix-method (isTriangular-methods), 107
isDiagonal, matrix-method (isTriangular-methods), 107
isDiagonal, packedMatrix-method (isTriangular-methods), 107
isDiagonal, RsparseMatrix-method (isTriangular-methods), 107
isDiagonal, TsparseMatrix-method (isTriangular-methods), 107
isDiagonal, unpackedMatrix-method (isTriangular-methods), 107
isDiagonal-methods (isTriangular-methods), 107
isLDL, 170
isLDL (CHMfactor-class), 23
isSparseVector-class (sparseVector-class), 186
isPerm (invertPerm), 101
isSymmetric, 89, 107, 108, 133, 145, 193, 195, 196
isSymmetric (isSymmetric-methods), 105
isSymmetric, dgCMatrix-method (isSymmetric-methods), 105
isSymmetric, dgeMatrix-method (isSymmetric-methods), 105
isSymmetric, dgrMatrix-method (isSymmetric-methods), 105
isSymmetric, dtMMatrix-method (isSymmetric-methods), 105
isSymmetric, diagonalMatrix-method (isSymmetric-methods), 105
isSymmetric, dtCMatrix-method (isSymmetric-methods), 105
isSymmetric, dtTMatrix-method (isSymmetric-methods), 105
isSymmetric, dtrMatrix-method (isSymmetric-methods), 105
isSymmetric, lgCMatrix-method (isSymmetric-methods), 105
isSymmetric, lgeMatrix-method (isSymmetric-methods), 105
isSymmetric,lgRMatrix-method
  (isSymmetric-methods), 105
isSymmetric,lgTMatrix-method
  (isSymmetric-methods), 105
isSymmetric,ngCMatrix-method
  (isSymmetric-methods), 105
isSymmetric,ngeMatrix-method
  (isSymmetric-methods), 105
isSymmetric,ngRMatrix-method
  (isSymmetric-methods), 105
isSymmetric,ngTMatrix-method
  (isSymmetric-methods), 105
isSymmetric,symmetricMatrix-method
  (isSymmetric-methods), 105
isSymmetric,triangularMatrix-method
  (isSymmetric-methods), 105
isSymmetric-methods
  , 105, 193
isSymmetric.matrix
  , 106
isTriangular
  , 89, 145, 196
isTriangular
  (isTriangular-methods), 107
isTriangular, dgCMatrix-method
  (isTriangular-methods), 107
isTriangular, dgeMatrix-method
  (isTriangular-methods), 107
isTriangular, dgRMatrix-method
  (isTriangular-methods), 107
isTriangular, dgTMatrix-method
  (isTriangular-methods), 107
isTriangular, diagonalMatrix-method
  (isTriangular-methods), 107
isTriangular, indMatrix-method
  (isTriangular-methods), 107
isTriangular, lgCMatrix-method
  (isTriangular-methods), 107
isTriangular, lgeMatrix-method
  (isTriangular-methods), 107
isTriangular, lgRMatrix-method
  (isTriangular-methods), 107
isTriangular, lgTMatrix-method
  (isTriangular-methods), 107
isTriangular, matrix-method
  (isTriangular-methods), 107
isTriangular, ngCMatrix-method
  (isTriangular-methods), 107
isTriangular, ngeMatrix-method
  (isTriangular-methods), 107
isTriangular, ngRMatrix-method
  (isTriangular-methods), 107
isTriangular, ngTMatrix-method
  (isTriangular-methods), 107
isTriangular, symmetricMatrix-method
  (isTriangular-methods), 107
isTriangular, triangularMatrix-method
  (isTriangular-methods), 107
isTriangular-methods
  , 107
kappa
  , 127, 159
KhatriRao
  , 108
KNex
  , 110
kronecker
  , 13, 48, 53, 100, 108, 109, 111, 128
kronecker
  (kronecker-methods), 111
kronecker, CsparseMatrix, CsparseMatrix-method
  (kronecker-methods), 111
kronecker, CsparseMatrix, diagonalMatrix-method
  (kronecker-methods), 111
kronecker, CsparseMatrix, Matrix-method
  (kronecker-methods), 111
kronecker, denseMatrix, denseMatrix-method
  (kronecker-methods), 111
kronecker, denseMatrix, Matrix-method
  (kronecker-methods), 111
kronecker, diagonalMatrix, CsparseMatrix-method
  (kronecker-methods), 111
kronecker, diagonalMatrix, diagonalMatrix-method
  (kronecker-methods), 111
kronecker, diagonalMatrix, indMatrix-method
  (kronecker-methods), 111
kronecker, diagonalMatrix, Matrix-method
  (kronecker-methods), 111
