Package ‘Matrix’

July 8, 2023

Version 1.6-0
Date 2023-06-30
Priority recommended
Title Sparse and Dense Matrix Classes and Methods
Description A rich hierarchy of sparse and dense matrix classes, including general, triangular, symmetric, and diagonal matrices with numeric, logical, or pattern entries. Efficient methods for operating on such matrices, often wrapping the 'BLAS', 'LAPACK', and 'SuiteSparse' libraries.
License GPL (>= 2) | file LICENCE
BugReports https://R-forge.R-project.org/tracker/?atid=294&group_id=61
Contact Matrix-authors@R-project.org
Depends R (>= 3.5.0), methods
Imports grDevices, graphics, grid, lattice, stats, utils
Suggests MASS, datasets, sfsmisc
Enhances SparseM, graph
LazyData no
LazyDataNote not possible, since we use data/*.R and our S4 classes
BuildResaveData no
Encoding UTF-8
NeedsCompilation yes
Author Douglas Bates [aut] (<https://orcid.org/0000-0001-8316-9503>),
 Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>),
 Mikael Jagan [aut] (<https://orcid.org/0000-0002-3542-2938>),
 Timothy A. Davis [ctb] (<https://orcid.org/0000-0001-7614-6899>),
 SuiteSparse libraries, notably CHOLMOD and AMD, collaborators
 listed in dir(pattern=`^[A-Z]+[.]txt$`, full.names=TRUE,
 system.file(``doc``, ``SuiteSparse``, package=``Matrix``)),
 Jens Oehlschlägel [ctb] (initial nearPD()),
R topics documented:

Jason Riedy [ctb] (<https://orcid.org/0000-0002-4345-4200>, GNU Octave's condest() and onenormest(), Copyright: Regents of the University of California),
R Core Team [ctb] (base R's matrix implementation)

Maintainer Martin Maechler <mmaechler+Matrix@gmail.com>
Repository CRAN
Date/Publication 2023-07-08 11:00:09 UTC

R topics documented:

abIndex-class ... 5
abliseq ... 6
all-methods .. 7
all.equal-methods ... 8
atomicVector-class .. 9
band-methods .. 9
bandSparse ... 11
bdiai ... 13
boolmatmult-methods 15
BunchKaufman-class ... 16
BunchKaufman-methods 19
CAex ... 20
cbind2-methods .. 21
CHMfactor-class ... 22
chol-methods .. 27
chol2inv-methods ... 30
Cholesky-class ... 31
Cholesky-methods .. 34
coerce-methods-graph 40
coerce-methods-SparseM 41
colSums-methods .. 42
compMatrix-class .. 44
condest ... 45
C sparseMatrix-class 47
ddenseMatrix-class ... 49
ddiMatrix-class ... 49
denseLU-class ... 50
denseMatrix-class .. 52
dgCMatrix-class ... 53
dgeMatrix-class ... 54
dgRMatrix-class ... 56
dgTMMatrix-class .. 57
Diagonal .. 58
diagonalMatrix-class 60
diagU2N .. 61
dimScale .. 63
dMatrix-class ... 64
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dmperm</td>
<td>65</td>
</tr>
<tr>
<td>dpoMatrix-class</td>
<td>67</td>
</tr>
<tr>
<td>drop0</td>
<td>69</td>
</tr>
<tr>
<td>dsCMatrix-class</td>
<td>70</td>
</tr>
<tr>
<td>dsparseMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dsRMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dsyMatrix-class</td>
<td>74</td>
</tr>
<tr>
<td>dtCMatrix-class</td>
<td>75</td>
</tr>
<tr>
<td>dtpMatrix-class</td>
<td>77</td>
</tr>
<tr>
<td>dtRMatrix-class</td>
<td>79</td>
</tr>
<tr>
<td>dtRMatrix-class</td>
<td>80</td>
</tr>
<tr>
<td>expand-methods</td>
<td>81</td>
</tr>
<tr>
<td>expm-methods</td>
<td>84</td>
</tr>
<tr>
<td>externalFormats</td>
<td>85</td>
</tr>
<tr>
<td>facmul-methods</td>
<td>87</td>
</tr>
<tr>
<td>fastMisc</td>
<td>88</td>
</tr>
<tr>
<td>forceSymmetric-methods</td>
<td>92</td>
</tr>
<tr>
<td>formatSparseM</td>
<td>93</td>
</tr>
<tr>
<td>generalMatrix-class</td>
<td>94</td>
</tr>
<tr>
<td>Hilbert</td>
<td>95</td>
</tr>
<tr>
<td>image-methods</td>
<td>96</td>
</tr>
<tr>
<td>index-class</td>
<td>98</td>
</tr>
<tr>
<td>indMatrix-class</td>
<td>99</td>
</tr>
<tr>
<td>invertPerm</td>
<td>101</td>
</tr>
<tr>
<td>is.na-methods</td>
<td>103</td>
</tr>
<tr>
<td>is.null.DN</td>
<td>104</td>
</tr>
<tr>
<td>isSymmetric-methods</td>
<td>105</td>
</tr>
<tr>
<td>isTriangular-methods</td>
<td>107</td>
</tr>
<tr>
<td>KhatriRao</td>
<td>108</td>
</tr>
<tr>
<td>KNex</td>
<td>110</td>
</tr>
<tr>
<td>kronecker-methods</td>
<td>111</td>
</tr>
<tr>
<td>ldenseMatrix-class</td>
<td>112</td>
</tr>
<tr>
<td>ldiMatrix-class</td>
<td>113</td>
</tr>
<tr>
<td>lgeMatrix-class</td>
<td>114</td>
</tr>
<tr>
<td>lsparseMatrix-classes</td>
<td>115</td>
</tr>
<tr>
<td>lsyMatrix-class</td>
<td>117</td>
</tr>
<tr>
<td>ltrMatrix-class</td>
<td>118</td>
</tr>
<tr>
<td>lu-methods</td>
<td>119</td>
</tr>
<tr>
<td>mat2triplet</td>
<td>121</td>
</tr>
<tr>
<td>matmult-methods</td>
<td>122</td>
</tr>
<tr>
<td>Matrix</td>
<td>124</td>
</tr>
<tr>
<td>Matrix-class</td>
<td>126</td>
</tr>
<tr>
<td>Matrix-notyet</td>
<td>128</td>
</tr>
<tr>
<td>MatrixClass</td>
<td>129</td>
</tr>
<tr>
<td>MatrixFactorization-class</td>
<td>130</td>
</tr>
<tr>
<td>ndenseMatrix-class</td>
<td>131</td>
</tr>
<tr>
<td>nearPD</td>
<td>132</td>
</tr>
<tr>
<td>ngeMatrix-class</td>
<td>135</td>
</tr>
</tbody>
</table>
nMatrix-class ... 136
nnzero-methods ... 137
norm-methods ... 139
nsparseMatrix-classes ... 140
nsyMatrix-class .. 142
nsyMatrix-class .. 143
number-class ... 144
pack ... 144
packedMatrix-class ... 146
pMatrix-class ... 147
printSpMatrix ... 149
qr-methods ... 151
rankMatrix ... 155
rcond-methods ... 158
rep2abI ... 160
replValue-class .. 161
rleDiff-class ... 161
rsparsematrix ... 162
RsparseMatrix-class ... 163
Schur-class ... 164
Schur-methods ... 166
solve-methods ... 168
sparse.model.matrix ... 171
sparseLU-class ... 173
sparseMatrix ... 175
sparseMatrix-class ... 179
sparseQR-class ... 181
sparseVector ... 185
sparseVector-class .. 186
spMatrix ... 189
Subassign-methods .. 191
Subscript-methods .. 192
symmetricMatrix-class ... 193
symmpart-methods .. 194
triangularMatrix-class ... 195
TsparseMatrix-class .. 196
uniqTsparse ... 197
unpackedMatrix-class ... 199
updown-methods ... 200
USCounties ... 201
wrld_1deg ... 202

Index 204
Description

The "abIndex" class, short for "Abstract Index Vector", is used for dealing with large index vectors more efficiently, than using integer (or numeric) vectors of the kind 2:1000000 or c(0:1e5, 1000:1e6).

Note that the current implementation details are subject to change, and if you consider working with these classes, please contact the package maintainers (packageDescription("Matrix")$Maintainer).

Objects from the Class

Objects can be created by calls of the form `new("abIndex", ...)`, but more easily and typically either by `as(x, "abIndex")` where `x` is an integer (valued) vector, or directly by `abIseq()` and combination `c(...)` of such.

Slots

- `kind`: a character string, one of ("int32", "double", "rleDiff"), denoting the internal structure of the abIndex object.
- `x`: Object of class "numLike"; is used (i.e., not of length 0) only iff the object is not compressed, i.e., currently exactly when `kind != "rleDiff"`.
- `rleD`: object of class "rleDiff", used for compression via `rle`.

Methods

- `as.numeric`, `as.integer`, `as.vector` signature(x = "abIndex")...
- `[` signature(x = "abIndex", i = "index", j = "ANY", drop = "ANY")...
- `coerce` signature(from = "numeric", to = "abIndex")...
- `coerce` signature(from = "abIndex", to = "numeric")...
- `coerce` signature(from = "abIndex", to = "integer")...
- `length` signature(x = "abIndex")...
- `Ops` signature(e1 = "numeric", e2 = "abIndex") These and the following arithmetic and logic operations are not yet implemented; see `Ops` for a list of these (S4) group methods.
- `Ops` signature(e1 = "abIndex", e2 = "abIndex")...
- `Ops` signature(e1 = "abIndex", e2 = "numeric")...
- `Summary` signature(x = "abIndex")...
- `show` ("abIndex"): simple `show` method, building on `show(<rleDiff>)`.
- `is.na` ("abIndex"): works analogously to regular vectors.
- `is.finite, is.infinite` ("abIndex"): ditto.
Note

This is currently experimental and not yet used for our own code. Please contact us (packageDescription("Matrix")$Maintainer) if you plan to make use of this class.

Partly builds on ideas and code from Jens Oehlschlaegel, as implemented (around 2008, in the GPL'ed part of) package \texttt{ff}.

See Also

\texttt{rle} (base) which is used here; \texttt{numeric}

Examples

showClass("abIndex")
ii <- c(-3:40, 20:70)
str(ai <- as(ii, "abIndex"))# note
ai # -> show() method

stopifnot(identical(-3:20,
 as(abIseq1(-3,20), "vector")))
length.out desired length of the sequence. A non-negative number, which for seq and seq.int will be rounded up if fractional.
along.with take the length from the length of this argument.
... in general an arbitrary number of R objects; here, when the first is an "abIndex" vector, these arguments will be concatenated to a new "abIndex" object.

Value
An abstract index vector, i.e., object of class "abIndex".

See Also
the class abIndex documentation; rep2abI() for another constructor; rle (base).

Examples
stopifnot(identical(-3:20,
as(abIseq1(-3,20), "vector")))

try(## (arithmetic) not yet implemented
abIseq(1, 50, by = 3)
)

Examples

```r
M <- Matrix(1:12 +0, 3,4)
all(M >= 1) # TRUE
any(M < 0 ) # FALSE
MN <- M; MN[2,3] <- NA; MN
all(MN >= 0) # NA
any(MN < 0) # NA
any(MN < 0, na.rm = TRUE) # -> FALSE
```

Description

Methods for function `all.equal()` (from R package `base`) are defined for all `Matrix` classes.

Methods

- `target = "Matrix", current = "Matrix"` \n- `target = "ANY", current = "Matrix"` \n- `target = "Matrix", current = "ANY"` these three methods are simply using `all.equal.numeric` directly and work via `as.vector()`.

There are more methods, notably also for "sparseVector"’s, see `showMethods("all.equal")`.

Examples

```r
showMethods("all.equal")

(A <- spMatrix(3,3, i= c(1:3,2:1), j=c(3:1,1:2), x = 1:5))
ex <- expand(lu. <- lu(A))
stopifnot( all.equal(as(A[lu.@p + 1L, lu.@q + 1L], "CsparseMatrix"),
   lu.@L %*% lu.@U),
   with(ex, all.equal(as(P %*% A %*% t(Q), "CsparseMatrix"),
   L %*% U)),
   with(ex, all.equal(as(A, "CsparseMatrix"),
   t(P) %*% L %*% U %*% Q)))
```
Virtual Class "atomicVector" of Atomic Vectors

Description

The class "atomicVector" is a virtual class containing all atomic vector classes of base R, as also implicitly defined via is.atomic.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

In the Matrix package, the "atomicVector" is used in signatures where typically "old-style" "matrix" objects can be used and can be substituted by simple vectors.

Extends

The atomic classes "logical", "integer", "double", "numeric", "complex", "raw" and "character" are extended directly. Note that "numeric" already contains "integer" and "double", but we want all of them to be direct subclasses of "atomicVector".

Author(s)

Martin Maechler

See Also

is.atomic, integer, numeric, complex, etc.

Examples

showClass("atomicVector")
Usage

band(x, k1, k2, ...)
triu(x, k = 0L, ...)
tril(x, k = 0L, ...)

Arguments

x a matrix-like object
k,k1,k2 integers specifying the diagonals that are not set to zero. These are interpreted relative to the main diagonal, which is k=0. Positive and negative values of k indicate diagonals above and below the main diagonal, respectively.
...
optional arguments passed methods (currently unused by package Matrix)

Details

triu(x, k) is equivalent to band(x, k, dim(x)[2]). Similarly, tril(x, k) is equivalent to band(x, -dim(x)[1], k).

Value

An object of a suitable matrix class, inheriting from triangularMatrix where appropriate. It inherits from sparseMatrix if and only if x does.

Methods

x = "CsparseMatrix" method for compressed, sparse, column-oriented matrices.

See Also

bandSparse for the construction of a banded sparse matrix directly from its non-zero diagonals.

Examples

```r
## A random sparse matrix :
set.seed(7)
m <- matrix(0, 5, 5)
m[sample(length(m), size = 14)] <- rep(1:9, length=14)
(mm <- as(m, "CsparseMatrix"))

tril(mm)       # lower triangle
tril(mm, -1)   # strict lower triangle
triu(mm, 1)    # strict upper triangle
```
bandSparse

Construct Sparse Banded Matrix from (Sup-/Super-) Diagonals

Description

Construct a sparse banded matrix by specifying its non-zero sup- and super-diagonals.

Usage

bandSparse(n, m = n, k, diagonals, symmetric = FALSE, repr = "C", giveCsparse = (repr == "C"))

Arguments

n,m the matrix dimension \((n, m) = (nrow, ncol)\).

k integer vector of “diagonal numbers”, with identical meaning as in \texttt{band}(\ast, k), i.e., relative to the main diagonal, which is \(k=0\).

diagonals optional list of sub-/super- diagonals; if missing, the result will be a pattern matrix, i.e., inheriting from class \texttt{nMatrix}.

diagonals can also be \(n' \times d\) matrix, where \(d <= \text{length}(k)\) and \(n' >= \min(n, m)\). In that case, the sub-/super- diagonals are taken from the columns of diagonals, where only the first several rows will be used (typically) for off-diagonals.

symmetric logical; if true the result will be symmetric (inheriting from class \texttt{symmetricMatrix}) and only the upper or lower triangle must be specified (via \(k\) and \texttt{diagonals}).

repr character string, one of "C", "T", or "R", specifying the sparse representation to be used for the result, i.e., one from the super classes \texttt{CsparseMatrix}, \texttt{TsparseMatrix}, or \texttt{RsparseMatrix}.

Examples

```r
band(mm, -1, 2) # general band
(m5 <- Matrix(rnorm(25), ncol = 5))
tril(m5) # lower triangle
tril(m5, -1) # strict lower triangle
triu(m5, 1) # strict upper triangle
band(m5, -1, 2) # general band
(m65 <- Matrix(rnorm(30), ncol = 5)) # not square
triu(m65) # result not "dtrMatrix" unless square
(sm5 <- crossprod(mm)) # symmetric
    band(sm5, -1, 1)# "dsyMatrix": symmetric band preserves symmetry property
    as(band(sm5, -1, 1), "sparseMatrix")# often preferable
    (sm <- round(crossprod(triu(mm/2)))) # sparse symmetric ("dsC")
band(sm, -1, 1) # remains "dsC", *however*
band(sm, -2, 1) # -> "dgC"
```
giveCsparse (deprecated, replaced with repr): logical indicating if the result should be a CsparseMatrix or a TsparseMatrix, where the default was TRUE, and now is determined from repr; very often Csparse matrices are more efficient subsequently, but not always.

Value

a sparse matrix (of class CsparseMatrix) of dimension $n \times m$ with diagonal “bands” as specified.

See Also

band, for extraction of matrix bands; bdiag, diag, sparseMatrix, Matrix.

Examples

diags <- list(1:30, 10*(1:20), 100*(1:20))
s1 <- bandSparse(13, k = -c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
s1
s2 <- bandSparse(13, k = c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
stopifnot(identical(s1, t(s2)), is(s1,"dsCMatrix"))

a pattern Matrix of *full* (sub-)diagonals:
bk <- c(0:4, 7,9)
(s3 <- bandSparse(30, k = bk, symm = TRUE))

If you want a pattern matrix, but with "sparse"-diagonals,
you currently need to go via logical sparse:
llis <- lapply(list(rpois(20, 2), rpois(20, 1), rpois(20, 3))[c(1:3, 2:3, 3:2)], as.logical)
(s4 <- bandSparse(20, k = bk, symm = TRUE, diag = llis))
(s4. <- as(drop0(s4), "nsparseMatrix"))

n <- 1e4
bk <- c(0:5, 7,11)
bMat <- matrix(1:8, n, 8, byrow=TRUE)
blis <- as.data.frame(bMat)
B <- bandSparse(n, k = bk, diag = blis)
Bs <- bandSparse(n, k = bk, diag = blis, symmetric=TRUE)
B [1:15, 1:30]
Bs[1:15, 1:30]

can use a list *or* a matrix for specifying the diagonals:
stopifnot(identical(B, bandSparse(n, k = bk, diag = bMat)),
identical(Bs, bandSparse(n, k = bk, diag = bMat, symmetric=TRUE)),
inherits(B, "dtCMatrix") # triangular!)
bdiag

Construct a Block Diagonal Matrix

Description

Build a block diagonal matrix given several building block matrices.

Usage

bdiag(...)
.bdiag(lst)

Arguments

... individual matrices or a list of matrices.
 lst non-empty list of matrices.

Details

For non-trivial argument list, bdiag() calls .bdiag(). The latter maybe useful to programmers.

Value

A sparse matrix obtained by combining the arguments into a block diagonal matrix.
The value of bdiag() inherits from class CsparseMatrix, whereas .bdiag() returns a TsparseMatrix.

Note

This function has been written and is efficient for the case of relatively few block matrices which are typically sparse themselves.
It is currently inefficient for the case of many small dense block matrices. For the case of many dense $k \times k$ matrices, the bdiag.m() function in the ‘Examples’ is an order of magnitude faster.

Author(s)

Martin Maechler, built on a version posted by Berton Gunter to R-help; earlier versions have been posted by other authors, notably Scott Chasalow to S-news. Doug Bates’s faster implementation builds on TsparseMatrix objects.

See Also

Diagonal for constructing matrices of class diagonalMatrix, or kronecker which also works for "Matrix" inheriting matrices.
bandSparse constructs a banded sparse matrix from its non-zero sub-/super - diagonals.
Note that other CRAN R packages have own versions of bdiag() which return traditional matrices.
Examples

bdiag(matrix(1:4, 2), diag(3))
combine "Matrix" class and traditional matrices:
bdiag(Diagonal(2), matrix(1:3, 3, 4), diag(3:2))

mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1:3:6), 100:101)
bdiag(mlist)
stopifnot(identical(bdiag(mlist),
 bdiag(lapply(mlist, as.matrix))))

ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"),
 rep(list(Diagonal(2, x=TRUE)), 3))
mln <- c(ml, Diagonal(x = 1:3))
stopifnot(is(bdiag(ml), "lsparseMatrix"),
 is(bdiag(mln), "dsparseMatrix"))

random (diagonal-)block-triangular matrices:
rblockTri <- function(nb, max.ni, lambda = 3) {
 .bdiag(replicate(nb, {
 n <- sample.int(max.ni, 1)
 tril(Matrix(rpois(n * n, lambda = lambda), n, n)))))
}

(T4 <- rblockTri(4, 10, lambda = 1))
image(T1 <- rblockTri(12, 20))

Fast version of Matrix :: .bdiag() -- for the case of many (k x k) matrices:
@param lmat list(<mat1>, <mat2>,, <mat_N>) where each mat_j is a k x k 'matrix'
@return a sparse (N*k x N*k) matrix of class \code{Matrix::denseMatrix}.

bdiag_m <- function(lmat) {
 ## Copyright (C) 2016 Martin Maechler, ETH Zurich
 if(!length(lmat)) return(new("dgCMatrix"))
 stopifnot(is.list(lmat), is.matrix(lmat[[1]], k x k)
 all(vapply(lmat, dim, integer(2)) == k)) # all of them

 N <- length(lmat)
 if(N * k > .Machine$integer.max)
 stop("resulting matrix too large; would be M x M, with M="N+k

 M <- as.integer(N * k)
 ## result: an M x M matrix
 new("dgCMatrix", Dim = c(M,M),
 'i' maybe there's a faster way (w/o matrix indexing), but elegant?
 i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]),
 p = k * 0L:M,
 x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE))
)
}

l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4, 4),
 simplify=FALSE)
dim(T12 <- bdiag_m(l12))# 48 x 48
Description

For boolean or “pattern” matrices, i.e., R objects of class `nMatrix`, it is natural to allow matrix products using boolean instead of numerical arithmetic.

In package Matrix, we use the binary operator `&` (aka “infix”) function for this and provide methods for all our matrices and the traditional R matrices (see `matrix`).

Value

a pattern matrix, i.e., inheriting from "nMatrix", or an "ldiMatrix" in case of a diagonal matrix.

Methods

We provide methods for both the “traditional” (R base) matrices and numeric vectors and conceptually all matrices and `sparseVectors` in package Matrix.

```r
signature(x = "ANY", y = "ANY")
signature(x = "ANY", y = "Matrix")
signature(x = "Matrix", y = "ANY")
signature(x = "mMatrix", y = "mMatrix")
signature(x = "nMatrix", y = "nMatrix")
signature(x = "nMatrix", y = "nsparseMatrix")
signature(x = "nsparseMatrix", y = "nMatrix")
signature(x = "nsparseMatrix", y = "nsparseMatrix")
signature(x = "sparseVector", y = "mMatrix")
signature(x = "mMatrix", y = "sparseVector")
signature(x = "sparseVector", y = "sparseVector")
```

Note

These boolean arithmetic matrix products had been newly introduced for Matrix 1.2.0 (March 2015). Its implementation has still not been tested extensively.

Originally, it was left unspecified how non-structural zeros, i.e., 0’s as part of the `@x` slot should be treated for numeric ("dMatrix") and logical ("lMatrix") sparse matrices. We now specify that boolean matrix products should behave as if applied to `drop0(M)`, i.e., as if dropping such zeros from the matrix before using it.

Equivalently, for all matrices M, boolean arithmetic should work as if applied to M != 0 (or M != FALSE).

The current implementation ends up coercing both x and y to (virtual) class `nsparseMatrix` which may be quite inefficient for dense matrices. A future implementation may well return a matrix with different class, but the “same” content, i.e., the same matrix entries m_{i,j}.
BunchKaufman-class

Description

Classes `BunchKaufman` and `pBunchKaufman` represent Bunch-Kaufman factorizations of $n \times n$ real, symmetric matrices A, having the general form

$$A = U D_U U' = L D_L L'$$

where D_U and D_L are symmetric, block diagonal matrices composed of b_U and b_L 1×1 or 2×2 diagonal blocks; $U = \prod_{k=1}^{b_U} P_k U_k$ is the product of b_U row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and $L = \prod_{k=1}^{b_L} P_k L_k$ is the product of b_L row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in 1 or 2 columns.

These classes store the nonzero entries of the $2b_U + 1$ or $2b_L + 1$ factors, which are individually sparse, in a dense format as a vector of length nn (`BunchKaufman`) or $n(n+1)/2$ (`pBunchKaufman`), the latter giving the “packed” representation.

Slots

- `Dim`, `Dimnames` inherited from virtual class `MatrixFactorization`.

See Also

- `%*%`, `crossprod()`, or `tcrossprod()`, for (regular) matrix product methods.

Examples

```r
crossprod(N) # -> sparse pattern
```
BunchKaufman-class

uplo a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn how the x slot is partitioned.

x a numeric vector of length n*n (BunchKaufman) or n*(n+1)/2 (pBunchKaufman), where n=Dim[1]. The details of the representation are specified by the manual for LAPACK routines dsytrf and dsptrf.

perm an integer vector of length n=Dim[1] specifying row and column interchanges as described in the manual for LAPACK routines dsytrf and dsptrf.

Extends

Class BunchKaufmanFactorization, directly. Class MatrixFactorization, by class BunchKaufmanFactorization, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("BunchKaufman", ...) or new("pBunchKaufman", ...), but they are more typically obtained as the value of BunchKaufman(x) for x inheriting from dsyMatrix or dspMatrix.

Methods

coerce signature(from = "BunchKaufman", to = "dtrMatrix"): returns a dtrMatrix, useful for inspecting the internal representation of the factorization; see ‘Note’.

coerce signature(from = "pBunchKaufman", to = "dtpMatrix"): returns a dtpMatrix, useful for inspecting the internal representation of the factorization; see ‘Note’.

determinant signature(from = "p?BunchKaufman", logarithm = "logical"): computes the determinant of the factorized matrix A or its logarithm.

expand1 signature(x = "p?BunchKaufman"): see expand1-methods.

expand2 signature(x = "p?BunchKaufman"): see expand2-methods.

solve signature(a = "p?BunchKaufman", b = .): see solve-methods.

Note

In Matrix < 1.6-0, class BunchKaufman extended dtrMatrix and class pBunchKaufman extended dtpMatrix, reflecting the fact that the internal representation of the factorization is fundamentally triangular: there are n(n+1)/2 “parameters”, and these can be arranged systematically to form an n x n triangular matrix. Matrix 1.6-0 removed these extensions so that methods would no longer be inherited from dtrMatrix and dtpMatrix. The availability of such methods gave the wrong impression that BunchKaufman and pBunchKaufman represent a (singular) matrix, when in fact they represent an ordered set of matrix factors.

The coercions as(., "dtrMatrix") and as(., "dtpMatrix") are provided for users who understand the caveats.
References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.

See Also

Class dsysMatrix and its packed counterpart.

Generic functions BunchKaufman, expand1, and expand2.

Examples

class("BunchKaufman")

set.seed(1)

n <- 6
(A <- forceSymmetric(Matrix(rnorm(n * n), n, n)))

With dimnames, to see that they are propagated:
dimnames(A) <- rep.int(list(paste0("x", seq_len(n))), 2L)

(bk.A <- BunchKaufman(A))
str(e.bk.A <- expand2(bk.A, complete = FALSE), max.level = 2L)
str(E.bk.A <- expand2(bk.A, complete = TRUE), max.level = 2L)

Underlying LAPACK representation
(m.bk.A <- as(bk.A, "dtrMatrix"))
stopifnot(identical(as(m.bk.A, "matrix"), 'dim<-'(bk.A@x, bk.A@Dim)))

Number of factors is 2*b+1, b <= n, which can be nontrivial ...
(b <- (length(E.bk.A) - 1L) %/% 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ U DU U', U := prod(Pk Uk) in floating point
stopifnot(exprs = {
identical(names(e.bk.A), c("U", "DU", "U."))
identical(e.bk.A[['U']], Reduce("%*%", E.bk.A[seq_len(b)]))
identical(e.bk.A[['U.']], t(e.bk.A[['U']]))
ae(A, with(e.bk.A, U %*% DU %*% U.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(bk.A)),
identical(solve(A, b), solve(bk.A, b)))
BunchKaufman-methods

Methods for Bunch-Kaufman Factorization

Description

Computes the Bunch-Kaufman factorization of an \(n \times n \) real, symmetric matrix \(A \), which has the general form

\[
A = U D_U U' = L D_L L'
\]

where \(D_U \) and \(D_L \) are symmetric, block diagonal matrices composed of \(b_U \) and \(b_L \) \(1 \times 1 \) or \(2 \times 2 \) diagonal blocks; \(U = \prod_{k=1}^{b_U} P_k U_k \) is the product of \(b_U \) row-permuted unit upper triangular matrices, each having nonzero entries above the diagonal in 1 or 2 columns; and \(L = \prod_{k=1}^{b_L} P_k L_k \) is the product of \(b_L \) row-permuted unit lower triangular matrices, each having nonzero entries below the diagonal in 1 or 2 columns.

Methods are built on LAPACK routines \texttt{dsytrf} and \texttt{dsptrf}.

Usage

\begin{verbatim}
BunchKaufman(x, ...)
S4 method for signature 'dsyMatrix'
BunchKaufman(x, warnSing = TRUE, ...)
S4 method for signature 'dspMatrix'
BunchKaufman(x, warnSing = TRUE, ...)
S4 method for signature 'matrix'
BunchKaufman(x, uplo = "U", ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} a finite symmetric matrix or \texttt{Matrix} to be factorized. If \texttt{x} is square but not symmetric, then it will be treated as symmetric; see \texttt{uplo}.
 \item \texttt{warnSing} a logical indicating if a warning should be signaled for singular \texttt{x}.
 \item \texttt{uplo} a string, either "U" or "L", indicating which triangle of \texttt{x} should be used to compute the factorization.
 \item \ldots further arguments passed to or from methods.
\end{itemize}

Value

An object representing the factorization, inheriting from virtual class \texttt{BunchKaufmanFactorization}. The specific class is \texttt{BunchKaufman} unless \texttt{x} inherits from virtual class \texttt{packedMatrix}, in which case it is \texttt{pBunchKaufman}.

References

The LAPACK source code, including documentation; see \url{https://netlib.org/lapack/double/dsytrf.f} and \url{https://netlib.org/lapack/double/dsptrf.f}.

The example provided shows how to create and manipulate a sparse matrix in R using the Matrix package. The code includes steps to load the matrix, convert it to a symmetric matrix, and then perform factorizations using the `BunchKaufman` function. The code also demonstrates how to expand the factorization and compare it with the original matrix using the `Reduce` function.

Description

An example of a sparse matrix for which the `eigen()` function seemed to be difficult, an unscaled version of this has been posted to the web, accompanying an E-mail to R-help (https://stat.ethz.ch/mailman/listinfo/r-help), by Casper J Albers, Open University, UK.

Usage

```r
data(CAex)
```

Format

This is a 72 × 72 symmetric matrix with 216 non-zero entries in five bands, stored as sparse matrix of class `dgCMatrix`.

See Also

Classes `BunchKaufman` and `pBunchKaufman` and their methods.
Classes `dsyMatrix` and `dspMatrix`.
Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.
Generic functions `Cholesky`, `Schur`, `lu`, and `qr`, for computing other factorizations.
Details

Historical note (2006-03-30): In earlier versions of R, \texttt{eigen(CAex)} fell into an infinite loop whereas \texttt{eigen(CAex, EISPACK=TRUE)} had been okay.