kronecker, diagonalMatrix, RsparseMatrix-method
  (kronecker-methods), 111
kronecker, diagonalMatrix, TsparseMatrix-method
  (kronecker-methods), 111
kronecker, indMatrix, diagonalMatrix-method
  (kronecker-methods), 111
kronecker, indMatrix, indMatrix-method
  (kronecker-methods), 111
kronecker, indMatrix, Matrix-method
  (kronecker-methods), 111
kronecker, Matrix, matrix-method
  (kronecker-methods), 111
kronecker, Matrix, Matrix-method
  (kronecker-methods), 111
kronecker, Matrix, vector-method
  (kronecker-methods), 111
kronecker, RsparseMatrix, diagonalMatrix-method
  (kronecker-methods), 111
INDEX

\begin{itemize}
\item kronecker,RsparseMatrix,Matrix-method (kronecker-methods), 111
\item kronecker,RsparseMatrix,RsparseMatrix-method log,diagonalMatrix-method (diagonalMatrix-class), 60
\item kronecker,RsparseMatrix,RsparseMatrix-method log,sparseMatrix-method (sparseMatrix-class), 179
\item kronecker,TsparseMatrix,diagonalMatrix-method log,sparseVector-method (sparseVector-class), 186
\item kronecker,TsparseMatrix,Matrix-method Logic,ANY,Matrix-method (Matrix-class), 126
\item kronecker,TsparseMatrix,TsparseMatrix-method Logic,CsparseMatrix,CsparseMatrix-method (CsparseMatrix-class), 47
\item kronecker,vector,Matrix-method Logic,dMatrix,logical-method (dMatrix-class), 64
\item kronecker-methods, 111
\item ldenseMatrix, 52, 117, 118
\item ldenseMatrix-class, 112
\item ldMatrix, 15, 61
\item ldMatrix-class, 113
\item length, 59, 66, 138, 186
\item length,abIndex-method (abIndex-class), 5
\item length,Matrix-method (Matrix-class), 126
\item length,MatrixFactorization-method (MatrixFactorization-class), 130
\item length,sparseVector-method (sparseVector-class), 186
\item levelplot, 54, 56, 57, 96, 97, 127
\item lgCMatrix, 114
\item lgCMatrix-class (lsparseMatrix-classes), 115
\item lgeMatrix, 112, 117, 118
\item lgeMatrix-class, 114
\item lgRMatrix-class (lsparseMatrix-classes), 115
\item lgTMatrix-class (lsparseMatrix-classes), 115
\item list, 13, 45, 46, 60, 66, 97, 121, 127, 161, 172
\item lMatrix, 15, 112, 113, 116, 118, 123, 125, 131, 137, 141
\item lMatrix-class (dMatrix-class), 64
\item log,CsparseMatrix-method (CsparseMatrix-class), 47
\item log,ddenseMatrix-method (ddenseMatrix-class), 49
\item log,denseMatrix-method (denseMatrix-class), 52
\item log,dgeMatrix-method (dgeMatrix-class), 54
\item log,diagonalMatrix-method (diagonalMatrix-class), 60
\item log,dMatrix,logical-method (dMatrix-class), 64
\item log,dMatrix,numeric-method (dMatrix-class), 64
\item log,dMatrix,sparseVector-method (dMatrix-class), 64
\item log,ldenseMatrix,lsparseMatrix-method (ldenseMatrix-class), 112
\item log,lgCMATRIX,lgCMATRIX-method (lsparseMatrix-classes), 115
\item log,lgeMatrix,lgeMatrix-method (lgeMatrix-class), 114
\item log,lgTMatrix,lgTMatrix-method (lsparseMatrix-classes), 115
\item log,logical,dMatrix-method (dMatrix-class), 64
\item log,logical,lMatrix-method (dMatrix-class), 64
\item log,logical,nMatrix-method (nMatrix-class), 136
\item log,lsCMatrix,lsCMatrix-method (lsparseMatrix-classes), 115
\item log,lsCMatrix,ldenseMatrix-method (lsparseMatrix-classes), 115
\item log,lsMatrix,lsMatrix-method (lsparseMatrix-classes), 115
\item log,lMatrix,ANY-method (Matrix-class), 126
\end{itemize}
INDEX

Logic, Matrix, nMatrix-method
(Matrix-class), 126
Logic, ngeMatrix, ngeMatrix-method
(ngeMatrix-class), 135
Logic, nMatrix, logical-method
(nMatrix-class), 136
Logic, nMatrix, Matrix-method
(nMatrix-class), 136
Logic, nMatrix, nMatrix-method
(nMatrix-class), 136
Logic, nMatrix, numeric-method
(nMatrix-class), 136
Logic, nMatrix, sparseVector-method
(nMatrix-class), 136
Logic, numeric, dMatrix-method
(dMatrix-class), 64
Logic, numeric, lMatrix-method
(dMatrix-class), 64
Logic, numeric, nMatrix-method
(nMatrix-class), 136
Logic, sparseVector, dMatrix-method
(sparseVector-class), 186
Logic, sparseVector, lMatrix-method
(sparseVector-class), 186
Logic, sparseVector, nMatrix-method
(sparseVector-class), 186
Logic, triangularMatrix, diagonalMatrix-method
(triangularMatrix-class), 195
logical, 22, 59, 65, 68, 99, 100, 104,
106–108, 114, 121, 123, 125, 129,
137, 156, 187, 191
lsCMatrix, 193
lsCMatrix-class
(lsparseMatrix-classes), 115
lsCMatrix-class
(lsparseMatrix-classes), 115
lsCMatrix
sparseMatrix-class
(lsparseMatrix-classes), 115
lsCMatrix-class
(lsparseMatrix-classes), 115
lsRMatrix-class
(lsparseMatrix-classes), 115
lsTMatrix-class
(lsparseMatrix-classes), 115
lsyMatrix, 114
lsyMatrix-class, 117
ltCMatrix, 196
ltCMatrix-class
(lsparseMatrix-classes), 115
ltCMatrix-class
(ltrMatrix-class), 114, 200
ltRMatrix-class
(lsparseMatrix-classes), 115
ltrMatrix-class
(lsparseMatrix-classes), 115
ltrMatrix-class
(ltrMatrix-class), 118
ltrMatrix-class
(ltrMatrix-class), 118
ltrMatrix-class
(ltrMatrix-class), 118
ltTMatrix-class
(lsparseMatrix-classes), 115
LU, 51, 120, 174
lu, 20, 37, 45, 51, 54, 83, 131, 153, 167,
170, 174, 180
lu (lu-methods), 119
lu, denseMatrix-method (lu-methods), 119
lu, dgCMatrix-method (lu-methods), 119
lu, dgeMatrix-method (lu-methods), 119
lu, dgRMatrix-method (lu-methods), 119
lu, dgTMatrix-method (lu-methods), 119
lu, diagonalMatrix-method (lu-methods),
119
lu, dspMatrix-method (lu-methods), 119
lu, dsRMatrix-method (lu-methods), 119
lu, dsTMatrix-method (lu-methods), 119
lu, dsyMatrix-method (lu-methods), 119
lu, dtCMatrix-method (lu-methods), 119
lu, dtRMatrix-method (lu-methods), 119
lu, dtrMatrix-method (lu-methods), 119
lu, dtTMatrix-method (lu-methods), 119
lu, matrix-method (lu-methods), 119
lu, sparseMatrix-method (lu-methods), 119
LU-class (MatrixFactorization-class),
130
lu-methods, 119
mat2triplet, 121
Math, CsparseMatrix-method
(CsparseMatrix-class), 47
Math, ddenseMatrix-method
ddenseMatrix-class), 49
Math, denseMatrix-method
denseMatrix-class), 52
Math, dgeMatrix-method
dgeMatrix-class), 54

234
norm, dspMatrix, character-method (norm-methods), 139
norm, dsyMatrix, character-method (norm-methods), 139
norm, dtpMatrix, character-method (norm-methods), 139
norm, dtrMatrix, character-method (norm-methods), 139
norm, indMatrix, character-method (norm-methods), 139
norm, pMatrix, character-method (norm-methods), 139
norm, sparseMatrix, character-method (norm-methods), 139

Ops, abIndex, abIndex-method (abIndex-class), 5
Ops, abIndex, ANY-method (abIndex-class), 5
Ops, ANY, abIndex-method (abIndex-class), 5
Ops, ANY, ddiMatrix-method (ddiMatrix-class), 49
Ops, ANY, ldiMatrix-method (ldiMatrix-class), 113
Ops, ANY, Matrix-method (Matrix-class), 126
Ops, ANY, sparseVector-method (sparseVector-class), 186
Ops, atomicVector, sparseVector-method (atomicVector-class), 9
Ops, ddiMatrix, ANY-method (ddiMatrix-class), 49
Ops, ddiMatrix, ddiMatrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, dMatrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, ldiMatrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, logical-method (ddiMatrix-class), 49
Ops, ddiMatrix, Matrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, numeric-method (ddiMatrix-class), 49
Ops, ddiMatrix, sparseMatrix-method (ddiMatrix-class), 49
Ops, dMatrix, ddiMatrix-method (dMatrix-class), 64
Ops, dMatrix, dMatrix-method (dMatrix-class), 64
Ops, dMatrix, ldiMatrix-method (dMatrix-class), 64