Examples

```r
data(CAex, package = "Matrix")
str(CAex) # of class "dgCMatrix"

image(CAex)# -> it's a simple band matrix with 5 bands
## and the eigen values are basically 1 (42 times) and 0 (30 x):
zapsmall(ev <- eigen(CAex, only.values=TRUE)$values)
## i.e., the matrix is symmetric, hence
sCA <- as(CAex, "symmetricMatrix")
## and
stopifnot(class(sCA) == "dsCMatrix",
  as(sCA, "matrix") == as(CAex, "matrix"))
```

Description

The base functions \texttt{cbind} and \texttt{rbind} are defined for an arbitrary number of arguments and hence have the first formal argument \ldots. Now, when S4 objects are found among the arguments, base \texttt{cbind()} and \texttt{rbind()} internally “dispatch” \textit{recursively}, calling \texttt{cbind2} or \texttt{rbind2} respectively, where these have methods defined and so should dispatch appropriately.

\texttt{cbind2()} and \texttt{rbind2()} are from the methods package, i.e., standard R, and have been provided for binding together \textit{two} matrices, where in \texttt{Matrix}, we have defined methods for these and the \texttt{"Matrix"} matrices.

Usage

```r
## cbind(..., deparse.level = 1)
## rbind(..., deparse.level = 1)

## and e.g.,
## S4 method for signature 'denseMatrix,sparseMatrix'
cbind2(x,y, sparse = NA, ...)
## S4 method for signature 'sparseMatrix,denseMatrix'
cbind2(x,y, sparse = NA, ...)
## S4 method for signature 'denseMatrix,sparseMatrix'
rbind2(x,y, sparse = NA, ...)
## S4 method for signature 'sparseMatrix,denseMatrix'
rbind2(x,y, sparse = NA, ...)
```
Arguments

... , x, y matrix-like R objects to be bound together, see cbind and rbind.

sparse option logical indicating if the result should be sparse, i.e., formally inheriting from "sparseMatrix". The default, NA, decides from the “sparsity” of x and y, see e.g., the R code in selectMethod(cbind2, c("sparseMatrix","denseMatrix").

deparse.level integer determining under which circumstances column and row names are built from the actual arguments’ ‘expression’, see cbind.

Value

typically a ‘matrix-like’ object of a similar class as the first argument in

Note that sometimes by default, the result is a sparseMatrix if one of the arguments is (even in the case where this is not efficient). In other cases, the result is chosen to be sparse when there are more zero entries is than non-zero ones (as the default sparse in Matrix()).

Author(s)

Martin Maechler

See Also

cbind2, cbind, Documentation in base R’s methods package.

Our class definition help pages mentioning cbind2() and rbind2() methods: "denseMatrix", "diagonalMatrix", "indMatrix".

Examples

(a <- matrix(c(2:1,1:2), 2,2))

(M1 <- cbind(0, rbind(a, 7))) # a traditional matrix

D <- Diagonal(2)
(M2 <- cbind4, a, D, -1, D, 0)) # a sparse Matrix

stopifnot(validObject(M2), inherits(M2, "sparseMatrix"),
 dim(M2) == c(2,9))
CHMfactor-class

Description

CHMfactor is the virtual class of sparse Cholesky factorizations of \(n \times n \) real, symmetric matrices \(A \), having the general form

\[
P_1 A P_1' = L_1 D L_1' \quad D_{ij} \geq 0 \quad LL'
\]

or (equivalently)

\[
A = P_1' L_1 D L_1' P_1 D_{ij} \geq 0 \quad P_1' LL' P_1
\]

where \(P_1 \) is a permutation matrix, \(L_1 \) is a unit lower triangular matrix, \(D \) is a diagonal matrix, and \(L = L_1 \sqrt{D} \). The second equalities hold only for positive semidefinite \(A \), for which the diagonal entries of \(D \) are non-negative and \(\sqrt{D} \) is well-defined.

The implementation of class *CHMfactor* is based on CHOLMOD's C-level `cholmod_factor_struct`. Virtual subclasses *CHMsimpl* and *CHMsuper* separate the simplicial and supernodal variants. These have nonvirtual subclasses \([dn]\)CHMsimpl and \([dn]\)CHMsuper, where prefix ‘d’ and prefix ‘n’ are reserved for numeric and symbolic factorizations, respectively.

Usage

`isLDL(x)`

Arguments

`x` an object inheriting from virtual class *CHMfactor*, almost always the result of a call to generic function `Cholesky`.

Value

`isLDL(x)` returns `TRUE` or `FALSE`: `TRUE` if \(x \) stores the lower triangular entries of \(L_1 - I + D \), `FALSE` if \(x \) stores the lower triangular entries of \(L \).

Slots

Of *CHMfactor*:

- `Dim, Dimnames` inherited from virtual class *MatrixFactorization*.
- `colcount` an integer vector of length \(\text{Dim}[1] \) giving an estimate of the number of nonzero entries in each column of the lower triangular Cholesky factor. If symbolic analysis was performed prior to factorization, then the estimate is exact.
- `perm` a 0-based integer vector of length \(\text{Dim}[1] \) specifying the permutation applied to the rows and columns of the factorized matrix. `perm` of length 0 is valid and equivalent to the identity permutation, implying no pivoting.
- `type` an integer vector of length 6 specifying details of the factorization. The elements correspond to members `ordering`, `is_ll`, `is_super`, `is_monotonic`, `maxsize`, and `maxesize` of the original `cholmod_factor_struct`. Simplicial and supernodal factorizations are distinguished by `is_super`. Simplicial factorizations do not use `maxsize` or `maxesize`. Supernodal factorizations do not use `is_ll` or `is_monotonic`.

Of *CHMsimpl* (all unused by *nCHMsimpl*):

...
CHMfactor-class

nz an integer vector of length Dim[1] giving the number of nonzero entries in each column of the lower triangular Cholesky factor. There is at least one nonzero entry in each column, because the diagonal elements of the factor are stored explicitly.

p an integer vector of length Dim[1]+1. Row indices of nonzero entries in column j of the lower triangular Cholesky factor are obtained as i[p[j]+seq_len(nz[j])]+1.

i an integer vector of length greater than or equal to sum(nz) containing the row indices of nonzero entries in the lower triangular Cholesky factor. These are grouped by column and sorted within columns, but the columns themselves need not be ordered monotonically. Columns may be overallocated, i.e., the number of elements of i reserved for column j may exceed nz[j].

prv, nxt integer vectors of length Dim[1]+2 indicating the order in which the columns of the lower triangular Cholesky factor are stored in i and x. Starting from j <- Dim[1]+2, the recursion j <- nxt[j]+1 traverses the columns in forward order and terminates when nxt[j+1] = -1. Starting from j <- Dim[1]+1, the recursion j <- prv[j]+1 traverses the columns in backward order and terminates when prv[j+1] = -1.

Of dCHMsimpl:

x a numeric vector parallel to i containing the corresponding nonzero entries of the lower triangular Cholesky factor L or (if and only if type[2] is 0) of the lower triangular matrix L_1 - I + D.

Of CHMsuper:

super, pi, px integer vectors of length nsuper+1, where nsuper is the number of supernodes. super[j]+1 is the index of the leftmost column of supernode j. The row indices of supernode j are obtained as s[pi[j]+seq_len(pi[j+1]-pi[j])]+1. The numeric entries of supernode j are obtained as x[px[j]+seq_len(px[j+1]-px[j])]+1 (if slot x is available).

s an integer vector of length greater than or equal to Dim[1] containing the row indices of the supernodes. s may contain duplicates, but not within a supernode, where the row indices must be increasing.

Of dCHMsuper:

x a numeric vector of length less than or equal to prod(Dim) containing the numeric entries of the supernodes.

Extends

Class MatrixFactorization, directly.

Instantiation

Objects can be generated directly by calls of the form new("dCHMsimpl", ...), etc., but dCHMsimpl and dCHMsuper are more typically obtained as the value of Cholesky(x, ...) for x inheriting from sparseMatrix (often dsCMatrix).

There is currently no API outside of calls to new for generating nCHMsimpl and nCHMsuper. These classes are vestigial and may be formally deprecated in a future version of Matrix.
Methods

coerce signature(from = "CHMsimpl", to = "dtCMatrix"): returns a dtCMatrix representing the lower triangular Cholesky factor \(L \) or the lower triangular matrix \(L_1 - I + D \), the latter if and only if from@type[2] is 0.

coerce signature(from = "CHMsuper", to = "dgCMatrix"): returns a dgCMatrix representing the lower triangular Cholesky factor \(L \). Note that, for supernodes spanning two or more columns, the supernodal algorithm by design stores non-structural zeros above the main diagonal, hence dgCMatrix is indeed more appropriate than dtCMatrix as a coercion target.

determinant signature(from = "CHMfactor", logarithm = "logical"): behaves according to an optional argument sqrt. If sqrt = FALSE, then this method computes the determinant of the factorized matrix \(A \) or its logarithm. If sqrt = TRUE, then this method computes the determinant of the factor \(L = L_1 sqrt(D) \) or its logarithm, giving NaN for the modulus when \(D \) has negative diagonal elements. For backwards compatibility, the default value of sqrt is TRUE, but that can be expected change in a future version of Matrix, hence defensive code will always set sqrt (to TRUE, if the code must remain backwards compatible with Matrix < 1.6-0). Calls to this method not setting sqrt may warn about the pending change. The warnings can be disabled with options(Matrix.warnSqrtDefault = 0).

diag signature(x = "CHMfactor"): returns a numeric vector of length \(n \) containing the diagonal elements of \(D \), which (if they are all non-negative) are the squared diagonal elements of \(L \).

expand signature(x = "CHMfactor"): see expand-methods.

expand1 signature(x = "CHMsimpl"): see expand1-methods.

expand1 signature(x = "CHMsuper"): see expand1-methods.

expand2 signature(x = "CHMsimpl"): see expand2-methods.

expand2 signature(x = "CHMsuper"): see expand2-methods.

image signature(x = "CHMfactor"): see image-methods.

nnzero signature(x = "CHMfactor"): see nnzero-methods.

solve signature(a = "CHMfactor", b = .): see solve-methods.

update signature(object = "CHMfactor"): returns a copy of object with the same nonzero pattern but with numeric entries updated according to additional arguments parent and mult, where parent is (coercible to) a dsCMatrix or a dgCMatrix and mult is a numeric vector of positive length.

The numeric entries are updated with those of the Cholesky factor of \(F(parent) + mult[1] \times I, \) i.e., \(F(parent) \) plus mult[1] times the identity matrix, where \(F = identity \) for symmetric parent and \(F = tcrossprod \) for other parent. The nonzero pattern of \(F(parent) \) must match that of \(S \) if object = Cholesky(S, ...).

updown signature(update = ., C = ., object = "CHMfactor"): see updown-methods.

References

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining cholmod_factor_struct.

See Also

Class `dsCMatric`.

Generic functions `Cholesky`, `updown`, `expand1` and `expand2`.

Examples

```r
showClass("dCHMsimpl")
showClass("dCHMsuper")
set.seed(2)

m <- 1000L
n <- 200L
M <- r sparse matrix(m, n, 0.01)
A <- crossprod(M)

## With dimnames, to see that they are propagated :
A <- A[ , drop = FALSE]
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)

(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
  identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
  identical(names(E.ch.A), c("P1.", "L", "L.", "P1"))
  identical(e.ch.A[["P1."]], new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
    margin = 2L, perm = invertPerm(ch.A@perm, 0L, 1L)))
  identical(e.ch.A[["P1."]], t(e.ch.A[["P1."]]))
  identical(e.ch.A[["L." ]], t(e.ch.A[["L1." ]]))
  identical(E.ch.A[["L." ]], t(E.ch.A[["L." ]]))
  identical(e.ch.A[["D" ]], Diagonal(x = diag(ch.A)))
  all.equal(E.ch.A[["L" ]], with(e.ch.A, L1 %*% sqrt(D)))
  ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
  ae1(A, with(E.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
  ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(e.ch.A, L1 %*% D %*% L1.))
  ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(E.ch.A, L %*% L.))
})

## Factorization handled as factorized matrix
```
(in some cases only optionally, depending on arguments)
b <- rnorm(n)
stopifnot(identical(det(A), det(ch.A, sqrt = FALSE)),
 identical(solve(A, b), solve(ch.A, b, system = "A")))

u1 <- update(ch.A, A, mult = sqrt(2))
u2 <- update(ch.A, t(M), mult = sqrt(2)) # updating with crossprod(M), not M
stopifnot(all.equal(u1, u2, tolerance = 1e-14))

chol-methods

Compute the Cholesky Factor of a Matrix

Description

Computes the upper triangular Cholesky factor of an $n \times n$ real, symmetric, positive semidefinite matrix A, optionally after pivoting. That is the factor L' in

$$P_1 A P_1' = LL'$$

or (equivalently)

$$A = P_1' L L' P_1$$

where P_1 is a permutation matrix.

Methods for `denseMatrix` are built on LAPACK routines `dpstrf`, `dpotrf`, and `dpptrf`. The latter two do not permute rows or columns, so that P_1 is an identity matrix.

Methods for `sparseMatrix` are built on CHOLMOD routines `cholmod_analyze` and `cholmod_factorize_p`.

Usage

```r
chol(x, ...)
## S4 method for signature 'dsyMatrix'
chol(x, pivot = FALSE, tol = -1, ...)
## S4 method for signature 'dspMatrix'
chol(x, ...)
## S4 method for signature 'dsCMatrix'
chol(x, pivot = FALSE, ...)
## S4 method for signature 'ddiMatrix'
chol(x, ...)
## S4 method for signature 'generalMatrix'
chol(x, uplo = "U", ...)
## S4 method for signature 'triangularMatrix'
chol(x, uplo = "U", ...)
```

Arguments

- `x`: a finite, symmetric, positive semidefinite matrix or `Matrix` to be factorized. If `x` is square but not symmetric, then it will be treated as symmetric; see `uplo`. Methods for dense `x` require positive definiteness when `pivot = FALSE`. Methods for sparse (but not diagonal) `x` require positive definiteness unconditionally.
pivot a logical indicating if the rows and columns of \(x \) should be pivoted. Methods for sparse \(x \) employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability.

tol a finite numeric tolerance, used only if \(\text{pivot} = \text{TRUE} \). The factorization algorithm stops if the pivot is less than or equal to \(\text{tol} \). Negative \(\text{tol} \) is equivalent to \(\text{nrow}(x) \times \text{Machine$\text{double}.eps} \times \text{max(diag}(x)) \).

uplo a string, either "U" or "L", indicating which triangle of \(x \) should be used to compute the factorization. The default is "U", even for lower triangular \(x \), to be consistent with \text{chol} from \text{base}.

... further arguments passed to or from methods.

Details
For \(x \) inheriting from \text{diagonalMatrix}, the diagonal result is computed directly and without pivoting, i.e., bypassing CHOLMOD.

For all other \(x \), \text{chol}(x, \text{pivot} = \text{value}) calls \text{Cholesky}(x, \text{perm} = \text{value}, ...) under the hood. If you must know the permutation \(P_1 \) in addition to the Cholesky factor \(L' \), then call \text{Cholesky} directly, as the result of \text{chol}(x, \text{pivot} = \text{TRUE}) specifies \(L' \) but not \(P_1 \).

Value
A matrix, \text{triangularMatrix}, or \text{diagonalMatrix} representing the upper triangular Cholesky factor \(L' \). The result is a traditional matrix if \(x \) is a traditional matrix, dense if \(x \) is dense, and sparse if \(x \) is sparse.

References
The LAPACK source code, including documentation; see \url{https://netlib.org/lapack/double/dpstrf.f}, \url{https://netlib.org/lapack/double/dpotrf.f} and \url{https://netlib.org/lapack/double/dpptrf.f}.

The CHOLMOD source code; see \url{https://github.com/DrTimothyAldenDavis/SuiteSparse}, notably the header file ‘CHOLMOD/Include/cholmod.h’ defining \text{cholmod_factor_struct}.

See Also
The default method from \text{base}, \text{chol}, called for traditional matrices \(x \).

Generic function \text{Cholesky}, for more flexibility notably when computing the Cholesky factorization and not only the factor \(L' \).
Examples

```
showMethods("chol", inherited = FALSE)
set.seed(0)
## ---- Dense ----------------------------------------------------------
## chol(x, pivot = value) wrapping Cholesky(x, perm = value)
selectMethod("chol", "dsyMatrix")
## Except in packed cases where pivoting is not yet available
selectMethod("chol", "dspMatrix")
## .... Positive definite ..............................................
(A1 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 5)))
(R1.nopivot <- chol(A1))
(R1 <- chol(A1, pivot = TRUE))
## In 2-by-2 cases, we know that the permutation is 1:2 or 2:1,
## even if in general 'chol' does not say ...
stopifnot(exprs = {
  all.equal( A1 , as(crossprod(R1.nopivot), "dsyMatrix"))
  all.equal(t(A1[2:1, 2:1]), as(crossprod(R1 ), "dsyMatrix"))
  identical(Cholesky(A1)@perm, 2:1) # because 5 > 1
})
## .... Positive semidefinite but not positive definite ..............
(A2 <- new("dpoMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 4)))
try(R2.nopivot <- chol(A2)) # fails as not positive definite
(R2 <- chol(A2, pivot = TRUE)) # returns, with a warning and ...
stopifnot(exprs = {
  all.equal(t(A2[2:1, 2:1]), as(crossprod(R2), "dsyMatrix"))
  identical(Cholesky(A2)@perm, 2:1) # because 4 > 1
})
## .... Not positive semidefinite ......................................
(A3 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 3)))
try(R3.nopivot <- chol(A3)) # fails as not positive definite
(R3 <- chol(A3, pivot = TRUE)) # returns, with a warning and ...
## _Not_ equal: see details and examples in help("Cholesky")
all.equal(t(A3[2:1, 2:1]), as(crossprod(R3), "dsyMatrix"))
## ---- Sparse ---------------------------------------------------------
## chol(x, pivot = value) wrapping
## Cholesky(x, perm = value, LDL = FALSE, super = FALSE)
```
selectMethod("chol", "dsCMatrix")

Except in diagonal cases which are handled "directly"
selectMethod("chol", "ddiMatrix")

(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))
(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(chol(A4)))
(R4 <- chol(A4, pivot = TRUE))
det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)

stopifnot(exprs = {
 identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
 identical(R4, expand1(ch.A4, "L."))
 all.equal(A4, crossprod(R4.nopivot))
 all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
 all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
 all.equal(diag(R4), sqrt(diag(ch.A4)))
 all.equal(sqrt(det4), det(R4.nopivot))
 all.equal(sqrt(det4), det(R4))
 all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
 all.equal(x4, solve(ch.A4.nopivot, b4))
 all.equal(x4, solve(ch.A4, b4))
})

chol2inv-methods

Inverse from Cholesky Factor

Description

Given formally upper and lower triangular matrices U and L, compute $(U'U)^{-1}$ and $(LL')^{-1}$, respectively.

This function can be seen as way to compute the inverse of a symmetric positive definite matrix given its Cholesky factor. Equivalently, it can be seen as a way to compute $(X'X)^{-1}$ given the R part of the QR factorization of X.

Usage

chol2inv(x, ...)
S4 method for signature 'dtrMatrix'
chol2inv(x, ...)
S4 method for signature 'dtCMatrix'
chol2inv(x, ...)

```r
(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))
(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(chol(A4)))
(R4 <- chol(A4, pivot = TRUE))
det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)

stopifnot(exprs = {
  identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
  identical(R4, expand1(ch.A4, "L."))
  all.equal(A4, crossprod(R4.nopivot))
  all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
  all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
  all.equal(diag(R4), sqrt(diag(ch.A4)))
  all.equal(sqrt(det4), det(R4.nopivot))
  all.equal(sqrt(det4), det(R4))
  all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
  all.equal(x4, solve(ch.A4.nopivot, b4))
  all.equal(x4, solve(ch.A4, b4))
})

---

```
S4 method for signature 'generalMatrix'
chol2inv(x, uplo = "U", ...)

Arguments

- **x**: a square matrix or Matrix, typically the result of a call to `chol`. If x is square but not (formally) triangular, then only the upper or lower triangle is considered, depending on optional argument `uplo` if `x` is a Matrix.
- **uplo**: a string, either "U" or "L", indicating which triangle of `x` contains the Cholesky factor. The default is "U", to be consistent with chol2inv from base.
- **...**: further arguments passed to or from methods.

Value

A matrix, symmetricMatrix, or diagonalMatrix representing the inverse of the positive definite matrix whose Cholesky factor is `x`. The result is a traditional matrix if `x` is a traditional matrix, dense if `x` is dense, and sparse if `x` is sparse.

See Also

- The default method from base, chol2inv, called for traditional matrices `x`.
- Generic function chol, for computing the upper triangular Cholesky factor \(L' \) of a symmetric positive semidefinite matrix.
- Generic function solve, for solving linear systems and (as a corollary) for computing inverses more generally.

Examples

```r
(A <- Matrix(cbind(c(1, 1, 1), c(1, 2, 4), c(1, 4, 16))))
(R <- chol(A))
(L <- t(R))
(R2i <- chol2inv(R))
(L2i <- chol2inv(L))
stopifnot(exprs = {
    all.equal(R2i, tcrossprod(solve(R)))
    all.equal(L2i, crossprod(solve(L)))
    all.equal(as(R2i %%*% A, "matrix"), diag(3L))  # the identity
    all.equal(as(L2i %%*% A, "matrix"), diag(3L))  # ditto
})
```
Cholesky-class

Description
Classes Cholesky and pCholesky represent dense, pivoted Cholesky factorizations of $n \times n$ real, symmetric, positive semidefinite matrices A, having the general form

$$P_1 A P_1' = L_1 D L_1' = LL'$$

or (equivalently)

$$A = P_1' L_1 D L_1' P_1 = P_1' L L' P_1$$

where P_1 is a permutation matrix, L_1 is a unit lower triangular matrix, D is a non-negative diagonal matrix, and $L = L_1 \sqrt{D}$.

These classes store the entries of the Cholesky factor L or its transpose L' in a dense format as a vector of length nn (Cholesky) or $n(n + 1)/2$ (pCholesky), the latter giving the “packed” representation.

Slots
- `Dim`, `Dimnames` inherited from virtual class `MatrixFactorization`.
- `uplo` a string, either "U" or "L", indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn whether x stores L' or L.
- `x` a numeric vector of length $n*n$ (Cholesky) or $n*(n+1)/2$ (pCholesky), where $n=\text{Dim}[1]$, listing the entries of the Cholesky factor L or its transpose L' in column-major order.
- `perm` a 1-based integer vector of length `Dim[1]` specifying the permutation applied to the rows and columns of the factorized matrix. `perm` of length 0 is valid and equivalent to the identity permutation, implying no pivoting.

Extends
Class `CholeskyFactorization`, directly. Class `MatrixFactorization`, by class `CholeskyFactorization`, distance 2.

Instantiation
Objects can be generated directly by calls of the form `new("Cholesky", ...)` or `new("pCholesky", ...), but they are more typically obtained as the value of `Cholesky(x)` for x inheriting from `dsyMatrix` or `dspMatrix` (often the subclasses of those reserved for positive semidefinite matrices, namely `dpoMatrix` and `dppMatrix`).

Methods
- `coerce` signature(from = "Cholesky", to = "dtrMatrix"): returns a `dtrMatrix` representing the Cholesky factor L or its transpose L'; see ‘Note’.
- `coerce` signature(from = "pCholesky", to = "dtpMatrix"): returns a `dtpMatrix` representing the Cholesky factor L or its transpose L'; see ‘Note’.
- `determinant` signature(from = "p?Cholesky", logarithm = "logical"): computes the determinant of the factorized matrix A or its logarithm.
- `diag` signature(x = "p?Cholesky"): returns a numeric vector of length n containing the diagonal elements of D, which are the squared diagonal elements of L.
expand1 signature(x = "p?Cholesky"): see `expand1-methods`.
expand2 signature(x = "p?Cholesky"): see `expand2-methods`.
solve signature(a = "p?Cholesky", b = .): see `solve-methods`.

Note
In Matrix < 1.6-0, class Cholesky extended `dtrMatrix` and class pCholesky extended `dtpMatrix`, reflecting the fact that the factor \(L \) is indeed a triangular matrix. Matrix 1.6-0 removed these extensions so that methods would no longer be inherited from `dtrMatrix` and `dtpMatrix`. The availability of such methods gave the wrong impression that Cholesky and pCholesky represent a (singular) matrix, when in fact they represent an ordered set of matrix factors.
The coercions `as(., "dtrMatrix")` and `as(., "dtpMatrix")` are provided for users who understand the caveats.

References

See Also
Class `CHMfactor` for sparse Cholesky factorizations.
Classes `dpoMatrix` and `dppMatrix`.
Generic functions `Cholesky`, `expand1` and `expand2`.

Examples
```r
showClass("Cholesky")
set.seed(1)

m <- 30L
n <- 6L
(A <- crossprod(Matrix(rnorm(m * n), m, n)))
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)

(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)
## Underlying LAPACK representation
(m.ch.A <- as(ch.A, "dtrMatrix")) # which is L', not L, because
```
A@uplo == "U"
stopifnot(identical(as(m.ch.A, "matrix"), `dim<-(ch.A@x, ch.A@Dim)))

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

A ~ P1'L1 D L1' P1 ~ P1'L L P1 in floating point
stopifnot(exprs = {
 identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
 identical(names(E.ch.A), c("P1.", "L", "L.", "P1"))
 identical(e.ch.A["P1"],
 new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
 margin = 2L, perm = invertPerm(ch.A@perm)))
 identical(e.ch.A["P1."], t(e.ch.A["P1"]))
 identical(e.ch.A["L1."], t(e.ch.A["L1"]))
 identical(E.ch.A["L."], t(E.ch.A["L"]))
 identical(e.ch.A["D"], Diagonal(x = diag(ch.A)))
 all.equal(E.ch.A["L"], with(e.ch.A, L1 %*% sqrt(D)))
 ae1(A, with(e.ch.A, P1.%*% L1.%*% D %*% L1.%*% P1))
 ae1(A, with(E.ch.A, P1.%*% L %*% L.%*% P1))
 ae2(A[ch.ch.A@perm, ch.ch.A@perm], with(e.ch.A, L1.%*% D %*% L1.))
 ae2(A[ch.ch.A@perm, ch.ch.A@perm], with(E.ch.A, L %*% L))
})

Factorization handled as factorized matrix
b <- rnorm(n)
all.equal(det(A), det(ch.A), tolerance = 0)
all.equal(solve(A, b), solve(ch.A, b), tolerance = 0)

For identical results, we need the _unpivoted_ factorization
computed by det(A) and solve(A, b)
(ch.A.nopivot <- Cholesky(A, perm = FALSE))
stopifnot(identical(det(A), det(ch.A.nopivot)),
 identical(solve(A, b), solve(ch.A.nopivot, b)))

Description

Computes the pivoted Cholesky factorization of an $n \times n$ real, symmetric matrix A, which has the general form

$$P_1 A P_1^T = L_1 D L_1^T \quad \text{with } D_{jj} \geq 0$$

or (equivalently)

$$A = P_1' L_1 D L_1' P_1 \quad \text{with } P_1' LL' P_1$$

where P_1 is a permutation matrix, L_1 is a unit lower triangular matrix, D is a diagonal matrix, and $L = L_1 \sqrt{D}$. The second equalities hold only for positive semidefinite A, for which the diagonal entries of D are non-negative and \sqrt{D} is well-defined.
Methods for `denseMatrix` are built on LAPACK routines `dpstrf`, `dpotrf`, and `dpptrf`. The latter two do not permute rows or columns, so that \(P_1 \) is an identity matrix.

Methods for `sparseMatrix` are built on CHOLMOD routines `cholmod_analyze` and `cholmod_factorize_p`.

Usage

```r
Cholesky(A, ...)  # S4 method for signature 'dsyMatrix'
Cholesky(A, perm = TRUE, tol = -1, ...)  # S4 method for signature 'dspMatrix'
Cholesky(A, ...)  # S4 method for signature 'dsCMatrix'
Cholesky(A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...)
Cholesky(A, ...)  # S4 method for signature 'ddiMatrix'
Cholesky(A, ...)  # S4 method for signature 'generalMatrix'
Cholesky(A, uplo = "U", ...)
Cholesky(A, uplo = "U", ...)
Cholesky(A, uplo = "U", ...)
```

Arguments

- **A**
 - a finite, symmetric matrix or `Matrix` to be factorized. If \(A \) is square but not symmetric, then it will be `treated` as symmetric; see `uplo`. Methods for dense \(A \) require positive definiteness when `perm = FALSE` and positive semidefiniteness when `perm = TRUE`. Methods for sparse \(A \) require positive definiteness when `LDL = TRUE` and nonzero leading principal minors (after pivoting) when `LDL = FALSE`. Methods for sparse, diagonal \(A \) are an exception, requiring positive semidefinite-ness unconditionally.

- **perm**
 - a logical indicating if the rows and columns of \(A \) should be pivoted. Methods for sparse \(A \) employ the approximate minimum degree (AMD) algorithm in order to reduce fill-in, i.e., without regard for numerical stability. Pivoting for sparsity may introduce nonpositive leading principal minors, causing the factorization to fail, in which case it may be necessary to set `perm = FALSE`.

- **tol**
 - a finite numeric tolerance, used only if `perm = TRUE`. The factorization algorithm stops if the pivot is less than or equal to `tol`. Negative `tol` is equivalent to `nrow(A) * .Machine$double.eps * max(diag(A))`.

- **LDL**
 - a logical indicating if the simplicial factorization should be computed as \(P_1' L_1 D L_1' P_1 \), such that the result stores the lower triangular entries of \(L_1 - I + D \). The alternative is \(P_1' LL' P_1 \), such that the result stores the lower triangular entries of \(L = L_1 \sqrt{D} \). This argument is ignored if `super = TRUE` (or if `super = NA` and the supernodal algorithm is chosen), as the supernodal code does not yet support the `LDL = TRUE` variant.
super

a logical indicating if the factorization should use the supernodal algorithm. The alternative is the simplicial algorithm. Setting super = NA leaves the choice to a CHOLMOD-internal heuristic.

Imult

a finite number. The matrix that is factorized is $A + \text{Imult} \times \text{diag}(\text{nrow}(A))$, i.e., A plus Imult times the identity matrix. This argument is useful for symmetric, indefinite A, as $\text{Imult} > \max(\text{rowSums(abs}(A)) - \text{diag(abs}(A)))$ ensures that $A + \text{Imult} \times \text{diag}(\text{nrow}(A))$ is diagonally dominant. (Symmetric, diagonally dominant matrices are positive definite.)

uplo

a string, either "U" or "L", indicating which triangle of A should be used to compute the factorization. The default is "U", even for lower triangular A, to be consistent with chol from base.

... further arguments passed to or from methods.

Details

Note that the result of a call to Cholesky inherits from CholeskyFactorization but not Matrix. Users who just want a matrix should consider using chol, whose methods are simple wrappers around Cholesky returning just the upper triangular Cholesky factor L', typically as a triangularMatrix. However, a more principled approach would be to construct factors as needed from the CholeskyFactorization object, e.g., with expand1(x, "L"), if x is the object.

The behaviour of Cholesky(A, perm = TRUE) for dense A is somewhat exceptional, in that it expects without checking that A is positive semidefinite. By construction, if A is positive semidefinite and the exact algorithm encounters a zero pivot, then the unfactorized trailing submatrix is the zero matrix, and there is nothing left to do. Hence when the finite precision algorithm encounters a pivot less than tol, it signals a warning instead of an error and zeros the trailing submatrix in order to guarantee that $P'LL'P$ is positive semidefinite even if A is not. It follows that one way to test for positive semidefiniteness of A in the event of a warning is to analyze the error

$$\frac{\|A - P'LL'P\|}{\|A\|}.$$

See the examples and LAPACK Working Note ("LAWN") 161 for details.