Ops, dMatrix, Matrix-method (dMatrix-class), 64
Ops, dMatrix, nMatrix-method (dMatrix-class), 64
Ops, dpoMatrix, logical-method (dpoMatrix-class), 67
Ops, dpoMatrix, numeric-method

nrow, 195
nsCMatrix-class (nsparseMatrix-classes), 140
nsparseMatrix, 15, 59, 99, 121, 123, 136, 137, 162, 163, 176, 180
nsparseMatrix-class (nsparseMatrix-classes), 140
nsparseMatrix-classes, 140
nsparseVector, 104
nsparseVector-class (sparseVector-class), 186
nsyMatrix-class (nsyMatrix-class), 142
nsRMatrix-class (nsparseMatrix-classes), 140
nsTMatrix, 41
nsTMatrix-class (nsparseMatrix-classes), 140
nsyMatrix, 136
nsyMatrix-class, 142
ntCMatrix-class (nsparseMatrix-classes), 140
ntpMatrix-class (ntMatrix-class), 143
ntMatrix, 136
ntRMatrix-class (nsparseMatrix-classes), 140
ntMatrix-class, 143
ntTMatrix-class (nsparseMatrix-classes), 140
NULL, 86, 94, 104, 125, 150, 162, 176
number-class, 144
numeric, 5, 6, 9, 42, 43, 57, 68, 72, 110, 137
onenormest, 139
onenormest (condest), 45

Ops, 5, 61, 80, 187
INDEX

(dpoMatrix-class), 67
Ops,dppMatrix,logical-method
(dpoMatrix-class), 67
Ops,dppMatrix,numeric-method
(dpoMatrix-class), 67
Ops,dspMatrix,nsparseMatrix-method
(dspMatrix-class), 72
Ops,ldenseMatrix,ldenseMatrix-method
(ldenseMatrix-class), 112
Ops,ldiMatrix,ANY-method
(ldMatrix-class), 113
Ops,ldiMatrix,ddiMatrix-method
(ldMatrix-class), 113
Ops,ldiMatrix,dMatrix-method
(ldMatrix-class), 113
Ops,ldiMatrix,ldiMatrix-method
(ldMatrix-class), 113
Ops,ldiMatrix,logical-method
(ldMatrix-class), 113
Ops,ldiMatrix,Matrix-method
(ldMatrix-class), 113
Ops,ldiMatrix,numeric-method
(ldMatrix-class), 113
Ops,ldiMatrix,spMatrix-method
(ldMatrix-class), 113
Ops,Matrix,ddiMatrix-method
(Matrix-class), 126
Ops,Matrix,logical-method
(Matrix-class), 126
Ops,Matrix,numeric-method
(Matrix-class), 126
Ops,Matrix,NULL-method (Matrix-class), 126
Ops,Matrix,sparseVector-method
(Matrix-class), 126
Ops,Matrix,spMatrix-method
(Matrix-class), 131
Ops,numeric,dpoMatrix-method
(dpoMatrix-class), 67
Ops,numeric,dppMatrix-method
(dpoMatrix-class), 67
Ops,numeric,lMatrix-method
(dMatrix-class), 64
Ops,numeric,nMatrix-method
(nMatrix-class), 136
Ops,numeric,spMatrix-method
(spMatrix-class), 179
Ops,spMatrix,ddiMatrix-method
(spMatrix-class), 179
Ops,spMatrix,ldiMatrix-method
(spMatrix-class), 179
Ops,spMatrix,numeric-method
(spMatrix-class), 179
Ops,spMatrix,spMatrix-method
(spMatrix-class), 179
Ops,sparseVector,ANY-method
(sparseVector-class), 186
Ops,sparseVector,atomicVector-method
pack, 74, 80, 144, 147, 200
pack, dgeMatrix-method (pack), 144
pack, lgeMatrix-method (pack), 144
pack, matrix-method (pack), 144
pack, ngeMatrix-method (pack), 144
pack, packedMatrix-method (pack), 144
pack, sparseMatrix-method (pack), 144
pack, unpackedMatrix-method (pack), 144
pack-methods (pack), 144
packedMatrix, 19, 36, 52, 89, 90, 144, 200
packedMatrix-class, 146
panel.levelplot.raster, 96
paste, 172
pBunchKaufman, 19, 20, 82, 131, 146
pBunchKaufman-class
(BunchKaufman-class), 16
pCholesky, 36, 37, 82, 131, 146
pCholesky-class (Cholesky-class), 32
pcorMatrix-class (dpoMatrix-class), 67
plot.default, 96
pMatrix, 66, 82, 83, 99, 100, 102
pMatrix-class, 147
posdefify, 132–134
print, 61, 94, 96, 127, 149, 150, 179, 180
print, diagonalMatrix-method
(diagonalMatrix-class), 60
print, sparseMatrix-method
(sparseMatrix-class), 179
print.default, 94, 150
print, sparseMatrix
(sparseMatrix-class), 179
print.trellis, 97
printSpMatrix, 94, 127, 149, 179
printSpMatrix2 (printSpMatrix), 149
prod, 64
prod, ddiMatrix-method
(ddiMatrix-class), 49
prod, ldiMatrix-method
(ldiMatrix-class), 113
QR, 152, 182
qr, 20, 37, 45, 83, 120, 131, 152, 153, 155–157, 167, 170, 182, 183
qr (qr-methods), 151
qr, dgCMatrix-method (qr-methods), 151
qr, sparseMatrix-method (qr-methods), 151
QR-class (MatrixFactorization-class), 130
qr-methods, 151
qr.coef, 169, 170, 183
qr.coef, sparseQR, dgeMatrix-method
(sparseQR-class), 181
qr.coef, sparseQR, Matrix-method
(sparseQR-class), 181
qr.coef, sparseQR, matrix-method
(sparseQR-class), 181
qr.coef, sparseQR, numLike-method
(sparseQR-class), 181
qr.default, 152
qr.fitted, 183
qr.fitted, sparseQR, dgeMatrix-method
(sparseQR-class), 181
qr.fitted, sparseQR, Matrix-method
(sparseQR-class), 181
qr.fitted, sparseQR, matrix-method
(sparseQR-class), 181
qr.fitted, sparseQR, numLike-method
(sparseQR-class), 181
qr.Q, 183
qr.Q, sparseQR-method (sparseQR-class), 181
qr.qty, 183
qr.qty, sparseQR, dgeMatrix-method
(sparseQR-class), 181
qr.qty, sparseQR, Matrix-method
(sparseQR-class), 181
qr.qty, sparseQR, matrix-method
(sparseQR-class), 181
qr.qty, sparseQR, numLike-method
(sparseQR-class), 181
qr.qy, 183
qr.qy, sparseQR, dgeMatrix-method
(sparseQR-class), 181
qr.qy, sparseQR, Matrix-method
(sparseQR-class), 181
qr.qy, sparseQR, matrix-method
(sparseQR-class), 181
qr.qy, sparseQR, numLike-method
(sparseQR-class), 181
show,denseMatrix-method (denseMatrix-class), 52
show,diagonalMatrix-method (diagonalMatrix-class), 60
show,LU-method (MatrixFactorization-class), 130
show,MatrixFactorization-method (MatrixFactorization-class), 130
show,sparseMatrix-method (sparseMatrix-class), 179
show,sparseVector-method (sparseVector-class), 186
showClass, 50, 74, 117, 118, 142, 143
showMethods, 49, 53, 114, 117, 118, 136, 142, 143, 158, 194
signif, 64
signPerm (invertPerm), 101
skewpart, 107
skewpart (symmpart-methods), 194
skewpart,CsparseMatrix-method (symmpart-methods), 194
skewpart,diagonalMatrix-method (symmpart-methods), 194
skewpart,indMatrix-method (symmpart-methods), 194
skewpart,matrix-method (symmpart-methods), 194
skewpart,packedMatrix-method (symmpart-methods), 194
skewpart,RsparseMatrix-method (symmpart-methods), 194
skewpart,TsparseMatrix-method (symmpart-methods), 194
skewpart,unpackedMatrix-method (symmpart-methods), 194
skewpart-methods (symmpart-methods), 194
slot, 106
solve, 31, 47, 55, 68, 75, 158, 159, 168, 170
solve (solve-methods), 168
solve,ANY,ANY-method (solve-methods), 168
solve,BunchKaufman,dgeMatrix-method (solve-methods), 168
solve,BunchKaufman,missing-method (solve-methods), 168
solve,CMFfactor,dgCMatrix-method (solve-methods), 168
solve,CMFfactor,dgeMatrix-method (solve-methods), 168
solve,CMFfactor,missing-method (solve-methods), 168
solve,Cholesky,dgeMatrix-method (solve-methods), 168
solve,Cholesky,missing-method (solve-methods), 168
solve,CsparseMatrix,ANY-method (solve-methods), 168
solve,ddiMatrix,Matrix-method (solve-methods), 168
solve,ddiMatrix,matrix-method (solve-methods), 168
solve,ddiMatrix,missing-method (solve-methods), 168
solve,ddiMatrix,numLike-method (solve-methods), 168
solve,denseLU,dgeMatrix-method (solve-methods), 168
solve,denseLU,missing-method (solve-methods), 168
solve,denseMatrix,ANY-method (solve-methods), 168
solve,dgCMatrix,denseMatrix-method (solve-methods), 168
solve,dgCMatrix,matrix-method (solve-methods), 168
solve,dgCMatrix,missing-method (solve-methods), 168
solve,dgCMatrix,numLike-method (solve-methods), 168
solve,dgCMatrix,dgeMatrix-method (solve-methods), 168
solve,dgCMatrix,missing-method (solve-methods), 168
solve,dgCMatrix,numLike-method (solve-methods), 168
solve,dgeMatrix,ANY-method (solve-methods), 168
solve,dgeMatrix,dgeMatrix-method (solve-methods), 168
solve,dgeMatrix,missing-method (solve-methods), 168