Value

An object representing the factorization, inheriting from virtual class CholeskyFactorization. For a traditional matrix A, the specific class is Cholesky. For A inheriting from unpackedMatrix, packedMatrix, and sparseMatrix, the specific class is Cholesky, pCholesky, and dCHMsimpl or dCHMsuper, respectively.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack,double/dpstrf.f, https://netlib.org/lapack,double/dpotrf.f, and https://netlib.org/lapack,double/dpptrf.f.

The CHOLMOD source code; see https://github.com/DrTimothyAldenDavis/SuiteSparse, notably the header file 'CHOLMOD/Include/cholmod.h' defining cholmod_factor_struct.

See Also

Classes `Cholesky`, `pCholesky`, `dCHMsimpl` and `dCHMsuper` and their methods.

Classes `dpoMatrix`, `dppMatrix`, and `dsCMatrix`.

Generic function `chol`, for obtaining the upper triangular Cholesky factor L' as a matrix or `Matrix`.

Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.

Generic functions `BunchKaufman`, `Schur`, `lu`, and `qr`, for computing other factorizations.

Examples

```r
showMethods("Cholesky", inherited = FALSE)
set.seed(0)

## ---- Dense ----------------------------------------------------------
## .... Positive definite ..............................................

n <- 6L
(A1 <- crossprod(Matrix(rnorm(n * n), n, n)))
(ch.A1.nopivot <- Cholesky(A1, perm = FALSE))
(ch.A1 <- Cholesky(A1))
stopifnot(exprs = {
  length(ch.A1@perm) == ncol(A1)
  isPerm(ch.A1@perm)
  is.unsorted(ch.A1@perm) # typically not the identity permutation
  length(ch.A1.nopivot@perm) == 0L
})

## A ~ P1' L D L' P1 ~ P1' L L' P1 in floating point
str(e.ch.A1 <- expand2(ch.A1, LDL = TRUE), max.level = 2L)
str(E.ch.A1 <- expand2(ch.A1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {
  all.equal(as(A1, "matrix"), as(Reduce("%*%", e.ch.A1), "matrix"))
  all.equal(as(A1, "matrix"), as(Reduce("%*%", E.ch.A1), "matrix"))
})

## .... Positive semidefinite but not positive definite ...............
```
A2 <- A1
A2[, 1L] <- 0
A2
try(Cholesky(A2, perm = FALSE)) # fails as not positive definite
ch.A2 <- Cholesky(A2) # returns, with a warning and ...
A2.hat <- Reduce("%^%", expand2(ch.A2, LDL = FALSE))
norm(A2 - A2.hat, "2") / norm(A2, "2") # 7.670858e-17

... Not positive semidefinite ..

A3 <- A1
A3[, 1L] <- -1
A3
try(Cholesky(A3, perm = FALSE)) # fails as not positive definite
ch.A3 <- Cholesky(A3) # returns, with a warning and ...
A3.hat <- Reduce("%^%", expand2(ch.A3, LDL = FALSE))
norm(A3 - A3.hat, "2") / norm(A3, "2") # 1.781568

Indeed, 'A3' is not positive semidefinite, but 'A3.hat' _is_
ch.A3.hat <- Cholesky(A3.hat)
A3.hat.hat <- Reduce("%^%", expand2(ch.A3.hat, LDL = FALSE))

---- Sparse ---

Really just three cases modulo permutation:
##
type factorization minors of P1 A P1'
1 simplicial P1 A P1' = L1 D L1' nonzero
2 simplicial P1 A P1' = L L' positive
3 supernodal P1 A P2' = L L' positive

data(KNex, package = "Matrix")
A4 <- crossprod(KNex["mm"])
ch.A4 <-
list(pivoted =
 list(simpl1 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = TRUE),
 simpl0 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = FALSE),
 super0 = Cholesky(A4, perm = TRUE, super = TRUE)),
 unpivoted =
 list(simpl1 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = TRUE),
 simpl0 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = FALSE),
 super0 = Cholesky(A4, perm = FALSE, super = TRUE)))
ch.A4
s <- simplify2array
rapply2 <- function(object, f, ...) rapply(object, f, , how = "list", ...)
s(rapply2(ch.A4, isLDL))
s(m.ch.A4 <- rapply2(ch.A4, expand1, "L")) # giving L = L1 sqrt(D)
Cholesky-methods

By design, the pivoted and simplicial factorizations are more sparse than the unpivoted and supernodal ones...

```r
s(rapply2(m.ch.A4, object.size))
```

Which is nicely visualized by lattice-based methods for 'image'

```r
inm <- c("pivoted", "unpivoted")
jnm <- c("simpl1", "simpl0", "super0")
for(i in 1:2)
  for(j in 1:3)
    print(image(m.ch.A4[[c(i, j)]], main = paste(inm[i], jnm[j])),
          split = c(j, i, 3L, 2L), more = i * j < 6L)
```

```r
simpl1 <- ch.A4[[c("pivoted", "simpl1")]]
```

```r
stopifnot(exprs = {
  length(simpl1@perm) == ncol(A4)
  isPerm(simpl1@perm, 0L)
  is.unsorted(simpl1@perm) # typically not the identity permutation
})
```

One can expand with and without D regardless of isLDL(.)

```r
isLDL(simpl1)
```

```r
stopifnot(min(diag(simpl1)) >= 0)
```

```r
str(e.ch.A4 <- expand2(simpl1, LDL = TRUE), max.level = 2L) # default
str(E.ch.A4 <- expand2(simpl1, LDL = FALSE), max.level = 2L)
```

```r
stopifnot(exprs = {
  all.equal(E.ch.A4["L"], e.ch.A4["L"] %*% sqrt(e.ch.A4["D"]))
  all.equal(E.ch.A4["L"], sqrt(e.ch.A4["D"]) %*% e.ch.A4["L"])
  all.equal(A4, as(Reduce("%*%", e.ch.A4), "symmetricMatrix"))
  all.equal(A4, as(Reduce("%*%", E.ch.A4), "symmetricMatrix"))
})
```

The "same" permutation matrix with "alternate" representation

```r
alt <- function(P) {
  P@margin <- 1L + !(P@margin - 1L) # 1 <-> 2
  P@perm <- invertPerm(P@perm)
  P
}
```

Expansions are elegant but inefficient (transposes are redundant)

```r
stopifnot(exprs = {
  identical(expand1(simpl1, "P1"), alt(e.ch.A4["P1"]))
  identical(expand1(simpl1, "L"), E.ch.A4["L"])
  identical(Diagonal(x = diag(simpl1)), e.ch.A4["D"])
})
```

Chol(A, pivot = value) is a simple wrapper around

```r
Cholesky(A, perm = value, LDL = FALSE, super = FALSE).
```

returning L' = sqrt(D) L1' _but_ giving no information

About the permutation P1
selectMethod("chol", "dsCMatrix")
stopifnot(all.equal(chol(A4, pivot = TRUE), E.ch.A4["L."]))

Now a symmetric matrix with positive _and_ negative eigenvalues,
hence _not_ positive semidefinite
A5 <- new("dsCMatrix",
 Dim = c(7L, 7L),
 p = c(0:1, 3L, 6:7, 10:11, 15L),
 i = c(0L, 0:1, 0:3, 2:5, 3:6),
 x = c(1, 6, 38, 10, 60, 103, -4, 6, -32, -247, -2, -16, -128, -2, -67))
(ev <- eigen(A5, only.values = TRUE)$values)
(t.ev <- table(factor(sign(ev), -1:1))) # the matrix "inertia"

ch.A5 <- Cholesky(A5)
isLDL(ch.A5)
(d.A5 <- diag(ch.A5)) # diag(D) is partly negative

Sylvester's law of inertia holds here, but not in general
in finite precision arithmetic
stopifnot(identical(table(factor(sign(d.A5), -1:1)), t.ev))

try(expand1(ch.A5, "L")) # unable to compute L = L1 sqrt(D)
try(expand2(ch.A5, LDL = FALSE)) # ditto
try(chol(A5, pivot = TRUE)) # ditto

The default expansion is "square root free" and still works here
str(e.ch.A5 <- expand2(ch.A5, LDL = TRUE), max.level = 2L)
stopifnot(all.equal(A5, as(Reduce("%*%", e.ch.A5), "symmetricMatrix")))

Version of the SuiteSparse library, which includes CHOLMOD
SuiteSparse_version()

coerce-methods-graph
Conversions "graph" <-> (sparse) Matrix

Description

Since 2005, package **Matrix** has supported coercions to and from class **graph** from package **graph**. Since 2013, this functionality has been exposed via functions **T2graph** and **graph2T**, which, unlike methods for **as**("from", "<Class>"), support optional arguments.

Usage

```r
graph2T(from, use.weights = )
T2graph(from, need.uniq = is_not_uniqT(from), edgemode = NULL)
```

Arguments

- **from**
 - for **graph2T()**, an **R** object of class "graph";
 - for **T2graph()**, a sparse matrix inheriting from "**TsparseMatrix**".
use.weights logical indicating if weights should be used, i.e., equivalently the result will be numeric, i.e. of class \texttt{dgTMatrix}; otherwise the result will be \texttt{ngTMatrix} or \texttt{nsTMatrix}, the latter if the graph is undirected. The default looks if there are weights in the graph, and if any differ from 1, weights are used.

need.uniq a logical indicating if from may need to be internally “uniqified”; do not set this and hence rather use the default, unless you know what you are doing!

edgemode one of \texttt{NULL}, "directed", or "undirected". The default \texttt{NULL} looks if the matrix is symmetric and assumes "undirected" in that case.

\section*{Value}

For \texttt{graph2T()}, a sparse matrix inheriting from "\texttt{TsparseMatrix}".

For \texttt{T2graph()} an \texttt{R} object of class "\texttt{graph}".

\section*{See Also}

Package \texttt{igraph}, which provides similar coercions to and from its class \texttt{igraph} via functions \texttt{graph_from_adjacency_matrix} and \texttt{as_adjacency_matrix}.

\section*{Examples}

\begin{verbatim}
if(requireNamespace("graph")) {
 n4 <- LETTERS[1:4]; dns <- list(n4,n4)
 show(a1 <- sparseMatrix(i= c(1:4), j=c(2:4,1), x = 2, dimnames=dns))
 show(g1 <- as(a1, "graph")) # directed
 unlist(graph::edgeWeights(g1)) # all '2'

 show(a2 <- sparseMatrix(i= c(1:4,4), j=c(2:4,1:2), x = TRUE, dimnames=dns))
 show(g2 <- as(a2, "graph")) # directed
 unlist(graph::edgeWeights(g2)) # all '2'

 show(a3 <- sparseMatrix(i= c(1:4), j=c(1,2:4), x = TRUE, dimnames=dns))
 show(g3 <- as(a3, "graph")) # undirected
 unlist(graph::edgeWeights(g3)) # all '2'

 a. <- sparseMatrix(i=4:1, j=1:4, dimnames=list(n4, n4), repr="T") # no 'x'
 show(a.) # "ngTMatrix"
 show(g. <- as(a., "graph"))
}
\end{verbatim}
Description

Methods for coercion from and to sparse matrices from package SparseM are provided here, for ease of porting functionality to the Matrix package, and comparing functionality of the two packages. All these work via the usual `as(., "<class>")` coercion,

\[
\text{as(from, Class)}
\]

Methods

- from = "matrix.csr", to = "dgRMatrix" ...
- from = "matrix.csc", to = "dgCMatrix" ...
- from = "matrix.coo", to = "dgTMatrix" ...
- from = "dgRMatrix", to = "matrix.csr" ...
- from = "dgCMatrix", to = "matrix.csc" ...
- from = "dgTMatrix", to = "matrix.coo" ...
- from = "Matrix", to = "matrix.csr" ...
- from = "matrix.csr", to = "dgCMatrix" ...
- from = "matrix.coo", to = "dgCMatrix" ...
- from = "matrix.csr", to = "Matrix" ...
- from = "matrix.csc", to = "Matrix" ...
- from = "matrix.coo", to = "Matrix" ...

See Also

The documentation in CRAN package SparseM, such as SparseM.ontology, and one important class, matrix.csr.

colSums-methods

Form Row and Column Sums and Means

Description

Form row and column sums and means for objects, for sparseMatrix the result may optionally be sparse (sparseVector), too. Row or column names are kept respectively as for base matrices and colSums methods, when the result is numeric vector.
Usage

```r
colSums(x, na.rm = FALSE, dims = 1L, ...)  
rowSums(x, na.rm = FALSE, dims = 1L, ...)  
colMeans(x, na.rm = FALSE, dims = 1L, ...)  
rowMeans(x, na.rm = FALSE, dims = 1L, ...)  

## S4 method for signature 'CsparseMatrix'
colSums(x, na.rm = FALSE,  
          dims = 1L, sparseResult = FALSE)

## S4 method for signature 'CsparseMatrix'
rowSums(x, na.rm = FALSE,  
          dims = 1L, sparseResult = FALSE)

## S4 method for signature 'CsparseMatrix'
colMeans(x, na.rm = FALSE,  
          dims = 1L, sparseResult = FALSE)

## S4 method for signature 'CsparseMatrix'
rowMeans(x, na.rm = FALSE,  
          dims = 1L, sparseResult = FALSE)
```

Arguments

- `x` a Matrix, i.e., inheriting from `Matrix`.
- `na.rm` logical. Should missing values (including `NaN`) be omitted from the calculations?
- `dims` completely ignored by the `Matrix` methods.
- `...` potentially further arguments, for method `<>` generic compatibility.
- `sparseResult` logical indicating if the result should be sparse, i.e., inheriting from class `sparseVector`. Only applicable when `x` is inheriting from a `sparseMatrix` class.

Value

returns a numeric vector if `sparseResult` is `FALSE` as per default. Otherwise, returns a `sparseVector`. `dimnames(x)` are only kept (as `names(v)`) when the resulting `v` is `numeric`, since `sparseVectors` do not have names.

See Also

- `colSums` and the `sparseVector` classes.

Examples

```r
(M <- bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))) # 7 x 8
colSums(M)
d <- Diagonal(10, c(0,0,10,0,2,rep(0,5)))
MM <- kronecker(d, M)
dim(MM) # 70 80
length(MM@x) # 160, but many are '0' ; drop those:
MM <- drop0(MM)
length(MM@x) # 32
```
compMatrix-class

Class "compMatrix" of Composite (Factorizable) Matrices

Description

Virtual class of composite matrices; i.e., matrices that can be factorized, typically as a product of simpler matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

factors: Object of class "list" - a list of factorizations of the matrix. Note that this is typically empty, i.e., list(), initially and is updated automatically whenever a matrix factorization is computed.

Dim, Dimnames: inherited from the Matrix class, see there.

Extends

Class "Matrix", directly.
Methods

```r
dimnames<- signature(x = "compMatrix", value = "list"): set the dimnames to a list of length 2, see dimnames<-. The factors slot is currently reset to empty, as the factorization dimnames would have to be adapted, too.
```

See Also

The matrix factorization classes "MatrixFactorization" and their generators, `lu()`, `qr()`, `chol()` and `Cholesky()`, `BunchKaufman()`, `Schur()`.

condest
Compute Approximate CONDition number and 1-Norm of (Large) Matrices

Description

"Estimate", i.e. compute approximately the CONDition number of a (potentially large, often sparse) matrix A. It works by apply a fast randomized approximation of the 1-norm, `norm(A, "1")`, through `onenormest(.)`.

Usage

```r
condest(A, t = min(n, 5), normA = norm(A, "1"),
    silent = FALSE, quiet = TRUE)
```

```r
onenormest(A, t = min(n, 5), A.x, At.x, n,
    silent = FALSE, quiet = silent,
    iter.max = 10, eps = 4 * .Machine$double.eps)
```

Arguments

- `A`: a square matrix, optional for `onenormest()`, where instead of `A`, `A.x` and `At.x` can be specified, see there.
- `t`: number of columns to use in the iterations.
- `normA`: number; (an estimate of) the 1-norm of `A`, by default `norm(A, "1")`; may be replaced by an estimate.
- `silent`: logical indicating if warning and (by default) convergence messages should be displayed.
- `quiet`: logical indicating if convergence messages should be displayed.
- `A.x`, `At.x`: when `A` is missing, these two must be given as functions which compute `A %% x`, or `t(A) %% x`, respectively.
- `n`: `nrow(A)`, only needed when `A` is not specified.
- `iter.max`: maximal number of iterations for the 1-norm estimator.
- `eps`: the relative change that is deemed irrelevant.
Details

`condest()` calls `lu(A)`, and subsequently `onenormest(A.x = , At.x =)` to compute an approximate norm of the inverse of A, A^{-1}, in a way which keeps using sparse matrices efficiently when A is sparse.

Note that `onenormest()` uses random vectors and hence both functions’ results are random, i.e., depend on the random seed, see, e.g., `set.seed()`.

Value

Both functions return a list; `condest()` with components,

- `est` a number > 0, the estimated (1-norm) condition number $\hat{\kappa}$; when $r := rcond(A)$, $1/\hat{\kappa} \approx r$.
- `v` the maximal Ax column, scaled to $\|v\| = 1$. Consequently, $\|Av\| = \|A\|/est$; when `est` is large, `v` is an approximate null vector.

The function `onenormest()` returns a list with components,

- `est` a number > 0, the estimated $\|A\|_1$.
- `v` 0-1 integer vector length n, with an 1 at the index j with maximal column $A[,j]$ in A.
- `w` numeric vector, the largest Ax found.
- `iter` the number of iterations used.

Author(s)

This is based on octave’s `condest()` and `onenormest()` implementations with original author Jason Riedy, U Berkeley; translation to R and adaption by Martin Maechler.

References

See Also

`norm`, `rcond`.

Examples

data(KNex, package = "Matrix")
mtm <- with(KNex, crossprod(mm))
system.time(ce <- condest(mtm))
sum(abs(ce$v)) ## || v ||_1 == 1
Prove that || A v || = || A || / est (as ||v|| = 1):
stopifnot(all.equal(norm(mtm %*% ce$v),
 norm(mtm) / ce$est))
reciprocal

```r
1 / ce$est
```

```r
system.time(rc <- rcond(mtm))  # takes ca 3 x longer
rc
```

```r
all.equal(rc, 1/ce$est)  # TRUE -- the approximation was good
```

```r
one <- onenormest(mtm)
str(one)  # est = 12.3
```

```r
## the maximal column:
which(one$v == 1)  # mostly 4, rarely 1, depending on random seed
```

CsparseMatrix-class

Class "CsparseMatrix" of Sparse Matrices in Column-compressed Form

Description

The "CsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed column-oriented form. Since it is a virtual class, no objects may be created from it. See `showClass("CsparseMatrix")` for its subclasses.

Slots

- `i`: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the 0-based row numbers for each non-zero element in the matrix, i.e., `i` must be in `0:(nrow(.)-1)`.

- `p`: `integer` vector for providing pointers, one for each column, to the initial (zero-based) index of elements in the column. `.@p` is of length `ncol(.) + 1`, with `p[1] == 0` and `p[length(p)] == nnzero`, such that in fact, `diff(.@p)` are the number of non-zero elements for each column.

 In other words, `m@p[1:ncol(m)]` contains the indices of those elements in `m@x` that are the first elements in the respective column of `m`.

- `Dim`, `Dimnames`: inherited from the superclass, see the `sparseMatrix` class.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

- Matrix products `%*%`, `crossprod()` and `tcrossprod()`, several `solve` methods, and other matrix methods available:

  ```r
  signature(e1 = "CsparseMatrix", e2 = "numeric"): ...
  ```

  ```r
  Math signature(x = "CsparseMatrix"): ...
  ```

  ```r
  band signature(x = "CsparseMatrix"): ...
  ```

  ```r
  - signature(e1 = "CsparseMatrix", e2 = "numeric"): ...
  ```
- signature(e1 = "numeric", e2 = "CsparseMatrix"): ...
+ signature(e1 = "CsparseMatrix", e2 = "numeric"): ...
+ signature(e1 = "numeric", e2 = "CsparseMatrix"): ...
coerce signature(from = "CsparseMatrix", to = "TsparseMatrix"): ...
coerce signature(from = "CsparseMatrix", to = "denseMatrix"): ...
coerce signature(from = "CsparseMatrix", to = "matrix"): ...
coerce signature(from = "TsparseMatrix", to = "CsparseMatrix"): ...
coerce signature(from = "denseMatrix", to = "CsparseMatrix"): ...
diag signature(x = "CsparseMatrix"): ...
gamma signature(x = "CsparseMatrix"): ...
lgamma signature(x = "CsparseMatrix"): ...
log signature(x = "CsparseMatrix"): ...
t signature(x = "CsparseMatrix"): ...
tril signature(x = "CsparseMatrix"): ...
triu signature(x = "CsparseMatrix"): ...

Note

All classes extending CsparseMatrix have a common validity (see `validObject`) check function. That function additionally checks the i slot for each column to contain increasing row numbers. In earlier versions of `Matrix` (<= 0.999375-16), `validObject` automatically re-sorted the entries when necessary, and hence `new()` calls with somewhat permuted i and x slots worked, as `new(...)` (with slot arguments) automatically checks the validity.

Now, you have to use `sparseMatrix` to achieve the same functionality or know how to use `.validateCsparse()` to do so.

See Also

`colSums`, `kronecker`, and other such methods with own help pages.

Further, the super class of CsparseMatrix, `sparseMatrix`, and, e.g., class `dgCMatrix` for the links to other classes.

Examples

```r
getClass("CsparseMatrix")
```

```r
## The common validity check function (based on C code):
getValidity(getClass("CsparseMatrix"))
```
ddenseMatrix-class

Virtual Class "ddenseMatrix" of Numeric Dense Matrices

Description
This is the virtual class of all dense numeric (i.e., double, hence “dense”) S4 matrices.
Its most important subclass is the dgeMatrix class.

Extends
Class "dMatrix" directly; class "Matrix", by the above.

Slots
the same slots at its subclass dgeMatrix, see there.

Methods
Most methods are implemented via as(*, "generalMatrix") and are mainly used as “fallbacks”
when the subclass doesn’t need its own specialized method.
Use showMethods(class = "ddenseMatrix", where = "package:Matrix") for an overview.

See Also
The virtual classes Matrix, dMatrix, and dsparseMatrix.

Examples
showClass("ddenseMatrix")

showMethods(class = "ddenseMatrix", where = "package:Matrix")

ddiMatrix-class

Class "ddiMatrix" of Diagonal Numeric Matrices

Description
The class "ddiMatrix" of numerical diagonal matrices.
Note that diagonal matrices now extend sparseMatrix, whereas they did extend dense matrices
earlier.

Objects from the Class
Objects can be created by calls of the form new("ddiMatrix", ...) but typically rather via Diagonal.
denseLU-class

Slots

x: numeric vector. For an \(n \times n \) matrix, the x slot is of length \(n \) or 0, depending on the diag slot:

diag: "character" string, either "U" or "N" where "U" denotes unit-diagonal, i.e., identity matrices.

Dim, Dimnames: matrix dimension and dimnames, see the Matrix class description.

Extends

Class "diagonalMatrix", directly. Class "dMatrix", directly. Class "sparseMatrix", indirectly, see showClass("ddiMatrix").

Methods

\%\%\% signature(x = "ddiMatrix", y = "ddiMatrix"): ...

See Also

Class diagonalMatrix and function Diagonal.

Examples

(d2 <- Diagonal(x = c(10,1)))
str(d2)
slightly larger in internal size:
str(as(d2, "sparseMatrix"))

M <- Matrix(cbind(1,2:4))
M \%\% d2 \# 'fast' multiplication

chol(d2) \# trivial
stopifnot(is(cd2 <- chol(d2), "ddiMatrix"),
 all.equal(cd2@x, c(sqrt(10),1)))

denseLU-class Dense LU Factorizations

Description

denseLU is the class of dense, row-pivoted LU factorizations of \(m \times n \) real matrices \(A \), having the general form

\[
P_1 A = LU
\]

or (equivalently)

\[
A = P_1^T LU
\]

where \(P_1 \) is an \(m \times m \) permutation matrix, \(L \) is an \(m \times \min(m, n) \) unit lower trapezoidal matrix, and \(U \) is a \(\min(m, n) \times n \) upper trapezoidal matrix. If \(m = n \), then the factors \(L \) and \(U \) are triangular.
denseLU-class

Slots

- `Dim, Dimnames` inherited from virtual class `MatrixFactorization`.
- `x` a numeric vector of length `prod(Dim)` storing the triangular L and U factors together in a packed format. The details of the representation are specified by the manual for LAPACK routine `dgetrf`.
- `perm` an integer vector of length `min(Dim)` specifying the permutation P_1 as a product of transpositions. The corresponding permutation vector can be obtained as `asPerm(perm)`.

Extends

Class `LU`, directly. Class `MatrixFactorization`, by class `LU`, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("denseLU", ...)`, but they are more typically obtained as the value of `lu(x)` for `x` inheriting from `denseMatrix` (often `dgeMatrix`).

Methods

- `coerce` signature (from = "denseLU", to = "dgeMatrix"): returns a `dgeMatrix` with the dimensions of the factorized matrix A, equal to L below the diagonal and equal to U on and above the diagonal.
- `determinant` signature (from = "denseLU", logarithm = "logical"): computes the determinant of the factorized matrix A or its logarithm.
- `expand` signature `x = "denseLU"`: see `expand-methods`.
- `expand1` signature `x = "denseLU"`: see `expand1-methods`.
- `expand2` signature `x = "denseLU"`: see `expand2-methods`.
- `solve` signature `a = "denseLU", b = "missing"`: see `solve-methods`.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgetrf.f.

See Also

- Class `sparseLU` for sparse LU factorizations.
- Class `dgeMatrix`.
- Generic functions `lu`, `expand1` and `expand2`.
Examples

```r
showClass("denseLU")
set.seed(1)

n <- 3L
(A <- Matrix(round(rnorm(n * n), 2L), n, n))

## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
                         paste0("c", seq_len(n)))

(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)

## Underlying LAPACK representation
(m.lu.A <- as(lu.A, "dgeMatrix")) # which is L and U interlaced
stopifnot(identical(as(m.lu.A, "matrix"), 'dim<-'(lu.A@x, lu.A@Dim)))
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' L U in floating point
stopifnot(exprs = {
    identical(names(e.lu.A), c("P1.", "L", "U"))
    identical(e.lu.A[["P1."]],
        new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
            margin = 1L, perm = invertPerm(asPerm(lu.A@perm))))
    identical(e.lu.A[["L"]],
        new("dtrMatrix", Dim = c(n, n), Dimnames = list(NULL, NULL),
            uplo = "L", diag = "U", x = lu.A@x))
    identical(e.lu.A[["U"]],
        new("dtrMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
            uplo = "U", diag = "N", x = lu.A@x))
ae1(A, with(e.lu.A, P1. %*% L %*% U))
ae2(A[asPerm(lu.A@perm), ], with(e.lu.A, L %*% U))
})

## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
    identical(solve(A, b), solve(lu.A, b)))
```

denseMatrix-class

Virtual Class "denseMatrix" of All Dense Matrices

Description

This is the virtual class of all dense (S4) matrices. It partitions into two subclasses packedMatrix and unpackedMatrix. Alternatively into the (currently) three subclasses ddenseMatrix, ldenseMatrix, and ndenseMatrix.
denseMatrix is (hence) the direct superclass of these \((2 + 3 = 5)\) classes.

Extends

class "Matrix" directly.

Slots

exactly those of its superclass "Matrix", i.e., "Dim" and "Dimnames".

Methods

Use `showMethods(class = "denseMatrix", where = "package:Matrix")` for an overview of methods.

Extraction ("[" method), see \([-\textmethods}\).

See Also

`colSums`, `kronecker`, and other such methods with own help pages.

Its superclass `Matrix`, and main subclasses, `ddenseMatrix` and `sparseMatrix`.

Examples

```r
showClass("denseMatrix")
```

dgCMatrix-class
Compressed, sparse, column-oriented numeric matrices

Description

The `dgCMatrix` class is a class of sparse numeric matrices in the compressed, sparse, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order. `dgCMatrix` is the "standard" class for sparse numeric matrices in the `Matrix` package.

Objects from the Class

Objects can be created by calls of the form `new("dgCMatrix", ...)`, more typically via `as(*, "CsparseMatrix")` or similar. Often however, more easily via `Matrix(*, sparse = TRUE)`, or most efficiently via `sparseMatrix()`.

Slots

- `x`: Object of class "numeric" - the non-zero elements of the matrix.
- `...`: all other slots are inherited from the superclass "CsparseMatrix".
Methods

Matrix products (e.g., crossprod-methods), and (among other)

coerce signature(from = "matrix", to = "dgCMatrix")
diag signature(x = "dgCMatrix"): returns the diagonal of x
dim signature(x = "dgCMatrix"): returns the dimensions of x
image signature(x = "dgCMatrix"): plots an image of x using the levelplot function
solve signature(a = "dgCMatrix", b = "."): see solve-methods, notably the extra argument sparse.
lu signature(x = "dgCMatrix"): computes the LU decomposition of a square dgCMatrix object

See Also

Classes dsCMatrix, dtCMatrix, lu

Examples

(m <- Matrix(c(0,0,2:0), 3,5))
str(m)
m[,1]

dgeMatrix-class Class "dgeMatrix" of Dense Numeric (S4 Class) Matrices

Description

A general numeric dense matrix in the S4 Matrix representation. dgeMatrix is the “standard” class for dense numeric matrices in the Matrix package.

Objects from the Class

Objects can be created by calls of the form new("dgeMatrix", ...) or, more commonly, by coercion from the Matrix class (see Matrix) or by Matrix(.).

Slots

x: Object of class "numeric" - the numeric values contained in the matrix, in column-major order.
Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
Dimnames: a list of length two - inherited from class Matrix.
factors: Object of class "list" - a list of factorizations of the matrix.
Methods

The are group methods (see, e.g., Arith)

Arith signature(e1 = "dgeMatrix", e2 = "dgeMatrix"): ...
Arith signature(e1 = "dgeMatrix", e2 = "numeric"): ...
Arith signature(e1 = "numeric", e2 = "dgeMatrix"): ...
Math signature(x = "dgeMatrix"): ...
Math2 signature(x = "dgeMatrix", digits = "numeric"): ...

matrix products %*%, crossprod() and tcrossprod(), several solve methods, and other matrix methods available:

Schur signature(x = "dgeMatrix", vectors = "logical"): ...
Schur signature(x = "dgeMatrix", vectors = "missing"): ...
chol signature(x = "dgeMatrix"): see chol.
colMeans signature(x = "dgeMatrix"): columnwise means (averages)
colSums signature(x = "dgeMatrix"): columnwise sums
diag signature(x = "dgeMatrix"): ...
dim signature(x = "dgeMatrix"): ...
dimnames signature(x = "dgeMatrix"): ...
eigen signature(x = "dgeMatrix", only.values = "logical"): ...
eigen signature(x = "dgeMatrix", only.values = "missing"): ...
norm signature(x = "dgeMatrix", type = "character"): ...
norm signature(x = "dgeMatrix", type = "missing"): ...
rcond signature(x = "dgeMatrix", norm = "character") or norm = "missing": the reciprocal condition number, rcond().
rowMeans signature(x = "dgeMatrix"): rowwise means (averages)
rowSums signature(x = "dgeMatrix"): rowwise sums
t signature(x = "dgeMatrix"): matrix transpose

See Also

Classes Matrix, dtrMatrix, and dsyMatrix.
Description

The `dgRMatrix` class is a class of sparse numeric matrices in the compressed, sparse, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Note: The column-oriented sparse classes, e.g., `dgCMatrix`, are preferred and better supported in the `Matrix` package.