solve,dgeMatrix,numLike-method (solve-methods), 168
solve,dpoMatrix,ANY-method (solve-methods), 168
solve, dppMatrix, ANY-method
(solve-methods), 168
solve, dsCMatrix, denseMatrix-method
(solve-methods), 168
solve, dsCMatrix, matrix-method
(solve-methods), 168
solve, dsCMatrix, missing-method
(solve-methods), 168
solve, dsCMatrix, numLike-method
(solve-methods), 168
solve, dsCMatrix, sparseMatrix-method
(solve-methods), 168
solve, dspMatrix, ANY-method
(solve-methods), 168
solve, dsyMatrix, ANY-method
(solve-methods), 168
solve, dtCMatrix, dgCMatrix-method
(solve-methods), 168
solve, dtCMatrix, dgeMatrix-method
(solve-methods), 168
solve, dtCMatrix, missing-method
(solve-methods), 168
solve, dtCMatrix, triangularMatrix-method
(solve-methods), 168
solve, dtpMatrix, dgeMatrix-method
(solve-methods), 168
solve, dtpMatrix, missing-method
(solve-methods), 168
solve, dtpMatrix, triangularMatrix-method
(solve-methods), 168
solve, dtrMatrix, dgeMatrix-method
(solve-methods), 168
solve, dtrMatrix, missing-method
(solve-methods), 168
solve, dtrMatrix, triangularMatrix-method
(solve-methods), 168
solve, indMatrix, ANY-method
(solve-methods), 168
solve, matrix, Matrix-method
(solve-methods), 168
solve, Matrix, sparseVector-method
(solve-methods), 168
solve, matrix, sparseVector-method
(solve-methods), 168
solve, MatrixFactorization, CsparseMatrix-method
(solve-methods), 168
solve, MatrixFactorization, dgCMatrix-method
(solve-methods), 168
solve, MatrixFactorization, dgeMatrix-method
(solve-methods), 168
solve, MatrixFactorization, diagonalMatrix-method
(solve-methods), 168
solve, MatrixFactorization, indMatrix-method
(solve-methods), 168
solve, MatrixFactorization, matrix-method
(solve-methods), 168
solve, MatrixFactorization, numLike-method
(solve-methods), 168
solve, MatrixFactorization, RsparseMatrix-method
(solve-methods), 168
solve, MatrixFactorization, sparseMatrix-method
(solve-methods), 168
solve, pBunchKaufman, dgeMatrix-method
(solve-methods), 168
solve, pBunchKaufman, missing-method
(solve-methods), 168
solve, pCholesky, dgeMatrix-method
(solve-methods), 168
solve, pMatrix, Matrix-method
(solve-methods), 168
solve, pMatrix, matrix-method
(solve-methods), 168
solve, pMatrix, missing-method
(solve-methods), 168
solve, pMatrix, numLike-method
(solve-methods), 168
solve, RsparseMatrix, ANY-method
(solve-methods), 168
solve, Schur, ANY-method
(solve-methods), 168
solve, Schur, ANY-method
(solve-methods), 168
solve, sparseLU, dgCMatrix-method
(solve-methods), 168
solve, sparseLU, dgeMatrix-method
(solve-methods), 168
solve, sparseLU, missing-method
(solve-methods), 168
solve, sparseQR, dgCMatrix-method
(solve-methods), 168
solve, sparseQR, dgeMatrix-method
(solve-methods), 168
solve, sparseQR, dgeMatrix-method
(solve-methods), 168
solve, sparseQR, missing-method
  (solve-methods), 168
solve, triangularMatrix, CsparseMatrix-method
  (solve-methods), 168
solve, triangularMatrix, denseMatrix-method
  (solve-methods), 168
solve, triangularMatrix, dgCMatrix-method
  (solve-methods), 168
solve, triangularMatrix, dgeMatrix-method
  (solve-methods), 168
solve, triangularMatrix, diagonalMatrix-method
  (solve-methods), 168
solve, triangularMatrix, indMatrix-method
  (solve-methods), 168
solve, triangularMatrix, matrix-method
  (solve-methods), 168
solve, triangularMatrix, numLike-method
  (solve-methods), 168
solve, triangularMatrix, RsparseMatrix-method
  (solve-methods), 168
solve, triangularMatrix, TsparseMatrix-method
  (solve-methods), 168
solve, TsparseMatrix, ANY-method
  (solve-methods), 168
solve-methods, 168
sort.list, 102
sparse.model.matrix, 171, 177, 180