Objects from the Class

Objects can be created by calls of the form `new("dgRMatrix", ...)`.

Slots

- **j**: Object of class "integer" of length `nnzero` (number of non-zero elements). These are the column numbers for each non-zero element in the matrix.
- **p**: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.
- **x**: Object of class "numeric" - the non-zero elements of the matrix.
- **Dim**: Object of class "integer" - the dimensions of the matrix.

Methods

- `diag` signature(x = "dgRMatrix"): returns the diagonal of x
- `dim` signature(x = "dgRMatrix"): returns the dimensions of x
- `image` signature(x = "dgRMatrix"): plots an image of x using the `levelplot` function

See Also

the `RsparseMatrix` class, the virtual class of all sparse compressed row-oriented matrices, with its methods. The `dgCMatrix` class (column compressed sparse) is really preferred.
The "dgTMatrix" class is the class of sparse matrices stored as (possibly redundant) triplets. The internal representation is not at all unique, contrary to the one for class dgCMatrix.

Objects from the Class

Objects can be created by calls of the form new("dgTMatrix", ...), but more typically via spMatrix() or sparseMatrix(*, repr = "T").

Slots

i: integer row indices of non-zero entries in 0-base, i.e., must be in 0:(nrow(.)-1).

j: integer column indices of non-zero entries. Must be the same length as slot i and 0-based as well, i.e., in 0:(ncol(.)-1).

x: numeric vector - the (non-zero) entry at position (i,j). Must be the same length as slot i. If an index pair occurs more than once, the corresponding values of slot x are added to form the element of the matrix.

Dim: Object of class "integer" of length 2 - the dimensions of the matrix.

Methods

+ signature(e1 = "dgTMatrix", e2 = "dgTMatrix")

image signature(x = "dgTMatrix"): plots an image of x using the levelplot function

t signature(x = "dgTMatrix"): returns the transpose of x

Note

Triplet matrices are a convenient form in which to construct sparse matrices after which they can be coerced to dgCMatrix objects.

Note that both new(.) and spMatrix constructors for "dgTMatrix" (and other "TsparseMatrix" classes) implicitly add x_k's that belong to identical (i_k, j_k) pairs.

However this means that a matrix typically can be stored in more than one possible "TsparseMatrix" representations. Use uniqTsparse() in order to ensure uniqueness of the internal representation of such a matrix.

See Also

Class dgCMatrix or the superclasses dsparseMatrix and TsparseMatrix; uniqTsparse.
Examples

```r
m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
str(mT)
mT[1,]
mT[4, drop = FALSE]
stopifnot(identical(mT[lower.tri(mT)],
    m [lower.tri(m) ]))
mT[lower.tri(mT, diag=TRUE)] <- 0
mT

## Triplet representation with repeated (i,j) entries
## *adds* the corresponding x's:
T2 <- new("dgTMatrix",
    i = as.integer(c(1,1,0,3,3)),
    j = as.integer(c(2,2,4,0,0)), x=10*1:5, Dim=4:5)
str(T2) # contains (i,j,x) slots exactly as above, but
T2 ## has only three non-zero entries, as for repeated (i,j)'s,
    ## the corresponding x's are "implicitly" added
stopifnot(nnzero(T2) == 3)
```

Diagonal

Construct a Diagonal Matrix

Description

Construct a formally diagonal Matrix, i.e., an object inheriting from virtual class diagonalMatrix (or, if desired, a mathematically diagonal CsparseMatrix).

Usage

```r
Diagonal(n, x = NULL, names = FALSE)
.sparseDiagonal(n, x = NULL, uplo = "U", shape = "t", unitri = TRUE, kind, cols)
.trDiagonal(n, x = NULL, uplo = "U", unitri = TRUE, kind)
.symDiagonal(n, x = NULL, uplo = "U", kind)
```

Arguments

- `n` integer indicating the dimension of the (square) matrix. If missing, then `length(x)` is used.
- `x` numeric or logical vector listing values for the diagonal entries, to be recycled as necessary. If NULL (the default), then the result is a unit diagonal matrix. .sparseDiagonal() and friends ignore non-NULL x when kind = "n".
names

either logical TRUE or FALSE or then a character vector of length n. If true and names(x) is not NULL, use that as both row and column names for the resulting matrix. When a character vector, use it for both dimnames.

uplo

one of c("U","L"), specifying the uplo slot of the result if the result is formally triangular of symmetric.

shape

one of c("t","s","g"), indicating if the result should be formally triangular, symmetric, or “general”. The result will inherit from virtual class triangularMatrix, symmetricMatrix, or generalMatrix, respectively.

unitri

logical indicating if a formally triangular result with ones on the diagonal should be formally unit triangular, i.e., with diag slot equal to "U" rather than "N".

kind

one of c("d","l","n"), indicating the “mode” of the result: numeric, logical, or pattern. The result will inherit from virtual class dsparseMatrix, lsparseMatrix, or nsparseMatrix, respectively. Values other than "n" are ignored when x is non-NULL; in that case the mode is determined by typeof(x).

cols

optional integer vector with values in 0:(n-1), indexing columns of the specified diagonal matrix. If specified, then the result is (mathematically) D[, cols+1] rather than D, where D = Diagonal(n, x), and it is always “general” (i.e., shape is ignored).

Value

Diagonal() returns an object inheriting from virtual class diagonalMatrix.

.sparseDiagonal() returns a CsparseMatrix representation of Diagonal(n, x) or, if cols is given, of Diagonal(n, x)[, cols+1]. The precise class of the result depends on shape and kind.

.trDiagonal() and .symDiagonal() are simple wrappers, for .sparseDiagonal(shape = "t") and .sparseDiagonal(shape = "s"), respectively.

.sparseDiagonal() exists primarily to leverage efficient C-level methods available for CsparseMatrix.

Author(s)

Martin Maechler

See Also

debug for extraction of the diagonal from a matrix works for all “Matrices”.

bandSparse constructs a banded sparse matrix from its non-zero sub-/super- diagonals. band(A) returns a band matrix containing some sub-/super- diagonals of A.

Matrix for general matrix construction; further, class diagonalMatrix.

Examples

Diagonal(3)
Diagonal(x = 10^(3:1))
Diagonal(x = (1:4) >= 2) #-> "IdiMatrix"

Use Diagonal() + kronecker() for “repeated-block” matrices:
M1 <- Matrix(0+0:5, 2,3)
(M <- kronecker(Diagonal(3), M1))

(S <- crossprod(Matrix(rbinom(60, size=1, prob=0.1), 10,6)))
(SI <- S + 10*.symDiagonal(6)) # sparse symmetric still
stopifnot(is(SI, "dsCMatrix"))
(I4 <- .sparseDiagonal(4, shape="t")) # now (2012-10) unitriangular
stopifnot(I4@diag == "U", all(I4 == diag(4)))

diagonalMatrix-class Class "diagonalMatrix" of Diagonal Matrices

Description

Class "diagonalMatrix" is the virtual class of all diagonal matrices.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

diag: character string, either "U" or "N", where "U" means ‘unit-diagonal’.
Dim: matrix dimension, and
Dimnames: the dimnames, a list, see the Matrix class description. Typically list(NULL,NULL) for diagonal matrices.

Extends

Class "sparseMatrix", directly.

Methods

These are just a subset of the signature for which defined methods. Currently, there are (too) many explicit methods defined in order to ensure efficient methods for diagonal matrices.

coerce signature(from = "matrix", to = "diagonalMatrix"): ...
coerce signature(from = "Matrix", to = "diagonalMatrix"): ...
coerce signature(from = "diagonalMatrix", to = "generalMatrix"): ...
coerce signature(from = "diagonalMatrix", to = "triangularMatrix"): ...
coerce signature(from = "diagonalMatrix", to = "nMatrix"): ...
coerce signature(from = "diagonalMatrix", to = "matrix"): ...
coerce signature(from = "diagonalMatrix", to = "sparseVector"): ...
t signature(x = "diagonalMatrix"): ...
and many more methods
solve signature(a = "diagonalMatrix", b, ...): is trivially implemented, of course; see also solve-methods.

which signature(x = "nMatrix"), semantically equivalent to base function which(x, arr.ind).

"Math" signature(x = "diagonalMatrix"): all these group methods return a "diagonalMatrix", apart from cumsum() etc which return a vector also for base matrix.

* signature(e1 = "ddiMatrix", e2="denseMatrix"): arithmetic and other operators from the Ops group have a few dozen explicit method definitions, in order to keep the results diagonal in many cases, including the following:

/ signature(e1 = "ddiMatrix", e2="denseMatrix"): the result is from class ddiMatrix which is typically very desirable. Note that when e2 contains off-diagonal zeros or NAs, we implicitly use \(0/x = 0\), hence differing from traditional R arithmetic (where \(0/0 \mapsto \text{NaN}\)), in order to preserve sparsity.

summary (object = "diagonalMatrix"): Returns an object of S3 class "diagSummary" which is the summary of the vector object@x plus a simple heading, and an appropriate print method.

See Also

Diagonal() as constructor of these matrices, and isDiagonal. ddiMatrix and ldiMatrix are “actual” classes extending "diagonalMatrix".

Examples

```r
I5 <- Diagonal(5)
D5 <- Diagonal(x = 10*(1:5))
## trivial (but explicitly defined) methods:
stopifnot(identical(crossprod(I5), I5),
          identical(tcrossprod(I5), I5),
          identical(crossprod(I5, D5), D5),
          identical(tcrossprod(D5, I5), D5),
          identical(solve(D5), solve(D5, I5)),
          all.equal(D5, solve(solve(D5)), tolerance = 1e-12)
)
solve(D5)# efficient as is diagonal

# an unusual way to construct a band matrix:
rbind2(cbind2(I5, D5),
       cbind2(D5, I5))
```

Transform Triangular Matrices from Unit Triangular to General Triangular and Back
Description
Transform a triangular matrix \(x \), i.e., of class `triangularMatrix`, from (internally!) unit triangular ("unitriangular") to "general" triangular (\texttt{diagU2N}(x)) or back (\texttt{diagN2U}(x)). Note that the latter, \texttt{diagN2U}(x), also sets the diagonal to one in cases where \texttt{diag}(x) was not all one.

\texttt{.diagU2N}(x) and \texttt{.diagN2U}(x) assume \textit{without} checking that \(x \) is a \textit{triangularMatrix} with suitable \texttt{diag} slot ("U" and "N", respectively), hence they should be used with care.

Usage
\begin{verbatim}
diagU2N(x, cl = getClassDef(class(x)), checkDense = FALSE)
diagN2U(x, cl = getClassDef(class(x)), checkDense = FALSE)
\end{verbatim}

Arguments
- \(x \): a \textit{triangularMatrix}, often sparse.
- \(cl \): (optional, for speedup only:) class (definition) of \(x \).
- \(\text{checkDense} \): logical indicating if dense (see \texttt{denseMatrix}) matrices should be considered at all; i.e., when false, as per default, the result will be sparse even when \(x \) is dense.

Details
The concept of unit triangular matrices with a \texttt{diag} slot of "U" stems from LAPACK.

Value
A triangular matrix of the same \texttt{class} but with a different \texttt{diag} slot. For \texttt{diagU2N} (semantically) with identical entries as \(x \), whereas in \texttt{diagN2U}(x), the off-diagonal entries are unchanged and the diagonal is set to all 1 even if it was not previously.

Note
Such internal storage details should rarely be of relevance to the user. Hence, these functions really are rather \textit{internal} utilities.

See Also
- \texttt{"triangularMatrix"}, \texttt{"dtCMatrix"}.

Examples
\begin{verbatim}
(T <- Diagonal(7) + triu(Matrix(rpois(49, 1/4), 7, 7), k = 1))
(uT <- diagN2U(T)) # "unitriangular"
(t.u <- diagN2U(10*T))# changes the diagonal!
stopifnot(all(T == uT), diag(t.u) == 1,
 identical(T, diagU2N(uT)))
\end{verbatim}
dimScale

Scale the Rows and Columns of a Matrix

Description

dimScale, rowScale, and colScale implement $D_1 \%\% x \%\% D_2$, $D \%\% x$, and $x \%\% D$ for diagonal matrices $D_1, D_2,$ and D with diagonal entries $d_1, d_2,$ and d, respectively. Unlike the explicit products, these functions preserve dimnames(x) and symmetry where appropriate.

Usage

dimScale(x, d1 = sqrt(1/diag(x, names = FALSE)), d2 = d1)
rowScale(x, d)
colScale(x, d)

Arguments

x a matrix, possibly inheriting from virtual class Matrix.
d1,d2,d numeric vectors giving factors by which to scale the rows or columns of x; they are recycled as necessary.

Details

dimScale(x) (with d1 and d2 unset) is only roughly equivalent to cov2cor(x). cov2cor sets the diagonal entries of the result to 1 (exactly); dimScale does not.

Value

The result of scaling x, currently always inheriting from virtual class dMatrix.
It inherits from triangularMatrix if and only if x does. In the special case of dimScale(x, d1, d2) with identical d1 and d2, it inherits from symmetricMatrix if and only if x does.

Author(s)

Mikael Jagan

See Also

cov2cor
Examples

```r
n <- 6L
(x <- forceSymmetric(matrix(1, n, n)))
dimnames(x) <- rep.int(list(letters[seq_len(n)]), 2L)

d <- seq_len(n)
(D <- Diagonal(x = d))

(scx <- dimScale(x, d)) # symmetry and 'dimnames' kept
(mmx <- D %*% x %*% D) # symmetry and 'dimnames' lost
stopifnot(identical(unname(as(scx, "generalMatrix")), mmx))

rowScale(x, d)
colScale(x, d)
```

dMatrix-class

(Virtual) Class "dMatrix" of "double" Matrices

Description

The dMatrix class is a virtual class contained by all actual classes of numeric matrices in the Matrix package. Similarly, all the actual classes of logical matrices inherit from the lMatrix class.

Slots

Common to all matrix object in the package:

- **Dim**: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
- **Dimnames**: list of length two; each component containing NULL or a character vector length equal the corresponding Dim element.

Methods

There are (relatively simple) group methods (see, e.g., Arith)

- **Arith** signature(e1 = "dMatrix", e2 = "dMatrix"): ...
- **Arith** signature(e1 = "dMatrix", e2 = "numeric"): ...
- **Arith** signature(e1 = "numeric", e2 = "dMatrix"): ...
- **Math** signature(x = "dMatrix"): ...
- **Math2** signature(x = "dMatrix", digits = "numeric"): this group contains `round()` and `signif()`.
- **Compare** signature(e1 = "numeric", e2 = "dMatrix"): ...
- **Compare** signature(e1 = "dMatrix", e2 = "numeric"): ...
- **Compare** signature(e1 = "dMatrix", e2 = "dMatrix"): ...
- **Summary** signature(x = "dMatrix"): The "Summary" group contains the seven functions `max()`, `min()`, `range()`, `prod()`, `sum()`, `any()`, and `all()`.
The following methods are also defined for all double matrices:

- **expm** signature(x = "dMatrix"): computes the “Matrix Exponential”, see expm.
- **zapsmall** signature(x = "dMatrix"): ...

The following methods are defined for all logical matrices:

- **which** signature(x = "lsparseMatrix") and many other subclasses of "lMatrix"; as the base function which(x, arr.ind) returns the indices of the TRUE entries in x; if arr.ind is true, as a 2-column matrix of row and column indices. Since Matrix version 1.2-9, if useNames is true, as by default, with dimnames, the same as base::which.

See Also

The nonzero-pattern matrix class **nMatrix**, which can be used to store non-NA logical matrices even more compactly.

The numeric matrix classes **dgeMatrix**, **dgCMatrix**, and **Matrix**.

drop0(x, tol=1e-10) is sometimes preferable to (and more efficient than) zapsmall(x, digits=10).

Examples

```r
showClass("dMatrix")

set.seed(101)
round(Matrix(rnorm(28), 4,7), 2)
M <- Matrix(rlnorm(56, sd=10), 4,14)
(M. <- zapsmall(M))
table(as.logical(M. == 0))
```

dmperm

Dulmage-Mendelsohn Permutation / Decomposition

Description

For any \(n \times m \) (typically) sparse matrix \(x \) compute the Dulmage-Mendelsohn row and columns permutations which at first splits the \(n \) rows and \(m \) columns into coarse partitions each; and then a finer one, reordering rows and columns such that the permutated matrix is “as upper triangular” as possible.

Usage

`dmperm(x, nAns = 6L, seed = 0L)`
Arguments

- **x**: A typically sparse matrix; internally coerced to either "dgCMatrix" or "dtCMatrix".
- **nAns**: An integer specifying the length of the resulting list. Must be 2, 4, or 6.
- **seed**: An integer code in -1, 0, 1; determining the (initial) permutation; by default, seed = 0, no (or the identity) permutation; seed = -1 uses the "reverse" permutation k:1; for seed = 1, it is a random permutation (using R's RNG, seed, etc).

Details

See the book section by Tim Davis; page 122–127, in the References.

Value

A named list with (by default) 6 components,

- **p**: Integer vector with the permutation p, of length nrow(x).
- **q**: Integer vector with the permutation q, of length ncol(x).
- **r**: Integer vector of length nb+1, where block k is rows r[k] to r[k+1]-1 in A[p,q].
- **s**: Integer vector of length nb+1, where block k is cols s[k] to s[k+1]-1 in A[p,q].
- **rr5**: Integer vector of length 5, defining the coarse row decomposition.
- **cc5**: Integer vector of length 5, defining the coarse column decomposition.

Author(s)

Martin Maechler, with a lot of “encouragement” by Mauricio Vargas.

References

See Also

Schur, the class of permutation matrices; "pMatrix".

Examples

```r
set.seed(17)
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
str( dm9 <- dmperm(S9) )
(S9p <- with(dm9, S9[p, q]))
## looks good, but *not* quite upper triangular; these, too:
str( dm9.0 <- dmperm(S9, seed=-1)) # non-random too.
str( dm9.1 <- dmperm(S9, seed= 1)) # a random one
## The last two permutations differ, but have the same effect!
(S9p0 <- with(dm9.0, S9[p, q])) # .. hmm ..
```
stopifnot(all.equal(S9p0, S9p)) # same as as default, but different from the random one

set.seed(11)
(M <- triu(rsparsematrix(9,11, 1/4)))
dM <- dmperm(M); with(dM, M[p, q])
(Mp <- M[sample.int(nrow(M)), sample.int(ncol(M))])
dMp <- dmperm(Mp); with(dMp, Mp[p, q])

set.seed(7)
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
str(dm.7 <- dmperm(n7))
stopifnot(exprs = {
 lengths(dm.7[1:2]) == dim(n7)
 identical(dm.7, dmperm(as(n7, "dMatrix")))
 identical(dm.7[1:4], dmperm(n7, nAns=4))
 identical(dm.7[1:2], dmperm(n7, nAns=2))
})

dpoMatrix-class

Positive Semi-definite Dense (Packed \ Non-packed) Numeric Matrices

Description

- The "dpoMatrix" class is the class of positive-semidefinite symmetric matrices in nonpacked storage.

- The "dppMatrix" class is the same except in packed storage. Only the upper triangle or the lower triangle is required to be available.

- The "corMatrix" and "pcorMatrix" classes represent correlation matrices. They extend "dpoMatrix" and "dppMatrix", respectively, with an additional slot sd allowing restoration of the original covariance matrix.

Objects from the Class

Objects can be created by calls of the form new("dpoMatrix", ...) or from crossprod applied to an "dgeMatrix" object.

Slots

- uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

- x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order.

- Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector of non-negative integers.
Dimnames: inherited from class "Matrix"

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

sd: (for "corMatrix" and "pcorMatrix") a numeric vector of length n containing the (original) \(\sqrt{\text{var}(.)} \) entries which allow reconstruction of a covariance matrix from the correlation matrix.

Extends

Class "dsyMatrix", directly.
Classes "dgeMatrix", "symmetricMatrix", and many more by class "dsyMatrix".

Methods

chol signature(x = "dpoMatrix"): Returns (and stores) the Cholesky decomposition of x, see chol.

determinant signature(x = "dpoMatrix"): Returns the determinant of x, via chol(x), see above.

rcond signature(x = "dpoMatrix", norm = "character"): Returns (and stores) the reciprocal of the condition number of x. The norm can be "O" for the one-norm (the default) or "I" for the infinity-norm. For symmetric matrices the result does not depend on the norm.

solve signature(a = "dpoMatrix", b = "...."), and

solve signature(a = "dppMatrix", b = "....") work via the Cholesky composition, see also the Matrix solve-methods.

Arith signature(e1 = "dpoMatrix", e2 = "numeric") (and quite a few other signatures): The result of ("elementwise" defined) arithmetic operations is typically not positive-definite anymore. The only exceptions, currently, are multiplications, divisions or additions with positive length(.) == 1 numbers (or logicals).

Note

Currently the validity methods for these classes such as getValidity(getClass("dpoMatrix")) for efficiency reasons only check the diagonal entries of the matrix – they may not be negative. This is only necessary but not sufficient for a symmetric matrix to be positive semi-definite.

A more reliable (but often more expensive) check for positive semi-definiteness would look at the signs of diag(BunchKaufman(.)) (with some tolerance for very small negative values), and for (strict) positive definiteness at something like !inherits(tryCatch(chol(.), error=identity), "error"). Indeed, when coercing to these classes, a version of Cholesky() or chol() is typically used, e.g., see selectMethod("coerce", c(from="dsyMatrix", to="dpoMatrix"))

See Also

Classes dsyMatrix and dgeMatrix; further, Matrix, rcond, chol, solve, crossprod.
Examples

```
h6 <- Hilbert(6)
rcond(h6)
str(h6)
h6 * 27720 # is `integer'
solve(h6)
str(hp6 <- as(h6, "dppMatrix"))

### Note that as(*, "corMatrix") *scales* the matrix
(ch6 <- as(h6, "corMatrix"))
stopifnot(all.equal(h6 * 27720, round(27720 * h6), tolerance = 1e-14),
  all.equal(ch6@sd^(-2), 2*(1:6)-1, tolerance = 1e-12))
chch <- Cholesky(ch6, perm = FALSE)
stopifnot(identical(chch, ch6@factors$Cholesky),
  all(abs(crossprod(as(chch, "dtrMatrix")) - ch6) < 1e-10))
```

drop0

Drop "Explicit Zeros" from a Sparse Matrix

Description

Returns a sparse matrix with no “explicit zeroes”, i.e., all zero or FALSE entries are dropped from the explicitly indexed matrix entries.

Usage

```
drop0(x, tol = 0, is.Csparse = NA)
```

Arguments

- `x`: a Matrix, typically sparse, i.e., inheriting from `sparseMatrix`.
- `tol`: non-negative number to be used as tolerance for checking if an entry $x_{i,j}$ should be considered to be zero.
- `is.Csparse`: logical indicating prior knowledge about the “Csparseness” of `x`. This exists for possible speedup reasons only.

Value

a Matrix like `x` but with no explicit zeros, i.e., `!any(x@x == 0)`, always inheriting from `CsparseMatrix`.

Note

When a sparse matrix is the result of matrix multiplications, you may want to consider combining `drop0()` with `zapsmall()`, see the example.

See Also

`spMatrix`, `class sparseMatrix`; `nnzero`
Examples

```r
m <- spMatrix(10,20, i= 1:8, j=2:9, x = c(0:2,3:-1))
m
drop0(m)
```

```r
## A larger example:
t5 <- new("dsCMatrix", Dim = c(5L, 5L), uplo = "L",
    x = c(10, 1, 3, 10, 1, 10, 1, 10, 10),
    i = c(0L,2L,4L, 1L, 3L,2L,4L, 3L, 4L),
    p = c(0L, 3L, 5L, 7:9))
TT <- kronecker(t5, kronecker(kronecker(t5,t5), t5))
IT <- solve(TT)
I. <- TT %*% IT ; nnzero(I.) # 697 ( = 625 + 72 )
I.0 <- drop0(zapsmall(I.))
## which actually can be more efficiently achieved by
I.. <- drop0(I., tol = 1e-15)
stopifnot(all(I.0 == Diagonal(625)),
    nnzero(I..) == 625)
```

dsCMatrix-class

Numeric Symmetric Sparse (column compressed) Matrices

Description

The dsCMatrix class is a class of symmetric, sparse numeric matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order.

The dsTMatrix class is the class of symmetric, sparse numeric matrices in triplet format.

Objects from the Class

Objects can be created by calls of the form `new("dsCMatrix", ...)` or `new("dsTMatrix", ...),` or automatically via e.g., `as(*, "symmetricMatrix"),` or (for dsCMatrix) also from `Matrix(.).` Creation “from scratch” most efficiently happens via `sparseMatrix(*, symmetric=TRUE).

Slots

`uplo`: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored.

`i`: Object of class "integer" of length `nnZ` (half number of non-zero elements). These are the row numbers for each non-zero element in the lower triangle of the matrix.

`p`: (only in class "dsCMatrix"): an integer vector for providing pointers, one for each column, see the detailed description in `CsparseMatrix`.

`j`: (only in class "dsTMatrix"): Object of class "integer" of length `nnZ` (as i). These are the column numbers for each non-zero element in the lower triangle of the matrix.

`x`: Object of class "numeric" of length `nnZ` – the non-zero elements of the matrix (to be duplicated for full matrix).
factors: Object of class "list" - a list of factorizations of the matrix.
Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Extends
Both classes extend classes and symmetricMatrix dsparseMatrix directly; dsCMatrix further
directly extends CsparseMatrix, where dsTMatrix does TsparseMatrix.

Methods

solve signature(a = "dsCMatrix", b = "...."): x <- solve(a,b) solves Ax = b for x; see
solve-methods.

chol signature(x = "dsCMatrix", pivot = "logical"): Returns (and stores) the Cholesky de-
composition of x, see chol.

Cholesky signature(A = "dsCMatrix", ...): Computes more flexibly Cholesky decompositions,
see Cholesky.

determinant signature(x = "dsCMatrix", logarithm = "missing"): Evaluate the determinant
of x on the logarithm scale. This creates and stores the Cholesky factorization.

determinant signature(x = "dsCMatrix", logarithm = "logical"): Evaluate the determinant
of x on the logarithm scale or not, according to the logarithm argument. This creates and
stores the Cholesky factorization.

t signature(x = "dsCMatrix"): Transpose. As for all symmetric matrices, a matrix for which
the upper triangle is stored produces a matrix for which the lower triangle is stored and vice
versa, i.e., the uplo slot is swapped, and the row and column indices are interchanged.

t signature(x = "dsTMatrix"): Transpose. The uplo slot is swapped from "U" to "L" or vice
versa, as for a "dsCMatrix", see above.

See Also
Classes dgCMatrix, dgTMatrix, dgeMatrix and those mentioned above.

Examples

mm <- Matrix(toeplitz(c(10, 0, 1, 0, 3)), sparse = TRUE)
mm # automatically dsCMatrix
str(mm)
mT <- as(mm, "generalMatrix"), "TsparseMatrix")

Either
(symM <- as(mT, "symmetricMatrix")) # dsT
(symC <- as(symM, "CsparseMatrix")) # dsC
or
sT <- Matrix(mT, sparse=TRUE, forceCheck=TRUE) # dsT

sym2 <- as(symC, "TsparseMatrix")
--> the same as 'symM', a "dsTMatrix"
dsRMatrix-class

Virtual Class "dsparseMatrix" of Numeric Sparse Matrices

Description

The Class "dsparseMatrix" is the virtual (super) class of all numeric sparse matrices.

Slots

- Dim: the matrix dimension, see class "Matrix".
- Dimnames: see the "Matrix" class.
- x: a numeric vector containing the (non-zero) matrix entries.

Extends

Class "dMatrix" and "sparseMatrix", directly.
Class "Matrix", by the above classes.

See Also

the documentation of the (non virtual) sub classes, see showClass("dsparseMatrix"); in particular, dgTMatrix, dgCMatrix, and dgRMatrix.

Examples

showClass("dsparseMatrix")

dsRMatrix-class

Symmetric Sparse Compressed Row Matrices

Description

The dsRMatrix class is a class of symmetric, sparse matrices in the compressed, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Objects from the Class

These ".RMatrix" classes are currently still mostly unimplemented!
Objects can be created by calls of the form new("dsRMatrix", ...).
Slots

uplo: A character object indicating if the upper triangle ("U") or the lower triangle ("L") is stored. At present only the lower triangle form is allowed.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.

p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.

factors: Object of class "list" - a list of factorizations of the matrix.

x: Object of class "numeric" - the non-zero elements of the matrix.

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with exactly two non-negative values.

Dimnames: List of length two, see Matrix.

Extends

Classes RsparseMatrix, dsparseMatrix and symmetricMatrix, directly.

Class "dMatrix", by class "dsparseMatrix", class "sparseMatrix", by class "dsparseMatrix" or "RsparseMatrix"; class "compMatrix" by class "symmetricMatrix" and of course, class "Matrix".

Methods

forceSymmetric signature(x = "dsRMatrix", uplo = "missing"): a trivial method just returning x

forceSymmetric signature(x = "dsRMatrix", uplo = "character"): if uplo == x@uplo, this trivially returns x; otherwise t(x).

See Also

the classes dgCMatrix, dgTMatrix, and dgeMatrix.

Examples

(m0 <- new("dsRMMatrix"))
m2 <- new("dsRMMatrix", Dim = c(2L,2L),
 x = c(3,1), j = c(1L,1L), p = 0:2)
m2
stopifnot(colSums(as(m2, "TsparseMatrix")) == 3:4)
str(m2)
(ds2 <- forceSymmetric(diag(2))) # dsy*
dR <- as(ds2, "RsparseMatrix")
dR # dsRMMatrix
dsyMatrix-class

Symmetric Dense (Packed or Unpacked) Numeric Matrices

Description

• The "dsyMatrix" class is the class of symmetric, dense matrices in non-packed storage and
• "dspMatrix" is the class of symmetric dense matrices in packed storage, see `pack()`. Only
 the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form `new("dsyMatrix", ...)` or `new("dspMatrix", ...)`, respectively.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower
 triangular.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-
 major order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the
 `Matrix`.

factors: Object of class "list". A named list of factorizations that have been computed for the
 matrix.

Extends

"dsyMatrix" extends class "dgeMatrix", directly, whereas
"dspMatrix" extends class "ddenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use
`showClass("dsyMatrix")`, e.g., for details.

Methods

`norm` signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing":
Computes the matrix norm of the desired type, see, `norm`.

`rcond` signature(x = "dspMatrix", type = "character"), or x = "dsyMatrix" or type = "missing":
Computes the reciprocal condition number, `rcond()`.

`solve` signature(a = "dspMatrix", b = "...."), and

`solve` signature(a = "dsyMatrix", b = "...."): x <- solve(a,b) solves Ax = b for x; see
`solve-methods`.

`t` signature(x = "dsyMatrix"): Transpose; swaps from upper triangular to lower triangular stor-
 age, i.e., the uplo slot from "U" to "L" or vice versa, the same as for all symmetric matrices.
See Also

The positive (Semi-)definite dense (packed or non-packed numeric matrix classes \texttt{dpoMatrix}, \texttt{dppMatrix} and \texttt{corMatrix},

Classes \texttt{dgeMatrix} and \texttt{Matrix}; solve, norm, rcond, t

Examples

```r
## Only upper triangular part matters (when uplo == "U" as per default)
(sy2 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, NA,32,77)))
str(t(sy2)) # uplo = "L", and the lower tri. (i.e. NA is replaced).

chol(sy2) #-> "Cholesky" matrix
(sp2 <- pack(sy2)) # a "dspMatrix"

## Coercing to dpoMatrix gives invalid object:
sy3 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, -1, 2, -7))
try(as(sy3, "dpoMatrix")) # -> error: not positive definite

## 4x4 example
m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(sym <- m+t(m)+diag(11:14, 4))
(S1 <- pack(sym))
(S2 <- t(S1))
stopifnot(all(S1 == S2)) # equal "seen as matrix", but differ internally :
str(S1) S2@x
```

Description

The "\texttt{dtCMatrix}\" class is a class of triangular, sparse matrices in the compressed, column-oriented format. In this implementation the non-zero elements in the columns are sorted into increasing row order.

The "\texttt{dtTMatrix}\" class is a class of triangular, sparse matrices in triplet format.

Objects from the Class

Objects can be created by calls of the form \texttt{new("dtCMatrix", \ldots)} or calls of the form \texttt{new("dtTMatrix", \ldots)}, but more typically automatically via \texttt{Matrix()} or coercions such as \texttt{as(x, "triangularMatrix")}.

\begin{itemize}
 \item \texttt{dtCMatrix-class} Triangular, (compressed) sparse column matrices
\end{itemize}
Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones),
or "N"; see triangularMatrix.

p: (only present in "dtCMatrix") an integer vector for providing pointers, one for each column,
see the detailed description in CsparseMatrix.

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each non-zero element in the matrix.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the
column numbers for each non-zero element in the matrix. (Only present in the dtTMatrix
class.)

x: Object of class "numeric" - the non-zero elements of the matrix.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited
from the Matrix, see there.

Extends

Class "dgCMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix","sparseMatrix",
and more by class "dgCMatrix" etc, see the examples.

Methods

solve signature(a = "dtCMatrix", b = "..."): sparse triangular solve (aka “backsolve” or “forwardsolve”), see solve-methods.

t signature(x = "dtCMatrix"): returns the transpose of x

t signature(x = "dtTMatrix"): returns the transpose of x

See Also

Classes dgCMatrix, dgTMatrix, dgeMatrix, and dtrMatrix.

Examples

class <- new("dgTMatrix")
t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))
from 0-diagonal to unit-diagonal (low-level step):
tu <- t1 ; tu@diag <- "U"
tu
(cu <- as(tu, "CsparseMatrix"))
str(cu)# only two entries in @i and @x
stopifnot(cu@i == 1:0,
 all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu)))
t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
(it1 <- solve(t1))
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)

2nd example
U5 <- new("dtCMatrix", i= c(1L, 0:3), p=c(0L,0L,0:2, 5L), Dim = c(5L, 5L),
 x = rep(1, 5), diag = "U")
U5
(iu <- solve(U5)) # contains one '0'
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions
I5 <- iu %*% U5 # should equal the identity matrix
i5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(
 all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
 all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
 identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))
)

dtpMatrix-class

Packed Triangular Dense Matrices - "dtpMatrix"

Description

The "dtpMatrix" class is the class of triangular, dense, numeric matrices in packed storage. The "dtrMatrix" class is the same except in nonpacked storage.

Objects from the Class

Objects can be created by calls of the form new("dtpMatrix", ...) or by coercion from other classes of matrices.

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order. For a packed square matrix of dimension $d \times d$, length(x) is of length $d(d+1)/2$ (also when diag == "U"!).

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there.
dtpMatrix-class

Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "dMatrix" and more by class "ddenseMatrix" etc, see the examples.

Methods

```r
%*% signature(x = "dtpMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several other signature combinations, see showMethods("%*%", class = "dtpMatrix").

determinant signature(x = "dtpMatrix", logarithm = "logical"): the determinant(x) trivially is prod(diag(x)), but computed on log scale to prevent over- and underflow.

diag signature(x = "dtpMatrix"): ...

norm signature(x = "dtpMatrix", type = "character"): ...

rcond signature(x = "dtpMatrix", norm = "character"): ...

solve signature(a = "dtpMatrix", b = "...":) efficiently using internal backsolve or forwardsolve, see solve-methods.

t signature(x = "dtpMatrix"): t(x) remains a "dtpMatrix", lower triangular if x is upper triangular, and vice versa.
```

See Also

Class dtrMatrix

Examples

```r
showClass("dtrMatrix")

example("dtrMatrix-class", echo=FALSE)
(p1 <- pack(T2))
str(p1)
(pp <- pack(T))
ip1 <- solve(p1)
stopifnot(length(p1@x) == 3, length(pp@x) == 3,

  p1 @ uplo == T2 @ uplo, pp @ uplo == T @ uplo,

  identical(t(pp), p1), identical(t(p1), pp),

  all(l.d <- p1 - T2 == 0), is(l.d, "dtpMatrix"),

  all(u.d <- pp - T == 0), is(u.d, "dtpMatrix"),

  l.d@uplo == T2@uplo, u.d@uplo == T@uplo,

  identical(t(ip1), solve(pp)), is(ip1, "dtpMatrix"),

  all.equal(as(solve(p1,p1), "diagonalMatrix"), Diagonal(2)))
```
The `dtRMatrix` class is a class of triangular, sparse matrices in the compressed, row-oriented format. In this implementation the non-zero elements in the rows are sorted into increasing column order.

Objects from the Class

This class is currently still mostly unimplemented!

Objects can be created by calls of the form `new("dtRMatrix", ...)`.

Slots

- `uplo`: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. At present only the lower triangle form is allowed.
- `diag`: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
- `j`: Object of class "integer" of length `nnzero(.)` (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- `p`: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row. (Only present in the `dsRMatrix` class.)
- `x`: Object of class "numeric" - the non-zero elements of the matrix.
- `Dim`: The dimension (a length-2 "integer")
- `Dimnames`: corresponding names (or NULL), inherited from the `Matrix`, see there.

Extends

Class "dgRMatrix", directly. Class "dsparseMatrix", by class "dgRMatrix". Class "dMatrix", by class "dgRMatrix". Class "sparseMatrix", by class "dgRMatrix". Class "Matrix", by class "dgRMatrix".

Methods

No methods currently with class "dsRMatrix" in the signature.

See Also

Classes `dgCMatrix`, `dgTMatrix`, `dgeMatrix`
Examples

(m0 <- new("dtRMatrix"))
(m2 <- new("dtRMatrix", Dim = c(2L, 2L),
 x = c(5, 1:2), p = c(0L, 2:3), j = c(0:1, 1L)))
str(m2)
(m3 <- as(Diagonal(2), "RsparseMatrix")) # --> dtRMatrix

dtrMatrix-class

Triangular, dense, numeric matrices

Description

The "dtrMatrix" class is the class of triangular, dense, numeric matrices in nonpacked storage.

The "dtpMatrix" class is the same except in packed storage, see `pack()`.

Objects from the Class

Objects can be created by calls of the form new("dtrMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.

x: Object of class "numeric". The numeric values that constitute the matrix, stored in column-major order.

Dim: Object of class "integer". The dimensions of the matrix which must be a two-element vector of non-negative integers.

Extends

Class "ddenseMatrix", directly. Class "triangularMatrix", directly. Class "Matrix" and others, by class "ddenseMatrix".

Methods

Among others (such as matrix products, e.g. `?crossprod-methods`),

- `norm` signature(x = "dtrMatrix", type = "character")
- `rcond` signature(x = "dtrMatrix", norm = "character")
- `solve` signature(a = "dtrMatrix", b = "...") efficiently use a “forwardsolve” or backsolve for a lower or upper triangular matrix, respectively, see also `solve-methods`.

+,-,*,...,==,>=,... all the Ops group methods are available. When applied to two triangular matrices, these return a triangular matrix when easily possible.
See Also

Classes `ddenseMatrix`, `dtpMatrix`, `triangularMatrix`

Examples

```r
(m <- rbind(2:3, 0:-1))
(M <- as(m, "generalMatrix"))

(T <- as(M, "triangularMatrix")) # formally upper triangular
(T2 <- as(t(M), "triangularMatrix"))
stopifnot(T@uplo == "U", T2@uplo == "L", identical(T2, t(T)))

m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(t1 <- Matrix(m+diag(4)))
str(t1p <- pack(t1))
(t1pu <- diagN2U(t1p))
stopifnot(exprs = {
  inherits(t1 , "dtrMatrix"); validObject(t1)
  inherits(t1p, "dtpMatrix"); validObject(t1p)
  inherits(t1pu,"dtCMatrix"); validObject(t1pu)
  t1pu@x == 1:6
  all(t1pu == t1p)
  identical((t1pu - t1)@x, numeric())# sparse all-0
})
```

expand-methods

Expand Matrix Factorizations

Description

`expand1` and `expand2` construct matrix factors from objects specifying matrix factorizations. Such objects typically do not store the factors explicitly, employing instead a compact representation to save memory.

Usage

```r
expand1(x, which, ...)
expand2(x, ...)
```

Arguments

- `x` a matrix factorization, typically inheriting from virtual class `MatrixFactorization`.
- `which` a character string indicating a matrix factor.
- `...` further arguments passed to or from methods.
Details

Methods for expand are retained only for backwards compatibility with \texttt{Matrix < 1.6-0}. New code should use expand1 and expand2, whose methods provide more control and behave more consistently. Notably, expand2 obeys the rule that the product of the matrix factors in the returned list should reproduce (within some tolerance) the factorized matrix, \textit{including} its dimnames.

Hence if \(x\) is a matrix and \(y\) is its factorization, then

\[
\text{all.equal(as(x,} \text{"matrix"), as(Reduce('\%\%\%', expand2(y)),} \text{"matrix"))}
\]

should in most cases return \texttt{TRUE}.

Value

\texttt{expand1} returns an object inheriting from virtual class \texttt{Matrix}, representing the factor indicated by \texttt{which}, always without row and column names.

\texttt{expand2} returns a list of factors, typically with names using conventional notation, as in \texttt{list(L=, U=)}. The first and last factors get the row and column names of the factorized matrix, which are preserved in the \texttt{Dimnames} slot of \(x\).

Methods

The following table lists methods for \texttt{expand1} together with allowed values of argument \texttt{which}.

<table>
<thead>
<tr>
<th>\texttt{class(x)}</th>
<th>\texttt{which}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{Schur}</td>
<td>c("Q", "T", "Q.")</td>
</tr>
<tr>
<td>\texttt{denseLU}</td>
<td>c("P1", "P1.", "L", "U")</td>
</tr>
<tr>
<td>\texttt{sparseLU}</td>
<td>c("P1", "P1.", "P2.", "L", "U")</td>
</tr>
<tr>
<td>\texttt{sparseQR}</td>
<td>c("P1", "P1.", "P2.", "Q", "Q1", "R", "R1")</td>
</tr>
<tr>
<td>\texttt{BunchKaufman, pBunchKaufman}</td>
<td>c("U", "DU", "U.", "L", "DL", "L.")</td>
</tr>
<tr>
<td>\texttt{Cholesky, pCholesky}</td>
<td>c("P1", "P1.", "L1", "D", "L1.", "L", "L.")</td>
</tr>
<tr>
<td>\texttt{CHMsimpl, CHMsimpl}</td>
<td>c("P1", "P1.", "L1", "D", "L1.", "L", "L.")</td>
</tr>
</tbody>
</table>

Methods for \texttt{expand2} and \texttt{expand} are described below. Factor names and classes apply also to \texttt{expand1}.

\texttt{expand2 signature(x = \"CHMsimpl\")}: expands the factorization \(A = P_1^T L_1 D L_1^T P_1 = P_1^T L L^T P_1\) as \texttt{list(P1., L1, D, L1., P1)} (the default) or as \texttt{list(P1., L, L., P1)}, depending on optional logical argument \texttt{LDL}. \texttt{P1} and \texttt{P1.} are \texttt{pMatrix}, \texttt{L1, L1.}, and \texttt{L} are \texttt{dtCMatrix}, and \texttt{D} is a \texttt{ddiMatrix}.

\texttt{expand2 signature(x = \"CHMsuper\")}: as \texttt{CHMsimpl}, but the triangular factors are stored as \texttt{dgCMatrix}.

\texttt{expand2 signature(x = \"p?Cholesky\")}: expands the factorization \(A = L_1 D L_1^T = LL^T\) as \texttt{list(L1, D, L1.)} (the default) or as \texttt{list(L, L.)}, depending on \texttt{x@uplo}. \texttt{L1, L1.}, and \texttt{L} are \texttt{dtrMatrix} or \texttt{dtpMatrix}, and \texttt{D} is a \texttt{ddiMatrix}.

\texttt{expand2 signature(x = \"p?BunchKaufman\")}: expands the factorization \(A = UD_1 U^T = LD L^T\) where \(U = \prod_{k=1}^{bU} P_k U_k\) and \(L = \prod_{k=1}^{bL} P_k L_k\) as \texttt{list(U, DU, U.)} or \texttt{list(L, DL, L.)}, depending on \texttt{x@uplo}. If optional argument \texttt{complete} is \texttt{TRUE}, then an unnamed list giving the full expansion with \(2 b_U + 1\) or \(2 b_L + 1\) matrix factors is returned instead. \(P_k\) are represented
as `pMatrix`. \(U_k \) and \(L_k \) are represented as `dtCMatrix`, and \(D_U \) and \(D_L \) are represented as `dsCMatrix`.

expand2 signature(x = "Schur"): expands the factorization \(A = QTQ' \) as list\((Q, T, Q.\). \(Q \) and \(T \) are \(x@Q \) and \(t(x@Q) \) modulo Dimnames, and \(T \) is \(x@T \).

expand2 signature(x = "sparseLU"): expands the factorization \(A = P_1'LUP_2' \) as list\((P_1., L, U, P_2.). P_1. \) and \(P_2. \) are `pMatrix`, and \(L \) and \(U \) are `dtCMatrix`.

expand2 signature(x = "denseLU"): expands the factorization \(A = P_1'LU \) as list\((P_1., L, U)\). \(P_1. \) is a `pMatrix`, and \(L \) and \(U \) are `dtrMatrix` if square and `dgeMatrix` otherwise.

expand2 signature(x = "sparseQR"): expands the factorization \(A = P_1'QRP_2' = P_1'Q_1R_1P_2' \) as list\((P_1., Q, R, P_2.) \) or list\((P_1., Q_1, R_1, P_2.)\), depending on optional logical argument `complete`. \(P_1. \) and \(P_2. \) are `pMatrix`, \(Q \) and \(Q_1 \) are `dgeMatrix`, \(R \) is a `dgCMatrix`, and \(R_1 \) is a `dtCMatrix`.

expand signature(x = "CHMfactor"): as expand2, but returning list\((P, L)\).

expand signature(x = "sparseLU"): as expand2, but returning list\((P, L, U, Q)\).

expand signature(x = "denseLU"): as expand2, but returning list\((L, U, P)\).

See Also

The virtual class `compMatrix` of factorizable matrices.

The virtual class `MatrixFactorization` of matrix factorizations.

Generic functions `Cholesky`, `BunchKaufman`, `Schur`, `lu`, and `qr` for computing factorizations.

Examples

```r
showMethods("expand1", inherited = FALSE)
showMethods("expand2", inherited = FALSE)
set.seed(0)

(A <- Matrix(rnorm(9L, 0, 10), 3L, 3L))
(lu.A <- lu(A))
(e.lu.A <- expand2(lu.A))
stopifnot(exprs = {
  is.list(e.lu.A)
  identical(names(e.lu.A), c("P1.", "L", "U"))
  all(sapply(e.lu.A, is, "Matrix"))
  all.equal(as(A, "matrix"), as(Reduce("%*%", e.lu.A), "matrix"))
})
```
expm-methods

Matrix Exponential

Description

Compute the exponential of a matrix.

Usage

expm(x)

Arguments

x

a matrix, typically inheriting from the dMatrix class.

Details

The exponential of a matrix is defined as the infinite Taylor series \(\exp(A) = I + A + A^2/2! + A^3/3! + \ldots \) (although this is definitely not the way to compute it). The method for the dgeMatrix class uses Ward’s diagonal Pade’ approximation with three step preconditioning.

Value

The matrix exponential of x.

Author(s)

This is a translation of the implementation of the corresponding Octave function contributed to the Octave project by A. Scottedward Hodel <A.S.Hodel@Eng.Auburn.EDU>. A bug in there has been fixed by Martin Maechler.

References

https://en.wikipedia.org/wiki/Matrix_exponential

See Also

Package **expm**, which provides newer (in some cases faster, more accurate) algorithms for computing the matrix exponential via its own (non-generic) function **expm**. **expm** also implements logm, sqrtm, etc.

Generic function **Schur**.

Examples

```
(m1 <- Matrix(c(1,0,1,1), ncol = 2))
(e1 <- expm(m1)); e <- exp(1)
stopifnot(all.equal(e1@x, c(e,0,e,e), tolerance = 1e-15))
(m2 <- Matrix(c(-49, -64, 24, 31), ncol = 2))
(e2 <- expm(m2))
(m3 <- Matrix(cbind(0, rbind(6*diag(3), 0))))# sparse!
(e3 <- expm(m3)) # upper triangular
```

externalFormats
Read and write external matrix formats

Description

Read matrices stored in the Harwell-Boeing or MatrixMarket formats or write **sparseMatrix** objects to one of these formats.

Usage

```r
readHB(file)
readMM(file)
writeMM(obj, file, ...)
```

Arguments

- `obj`
 A real sparse matrix

- `file`
 For **writeMM** - the name of the file to be written. For **readHB** and **readMM** the name of the file to read, as a character scalar. The names of files storing matrices in the Harwell-Boeing format usually end in "rua" or "rsa". Those storing matrices in the MatrixMarket format usually end in "mtx".

 Alternatively, **readHB** and **readMM** accept connection objects.

- `...`
 Optional additional arguments. Currently none are used in any methods.

Value

The **readHB** and **readMM** functions return an object that inherits from the "Matrix" class. Methods for the **writeMM** generic functions usually return **NULL** and, as a side effect, the matrix **obj** is written to file in the MatrixMarket format (**writeMM**).
Note

The Harwell-Boeing format is older and less flexible than the MatrixMarket format. The function writeHB was deprecated and has now been removed. Please use writeMM instead.

Note that these formats do not know anything about dimnames, hence these are dropped by writeMM().

A very simple way to export small sparse matrices S, is to use summary(S) which returns a data.frame with columns i, j, and possibly x, see summary in sparseMatrix-class, and an example below.

References

https://math.nist.gov/MatrixMarket/

https://sparse.tamu.edu/

Examples

```r
str(pores <- readMM(system.file("external/pores_1.mtx", package = "Matrix")))
str(utm <- readHB(system.file("external/utm300.rua", package = "Matrix")))
str(lundA <- readMM(system.file("external/lund_a.mtx", package = "Matrix")))
str(lundA <- readHB(system.file("external/lund_a.rsa", package = "Matrix")))
## https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/counterx/counterx.htm
str(jgl <- readMM(system.file("external/jgl009.mtx", package = "Matrix")))

## NOTE: The following examples take quite some time
## ---- even on a fast internet connection:
if(FALSE) {
## The URL has been corrected, but we need an untar step:
  u. <- url("https://www.cise.ufl.edu/research/sparse/RB/Boeing/msc00726.tar.gz")
  str(sm <- readHB(gzcon(u.)))
}

data(KNex, package = "Matrix")
## Store as MatrixMarket (".mtx") file, here inside temporary dir./folder:
(MMfile <- file.path(tempdir(), "mmMM.mtx"))
writeMM(KNex$mm, file=MMfile)
file.info(MMfile)[,c("size", "ctime")]
## very simple export - in triplet format - to text file:
data(CAex, package = "Matrix")
s.CA <- summary(CAex)
s.CA # shows (i, j, x) [columns of a data frame]
message(\"writing to \", outf <- tempfile())
write.table(s.CA, file = outf, row.names=FALSE)
## and read it back -- showing off sparseMatrix():
str(dd <- read.table(outf, header=TRUE))
## has columns (i, j, x) -> we can use via do.call() as arguments to sparseMatrix():
mm <- do.call(sparseMatrix, dd)
stopifnot(all.equal(mm, CAex, tolerance=1e-15))
```
Multiplication by Factors from Matrix Factorizations

Description

Multiplies a matrix or vector on the left or right by a factor from a matrix factorization or its transpose.

Usage

facmul(x, factor, y, trans = FALSE, left = TRUE, ...)

Arguments

- **x**: a MatrixFactorization object.
- **factor**: a character string indicating a factor in the factorization represented by `x`, typically an element of `names(expand2(x, ...))`.
- **y**: a matrix or vector to be multiplied on the left or right by the factor or its transpose.
- **trans**: a logical indicating if the transpose of the factor should be used, rather than the factor itself.
- **left**: a logical indicating if the `y` should be multiplied on the left by the factor, rather than on the right.
- **...**: further arguments passed to or from methods.

Details

`facmul` is experimental and currently no methods are exported from `Matrix`.

Value

The value of `op(M) %*% y` or `y %*% op(M)`, depending on `left`, where `M` is the factor (always without `dimnames`) and `op(M)` is `M` or `t(M)`, depending on `trans`.

Examples

```r
## Conceptually, methods for 'facmul' _would_ behave as follows ...
## Not run:
n <- 3L
x <- lu(Matrix(rnorm(n * n), n, n))
y <- rnorm(n)
L <- unname(expand2(x)[[nm <- "L"]])
stopifnot(exprs = {
  all.equal(facmul(x, nm, y, trans = FALSE, left = TRUE), L %*% y)
  all.equal(facmul(x, nm, y, trans = FALSE, left = FALSE), y %*% L)
  all.equal(facmul(x, nm, y, trans = TRUE, left = TRUE), crossprod(L, y))
})
```
```r
all.equal(facmul(x, nm, y, trans = TRUE, left = FALSE), tcrossprod(y, L))
})
## End(Not run)
```

fastMisc

“Low Level” Coercions and Methods

Description

“Semi-API” functions used internally by `Matrix`, often to bypass S4 dispatch and avoid the associated overhead. These are exported to provide this capability to expert users. Typical users should continue to rely on S4 generic functions to dispatch suitable methods, by calling, e.g., `as(. , <class>)` for coercions.

Usage

- `.M2tri(from, ...)`
- `.M2sym(from, ...)`
- `.M2diag(from)`

- `.m2dense(from, code, uplo = "U", diag = "N")`
- `.m2sparse(from, code, uplo = "U", diag = "N")`

- `.dense2m(from)`
- `.sparse2m(from)`

- `.dense2v(from)`
- `.sparse2v(from)`

- `.dense2kind(from, kind)`
- `.sparse2kind(from, kind, drop0 = FALSE)`

- `.dense2g(from, kind = ".")`
- `.sparse2g(from, kind = ".")`

- `.dense2sparse(from, repr = "C")`
- `.sparse2dense(from, packed = FALSE)`

- `.diag2dense(from, code, uplo = "U")`
- `.diag2sparse(from, code, uplo = "U", drop0 = TRUE)`

- `.CR2T(from)`
- `.T2CR(from, Csparse = TRUE)`

- `.CR2RC(from)`
- `.tCR2RC(from)`
.diag.dsC(x, Chx = Cholesky(x, LDL = TRUE), res.kind = "diag")
.solve.dgC.chol(a, b, check = TRUE)
.solve.dgC.lu (a, b, tol = .Machine$double.eps, check = TRUE)
.solve.dgC.qr (a, b, order = 3L, check = TRUE)
.updateCHMfactor(object, parent, mult = 0)

Arguments

- **from**: a `Matrix`, matrix, or vector.
- **code**: a string whose first three characters specify the class of the result. It should match the pattern "^[.nld](ge|tr|sy|tp|sp)" for `.sparse` and "^[.nld]gts[CRT]" for `.dense`, where "." in the first position is equivalent to "l" for logical arguments and "d" for numeric arguments.
- **kind**: a string ("." or "n", "l", or "d") specifying the “kind” of the result. "." indicates that the kind of `from` should be preserved. "n" indicates that the result should inherit from `nMatrix` (and so on).
- **uplo**: a string ("U" or "L") indicating whether the result should store the upper or lower triangle of `from`. The elements of `from` in the opposite triangle are ignored.
- **diag**: a string ("N" or "U") indicating whether the result (if triangular) should be formally nonunit or unit triangular. In the unit triangular case, the diagonal elements of `from` are ignored.
- **drop0**: a logical. If TRUE, then nonstructural zeros in `from` are dropped.
- **repr**: a string ("C", "R", or "T") specifying the storage of the result as `CsparseMatrix`, `RsparseMatrix`, or `TsparseMatrix`.
- **packed**: a logical. If TRUE and `from` is formally triangular or symmetric, then the result will have “packed” storage and inherit from `packedMatrix` rather than `unpackedMatrix`.
- **Csparse**: a logical. If FALSE, then the result will inherit from `RsparseMatrix` rather than `CsparseMatrix`.
- **x**: a numeric sparse column-compressed "dgCMatrix".
- **Chx**: optionally the Cholesky(x,...) decomposition of x; if Chx is specified, x is unneeded.
- **res.kind**: a string, one of "trace", "sumLog", "prod", "min", "max", "range", "diag", "diagBack".
- **a**: a numeric symmetric sparse column-compressed "dsCMatrix".
- **b**: a vector or matrix, the “right hand side” b where we solve Ax = b for x.
- **check**: a logical indicating if the first argument possibly first needs to be coerced to a `dgCMatrix`; should be set to false for speedup only if it is known to be already of the correct class.
tol non-negative number, the tolerance for singularity checking in the LU decomposition.

order only used for `.solve.dgC.qr()`: integer code in 0:3, determining which “symbolic Cholesky” method in ‘AMD’ is used; see `lm.fit.sparse` in package `MatrixModels`.

object a Cholesky factorization inheriting from virtual class `CHMfactor`, almost always the result of a call to generic function `Cholesky`.

parent an object of class `dsCM` or class `dgCM`.

mult a numeric vector of positive length. Only the first element is used. It must be finite.

Details

Functions with names of the form `.<A>2` implement coercions from virtual class A to the “nearest” non-virtual subclass of virtual class B, where the virtual classes are abbreviated as follows:

- `M Matrix`, matrix, or vector
- `m matrix`
- `v vector`
- `g generalMatrix`
- `C CsparseMatrix`
- `R RsparseMatrix`
- `T TsparseMatrix`
- `dense denseMatrix`
- `sparse CsparseMatrix, RsparseMatrix, or TsparseMatrix`
- `tri triangularMatrix`
- `sym symmetricMatrix`
- `diag diagonalMatrix`

Abbreviations should be seen as guides, rather than as an exact description of behaviour. For example, `.m2dense` and `.m2sparse` accept vectors in addition to matrices.

`.CR2T` and `.T2CR` coerce between `TsparseMatrix` and the union of `CsparseMatrix` and `RsparseMatrix`. Conceptually, the latter performs the coercion on the transpose of its argument. That is, `.tCR2RC(from)` is equivalent to `.CR2RC(t(from))` and `t(.CR2RC(from))`.

`.M2tri`, `.M2sym`, and `.M2diag` can be seen as drop-in replacements for `as(., "*Matrix")`, but allowing users to pass optional arguments to the structure-checking functions.

`.diag.dsC(x)`: This computes (or uses if Chx is specified) the Cholesky factorization of x as LDL' in order to calculate one of several statistics from the diagonal entries of D. See `res.kind` under ‘Arguments’.
.solve.dgC.*(a, b): .solve.dgC.lu(a, b) needs a square matrix a. .solve.dgC.qr(a, b) needs a “long” matrix a, with nrow(a) >= ncol(a). .solve.dgC.chol(a, b) needs a symmetric, positive definite matrix a.

All three may be used to solve sparse systems directly. Only .solve.dgC.qr and .solve.dgC.chol be used to solve sparse least squares problems.

.updateCHMfactor(object, parent, mult): This updates object with the result of Cholesky factorizing F(parent) + mult[1] * diag(nrow(parent)), i.e., F(parent) plus mult[1] times the identity matrix, where F = identity if parent is a dsCMatrix and F = tcrossprod if parent is a dgCMatrix. The nonzero pattern of F(parent) must match that of S if object = Cholesky(S, ...).

Examples

D. <- diag(x = c(1, 1, 2, 3, 5, 8))
D.0 <- Diagonal(x = c(0, 0, 0, 3, 5, 8))
S. <- toeplitz(as.double(1:6))
C. <- new("dgCMatrix", Dim = c(3L, 4L),
 p = c(0L, 1L, 1L, 1L, 3L), i = c(1L, 0L, 2L), x = c(-8, 2, 3))

stopifnot(identical(.M2tri(D.), as(D., "triangularMatrix")),
identical(.M2sym(D.), as(D., "symmetricMatrix")),
identical(.M2diag(D.), as(D., "diagonalMatrix")),
identical(.sparse2kind(C., "l"),
 as(C., "lMatrix")),
identical(.dense2kind(.sparse2dense(C.), "l"),
 as(as(C., "denseMatrix"), "lMatrix")),
identical(.diag2sparse(D.0, "ntC"),
 .dense2sparse(.diag2dense(D.0, "ntp", "C")),
identical(.dense2g(.diag2dense(D.0, "dsy")),
 .sparse2dense(.sparse2g(.diag2sparse(D.0, "dsT")))),
identical(S.,
 .sparse2m(.m2sparse(S., ".sr"))),
identical(S. * lower.tri(S.) + diag(1, 6L),
 .dense2m(m2dense(S., ".tr", "L", ".U"))),
identical(.CR2RC(C.), .T2CR(.CR2T(C.), FALSE)),
identical(.CR2RC(C.), .CR2RC(t(C.))))

A <- tcrossprod(C.)/6 + Diagonal(3, 1/3); A[1,2] <- 3; A
stopifnot(exprs = {
 is.numeric(x. <- c(2.2, 0, -1.2))
 all.equal(x., .solve.dgC.lu(A, c(1,0,0), check=FALSE))
 all.equal(x., .solve.dgC.qr(A, c(1,0,0), check=FALSE))
})

Solving sparse least squares:

X <- rbind(A, Diagonal(3)) # design matrix X (for L.S.)
Xt <- t(X) # *transposed* X (for L.S.)
(y <- drop(crossprod(Xt, 1:3)) + c(-1,1)/1000) # small rand.err.
str(solveCh <- .solve.dgC.chol(Xt, y, check=FALSE)) # Xt *is* dgC..
forceSymmetric-methods

Force a Matrix to 'symmetricMatrix' Without Symmetry Checks

Description

Force a square matrix \(x \) to a \code{symmetricMatrix}, \textbf{without} a symmetry check as it would be applied for \code{as(x, "symmetricMatrix")}.

Usage

\function{forceSymmetric}{x, uplo}

Arguments

- \code{x} any square matrix (of numbers), either "traditional" (\code{matrix}) or inheriting from \code{Matrix}.
- \code{uplo} optional string, "U" or "L" indicating which "triangle" half of \(x \) should determine the result. The default is "U" unless \(x \) already has a \code{uplo} slot (i.e., when it is \code{symmetricMatrix}, or \code{triangularMatrix}), where the default will be \(x@uplo \).