sparseLU, 51, 82, 120, 131, 169
sparseLU-class, 173
SparseM.ontology, 42
sparseMatrix, 10, 12, 22, 25, 27, 35, 36, 42,
  43, 47, 48, 50, 53, 57, 60, 69, 70, 85,
  89, 93, 100, 108, 113, 119, 120, 122,
  125, 136, 150–152, 162–164, 169,
  171, 172, 174, 175, 180, 182, 186,
  187, 189, 190, 197
sparseMatrix-class, 179
sparseQR, 82, 131, 152, 153, 156, 169, 181
sparseQR-class, 181
sparseVector, 8, 15, 42, 43, 103, 122, 169,
  185, 185, 186, 187
sparseVector-class, 186
spMatrix, 57, 122, 151, 189, 197
stop, 191
str, 130
Subassign-methods, 191
Subscript-methods, 192
substring, 150
sum, 64
sum, ddiMatrix-method (ddiMatrix-class), 49
sum, ldiMatrix-method (ldiMatrix-class), 113
Summary, 187
summary, 122
Summary, abIndex-method (abIndex-class), 5
Summary, ddenseMatrix-method
  (ddenseMatrix-class), 49
Summary, ddiMatrix-method
  (ddiMatrix-class), 49
summary, diagonalMatrix-method
  (diagonalMatrix-class), 60
Summary, dsparseMatrix-method
  (dsparseMatrix-class), 72
Summary, indMatrix-method
  (indMatrix-class), 99
Summary, ldenseMatrix-method
  (ldenseMatrix-class), 112
Summary, ldiMatrix-method
  (ldiMatrix-class), 113
Summary, lMatrix-method (dMatrix-class), 64
Summary, Matrix-method (Matrix-class), 126
Summary, ndenseMatrix-method
  (ndenseMatrix-class), 131
Summary, nMatrix-method (nMatrix-class), 136
Summary, nsparseVector-method
  (sparseVector-class), 186
summary, sparseMatrix-method
  (sparseMatrix-class), 179
Summary, sparseVector-method
  (sparseVector-class), 186
svd, 127, 139, 156, 157
symmetricMatrix, 11, 31, 59, 63, 71, 73, 90,
  92, 95, 107, 117, 122, 123, 125, 138,
  145, 162, 195, 196
symmetricMatrix-class, 193
symmpart, 92, 107, 132, 133
symmpart (symmpart-methods), 194
symmpart, CsparseMatrix-method
  (symmpart-methods), 194
symmpart, diagonalMatrix-method
  (symmpart-methods), 194
symmpart, indMatrix-method
(symmpart-methods), 194
symmpart, matrix-method
(symmpart-methods), 194
symmpart, packedMatrix-method
(symmpart-methods), 194
symmpart, RsparseMatrix-method
(symmpart-methods), 194
symmpart, TsparseMatrix-method
(symmpart-methods), 194
symmpart, unpackedMatrix-method
(symmpart-methods), 194
symmpart-methods, 194
t, 75, 114, 117, 118, 122, 136, 142, 143, 156, 172
t, CsparseMatrix-method
(CsparseMatrix-class), 47
t, diagonalMatrix-method
(diagonalMatrix-class), 60
t, indMatrix-method (indMatrix-class), 99
t, packedMatrix-method
(packedMatrix-class), 146
t, pMatrix-method (pMatrix-class), 147
t, RsparseMatrix-method
(RsparseMatrix-class), 163
t, sparseVector-method
(sparseVector-class), 186
t, TsparseMatrix-method
(TsparseMatrix-class), 196
t, unpackedMatrix-method
(unpackedMatrix-class), 199
T2graph, 180
T2graph (coerce-methods-graph), 40
tail, Matrix-method (Matrix-class), 126
tail, sparseVector-method
(sparseVector-class), 186
tcrossprod, 16, 25, 122, 124, 200
tcrossprod (matmult-methods), 122
tcrossprod, ANY, ANY-method
(matmult-methods), 122
tcrossprod, ANY, Matrix-method
(matmult-methods), 122
tcrossprod, ANY, RsparseMatrix-method
(matmult-methods), 122
tcrossprod, ANY, symmetricMatrix-method
(matmult-methods), 122
tcrossprod, ANY, TsparseMatrix-method
(matmult-methods), 122
tcrossprod, CsparseMatrix, CsparseMatrix-method
(matmult-methods), 122
tcrossprod, CsparseMatrix, ddenseMatrix-method
(matmult-methods), 122
tcrossprod, CsparseMatrix, diagonalMatrix-method
(matmult-methods), 122
tcrossprod, CsparseMatrix, matrix-method
(matmult-methods), 122
tcrossprod, CsparseMatrix, missing-method
(matmult-methods), 122