Value

a square matrix inheriting from class \code{symmetricMatrix}.

See Also

\code{symmpart} for the symmetric part of a matrix, or the coercions \code{as(x, <symmetricMatrix class>)}.

Examples

Hilbert matrix
\begin{verbatim}
Hilbert matrix
i <- 1:6
h6 <- 1/outer(i - 1L, i, "+")
sd <- sqrt(diag(h6))
hh <- t(h6/sd)/sd # theoretically symmetric
isSymmetric(hh, tol=0) # FALSE; hence try(as(hh, "symmetricMatrix")) # fails, but this works fine:
H6 <- forceSymmetric(hh)

result can be pretty surprising:
(M <- Matrix(1:36, 6))
forceSymmetric(M) # symmetric, hence very different in lower triangle
\end{verbatim}
(tm <- tril(M))
forceSymmetric(tm)

formatSparseM

Formatting Sparse Numeric Matrices Utilities

Description

Utilities for formatting sparse numeric matrices in a flexible way. These functions are used by the `format` and `print` methods for sparse matrices and can be applied as well to standard R matrices. Note that all arguments but the first are optional.

`formatSparseM()` is the main "workhorse" of `formatSpMatrix`, the format method for sparse matrices.

`.formatSparseSimple()` is a simple helper function, also dealing with (short/empty) column names construction.

Usage

```r
formatSparseM(x, zero.print = ".", align = c("fancy", "right"),
m = as(x,"matrix"), asLogical=NULL, uniDiag=NULL,
digits=NULL, cx, iN0, dn = dimnames(m))

.formatSparseSimple(m, asLogical=FALSE, digits=NULL,
col.names, note.dropping.colnames = TRUE,
dn=dimnames(m))
```

Arguments

- **x**: an R object inheriting from class `sparseMatrix`.
- **zero.print**: character which should be used for structural zeroes. The default "." may occasionally be replaced by " " (blank); using "0" would look almost like `print()`ing of non-sparse matrices.
- **align**: a string specifying how the zero.print codes should be aligned, see `formatSpMatrix`.
- **m**: (optional) a (standard R) `matrix` version of `x`.
- **asLogical**: should the matrix be formatted as a logical matrix (or rather as a numeric one); mostly for `formatSparseM()`.
- **uniDiag**: logical indicating if the diagonal entries of a sparse unit triangular or unit-diagonal matrix should be formatted as "1" instead of "I" (to emphasize that the 1's are "structural").
- **digits**: significant digits to use for printing, see `print.default`.
- **cx**: (optional) character matrix; a formatted version of `x`, still with strings such as "0.00" for the zeros.
- **iN0**: (optional) integer vector, specifying the location of the non-zeroes of `x`.
col.names, note.dropping.colnames
see `formatSpMatrix`.

dn dimnames to be used; a list (of length two) with row and column names (or
 NULL).

Value

a character matrix like `cx`, where the zeros have been replaced with (padded versions of) `zero.print`.
As this is a `dense` matrix, do not use these functions for really large (really) sparse matrices!

Author(s)

Martin Maechler

See Also

`formatSpMatrix` which calls `formatSparseM()` and is the `format` method for sparse matrices.
`printSpMatrix` which is used by the (typically implicitly called) `show` and `print` methods for
sparse matrices.

Examples

```r
m <- suppressWarnings(matrix(c(0, 3.2, 0,0, 11,0,0,0,0,-7,0), 4,9))
fm <- formatSparseM(m)
noquote(fm)
## nice, but this is nicer (with "units" vertically aligned):
print(fm, quote=FALSE, right=TRUE)
## and "the same" as :
Matrix(m)

## align = "right" is cheaper -- the "." are not aligned:
noquote(f2 <- formatSparseM(m,align="r"))
stopifnot(f2 == fm | m == 0, dim(f2) == dim(m),
          (f2 == ".") == (m == 0))
```

generalMatrix-class

Class "generalMatrix" of General Matrices

Description

Virtual class of “general” matrices; i.e., matrices that do not have a known property such as symmetric, triangular, or diagonal.

Objects from the Class

A virtual Class: No objects may be created from it.
Hilbert

Slots

 factors ,
 Dim ,
 Dimnames: all slots inherited from compMatrix; see its description.

Extends

 Class "compMatrix", directly. Class "Matrix", by class "compMatrix".

See Also

 Classes compMatrix, and the non-general virtual classes: symmetricMatrix, triangularMatrix, diagonalMatrix.

Hilbert

Generate a Hilbert matrix

Description

Generate the \(n \times n \) symmetric Hilbert matrix. Because these matrices are ill-conditioned for moderate to large \(n \), they are often used for testing numerical linear algebra code.

Usage

Hilbert(n)

Arguments

 \(n \)
 a non-negative integer.

Value

 the \(n \times n \) symmetric Hilbert matrix as a "dpoMatrix" object.

See Also

 the class dpoMatrix

Examples

 Hilbert(6)
Methods for function `image()` in package 'Matrix'. An image of a matrix simply color codes all matrix entries and draws the \(n \times m \) matrix using an \(n \times m \) grid of (colored) rectangles.

The `Matrix` package image methods are based on `levelplot()` from package `lattice`; hence these methods return an "object" of class "trellis", producing a graphic when (auto-) `print()`ed.

Usage

```r
## S4 method for signature 'dgTMatrix'
image(x,
xlim = c(1, di[2]),
ylim = c(di[1], 1), aspect = "iso",
sub = sprintf("Dimensions: %d x %d", di[1], di[2]),
lab = "Column", ylab = "Row", cuts = 15,
useRaster = FALSE,
useAbs = NULL, colorkey = !useAbs,
col.regions = NULL,
lwd = NULL, border.col = NULL, ...)
```

Arguments

- **x**: a `Matrix` object, i.e., fulfilling `is(x, "Matrix")`.
- **xlim, ylim**: x- and y-axis limits; may be used to "zoom into" matrix. Note that `x, y" feel reversed": `ylim` is for the rows (= 1st index) and `xlim` for the columns (= 2nd index). For convenience, when the limits are integer valued, they are both extended by `.5`; also, `ylim` is always used decreasingly.
- **aspect**: aspect ratio specified as number (y/x) or string; see `levelplot`.
- **sub, xlab, ylab**: axis annotation with sensible defaults; see `plot.default`.
- **cuts**: number of levels the range of matrix values would be divided into.
- **useRaster**: logical indicating if raster graphics should be used (instead of the tradition rectangle vector drawing). If true, `panel.levelplot.raster` (from `lattice` package) is used, and the colorkey is also done via rasters, see also `levelplot` and possibly `grid.raster`.

 Note that using raster graphics may often be faster, but can be slower, depending on the matrix dimensions and the graphics device (dimensions).
- **useAbs**: logical indicating if `abs(x)` should be shown; if TRUE, the former (implicit) default, the default `col.regions` will be `grey` colors (and no colorkey drawn). The default is FALSE unless the matrix has no negative entries.
colorkey logical indicating if a color key aka ‘legend’ should be produced. Default is to draw one, unless useAbs is true. You can also specify a list, see `levelplot`, such as `list(raster=TRUE)` in the case of rastering.

col.regions vector of gradually varying colors; see `levelplot`.

lwd (only used when useRaster is false:) non-negative number or NULL (default), specifying the line-width of the rectangles of each non-zero matrix entry (drawn by `grid.rect`). The default depends on the matrix dimension and the device size.

border.col color for the border of each rectangle. NA means no border is drawn. When NULL as by default, `border.col <- if(lwd < .01) NA else NULL` is used. Consider using an opaque color instead of NULL which corresponds to `grid::get.gpar("col")`.

... further arguments passed to methods and `levelplot`, notably `at` for specifying (possibly non equidistant) cut values for dividing the matrix values (superseding cuts above).

Value as all `lattice` graphics functions, `image(<Matrix>)` returns a "trellis" object, effectively the result of `levelplot()`.

Methods All methods currently end up calling the method for the `dgTMatrix` class. Use `showMethods(image)` to list them all.

See Also `levelplot`, and `print.trellis` from package `lattice`.

Examples

```r
showMethods(image)  # And if you want to see the method definitions:
showMethods(image, includeDefs = TRUE, inherited = FALSE)

data(CAex, package = "Matrix")
image(CAex, main = "image(CAex)") -> imgC; imgC
stopifnot(!is.null(leg <- imgC$legend), is.list(imgC$right)) # failed for 2 days .
image(CAex, useAbs=TRUE, main = "image(CAex, useAbs=TRUE)")

cCA <- Cholesky(crossprod(CAex), Imult = .01)
# See ?print.trellis --- place two image() plots side by side:
print(image(cCA, main="Cholesky(crossprod(CAex), Imult = .01)")),
split=c(x=1,y=1,nx=2, ny=1), more=TRUE)
print(image(cCA, useAbs=TRUE),
      split=c(x=2, y=1, nx=2, ny=1))

data(USCounties, package = "Matrix")
image(USCounties)# huge
```
image(sign(USCounties))## just the pattern
 # how the result looks, may depend heavily on
 # the device, screen resolution, antialiasing etc
 # e.g. x11(type="Xlib") may show very differently than cairo-based

Drawing borders around each rectangle;
 # again, viewing depends very much on the device:
image(USCounties[1:400,1:200], lwd=.1)

Using (xlim,ylim) has advantage : matrix dimension and (col/row) indices:
image(USCounties, c(1,200), c(1,400), lwd=1)
image(USCounties, c(1,300), c(1,200), lwd=.5)
image(USCounties, c(1,300), c(1,200), lwd=.01)
These 3 are all equivalent :
(I1 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE))
 I2 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, border.col=NA)
 I3 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=2, border.col=NA)
stopifnot(all.equal(I1, I2, check.environment=FALSE),
 all.equal(I2, I3, check.environment=FALSE))
using an opaque border color
image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=3, border.col = adjustcolor("skyblue", 1/2))

if(interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))) {
Using raster graphics: For PDF this would give a 77 MB file,
however, for such a large matrix, this is typically considerably
slower (than vector graphics rectangles) in most cases :
 if(doPNG <- !dev.interactive())
 png("image-USCounties-raster.png", width=3200, height=3200)
 image(USCounties, useRaster = TRUE) # should not suffer from anti-aliasing
 if(doPNG)
 dev.off()
and now look at the *.png image in a viewer you can easily zoom in and out
}#only if(doExtras)

index-class

Virtual Class "index" - Simple Class for Matrix Indices

Description

The class "index" is a virtual class used for indices (in signatures) for matrix indexing and sub-assignment of Matrix matrices.

In fact, it is currently implemented as a simple class union (setClassUnion) of "numeric", "logical" and "character".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

See Also

[-methods, and
Subassign-methods, also for examples.
Examples

showClass("index")

indMatrix-class

Index Matrices

Description

The indMatrix class is the class of row and column index matrices, stored as 1-based integer index vectors. A row (column) index matrix is a matrix whose rows (columns) are standard unit vectors. Such matrices are useful when mapping observations to discrete sets of covariate values.

Multiplying a matrix on the left by a row index matrix is equivalent to indexing its rows, i.e., sampling the rows “with replacement”. Analogously, multiplying a matrix on the right by a column index matrix is equivalent to indexing its columns. Indeed, such products are implemented in Matrix as indexing operations; see ‘Details’ below.

A matrix whose rows and columns are standard unit vectors is called a permutation matrix. This special case is designated by the pMatrix class, a direct subclass of indMatrix.

Details

The transpose of an index matrix is an index matrix with identical perm but opposite margin. Hence the transpose of a row index matrix is a column index matrix, and vice versa.

The cross product of a row index matrix R and itself is a diagonal matrix whose diagonal entries are the number of entries in each column of R.

Given a row index matrix R with perm slot p, a column index matrix C with perm slot q, and a matrix M with conformable dimensions, we have

\[
RM = R \times C = M[p,]
\]

\[
MC = M \times C = M[, q]
\]

\[
C' M = \text{crossprod}(C, M) = M[q,]
\]

\[
MR' = \text{tcrossprod}(M, R) = M[, p]
\]

\[
R' R = \text{crossprod}(R) = \text{Diagonal}(x=\text{tabulate}(p, \text{ncol}(R)))
\]

\[
CC' = \text{tcrossprod}(C) = \text{Diagonal}(x=\text{tabulate}(q, \text{nrow}(C)))
\]

Operations on index matrices that result in index matrices will accordingly return an indMatrix. These include products of two column index matrices and (equivalently) column-indexing of a column index matrix (when dimensions are not dropped). Most other operations on indMatrix treat them as sparse nonzero pattern matrices (i.e., inheriting from virtual class nsparseMatrix). Hence vector-valued subsets of indMatrix, such as those given by diag, are always of type "logical".

Objects from the Class

Objects can be created explicitly with calls of the form new("indMatrix", ...), but they are more commonly created by coercing 1-based integer index vectors, with calls of the form as(., "indMatrix"); see 'Methods' below.
Slots

- **margin**: an integer, either 1 or 2, specifying whether the matrix is a row (1) or column (2) index.
- **perm**: a 1-based integer index vector, i.e., a vector of length `Dim[margin]` with elements taken from `1:Dim[1+margin%%2]`.

`Dim`, `Dimnames` inherited from virtual superclass **Matrix**.

Extends

Classes "**sparseMatrix**" and "**generalMatrix**", directly.

Methods

- `%*%` signature(x = "indMatrix", y = "Matrix") and others listed by `showMethods("%*%", classes = "indMatrix")`: matrix products implemented where appropriate as indexing operations.

- `coerce` signature(from = "numeric", to = "indMatrix")**: supporting typical `indMatrix` construction from a vector of positive integers. Row indexing is assumed.

- `coerce` signature(from = "list", to = "indMatrix")**: supporting `indMatrix` construction for row and column indexing, including index vectors of length 0 and index vectors whose maximum is less than the number of rows or columns being indexed.

- `coerce` signature(from = "indMatrix", to = "matrix")**: coercion to a traditional `matrix` of logical type, with FALSE and TRUE in place of 0 and 1.

- `t` signature(x = "indMatrix")**: the transpose, which is an `indMatrix` with identical `perm` but opposite `margin`.

- `rowSums`, `rowMeans`, `colSums`, `colMeans` signature(x = "indMatrix")**: row and column sums and means.

- `rbind2`, `cbind2` signature(x = "indMatrix", y = "indMatrix")**: row-wise catenation of two row index matrices with equal numbers of columns and column-wise catenation of two column index matrices with equal numbers of rows.

- `kronecker` signature(X = "indMatrix", Y = "indMatrix")**: Kronecker product of two row index matrices or two column index matrices, giving the row or column index matrix corresponding to their “interaction”.

Author(s)

Fabian Scheipl and Uni Muenchen, building on the existing class **pMatrix** after a nice hike’s conversation with Martin Maechler. Methods for `crossprod(x, y)` and `kronecker(x, y)` with both arguments inheriting from `indMatrix` were made considerably faster thanks to a suggestion by Boris Vaillant. Diverse tweaks by Martin Maechler and Mikael Jagan, notably the latter’s implementation of `margin`, prior to which the `indMatrix` class was designated only for row index matrices.

See Also

Subclass **pMatrix** of permutation matrices, a special case of index matrices; virtual class **nMatrix** of nonzero pattern matrices, and its subclasses.
Examples

\[p1 \leftarrow \text{as(c(2,3,1), "pMatrix")} \]
\[(sm1 \leftarrow \text{as(rep(c(2,3,1), e=3), "indMatrix"))} \]
\[\text{stopifnot(all(sm1 == p1[rep(1:3, each=3),])]} \]

row-indexing of a <pMatrix> turns it into an <indMatrix>:
\[\text{class(p1[rep(1:3, each=3),])]} \]

set.seed(12) # so we know '10' is in sample
random index matrix for 30 observations and 10 unique values:
\[(s10 \leftarrow \text{as(sample(10, 30, replace=TRUE),"indMatrix"})} \]

Sample rows of a numeric matrix :
\[(mm \leftarrow \text{matrix(1:10, nrow=10, ncol=3)}) \]
\[s10 %*% mm \]

set.seed(27)
IM1 \leftarrow \text{as(sample(1:20, 100, replace=TRUE), "indMatrix"})
IM2 \leftarrow \text{as(sample(1:18, 100, replace=TRUE), "indMatrix"})
\[(c12 \leftarrow \text{crossprod(IM1,IM2))} \]

same as cross-tabulation of the two index vectors:
\[\text{stopifnot(all(c12 - unclass(table(IM1@perm, IM2@perm)) == 0))} \]

3 observations, 4 implied values, first does not occur in sample:
\[\text{as(2:4, "indMatrix"}) \]

3 observations, 5 values, first and last do not occur in sample:
\[\text{as(list(2:4, 5), "indMatrix"}) \]

\[\text{as(sm1, "nMatrix")} \]
\[s10[1:7, 1:4] \# gives an "ngTMatrix" (most economic!) \]
\[s10[1:4,] \# preserves "indMatrix"-class \]

I1 \leftarrow \text{as(c(5:1,6:4,7:3), "indMatrix")}
I2 \leftarrow \text{as(7:1, "pMatrix"})
\[(I12 \leftarrow \text{rbind(I1, I2))} \]
\[\text{stopifnot(is(I12, "indMatrix"),} \]
\[\text{identical(I12, rbind(I1, I2)),} \]
\[\text{colSums(I12) == c(2L,2:4,4:2))} \]

invertPerm

Utilities for Permutation Vectors

Description

invertPerm and signPerm compute the inverse and sign of a length-n permutation vector. isPerm tests if a length-n integer vector is a valid permutation vector. asPerm coerces a length-m transposition vector to a length-n permutation vector, where m <= n.
Usage

invertPerm(p, off = 1L, ioff = 1L)
signPerm(p, off = 1L)
isPerm(p, off = 1L)
asPerm(pivot, off = 1L, ioff = 1L, n = length(pivot))

invPerm(p, zero.p = FALSE, zero.res = FALSE)

Arguments

p an integer vector of length \(n \).
pivot an integer vector of length \(m \).
off an integer offset, indicating that \(p \) is a permutation of \(\text{off}+0:(n-1) \) or that pivot contains \(m \) values sampled with replacement from \(\text{off}+0:(n-1) \).
ioff an integer offset, indicating that the result should be a permutation of \(\text{ioff}+0:(n-1) \).
n an integer greater than or equal to \(m \), indicating the length of the result. Transpositions are applied to a permutation vector vector initialized as seq_len(n).
zero.p a logical. Equivalent to \(\text{off} = 0 \) if TRUE and \(\text{off} = 1 \) if FALSE.
zero.res a logical. Equivalent to \(\text{ioff} = 0 \) if TRUE and \(\text{ioff} = 1 \) if FALSE.

Details

invertPerm(p, off, ioff=1) is equivalent to \(\text{order}(p) \) or \(\text{sort.list}(p) \) for all values of off. For the default value \(\text{off} = 1 \), it returns the value of \(p \) after \(p[p] <- \text{seq.along}(p) \).

invPerm is a simple wrapper around invertPerm, retained for backwards compatibility.

Value

By default, i.e., with \(\text{off} = 1 \) and \(\text{ioff} = 1 \):

invertPerm(p) returns an integer vector of length \(\text{length}(p) \) such that \(p[\text{invertPerm}(p)] \) and \(\text{invertPerm}(p)[p] \) are both \(\text{seq.along}(p) \), i.e., the identity permutation.
signPerm(p) returns 1 if \(p \) is an even permutation and \(-1\) otherwise (i.e., if \(p \) is odd).
isPerm(p) returns TRUE if \(p \) is a permutation of \(\text{seq.along}(p) \) and FALSE otherwise.
asPerm(pivot) returns the result of transposing elements \(i \) and \(\text{pivot}[i] \) of a permutation vector initialized as \(\text{seq.len}(n) \), for \(i \) in \(\text{seq.along}(\text{pivot}) \).

See Also

Class \(\text{pMatrix} \) of permutation matrices.

Examples

\(p \leftarrow \text{sample}(10L) \) # a random permutation vector
ip \leftarrow \text{invertPerm}(p)
s \leftarrow \text{signPerm}(p) \)
'p' and 'ip' are indeed inverses:

```r
stopifnot(exprs = {
  isPerm(p)
  isPerm(ip)
  identical(s, 1L) || identical(s, -1L)
  identical(s, signPerm(ip))
  identical(p[ip], 1:10)
  identical(ip[p], 1:10)
  identical(invertPerm(ip), p)
})
```

Product of transpositions \((1 \ 2)(2 \ 1)(4 \ 3)(6 \ 8)(10 \ 1) = (3 \ 4)(6 \ 8)(1 \ 10)\)

```r
pivot <- c(2L, 1L, 3L, 3L, 5L, 8L, 7L, 8L, 9L, 1L)
q <- asPerm(pivot)
stopifnot(exprs = {
  identical(q, c(10L, 2L, 4L, 3L, 5L, 8L, 7L, 6L, 9L, 1L))
  identical(q[q], seq_len(10L)) # because the permutation is odd:
    signPerm(q) == -1L
})
```

invPerm # a less general version of 'invertPerm'

is.na-methods

is.na(), is.finite() Methods for 'Matrix' Objects

Description

Methods for generic functions `is.na()`, `is.nan()`, `is.finite()`, `is.infinite()`, and `anyNA()`, for objects inheriting from virtual class `Matrix` or `sparseVector`.

Usage

```r
## S4 method for signature 'dsparseMatrix'
is.na(x)
## S4 method for signature 'dsparseMatrix'
is.nan(x)
## S4 method for signature 'dsparseMatrix'
is.finite(x)
## S4 method for signature 'dsparseMatrix'
is.infinite(x)
## S4 method for signature 'dsparseMatrix'
anyNA(x)
## ...
## and for other classes
```

Arguments

- `x` an R object, here a sparse or dense matrix or vector.
is.null.DN

Value
For is.*(), an nMatrix or nSparseVector matching the dimensions of x and specifying the positions in x of (some subset of) NA, NaN, Inf, and -Inf. For anyNA(), TRUE if x contains NA or NaN and FALSE otherwise.

See Also
NA, NaN, Inf

Examples
(M <- Matrix(1:6, nrow = 4, ncol = 3,
 dimnames = list(letters[1:4], LETTERS[1:3])))
stopifnot(!anyNA(M), !any(is.na(M)))

M[2:3, 2] <- NA
(inM <- is.na(M))
stopifnot(anyNA(M), sum(inM) == 2)

(A <- spMatrix(nrow = 10, ncol = 20,
 i = c(1, 3:8), j = c(2, 9, 6:10), x = 7 * (1:7)))
stopifnot(!anyNA(A), !any(is.na(A)))

(inA <- is.na(A))
stopifnot(anyNA(A), sum(inA) == 1 + 1 + 5)

is.null.DN

Are the Dimnames dn NULL-like?

Description
Are the dimnames dn NULL-like?
is.null.DN(dn) is less strict than is.null(dn), because it is also true (TRUE) when the dimnames dn are “like” NULL, or list(NULL, NULL), as they can easily be for the traditional R matrices (matrix) which have no formal class definition, and hence much freedom in how their dimnames look like.

Usage
is.null.DN(dn)

Arguments
dn dimnames() of a matrix-like R object.

Value
logical TRUE or FALSE.
Note

This function is really to be used on “traditional” matrices rather than those inheriting from `Matrix`, as the latter will always have dimnames `list(NULL, NULL)` exactly, in such a case.

Author(s)

Martin Maechler

See Also

`is.null`, `dimnames`, `matrix`.

Examples

```r
m1 <- m2 <- m3 <- m4 <- m <- matrix(round(100 * rnorm(6)), 2, 3)
dimnames(m1) <- list(NULL, NULL)
dimnames(m2) <- list(NULL, character())
dimnames(m3) <- rev(dimnames(m2))
dimnames(m4) <- rep(list(character()), 2)

m4 # prints absolutely identically to m

c.o <- capture.output
cm <- c.o(m)
stopifnot(exprs = {
  m == m1; m == m2; m == m3; m == m4
  identical(cm, c.o(m1)); identical(cm, c.o(m2))
  identical(cm, c.o(m3)); identical(cm, c.o(m4))
})

hasNoDimnames <- function(.) is.null.DN(dimnames(.)
stopifnot(exprs = {
  hasNoDimnames(m)
  hasNoDimnames(m1); hasNoDimnames(m2)
  hasNoDimnames(m3); hasNoDimnames(m4)
  hasNoDimnames(Matrix(m) -> M)
  hasNoDimnames(as(M, "sparseMatrix")
})
```

Description

`isSymmetric` tests whether its argument is a symmetric square matrix, by default tolerating some numerical fuzz and requiring symmetric [dD]imnames in addition to symmetry in the mathematical sense. `isSymmetric` is a generic function in `base`, which has a `method` for traditional matrices
of implicit class "matrix". Methods are defined here for various proper and virtual classes in Matrix, so that isSymmetric works for all objects inheriting from virtual class "Matrix".

Usage

```r
## S4 method for signature 'symmetricMatrix'
isSymmetric(object, ...)
## S4 method for signature 'triangularMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'diagonalMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'indMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'dgeMatrix'
isSymmetric(object, tol = 100 * .Machine$double.eps, tol1 = 8 * tol, checkDN = TRUE, ...)
## S4 method for signature 'lgeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'ngeMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'dgCMatrix'
isSymmetric(object, tol = 100 * .Machine$double.eps, checkDN = TRUE, ...)
## S4 method for signature 'lgCMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'ngCMatrix'
isSymmetric(object, checkDN = TRUE, ...)
```

Arguments

- `object` a "Matrix".
- `tol, tol1` numerical tolerances allowing approximate symmetry of numeric (rather than logical) matrices. See also `isSymmetric.matrix`.
- `checkDN` a logical indicating whether symmetry of the Dimnames slot of object should be checked.
- `...` further arguments passed to methods (typically methods for `all.equal`).

Details

The Dimnames slot of object, say `dn`, is considered to be symmetric if and only if

- `dn[[1]]` and `dn[[2]]` are identical or one is NULL; and
- `ndn <- names(dn)` is NULL or `ndn[[1]]` and `ndn[[2]]` are identical or one is the empty string "".

Hence `list(a=nms, a=nms)` is considered to be symmetric, and so too are `list(a=nms, NULL)` and `list(NULL, a=nms)`.

Note that this definition is looser than that employed by `isSymmetric.matrix`, which requires `dn[[1]]` and `dn[[2]]` to be identical, where `dn` is the dimnames attribute of a traditional matrix.
isTriangular-methods

Value

A logical, either TRUE or FALSE (never NA).

See Also

forceSymmetric; symmpart and skewpart; virtual class "symmetricMatrix" and its subclasses.

Examples

isSymmetric(Diagonal(4)) # TRUE of course
M <- Matrix(c(1,2,2,1), 2,2)
isSymmetric(M) # TRUE (*and* of formal class "dsyMatrix")
isSymmetric(as(M, "generalMatrix")) # still symmetric, even if not "formally"
isSymmetric(triu(M)) # FALSE

Look at implementations:
showMethods("isSymmetric", includeDefs = TRUE) # includes S3 generic from base

Description

isTriangular and isDiagonal test whether their argument is a triangular or diagonal matrix, respectively. Unlike the analogous isSymmetric, these two functions are generically from Matrix rather than base. Hence Matrix defines methods for traditional matrices of implicit class "matrix" in addition to matrices inheriting from virtual class "Matrix".

By our definition, triangular and diagonal matrices are square, i.e., they have the same number of rows and columns.

Usage

isTriangular(object, upper = NA, ...)
isDiagonal(object)

Arguments

object an R object, typically a matrix.
upper a logical, either TRUE or FALSE, in which case TRUE is returned only for upper or lower triangular object; or otherwise NA (the default), in which case TRUE is returned for any triangular object.
... further arguments passed to methods (currently unused by Matrix).
Value

A logical, either TRUE or FALSE (never NA).

If object is triangular and upper is NA, then isTriangular returns TRUE with an attribute kind, either "U" or "L", indicating that object is upper or lower triangular, respectively. Users should not rely on how kind is determined for diagonal matrices, which are both upper and lower triangular.

See Also

isSymmetric; virtual classes "triangularMatrix" and "diagonalMatrix" and their subclasses.

Examples

isTriangular(Diagonal(4))
is TRUE: a diagonal matrix is also (both upper and lower) triangular
(M <- Matrix(c(1,2,0,1), 2,2))
isTriangular(M) # TRUE (*and* of formal class "dtrMatrix")
isTriangular(as(M, "generalMatrix")) # still triangular, even if not "formally"
isTriangular(crossprod(M)) # FALSE

isDiagonal(matrix(c(2,0,0,1), 2,2)) # TRUE

Look at implementations:
showMethods("isTriangular", includeDefs = TRUE)
showMethods("isDiagonal", includeDefs = TRUE)

KhatriRao
Khatri-Rao Matrix Product

Description

Computes Khatri-Rao products for any kind of matrices.

The Khatri-Rao product is a column-wise Kronecker product. Originally introduced by Khatri and Rao (1968), it has many different applications, see Liu and Trenkler (2008) for a survey. Notably, it is used in higher-dimensional tensor decompositions, see Bader and Kolda (2008).

Usage

KhatriRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)

Arguments

X, Y matrices of with the same number of columns.
FUN the (name of the) function to be used for the column-wise Kronecker products, see kroncker, defaulting to the usual multiplication.
sparseY logical specifying if Y should be coerced and treated as sparseMatrix. Set this to FALSE, e.g., to distinguish structural zeros from zero entries.
make.dimnames logical indicating if the result should inherit dimnames from X and Y in a simple way.
Value

A "SparseMatrix", say \(R \), the Khatri-Rao product of \(X \ (n \times k) \) and \(Y \ (m \times k) \), is of dimension \((n \cdot m) \times k\), where the \(j \)-th column, \(R[,j] \) is the kronecker product \(\text{kronecker}(X[,j], Y[,j]) \).

Note

The current implementation is efficient for large sparse matrices.

Author(s)

Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.

References

See Also

kronecker.

Examples

```r
## Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
KhatriRao(m,d)
KhatriRao(d,m)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("d", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Km <- KhatriRao(m,d, make.dimnames=TRUE))
(Kd <- KhatriRao(d,m, make.dimnames=TRUE))

nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)

stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
## border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),
 all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))
```
d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),
 all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
 all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
 all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
 identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))

a matrix with "structural" and non-structural zeros:
m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
 Dim = 3:4, x = c(1, 0, 1, 0))
D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5 <- KhatriRao(d, m01))
K5d <- KhatriRao(d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
(K6 <- KhatriRao(diag(3), t(m01)))
K6D <- KhatriRao(Diagonal(3), t(m01))
K6d <- KhatriRao(diag(3), t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)

stopifnot(exprs = {
 all(K5 == K5d)
 identical(cbind(c(7L, 10L), c(3L, 4L)),
 which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
 identical(K5d, K5Dd)
 identical(K6, K6D)
 all(K6 == K6d)
 identical(cbind(3:4, 1L),
 which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
 identical(K6d, K6Dd)
})
Examples

data(KNex, package = "Matrix")
class(KNex$mm)
dim(KNex$mm)
image(KNex$mm)
str(KNex)

system.time(# a fraction of a second
 sparse.sol <- with(KNex, solve(crossprod(mm), crossprod(mm, y))))

head(round(sparse.sol,3))

Compare with QR-based solution ("more accurate, but slightly slower"):
 system.time(
 sp.sol2 <- with(KNex, qr.coef(qr(mm), y)))

all.equal(sparse.sol, sp.sol2, tolerance = 1e-13) # TRUE

Description

Computes Kronecker products for objects inheriting from "Matrix".
In order to preserve sparseness, we treat 0 * NA as 0, not as NA as usually in R (and as used for the base function kronecker).

Methods

kronecker signature(X = "Matrix", Y = "ANY")
kronecker signature(X = "ANY", Y = "Matrix")
kronecker signature(X = "diagonalMatrix", Y = "ANY")
kronecker signature(X = "sparseMatrix", Y = "ANY")
kronecker signature(X = "TsparseMatrix", Y = "TsparseMatrix")
kronecker signature(X = "dgTMatrix", Y = "dgTMatrix")
kronecker signature(X = "dtTMatrix", Y = "dtTMatrix")
kronecker signature(X = "indMatrix", Y = "indMatrix")

Examples

(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4
t2 <- kronecker(Diagonal(3, 2:4), t1)) # 15 x 12

should also work with special-cased logical matrices
l3 <- upper.tri(matrix(,3,3))
M <- Matrix(13)
(N <- as(M, "nsparseMatrix")) # "ntCMatrix" (upper triangular)
N2 <- as(N, "generalMatrix") # (lost "t"riangularity)
MM <- kronecker(M,M)
NN <- kronecker(N,N) # "dtTMatrix" i.e. did keep
NN2 <- kronecker(N2,N2)
stopifnot(identical(NN,MM), is(NN2, "sparseMatrix"), all(NN2 == NN),
is(NN, "triangularMatrix"))

ldenseMatrix-class

Virtual Class "ldenseMatrix" of Dense Logical Matrices

Description

ldenseMatrix is the virtual class of all dense logical (S4) matrices. It extends both denseMatrix and lMatrix directly.

Slots

- `x`: logical vector containing the entries of the matrix.

 Dim, Dimnames: see Matrix.

Extends

Class "lMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "lMatrix".
Class "Matrix", by class "denseMatrix".

Methods

as.vector signature(x = "ldenseMatrix", mode = "missing"): ...

which signature(x = "ndenseMatrix"), semantically equivalent to base function which(x, arr.ind);
 for details, see the lMatrix class documentation.

See Also

Class lgeMatrix and the other subclasses.

Examples

showClass("ldenseMatrix")

as(diag(3) > 0, "ldenseMatrix")
ldiMatrix-class

Class "ldiMatrix" of Diagonal Logical Matrices

Description

The class "ldiMatrix" of logical diagonal matrices.

Objects from the Class

Objects can be created by calls of the form new("ldiMatrix", ...) but typically rather via Diagonal.

Slots

x: "logical" vector.

diag: "character" string, either "U" or "N", see ddiMatrix.

Dim,Dimnames: matrix dimension and dimnames, see the Matrix class description.

Extends

Class "diagonalMatrix" and class "lMatrix", directly.

Class "sparseMatrix", by class "diagonalMatrix".

See Also

Classes ddiMatrix and diagonalMatrix; function Diagonal.

Examples

(lM <- Diagonal(x = c(TRUE,FALSE,FALSE)))
str(lM)#> gory details (slots)

crossprod(lM) # numeric
(nM <- as(lM, "nMatrix"))# -> sparse (not formally `\'diagonal\'`)
crossprod(nM) # logical sparse
Class "lgeMatrix" of General Dense Logical Matrices

Description

This is the class of general dense logical matrices.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Class "ldenseMatrix", directly. Class "lMatrix", by class "ldenseMatrix". Class "denseMatrix", by class "ldenseMatrix". Class "Matrix", by class "ldenseMatrix". Class "Matrix", by class "ldenseMatrix".

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="lgeMatrix") for details.

See Also

Non-general logical dense matrix classes such as ltrMatrix, or lsyMatrix; sparse logical classes such as lgCMatrix.

Examples

showClass("lgeMatrix")
str(new("lgeMatrix"))
set.seed(1)
(lM <- Matrix(matrix(rnorm(28), 4,7) > 0))# a simple random lgeMatrix
set.seed(11)
(lC <- Matrix(matrix(rnorm(28), 4,7) > 0))# a simple random lgCMatrix
as(lM, "CsparseMatrix")
The `lsparseMatrix` class is a virtual class of sparse matrices with TRUE/FALSE or NA entries. Only the positions of the elements that are TRUE are stored.

These can be stored in the “triplet” form (class `TsparseMatrix`, subclasses `lgTMatrix`, `lsTMatrix`, and `ltTMatrix`) or in compressed column-oriented form (class `CsparseMatrix`, subclasses `lgCMatrix`, `lsCMatrix`, and `ltCMatrix`) or—rarely—in compressed row-oriented form (class `RsparseMatrix`, subclasses `lgRMatrix`, `lsRMatrix`, and `ltRMatrix`). The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.

Note that triplet stored (`TsparseMatrix`) matrices such as `lgTMatrix` may contain duplicated pairs of indices \((i,j)\) as for the corresponding numeric class `dgTMatrix` where for such pairs, the corresponding \(x\) slot entries are added. For logical matrices, the \(x\) entries corresponding to duplicated index pairs \((i,j)\) are “added” as well if the addition is defined as logical or, i.e., “TRUE + TRUE |-> TRUE” and “TRUE + FALSE |-> TRUE”. Note the use of `uniqTsparse()` for getting an internally unique representation without duplicated \((i,j)\) entries.

Objects from the Class

Objects can be created by calls of the form `new("lgCMatrix", ...)` and so on. More frequently objects are created by coercion of a numeric sparse matrix to the logical form, e.g. in an expression `x != 0`.

The logical form is also used in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence any numeric sparse matrices can be treated as logical sparse matrices.

Slots

- \(x\): Object of class “logical”, i.e., either TRUE, NA, or FALSE.
- `uplo`: Object of class “character”. Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.
- `diag`: Object of class “character”. Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The implicit diagonal elements are not explicitly stored when `diag` is "U". Present in the triangular classes only.
- `p`: Object of class “integer” of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.
i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row
numbers for each TRUE element in the matrix. All other elements are FALSE. Present in
triplet and compressed column-oriented forms only.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the
column numbers for each TRUE element in the matrix. All other elements are FALSE. Present
in triplet and compressed row-oriented forms only.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

coerce signature(from = "dgCMatrix", to = "lgCMatrix")

\texttt{t} signature(x = "lgCMatrix"): returns the transpose of \texttt{x}

\texttt{which} signature(x = "lsparseMatrix"), semantically equivalent to \texttt{base} function \texttt{which}(x,
arr.ind); for details, see the \texttt{lMatrix} class documentation.

See Also

the class \texttt{dgCMatrix} and \texttt{dgTMatrix}

Examples

\begin{verbatim}
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
(lm <- (m > 1)) # lgC
!lm # no longer sparse
stopifnot(is(lm,"lsparseMatrix"),
 identical(!lm, m <= 1))

data(KNex, package = "Matrix")
mmG.1 <- (KNex $ mm) > 0.1)# "lgC..."
table(mmG.1@x)# however with many `non-structural zeros'
from logical to nz_pattern -- okay when there are no NA's :
mmG.1 <- as(mmG.1, "nMatrix") # <<< has "TRUE" also where mmG.1 had FALSE
from logical to "double"
dmG.1 <- as(mmG.1, "dMatrix") # has '0' and back:
lgG.1 <- as(dmG.1, "lMatrix")
stopifnot(identical(mmG.1, as((KNex $ mm) != 0,"nMatrix")),
 validObject(lgG.1),
 identical(lgG.1, mmG.1))

class(xnx <- crossprod(mmG.1))# "nsC.."
class(xlx <- crossprod(mmG.1))# "dsC.." : numeric
is0 <- (xlx == 0)
mean(as.vector(is0))# 99.3% zeros: quite sparse, but
table(xlx@x == 0)# more than half of the entries are (non-structural!) 0
stopifnot(isSymmetric(xlx), isSymmetric(xnx),
 # compare xnx and xlx : have the *same* non-structural 0s :
 sapply(slotNames(xnx),
 function(n) identical(slot(xnx, n), slot(xlx, n))))
\end{verbatim}
Description

The "lsyMatrix" class is the class of symmetric, dense logical matrices in non-packed storage and "lspMatrix" is the class of these in packed storage. In the packed form, only the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("lsyMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.
factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Both extend classes "ldenseMatrix" and "symmetricMatrix", directly; further, class "Matrix" and others, indirectly. Use showClass("lsyMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="lsyMatrix") for details.

See Also

lgeMatrix, Matrix, t

Examples

(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
str(M2)
can
(sM <- M2 | t(M2)) # "lge"
as(sM, "symmetricMatrix")
str(sM <- as(asM, "packedMatrix")) # packed symmetric
ltrMatrix-class

Triangular Dense Logical Matrices

Description

The "ltrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The "ltmMatrix" class is the same except in packed storage.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see triangularMatrix.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

Both extend classes "ldenseMatrix" and "triangularMatrix", directly; further, class "Matrix", "lMatrix" and others, indirectly. Use showClass("ltrMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.); use, e.g., showMethods(class="ltrMatrix") for details.

See Also

Classes lgeMatrix, Matrix; function t

Examples

showClass("ltrMatrix")

str(new("ltmMatrix"))
(lutr <- as(upper.tri(matrix(, 4, 4)), "ldenseMatrix"))
str(lutp <- pack(lutr)) # packed matrix: only 10 = 4*(4+1)/2 entries!
lutp # the logical negation (is *not* logical triangular !)
but this one is:
stopifnot(all.equal(lutp, pack(!lutp)))
Methods for LU Factorization

Description
Computes the pivoted LU factorization of an \(m \times n \) real matrix \(A \), which has the general form

\[
P_1 A P_2 = LU
\]

or (equivalently)

\[
A = P_1' L U P_2'
\]

where \(P_1 \) is an \(m \times m \) permutation matrix, \(P_2 \) is an \(n \times n \) permutation matrix, \(L \) is an \(m \times \min(m,n) \) unit lower trapezoidal matrix, and \(U \) is a \(\min(m,n) \times n \) upper trapezoidal matrix.

Methods for **denseMatrix** are built on LAPACK routine dgetrf, which does not permute columns, so that \(P_2 \) is an identity matrix.

Methods for **sparseMatrix** are built on CSparse routine cs_lu, which requires \(m = n \), so that \(L \) and \(U \) are triangular matrices.

Usage

```r
lu(x, ...)  
## S4 method for signature 'dgeMatrix'
lu(x, warnSing = TRUE, ...)  
## S4 method for signature 'dgCMatrix'
lu(x, errSing = TRUE, order = NA_integer_,  
    tol = 1, ...)  
## S4 method for signature 'dsyMatrix'
lu(x, cache = TRUE, ...)  
## S4 method for signature 'dsCMatrix'
lu(x, cache = TRUE, ...)  
## S4 method for signature 'matrix'
lu(x, ...)
```

Arguments

- **x**: a finite matrix or **Matrix** to be factorized, which must be square if sparse.
- **warnSing**: a logical indicating if a **warning** should be signaled for singular \(x \). Used only by methods for dense matrices.
- **errSing**: a logical indicating if an **error** should be signaled for singular \(x \). Used only by methods for sparse matrices.
- **order**: an integer in 0:3 passed to CSparse routine cs_sqr, indicating a strategy for choosing the column permutation \(P_2 \). 0 means no column permutation. 1, 2, and 3 indicate a fill-reducing ordering of \(A + A', A'\hat{A}, \) and \(A' A \), where \(\hat{A} \) is \(A \) with “dense” rows removed. NA (the default) is equivalent to 2 if \(tol = 1 \) and 1 otherwise. Do not set to 0 unless you know that the column order of \(A \) is already sensible.
The original pivot element is used if its absolute value exceeds tol * a, where a is the maximum in absolute value of the other possible pivot elements. Set tol < 1 only if you know what you are doing.

cache

a logical indicating if the result should be cached in x@factors[["LU"]]. Note that caching is experimental and that only methods for classes extending compMatrix will have this argument.

Details

What happens when x is determined to be near-singular differs by method. The method for class dgeMatrix completes the factorization, warning if warnSing = TRUE and in any case returning a valid denseLU object. Users of this method can detect singular x with a suitable warning handler; see tryCatch. In contrast, the method for class dgCMatrix abandons further computation, throwing an error if errSing = TRUE and otherwise returning NA. Users of this method can detect singular x with an error handler or by setting errSing = FALSE and testing for a formal result with is(.,”sparseLU”).

Value

An object representing the factorization, inheriting from virtual class LU. The specific class is denseLU unless x inherits from virtual class sparseMatrix, in which case it is sparseLU.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgetrf.f.

See Also

Classes denseLU and sparseLU and their methods.

Classes dgeMatrix and dgCMatrix.

Generic functions expand1 and expand2, for constructing matrix factors from the result.

Generic functions Cholesky, BunchKaufman, Schur, and qr, for computing other factorizations.

Examples

showMethods("lu", inherited = FALSE)
set.seed(0)

---- Dense --

(A1 <- Matrix(rnorm(9L), 3L, 3L))
(lu.A1 <- lu(A1))
(A2 <- round(10 * A1[, -3L]))
(lu.A2 <- lu(A2))

A ~ P1' L U in floating point
str(e.lu.A2 <- expand2(lu.A2, max.level = 2L)
stopifnot(all.equal(A2, Reduce("%*%", e.lu.A2)))

---- Sparse ---
A3 <- as(readMM(system.file("external/pores_1.mtx", package = "Matrix")),
"CsparseMatrix")
(lu.A3 <- lu(A3))

A ~ P1' L U P2' in floating point
str(e.lu.A3 <- expand2(lu.A3, max.level = 2L)
stopifnot(all.equal(A3, Reduce("%*%", e.lu.A3)))

mat2triplet

Map Matrix to its Triplet Representation

Description

From an R object coercible to "TsparseMatrix", typically a (sparse) matrix, produce its triplet representation which may collapse to a “Duplet” in the case of binary aka pattern, such as "nMatrix" objects.

Usage

mat2triplet(x, uniqT = FALSE)

Arguments

x
any R object for which as(x, "TsparseMatrix") works; typically a matrix of one of the Matrix package matrices.

uniqT
logical indicating if the triplet representation should be ‘unique’ in the sense of uniqTsparse().

Value

A list, typically with three components,

i
vector of row indices for all non-zero entries of x

i
vector of columns indices for all non-zero entries of x

x
vector of all non-zero entries of x; exists only when as(x, "TsparseMatrix") is not a "nsparseMatrix".

Note that the order of the entries is determined by the coercion to "TsparseMatrix" and hence typically with increasing j (and increasing i within ties of j).
Note

The mat2triplet() utility was created to be a more efficient and more predictable substitute for `summary(<sparseMatrix>)`. UseRs have wrongly expected the latter to return a data frame with columns i and j which however is wrong for a "diagonalMatrix".

See Also

The summary() method for "sparseMatrix", summary,sparseMatrix-method. mat2triplet() is conceptually the inverse function of spMatrix and (one case of) sparseMatrix.

Examples

```r
mat2triplet # simple definition
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(Ax <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
str(trA <- mat2triplet(Ax))
stopifnot(i == sort(trA$i), sort(j) == trA$j, x == sort(trA$x))
D <- Diagonal(x=4:2)
summary(D)
str(mat2triplet(D))
```

Description

The basic matrix product, %*% is implemented for all our Matrix and also for sparseVector classes, fully analogously to R's base matrix and vector objects.

The functions crossprod and tcrossprod are matrix products or “cross products”, ideally implemented efficiently without computing t(.)’s unnecessarily. They also return symmetricMatrix classed matrices when easily detectable, e.g., in crossprod(m), the one argument case.

tcrossprod() takes the cross-product of the transpose of a matrix. tcrossprod(x) is formally equivalent to, but faster than, the call x %*% t(x), and so is tcrossprod(x, y) instead of x %*% t(y).

Boolean matrix products are computed via either %&% or boolArith = TRUE.

Usage

```r
## S4 method for signature 'CsparseMatrix,diagonalMatrix'
x %*% y

## S4 method for signature 'dgeMatrix,missing'
```
crossprod(x, y = NULL, boolArith = NA, ...)
S4 method for signature 'CsparseMatrix,diagonalMatrix'
crossprod(x, y = NULL, boolArith = NA, ...)
.... and for many more signatures

tcrossprod(x, y = NULL, boolArith = NA, ...)
S4 method for signature 'CsparseMatrix,ddenseMatrix'
tcrossprod(x, y = NULL, boolArith = NA, ...)
.... and for many more signatures

Arguments

x a matrix-like object
y a matrix-like object, or for [t]crossprod() NULL (by default); the latter case is formally equivalent to y = x.
boolArith logical, i.e., NA, TRUE, or FALSE. If true the result is (coerced to) a pattern matrix, i.e., "nMatrix", unless there are NA entries and the result will be a "lMatrix". If false the result is (coerced to) numeric. When NA, currently the default, the result is a pattern matrix when x and y are "nsparseMatrix" and numeric otherwise.
...
... potentially more arguments passed to and from methods.

Details

For some classes in the Matrix package, such as dgCMatrix, it is much faster to calculate the cross-product of the transpose directly instead of calculating the transpose first and then its cross-product. boolArith = TRUE for regular ("non cross") matrix products, %*% cannot be specified. Instead, we provide the %&% operator for boolean matrix products.

Value

A Matrix object, in the one argument case of an appropriate symmetric matrix class, i.e., inheriting from symmetricMatrix.

Methods

%%% signature(x = "dgeMatrix", y = "dgeMatrix"): Matrix multiplication; ditto for several other signature combinations, see showMethods("%%%", class = "dgeMatrix").

%%% signature(x = "dtrMatrix", y = "matrix") and other signatures (use showMethods("%%%", class="dtrMatrix"): matrix multiplication. Multiplication of (matching) triangular matrices now should remain triangular (in the sense of class triangularMatrix).
crossprod signature(x = "dgeMatrix", y = "dgeMatrix"): ditto for several other signatures, use showMethods("crossprod", class = "dgeMatrix"), matrix crossproduct, an efficient version of t(x) %*% y.
crossprod signature(x = "CsparseMatrix", y = "missing") returns t(x) %*% x as an dsCMatrix object.
crossprod signature(x = "TsparseMatrix", y = "missing") returns t(x) %*% x as an dsCMatrix object.

crossprod, tcrossprod signature(x = "dtrMatrix", y = "matrix") and other signatures, see "%*%" above.

Note
boolArith = TRUE, FALSE or NA has been newly introduced for Matrix 1.2.0 (March 2015). Its implementation has still not been tested extensively. Notably the behaviour for sparse matrices with x slots containing extra zeros had not been documented previously, see the %&% help page.
Currently, boolArith = TRUE is implemented via CsparseMatrix coercions which may be quite inefficient for dense matrices. Contributions for efficiency improvements are welcome.

See Also
tcrossprod in R’s base, and crossprod and %*%. Matrix package %&% for boolean matrix product methods.

Examples

A random sparse "incidence" matrix :
m <- matrix(0, 400, 500)
set.seed(12)
m[runif(314, 0, length(m))] <- 1
mm <- as(m, "CsparseMatrix")
object.size(m) / object.size(mm) # smaller by a factor of > 200

tcrossprod() is very fast:
system.time(tCmm <- tcrossprod(mm))# 0 (PIII, 933 MHz)
system.time(cm <- crossprod(t(m))) # 0.16
system.time(cm. <- tcrossprod(m)) # 0.02
stopifnot(cm == as(tCmm, "matrix"))

show sparse sub matrix
tCmm[1:16, 1:30]
Matrix

Arguments

- **data**: an optional numeric data vector or matrix.
- **nrow**: when data is not a matrix, the desired number of rows
- **ncol**: when data is not a matrix, the desired number of columns
- **byrow**: logical. If FALSE (the default) the matrix is filled by columns, otherwise the matrix is filled by rows.
- **dimnames**: a dimnames attribute for the matrix: a list of two character components. They are set if not NULL (as per default).
- **sparse**: logical or NULL, specifying if the result should be sparse or not. By default, it is made sparse when more than half of the entries are 0.
- **doDiag**: logical indicating if a diagonalMatrix object should be returned when the resulting matrix is diagonal (mathematically). As class diagonalMatrix extends sparseMatrix, this is a natural default for all values of sparse. Otherwise, if doDiag is false, a dense or sparse (depending on sparse) symmetric matrix will be returned.
- **forceCheck**: logical indicating if the checks for structure should even happen when data is already a "Matrix" object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of data and the other parameter. Further, Matrix() makes efforts to keep logical matrices logical, i.e., inheriting from class lMatrix, and to determine specially structured matrices such as symmetric, triangular or diagonal ones. Note that a symmetric matrix also needs symmetric dimnames, e.g., by specifying dimnames = list(NULL,NULL), see the examples.

Most of the time, the function works via a traditional (full) matrix. However, Matrix(0, nrow, ncol) directly constructs an “empty” sparseMatrix, as does Matrix(FALSE, *).

Although it is sometime possible to mix unclassed matrices (created with matrix) with ones of class "Matrix", it is much safer to always use carefully constructed ones of class "Matrix".

Value

Returns matrix of a class that inherits from "Matrix". Only if data is not a matrix and does not already inherit from class Matrix are the arguments nrow, ncol and byrow made use of.

See Also

The classes Matrix, symmetricMatrix, triangularMatrix, and diagonalMatrix; further, matrix. Special matrices can be constructed, e.g., via sparseMatrix (sparse), bdiag (block-diagonal), bandSparse (banded sparse), or Diagonal.

Examples

```r
Matrix(0, 3, 2)  # 3 by 2 matrix of zeros -> sparse
Matrix(0, 3, 2, sparse=FALSE)# -> 'dense'
```
Matrix-class

Virtual Class "Matrix" of Matrices

Description

The Matrix class is a class contained by all actual classes in the Matrix package. It is a “virtual” class.

Slots

- **Dim** an integer vector of length 2 giving the dimensions of the matrix.
- **Dimnames** a list of length 2. Each element must be NULL or a character vector of length equal to the corresponding element of Dim.
Methods

determinant signature(x = "Matrix", logarithm = "missing"): and

determinant signature(x = "Matrix", logarithm = "logical"): compute the (log) determinant of x. The method chosen depends on the actual Matrix class of x. Note that **det** also works for all our matrices, calling the appropriate determinant() method. The Matrix::det is an exact copy of base::det, but in the correct namespace, and hence calling the S4-aware version of determinant().

diff signature(x = "Matrix"): As diff() for traditional matrices, i.e., applying diff() to each column.

dim signature(x = "Matrix"): extract matrix dimensions dim.

dim<- signature(x = "Matrix", value = "ANY"): where value is integer of length 2. Allows to reshape Matrix objects, but only when prod(value) == prod(dim(x)).

dimnames signature(x = "Matrix"): extract dimnames.

dimnames<- signature(x = "Matrix", value = "list"): set the dimnames to a list of length 2, see dimnames<-.

length signature(x = "Matrix"): simply defined as prod(dim(x)) (and hence of mode "double").

show signature(object = "Matrix"): show method for printing. For printing sparse matrices, see printSpMatrix.

image signature(object = "Matrix"): draws an image of the matrix entries, using levelplot() from package lattice.

head signature(object = "Matrix"): return only the “head”, i.e., the first few rows.

tail signature(object = "Matrix"): return only the “tail”, i.e., the last few rows of the respective matrix.

as.matrix, as.array signature(x = "Matrix"): the same as as(x, "matrix"); see also the note below.

as.vector signature(x = "Matrix", mode = "missing"): as.vector(m) should be identical to as.vector(as(m, "matrix")), implemented more efficiently for some subclasses.

as, "vector")**, as**, "numeric")** etc, similarly.

coerce signature(from = "ANY", to = "Matrix"): This relies on a correct as.matrix() method for from.

There are many more methods that (conceptually should) work for all "Matrix" objects, e.g., colSums, rowMeans. Even base functions may work automagically (if they first call as.matrix() on their principal argument), e.g., apply, eigen, svd or kappa all do work via coercion to a “traditional” (dense) matrix.

Note

Loading the Matrix namespace “overloads” as.matrix and as.array in the base namespace by the equivalent of function(x) as(x, "matrix"). Consequently, as.matrix(m) or as.array(m) will properly work when m inherits from the "Matrix" class — also for functions in package base and other packages. E.g., apply or outer can therefore be applied to "Matrix" matrices.
Matrix-notyet

Author(s)
Douglas Bates <bates@stat.wisc.edu> and Martin Maechler

See Also
the classes dgeMatrix, dgCMatrix, and function Matrix for construction (and examples).
Methods, e.g., for kronecker.

Examples

slotNames("Matrix")

cl <- getClass("Matrix")
names(cl@subclasses) # more than 40 ..

showClass("Matrix")##> output with slots and all subclasses

(M <- Matrix(c(0,1,0,0), 6, 4))
dim(M)
diag(M)
cm <- M[1:4,] + 10*Diagonal(4)
diff(M)
can reshape it even :
dim(M) <- c(2, 12)
M
stopifnot(identical(M, Matrix(c(0,1,0,0), 2,12)),
 all.equal(det(cm),
 determinant(as(cm,"matrix"), log=FALSE)$modulus,
 check.attributes=FALSE))

Matrix-notyet

Virtual Classes Not Yet Really Implemented and Used

Description
iMatrix is the virtual class of all integer (S4) matrices. It extends the Matrix class directly.
zMatrix is the virtual class of all complex (S4) matrices. It extends the Matrix class directly.

Examples

showClass("iMatrix")
showClass("zMatrix")
MatrixClass

The Matrix (Super-) Class of a Class

Description

Return the (maybe super-)class of class cl from package Matrix, returning character(0) if there is none.

Usage

MatrixClass(cl, cld = getClassDef(cl), ...Matrix = TRUE, dropVirtual = TRUE, ...)

Arguments

cl string, class name

cld its class definition

...Matrix logical indicating if the result must be of pattern "[dlniz]..Matrix" where the first letter "[dlniz]" denotes the content kind.

dropVirtual logical indicating if virtual classes are included or not.

... further arguments are passed to .selectSuperClasses().

Value

a character string

Author(s)

Martin Maechler, 24 Mar 2009

See Also

Matrix, the mother of all Matrix classes.

Examples

mkA <- setClass("A", contains="dgCMatrix")
(A <- mkA())
stopifnot(identical(
 MatrixClass("A"),
 "dgCMatrix"))
MatrixFactorization-class

Virtual Class "MatrixFactorization" of Matrix Factorizations

Description

MatrixFactorization is the virtual class of factorizations of $m \times n$ matrices A, having the general form

$$P_1 A P_2 = A_1 \cdots A_p$$

or (equivalently)

$$A = P_1^t A_1 \cdots A_p P_2^t$$

where P_1 and P_2 are permutation matrices. Factorizations requiring symmetric A have the constraint $P_2 = P_1^t$, and factorizations without row or column pivoting have the constraints $P_1 = I_m$ and $P_2 = I_n$, where I_m and I_n are the $m \times m$ and $n \times n$ identity matrices.

CholeskyFactorization, BunchKaufmanFactorization, SchurFactorization, LU, and QR are the virtual subclasses of MatrixFactorization containing all Cholesky, Bunch-Kaufman, Schur, LU, and QR factorizations, respectively.

Slots

- **Dim**: an integer vector of length 2 giving the dimensions of the factorized matrix.
- **Dimnames**: a list of length 2 preserving the dimnames of the factorized matrix. Each element must be NULL or a character vector of length equal to the corresponding element of Dim.

Methods

determinant signature(x = "MatrixFactorization", logarithm = "missing"): sets logarithm = TRUE and recalls the generic function.
dim signature(x = "MatrixFactorization"): returns x@Dim.
dimnames signature(x = "MatrixFactorization"): returns x@Dimnames.
dimnames<- signature(x = "MatrixFactorization", value = "NULL"): returns x with x@Dimnames set to list(NULL, NULL).
dimnames<- signature(x = "MatrixFactorization", value = "list"): returns x with x@Dimnames set to value.
length signature(x = "MatrixFactorization"): returns prod(x@Dim).
show signature(object = "MatrixFactorization"): prints the internal representation of the factorization using str.
solve signature(a = "MatrixFactorization", b = .): see solve-methods.
unname signature(obj = "MatrixFactorization"): returns obj with obj@Dimnames set to list(NULL, NULL).
See Also

The virtual class `compMatrix` of factorizable matrices.
Classes extending CholeskyFactorization, namely `Cholesky`, `pCholesky`, and `CHMfactor`.
Classes extending BunchKaufmanFactorization, namely `BunchKaufman` and `pBunchKaufman`.
Classes extending SchurFactorization, namely `Schur`.
Classes extending LU, namely `denseLU` and `sparseLU`.
Classes extending QR, namely `sparseQR`.
Generic functions `Cholesky`, `BunchKaufman`, `Schur`, `lu`, and `qr` for computing factorizations.
Generic functions `expand1` and `expand2` for constructing matrix factors from `MatrixFactorization` objects.

Examples

```r
showClass("MatrixFactorization")
```

ndenseMatrix-class

Virtual Class "ndenseMatrix" of Dense Logical Matrices

Description

`ndenseMatrix` is the virtual class of all dense logical (S4) matrices. It extends both `denseMatrix` and `lMatrix` directly.

Slots

- `x`: logical vector containing the entries of the matrix.
- `Dim, Dimnames`: see `Matrix`.

Extends

Class "nMatrix", directly. Class "denseMatrix", directly. Class "Matrix", by class "nMatrix". Class "Matrix", by class "denseMatrix".

Methods

```r
## %*% signature(x = "nsparseMatrix", y = "ndenseMatrix")
## %*% signature(x = "ndenseMatrix", y = "nsparseMatrix")

crossprod signature(x = "nsparseMatrix", y = "ndenseMatrix")
crossprod signature(x = "ndenseMatrix", y = "nsparseMatrix")

as.vector signature(x = "ndenseMatrix", mode = "missing")

diag signature(x = "ndenseMatrix"): extracts the diagonal as for all matrices, see the generic diag().

diag signature(x = "ndenseMatrix"): extracts the diagonal as for all matrices, see the generic diag().

which signature(x = "ndenseMatrix"), semantically equivalent to base function which(x, arr.ind);
for details, see the `lMatrix` class documentation.
```
nearPD

Nearest Positive Definite Matrix

Description

Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.

Usage

nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)

Arguments

x numeric $n \times n$ approximately positive definite matrix, typically an approximation to a correlation or covariance matrix. If x is not symmetric (and ensureSymmetry is not false), `symmpart(x)` is used.

corr logical indicating if the matrix should be a correlation matrix.

keepDiag logical, generalizing `corr`: if TRUE, the resulting matrix should have the same diagonal (`diag(x)`) as the input matrix.

base.matrix logical indicating if the resulting mat component should be a base matrix or (by default) a Matrix of class dpoMatrix.

do2eigen logical indicating if a `posdefify()` eigen step should be applied to the result of the Higham algorithm.

doSym logical indicating if $x \leftarrow (X + t(X))/2$ should be done, after $X \leftarrow tcrossprod(Qd, Q)$; some doubt if this is necessary.

doDykstra logical indicating if Dykstra’s correction should be used; true by default. If false, the algorithm is basically the direct fixpoint iteration $Y_k = P_U(P_S(Y_{k-1}))$.

only.values logical; if TRUE, the result is just the vector of eigenvalues of the approximating matrix.