tcrossprod, CsparseMatrix, numLike-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, CsparseMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, ddenseMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, dsCMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, dtrMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, ldenseMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, lsCMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, matrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, missing-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, ndenseMatrix-method
(matmult-methods), 122
tcrossprod, ddenseMatrix, nsCMatrix-method
(matmult-methods), 122
tcrossprod, denseMatrix, diagonalMatrix-method
(matmult-methods), 122
tcrossprod, dgeMatrix, dgeMatrix-method
(matmult-methods), 122
tcrossprod, dgeMatrix, matrix-method
(matmult-methods), 122
tcrossprod, dgeMatrix, missing-method
(matmult-methods), 122
tcrossprod, dgeMatrix, numLike-method
(matmult-methods), 122
tcrossprod, diagonalMatrix, CsparseMatrix-method
(matmult-methods), 122
tcrossprod, diagonalMatrix, denseMatrix-method
(matmult-methods), 122
tcrossprod, diagonalMatrix, diagonalMatrix-method
(matmult-methods), 122
tcrossprod, diagonalMatrix, matrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, missing-method (matmult-methods), 122
tcrossprod, diagonalMatrix, RsparseMatrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, TsparseMatrix-method (matmult-methods), 122
tcrossprod, dtrMatrix, dtrMatrix-method (matmult-methods), 122
tcrossprod, indMatrix, Matrix-method (matmult-methods), 122
tcrossprod, indMatrix, matrix-method (matmult-methods), 122
tcrossprod, indMatrix, missing-method (matmult-methods), 122
tcrossprod, ldenseMatrix, ddenseMatrix-method (matmult-methods), 122
tcrossprod, ldenseMatrix, ldenseMatrix-method (matmult-methods), 122
tcrossprod, ldenseMatrix, matrix-method (matmult-methods), 122
tcrossprod, ldenseMatrix, missing-method (matmult-methods), 122
tcrossprod, ldenseMatrix, ndenseMatrix-method (matmult-methods), 122
tcrossprod, Matrix, ANY-method (matmult-methods), 122
tcrossprod, matrix, CsparseMatrix-method (matmult-methods), 122
tcrossprod, matrix, dgeMatrix-method (matmult-methods), 122
tcrossprod, matrix, diagonalMatrix-method (matmult-methods), 122
tcrossprod, matrix, dsCMatrix-method (matmult-methods), 122
tcrossprod, matrix, dtrMatrix-method (matmult-methods), 122
tcrossprod, Matrix, indMatrix-method (matmult-methods), 122
tcrossprod, matrix, indMatrix-method (matmult-methods), 122
tcrossprod, matrix, lsCMatrix-method (matmult-methods), 122
tcrossprod, Matrix, Matrix-method (matmult-methods), 122
tcrossprod, Matrix, matrix-method (matmult-methods), 122
tcrossprod, sparseMatrix, sparseVector-method (matmult-methods), 122
updown, logical, matrix, CHMfactor-method
    (updown-methods), 200
updown-methods, 200
USCounties, 201
validObject, 48

warning, 19, 119
which, 61, 65, 112, 116, 131, 141
which, ldenseMatrix-method
    (ldenseMatrix-class), 112
which, ldiMatrix-method
    (ldiMatrix-class), 113
which, lsparseMatrix-method
    (lsparseMatrix-classes), 115
which, lsparseVector-method
    (sparseVector-class), 186
which, ndenseMatrix-method
    (ndenseMatrix-class), 131
which, nsparseMatrix-method
    (nsparseMatrix-classes), 140
which, nsparseVector-method
    (sparseVector-class), 186
writeMM, 180
writeMM (externalFormats), 85
writeMM, CsparseMatrix-method
    (externalFormats), 85
writeMM, sparseMatrix-method
    (externalFormats), 85
wrld_1deg, 202

xsparseVector-class
    (sparseVector-class), 186
xtabs, 177, 180

zapsmall, 70, 138
zapsmall, dMatrix-method
    (dMatrix-class), 64
zMatrix-class (Matrix-notyet), 128
z sparseVector-class
    (sparseVector-class), 186