See Also

Class `ngeMatrix` and the other subclasses.

Examples

```r
showClass("ndenseMatrix")
as(diag(3) > 0, "ndenseMatrix")# -> "nge"
```

```r
class(contrMat(c(3, 1)))
#> [1] "contrMat" 
```
ensureSymmetry logical; by default, \texttt{symmpart(x)} is used whenever \texttt{isSymmetric(x)} is not true. The user can explicitly set this to \texttt{TRUE} or \texttt{FALSE}, saving the symmetry test. \textit{Beware} however that setting it \texttt{FALSE} for an asymmetric input \texttt{x}, is typically nonsense!

\textbf{eig.tol} defines relative positiveness of eigenvalues compared to largest one, \(\lambda_1\). Eigenvalues \(\lambda_k\) are treated as if zero when \(\lambda_k/\lambda_1 \leq \text{eig.tol}\).

\textbf{conv.tol} convergence tolerance for Higham algorithm.

\textbf{posd.tol} tolerance for enforcing positive definiteness (in the final posdefify step when \texttt{do2eigen} is \texttt{TRUE}).

\textbf{maxit} maximum number of iterations allowed.

\textbf{conv.norm.type} convergence norm type (\texttt{norm(*, type)}) used for Higham algorithm. The default is "I" (infinity), for reasons of speed (and back compatibility); using "F" is more in line with Higham’s proposal.

\textbf{trace} logical or integer specifying if convergence monitoring should be traced.

Details

This implements the algorithm of Higham (2002), and then (if \texttt{do2eigen} is true) forces positive definiteness using code from \texttt{posdefify}. The algorithm of Knol and ten Berge (1989) (not implemented here) is more general in that it allows constraints to (1) fix some rows (and columns) of the matrix and (2) force the smallest eigenvalue to have a certain value.

Note that setting \texttt{corr = TRUE} just sets \texttt{diag(.)} \(\leq 1\) within the algorithm.

Higham (2002) uses Dykstra’s correction, but the version by Jens Oehlschlägel did not use it (accidentally), and still gave reasonable results; this simplification, now only used if \texttt{doDykstra = FALSE}, was active in \texttt{nearPD()} up to Matrix version 0.999375-40.

Value

If \texttt{only.values = TRUE}, a numeric vector of eigenvalues of the approximating matrix; Otherwise, as by default, an S3 object of \texttt{class} "nearPD", basically a list with components

- \textbf{mat} a matrix of class \texttt{dpoMatrix}, the computed positive-definite matrix.
- \textbf{eigenvalues} numeric vector of eigenvalues of \texttt{mat}.
- \textbf{corr} logical, just the argument \texttt{corr}.
- \textbf{normF} the Frobenius norm (\texttt{norm(x-X, "F")}) of the difference between the original and the resulting matrix.
- \textbf{iterations} number of iterations needed.
- \textbf{converged} logical indicating if iterations converged.

Author(s)

Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.
References

See Also

A first version of this (with non-optional `corr=TRUE`) has been available as `nearcor()`; and more simple versions with a similar purpose `posdefify()`, both from package `sfsmisc`.

Examples

```r
## Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)

n.A.m <- nearPD(A, corr=TRUE, do2eigen=FALSE, base.matrix=TRUE)$mat

stopifnot(exprs = {
  all.equal(n.A$mat[1,2], 0.760689917)
  all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
  all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15)# seen rel.d.= 1.46e-16
})

set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1

(m <- round(cov2cor(m), 2))

str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102 / 1.08

if(requireNamespace("sfsmisc")) {
  m2 <- sfsmisc::posdefify(m) # a simpler approach
  norm(m - m2) # 1.185, i.e., slightly "less near"
}

round(nearPD(m, only.values=TRUE), 9)

## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
  0.477, 1, 0.516, 0.233, 0.682, 0.75,
  0.644, 0.516, 1, 0.599, 0.581, 0.742,
  0.478, 0.233, 0.599, 1, 0.741, 0.8,
  0.651, 0.682, 0.581, 0.741, 1, 0.798,
  0.747, 0.477, 0.644, 0.478, 0.651, 0.826,
  1, 0.516, 0.233, 0.682, 0.75,
  0.516, 1, 0.599, 0.581, 0.742,
  0.233, 0.599, 1, 0.741, 0.8,
  0.644, 0.682, 0.581, 0.741, 1, 0.798))
```

ngeMatrix-class

Class "ngeMatrix" of General Dense Nonzero-pattern Matrices

Description

This is the class of general dense nonzero-pattern matrices, see nMatrix.

Slots

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

Dim,Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.
factors: Object of class "list". A named list of factorizations that have been computed for the
matrix.

Extends
Class "ndenseMatrix", directly. Class "lMatrix", by class "ndenseMatrix". Class "denseMatrix",
by class "ndenseMatrix". Class "Matrix", by class "ndenseMatrix". Class "Matrix", by class
"ndenseMatrix".

Methods
Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="ngeMatrix")
for details.

See Also
Non-general logical dense matrix classes such as ntrMatrix, or nsyMatrix; sparse logical classes
such as ngCMatrix.

Examples
showClass("ngeMatrix")
"lgeMatrix" is really more relevant

nMatrix-class
Class "nMatrix" of Non-zero Pattern Matrices

Description
The nMatrix class is the virtual “mother” class of all non-zero pattern (or simply pattern) matrices
in the Matrix package.

Slots
Common to all matrix object in the package:

Dim: Object of class "integer" - the dimensions of the matrix - must be an integer vector with
exactly two non-negative values.

Dimnames: list of length two; each component containing NULL or a character vector length
equal the corresponding Dim element.

Methods
coerce signature(from = "matrix", to = "nMatrix"): Note that these coercions (must) coerce
NAs to non-zero, hence conceptually TRUE. This is particularly important when sparseMatrix
objects are coerced to "nMatrix" and hence to nsparseMatrix.

Additional methods contain group methods, such as
nnzero-methods

The Number of Non-Zero Values of a Matrix

Description

Returns the number of non-zero values of a numeric-like R object, and in particular an object x inheriting from class `Matrix`.

Usage

```
nnzero(x, na.counted = NA)
```

Arguments

- `x`: an R object, typically inheriting from class `Matrix` or `numeric`.
- `na.counted`: a logical describing how NAs should be counted. There are three possible settings for `na.counted`:
 - **TRUE**: NAs are counted as non-zero (since “they are not zero”).
 - **NA** (default): the result will be NA if there are NA’s in x (since “NA’s are not known, i.e., may be zero”).
 - **FALSE**: NAs are omitted from x before the non-zero entries are counted.

For sparse matrices, you may often want to use `na.counted = TRUE`.

Examples

```r
getClass("nMatrix")
```

```r
L3 <- Matrix(upper.tri(diag(3)))
L3 # an "ltCMatrix"
as(L3, "nMatrix") # -> ntC*
```

```r
## similar, not using Matrix()
as(upper.tri(diag(3)), "nMatrix")# currently "ngTMatrix"
```
Value

the number of non zero entries in x (typically integer).

Note that for a symmetric sparse matrix S (i.e., inheriting from class symmetricMatrix), \(\text{nnzero}(S)\) is typically twice the \(\text{length}(S@x)\).

Methods

signature(x = "ANY") the default method for non-\text{Matrix} class objects, simply counts the number 0s in x, counting NA’s depending on the na.counted argument, see above.

signature(x = "denseMatrix") conceptually the same as for traditional \text{matrix} objects, care has to be taken for "symmetricMatrix" objects.

signature(x = "diagonalMatrix"), and signature(x = "indMatrix") fast simple methods for these special "sparseMatrix" classes.

signature(x = "sparseMatrix") typically, the most interesting method, also carefully taking "symmetricMatrix" objects into account.

See Also

The \text{Matrix} class also has a length method; typically, \(\text{length}(M)\) is much larger than \(\text{nnzero}(M)\) for a sparse matrix M, and the latter is a better indication of the size of M.

drop0, zapsmall.

Examples

```r
m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
\(\text{nnzero}(\text{mT})\)

S <- crossprod(mT)
\(\text{nnzero}(S)\)
\(\text{str}(S)\) # slots are smaller than \(\text{nnzero()}\)
\(\text{stopifnot}(\text{nnzero}(S) == \text{sum(\text{as.matrix}(S) != 0}))\)# failed earlier

data(KNex, package = "Matrix")
M <- KNex$mm
class(M)
dim(M)
\(\text{length}(M)\); \(\text{stopifnot}(\text{length}(M) == \text{prod(dim(M)))}\)
\(\text{nnzero}(M)\) # more relevant than \(\text{length}\)
## the above are also visible from \(\text{str}(M)\)
```
Matrix Norms

Description
Computes a matrix norm of \(x \), using Lapack for dense matrices. The norm can be the one ("O", or "1") norm, the infinity ("I") norm, the Frobenius ("F") norm, the maximum modulus ("M") among elements of a matrix, or the spectral norm or 2-norm ("2"), as determined by the value of \(type \).

Usage
\[
\text{norm}(x, \text{type}, \ldots)
\]

Arguments
- \(x \): a real or complex matrix.
- \(type \): A character indicating the type of norm desired.
 - "O", "o" or "1" specifies the one norm, (maximum absolute column sum);
 - "I" or "i" specifies the infinity norm (maximum absolute row sum);
 - "F" or "f" specifies the Frobenius norm (the Euclidean norm of \(x \) treated as if it were a vector);
 - "M" or "m" specifies the maximum modulus of all the elements in \(x \); and
 - "2" specifies the “spectral norm” or 2-norm, which is the largest singular value (\(\text{svd} \)) of \(x \).

The default is "O". Only the first character of \(type[1] \) is used.

\(\ldots \): further arguments passed to or from other methods.

Details
For dense matrices, the methods eventually call the Lapack functions \(\text{dlange} \), \(\text{dlansy} \), \(\text{dlantr} \), \(\text{zlange} \), \(\text{zlansy} \), and \(\text{zlantr} \).

Value
A numeric value of class "norm", representing the quantity chosen according to \(type \).

References

See Also
- \(\text{onenormest}() \), an approximate randomized estimate of the 1-norm condition number, efficient for large sparse matrices.
- The \(\text{norm}() \) function from R’s \textbf{base} package.
Examples

```r
x <- Hilbert(9)
norm(x)# = "O" = "1"
stopifnot(identical(norm(x), norm(x, "1")))
norm(x, "1")# the same, because 'x' is symmetric

allnorms <- function(d) vapply(c("1","1","F","M","2"),
  norm, x = d, double(1))
allnorms(x)
allnorms(Hilbert(10))
```

```r
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x) ## 8 x 10 "dgCMatrix"
(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular = TRUE)) ## 10 x 10 "dtCMatrix"
(allnorms(A) -> nA)
allnorms(sA)
allnorms(tA)
stopifnot(all.equal(nA, allnorms(as(A, "matrix"))),
  all.equal(nA, allnorms(tA))) # because tA == rbind(A, 0, 0)
A. <- A; A.[1,3] <- NA
stopifnot(is.na(allnorms(A.))) # gave error
```

nsparseMatrix-classes Sparse "pattern" Matrices

Description

The nsparseMatrix class is a virtual class of sparse "pattern" matrices, i.e., binary matrices conceptually with TRUE/FALSE entries. Only the positions of the elements that are TRUE are stored.

These can be stored in the “triplet” form (TsparseMatrix, subclasses ngTMatrix, nsTMatrix, and ntTMatrix which really contain pairs, not triplets) or in compressed column-oriented form (class CsparseMatrix, subclasses ngCMatrix, nsCMatrix, and ntCMatrix) or—rarely—in compressed row-oriented form (class RsparseMatrix, subclasses ngRMatrix, nsRMatrix, and ntrRMatrix).

The second letter in the name of these non-virtual classes indicates general, symmetric, or triangular.

Objects from the Class

Objects can be created by calls of the form `new("ngMatrix", ...)` and so on. More frequently objects are created by coercion of a numeric sparse matrix to the pattern form for use in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence numeric sparse matrices can be treated as sparse pattern matrices.
Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.

diag: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The implicit diagonal elements are not explicitly stored when diag is "U". Present in the triangular classes only.

p: Object of class "integer" of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.

i: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.

j: Object of class "integer" of length nnzero (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.

Dim: Object of class "integer" - the dimensions of the matrix.

Methods

coerce signature(from = "dgCMatrix", to = "ngCMatrix"), and many similar ones; typically you should coerce to "nsparseMatrix" (or "nMatrix"). Note that coercion to a sparse pattern matrix records all the potential non-zero entries, i.e., explicit ("non-structural") zeroes are coerced to TRUE, not FALSE, see the example.

t signature(x = "ngCMatrix"): returns the transpose of x

which signature(x = "lsparseMatrix"), semantically equivalent to base function which(x, arr.ind); for details, see the lMatrix class documentation.

See Also

the class dgCMatrix

Examples

(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
\'extract the nonzero-pattern of (m) into an nMatrix\':
mm <- as(m, "nsparseMatrix") ## \rightarrow will be a "ngCMatrix"
str(mm) # no \'x\' slot
mmm <- !mm # no longer sparse
consistency check:
stopifnot(xor(as(mm, "matrix"),
 as(nmm, "matrix")))

low-level way of adding "non-structural zeros" :
mmm <- as(nmm, "IsparseMatrix") # "lgCMatrix"
mmm@x[2:4] <- c(FALSE, NA, NA)

as(nmm, "nMatrix") # NAs *and* non-structural 0 |---| TRUE
data(KNex, package = "Matrix")
mmm <- as(KNex $ mm, "nMatrix")
str(xlx <- crossprod(nmm)) # "nsCMatrix"
stopifnot(isSymmetric(xlx))
image(xlx, main=paste("crossprod(nmm) : Sparse", class(xlx)))

nsyMatrix-class Symmetric Dense Nonzero-Pattern Matrices

Description

The "nsyMatrix" class is the class of symmetric, dense nonzero-pattern matrices in non-packed storage and "nspMatrix" is the class of of these in packed storage. Only the upper triangle or the lower triangle is stored.

Objects from the Class

Objects can be created by calls of the form new("nsyMatrix", ...).

Slots

uplo: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.

x: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.

Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), see the Matrix class.

factors: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

"nsyMatrix" extends class "ngeMatrix", directly, whereas "nspMatrix" extends class "ndenseMatrix", directly.

Both extend class "symmetricMatrix", directly, and class "Matrix" and others, indirectly, use showClass("nsyMatrix"), e.g., for details.

Methods

Currently, mainly t() and coercion methods (for as(.)); use, e.g., showMethods(class="nsyMatrix") for details.

See Also

nageMatrix, Matrix, t
ntrMatrix-class

Examples

```r
(s0 <- new("nsyMatrix"))
(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
(sM <- M2 & t(M2)) # -> "lge"
class(sM <- as(sM, "nMatrix")) # -> "nge"
(sM <- as(sM, "symmetricMatrix")) # -> "nsy"
str(sM <- as(sM, "packedMatrix")) # -> "nsp", i.e., packed symmetric
```

ntrMatrix-class | *Triangular Dense Logical Matrices*

Description

The "ntrMatrix" class is the class of triangular, dense, logical matrices in nonpacked storage. The "ntpMatrix" class is the same except in packed storage.

Slots

- **x**: Object of class "logical". The logical values that constitute the matrix, stored in column-major order.
- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- **diag**: Object of class "character". Must be either "U", for unit triangular (diagonal is all ones), or "N"; see `triangularMatrix`.
- **Dim,Dimnames**: The dimension (a length-2 "integer") and corresponding names (or `NULL`), see the `Matrix` class.
- **factors**: Object of class "list". A named list of factorizations that have been computed for the matrix.

Extends

"ntrMatrix" extends class "ngeMatrix", directly, whereas "ntpMatrix" extends class "ndenseMatrix", directly.

Both extend Class "triangularMatrix", directly, and class "denseMatrix", "lMatrix" and others, indirectly, use `showClass("nsyMatrix")`, e.g., for details.

Methods

Currently, mainly `t()` and coercion methods (for `as(.)`); use, e.g., `showMethods(class="ntrMatrix")` for details.

See Also

Classes `ngeMatrix`, `Matrix`; function `t`
Examples

```r
showClass("ntMatrix")

str(new("ntpMatrix"))
(nutr <- as(upper.tri(matrix(, 4, 4)), "ndenseMatrix"))
str(nutp <- pack(nutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!nutp # the logical negation (is *not* logical triangular !)
## but this one is:
stopifnot(all.equal(nutp, pack(!nutp)))
```

number-class
Class “number” of Possibly Complex Numbers

Description

The class "number" is a virtual class, currently used for vectors of eigen values which can be "numeric" or "complex".

It is a simple class union (setClassUnion) of "numeric" and "complex".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

```r
showClass("number")
stopifnot( is(1i, "number"), is(pi, "number"), is(1:3, "number") )
```

pack
Representation of Packed and Unpacked Dense Matrices

Description

pack() coerces dense symmetric and dense triangular matrices from unpacked format (storing the full matrix) to packed format (storing only one of the upper and lower triangles). unpack() performs the reverse coercion. The two formats are formalized by the virtual classes "packedMatrix" and "unpackedMatrix".
Usage

pack(x, ...)
S4 method for signature 'dgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'lgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'ngeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
S4 method for signature 'matrix'
pack(x, symmetric = NA, upperTri = NA, ...)

unpack(x, ...)

Arguments

x A dense symmetric or dense triangular matrix.

For pack(): typically an "unpackedMatrix" or a standard "matrix", though "packedMatrix" are allowed and returned unchanged.

For unpack(): typically a "packedMatrix", though "unpackedMatrix" are allowed and returned unchanged.

symmetric logical (including NA) optionally indicating whether x is symmetric (or triangular).

upperTri (for triangular x only) logical (including NA) indicating whether x is upper (or lower) triangular.

... further arguments passed to or from other methods.

Details

pack(x) checks matrices x not inheriting from one of the virtual classes "symmetricMatrix" "triangularMatrix" for symmetry (via isSymmetric()) then for upper and lower triangularity (via isTriangular()) in order to identify a suitable coercion. Setting one or both of symmetric and upperTri to TRUE or FALSE rather than NA allows skipping of irrelevant tests for large matrices known to be symmetric or (upper or lower) triangular.

Users should not assume that pack() and unpack() are inverse operations. Specifically, y <- unpack(pack(x)) may not reproduce an "unpackedMatrix" x in the sense of identical(). See the examples.

Value

For pack(): a "packedMatrix" giving the condensed representation of x.

For unpack(): an "unpackedMatrix" giving the full storage representation of x.

Examples

showMethods("pack")
(s <- crossprod(matrix(sample(15), 5,3))) # traditional symmetric matrix
(sp <- pack(s))
mt <- as.matrix(tt <- tril(s))
(pt <- pack(mt))
stopifnot(identical(pt, pack(tt)),
 dim(s) == dim(sp), all(s == sp),
 dim(mt) == dim(pt), all(mt == pt), all(mt == tt))

showMethods("unpack")
(cp4 <- chol(Hilbert(4))) # is triangular
tp4 <- pack(cp4) # [t]riangular [p]acked
str(tp4)
(unpack(tp4))
stopifnot(identical(tp4, pack(unpack(tp4))))

z1 <- new("dsyMatrix", Dim = c(2L, 2L), x = as.double(1:4), uplo = "U")
z2 <- unpack(pack(z1))
stopifnot(!identical(z1, z2), # _not_ identical
 all(z1 == z2)) # but mathematically equal
cbind(z1@x, z2@x) # (unused!) lower triangle is "lost" in translation

packedMatrix-class Virtual Class "packedMatrix" of Packed Dense Matrices

Description

Class "packedMatrix" is the virtual class of dense symmetric or triangular matrices in "packed" format, storing only the \(\binom{n+1}{2} = n(n+1)/2\) elements of the upper or lower triangle of an \(n\)-by-\(n\) matrix. It is used to define common methods for efficient subsetting, transposing, etc. of its proper subclasses: currently "[dln]spMatrix" (packed symmetric), "[dln]tpMatrix" (packed triangular), and subclasses of these, such as "dppMatrix", "pCholesky", and "pBunchKaufman".

Slots

- uplo: "character"; either "U", for upper triangular, and "L", for lower.

Dim, Dimnames: as all Matrix objects.

Extends

Methods

- **pack** signature(x = "packedMatrix"): ...
- **unpack** signature(x = "packedMatrix"): ...
- **isSymmetric** signature(object = "packedMatrix"): ...
- **isTriangular** signature(object = "packedMatrix"): ...
pMatrix-class

isDiagonal signature(object = "packedMatrix"): ...
\texttt{t} signature(x = "packedMatrix"): ...
\texttt{diag} signature(x = "packedMatrix"): ...
\texttt{diag<-} signature(x = "packedMatrix"): ...

Author(s)
Mikael Jagan

See Also
pack and unpack; its virtual "complement" "unpackedMatrix"; its proper subclasses "dspMatrix", "ltpMatrix", etc.

Examples
showClass("packedMatrix")
showMethods(classes = "packedMatrix")

pMatrix-class Permutation matrices

Description
The pMatrix class is the class of permutation matrices, stored as 1-based integer permutation vectors. A permutation matrix is a square matrix whose rows and columns are all standard unit vectors. It follows that permutation matrices are a special case of index matrices (hence pMatrix is defined as a direct subclass of indMatrix).

Multiplying a matrix on the left by a permutation matrix is equivalent to permuting its rows. Analogously, multiplying a matrix on the right by a permutation matrix is equivalent to permuting its columns. Indeed, such products are implemented in Matrix as indexing operations; see `Details` below.

Details
By definition, a permutation matrix is both a row index matrix and a column index matrix. However, the \texttt{perm} slot of a pMatrix cannot be used interchangeably as a row index vector and column index vector. If \texttt{margin}=1, then \texttt{perm} is a row index vector, and the corresponding column index vector can be computed as \texttt{invPerm(perm)}, i.e., by inverting the permutation. Analogously, if \texttt{margin}=2, then \texttt{perm} and \texttt{invPerm(perm)} are column and row index vectors, respectively.

Given an \(n\)-by-\(n\) row permutation matrix \(P\) with \texttt{perm} slot \(p\) and a matrix \(M\) with conformable dimensions, we have

\[
\begin{align*}
P M & = P %*% M & = & M[p,] \\
M P & = M %*% P & = & M[, i(p)] \\
P' M & = \text{crossprod}(P, M) & = & M[i(p),] \\
M P' & = \text{tcrossprod}(M, P) & = & M[, p] \\
P' P & = \text{crossprod}(P) & = & \text{Diagonal}(n) \\
PP' & = \text{tcrossprod}(P) & = & \text{Diagonal}(n)
\end{align*}
\]
where \(i := \text{invPerm} \).

Objects from the Class

Objects can be created explicitly with calls of the form `new("pMatrix", ...)` but they are more commonly created by coercing 1-based integer index vectors, with calls of the form `as(., "pMatrix")`: see 'Methods' below.

Slots

- `margin`, `perm` inherited from superclass `indMatrix`. Here, `perm` is an integer vector of length \(\text{Dim}[1] \) and a permutation of \(1:\text{Dim}[1] \).
- `Dim`, `Dimnames` inherited from virtual superclass `Matrix`.

Extends

- Class "indMatrix", directly.

Methods

- `%*%` signature \((x = "pMatrix", y = "Matrix") \) and others listed by `showMethods("%*%", classes = "pMatrix")`: matrix products implemented where appropriate as indexing operations.
- `coerce` signature \((\text{from} = "numeric", \text{to} = "pMatrix") \): supporting typical `pMatrix` construction from a vector of positive integers, specifically a permutation of \(1:n \). Row permutation is assumed.
- `t` signature \((x = "pMatrix") \): the transpose, which is a `pMatrix` with identical `perm` but opposite `margin`. Coincides with the inverse, as permutation matrices are orthogonal.
- `solve` signature \((a = "pMatrix", b = "missing") \): the inverse permutation matrix, which is a `pMatrix` with identical `perm` but opposite `margin`. Coincides with the transpose, as permutation matrices are orthogonal. See `showMethods("solve", classes = "pMatrix")` for more signatures.
- `determinant` signature \((x = "pMatrix", \text{logarithm} = "logical") \): always returning 1 or -1, as permutation matrices are orthogonal. In fact, the result is exactly the `sign` of the permutation.

See Also

- Superclass `indMatrix` of index matrices, for many inherited methods; `invPerm`, for computing inverse permutation vectors.

Examples

```r
(pml <- as(as.integer(c(2,3,1)), "pMatrix"))
t(pml) # is the same as solve(pml)
pml %*% t(pml) # check that the transpose is the inverse
stopifnot(all(diag(3) == as(pml %*% t(pml), "matrix")),
is.logical(as(pml, "matrix")))
```
set.seed(11)
random permutation matrix :
(p10 <- as(sample(10),"pMatrix"))

Permute rows / columns of a numeric matrix :
(mm <- round(array(rnorm(3 * 3), c(3, 3)), 2))
mm %*% pm1
pm1 %*% mm
try(as(as.integer(c(3,3,1)), "pMatrix")) # Error: not a permutation
as(pm1, "TsparseMatrix")
p10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)

row-indexing of a <pMatrix> keeps it as an <indMatrix>:
p10[1:3,]

printSpMatrix

Format and Print Sparse Matrices Flexibly

Description

Format and print sparse matrices flexibly. These are the “workhorses” used by the `format`, `show` and `print` methods for sparse matrices. If `x` is large, `printSpMatrix2(x)` calls `printSpMatrix()` twice, namely, for the first and the last few rows, suppressing those in between, and also suppresses columns when `x` is too wide.

`printSpMatrix()` basically prints the result of `formatSpMatrix()`.

Usage

```r
formatSpMatrix(x, digits = NULL, maxp = 1e9,
        cld = getClassDef(class(x)), zero.print = ".",
        col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
        align = c("fancy", "right"))
```

```r
printSpMatrix(x, digits = NULL, maxp = max(100L, getOption("max.print")),
        cld = getClassDef(class(x)),
        zero.print = ".", col.names, note.dropping.colnames = TRUE,
        uniDiag = TRUE, col.trailer = "",
        align = c("fancy", "right"))
```

```r
printSpMatrix2(x, digits = NULL, maxp = max(100L, getOption("max.print")),
        zero.print = ".", col.names, note.dropping.colnames = TRUE,
        uniDiag = TRUE, suppRows = NULL, suppCols = NULL,
        col.trailer = if(suppCols) "......" else "",
        align = c("fancy", "right"),
        width = getOption("width"), fitWidth = TRUE)
```
printSpMatrix

Arguments

Arguments

x
an R object inheriting from class `sparseMatrix`.
digits
significant digits to use for printing, see `print.default`, the default, `NULL`, corresponds to using `getOption("digits")`.
maxp
integer, default from `options(max.print)`, influences how many entries of large matrices are printed at all. Typically should not be smaller than around 1000; values smaller than 100 are silently “rounded up” to 100.
cld
the class definition of x; must be equivalent to `getClassDef(class(x))` and exists mainly for possible speedup.
zero.print
character which should be printed for structural zeroes. The default "." may occasionally be replaced by " " (blank); using "0" would look almost like `print()`ing of non-sparse matrices.
col.names
logical or string specifying if and how column names of x should be printed, possibly abbreviated. The default is taken from `options("sparse.colnames")` if that is set, otherwise FALSE unless there are less than ten columns. When TRUE the full column names are printed. When col.names is a string beginning with "abb" or "sub" and ending with an integer n (i.e., of the form "abb... <n>"), the column names are `abbreviate()`d or `substring()`ed to (target) length n, see the examples.

note.dropping.colnames
logical specifying, when col.names is FALSE if the dropping of the column names should be noted, TRUE by default.
uniDiag
logical indicating if the diagonal entries of a sparse unit triangular or unit-diagonal matrix should be formatted as "I" instead of "1" (to emphasize that the 1’s are "structural").
col.trailer
a string to be appended to the right of each column; this is typically made use of by `show(<sparseMatrix>)` only, when suppressing columns.
suppRows, suppCols
logicals or `NULL`, for `printSpMatrix2()` specifying if rows or columns should be suppressed in printing. If `NULL`, sensible defaults are determined from `dim(x)` and `options(c("width", "max.print"))`. Setting both to `FALSE` may be a very bad idea.
align
a string specifying how the zero.print codes should be aligned, i.e., padded as strings. The default, "fancy", takes some effort to align the typical zero.print = "." with the position of 0, i.e., the first decimal (one left of decimal point) of the numbers printed, whereas align = "right" just makes use of `print(*, right = TRUE)`.
width
number, a positive integer, indicating the approximately desired (line) width of the output, see also `fitWidth`.
fitWidth
logical indicating if some effort should be made to match the desired width or temporarily enlarge that if deemed necessary.

Details

`formatSpMatrix`: If x is large, only the first rows making up the approximately first maxp entries is used, otherwise all of x. `.formatSparseSimple()` is applied to (a dense version of) the
matrix. Then, `formatSparseM` is used, unless in trivial cases or for sparse matrices without `x` slot.

Value

`formatSpMatrix()`

returns a character matrix with possibly empty column names, depending on `col.names` etc, see above.

`printSpMatrix*()`

return `x` invisibly, see `invisible`.

Author(s)

Martin Maechler

See Also

the virtual class `sparseMatrix` and the classes extending it; maybe `sparseMatrix` or `spMatrix` as simple constructors of such matrices.

The underlying utilities `formatSparseM` and `.formatSparseSimple()` (on the same page).

Examples

```r
f1 <- gl(5, 3, labels = LETTERS[1:5])
X <- as(f1, "sparseMatrix")
X # shows column names, since only 5 columns

X2 <- as(gl(12, 3, labels = paste(LETTERS[1:12],"c",sep=".")), "sparseMatrix")
X2
```

less nice, but possible:

```r
print(X2, col.names = TRUE) # use [,1] [,2] .. => does not fit
```

Possibilities with column names printing:

```r
t(X2) # suppressing column names
print(t(X2), col.names=TRUE)
print(t(X2), zero.print = ",", col.names="abbr. 1")
print(t(X2), zero.print = ",", col.names="substring 2")
```
Description

Computes the pivoted QR factorization of an $m \times n$ real matrix A, which has the general form

$$P_1 A P_2 = QR$$

or (equivalently)

$$A = P_1' Q R P_2'$$

where P_1 and P_2 are permutation matrices, $Q = \prod_{j=1}^{n} H_j$ is an $m \times m$ orthogonal matrix equal to the product of n Householder matrices H_j, and R is an $m \times n$ upper trapezoidal matrix.

denseMatrix use the default method implemented in base, namely qr.default. It is built on LINPACK routine dqrdc and LAPACK routine dgeqp3, which do not pivot rows, so that P_1 is an identity matrix.

Methods for sparseMatrix are built on CSparse routines cs_sqr and cs_qr, which require $m \geq n$.

Usage

```r
qr(x, ...)  ## S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)
```

Arguments

- **x**
 - a finite matrix or Matrix to be factorized, satisfying `nrow(x) >= ncol(x)` if sparse.
- **order**
 - an integer in 0:3 passed to CSparse routine cs_sqr, indicating a strategy for choosing the column permutation P_2. 0 means no column permutation. 1, 2, and 3 indicate a fill-reducing ordering of $A + A'$, $\tilde{A}' \tilde{A}$, and $A' A$, where \tilde{A} is A with “dense” rows removed. Do not set to 0 unless you know that the column order of A is already sensible.
- **...**
 - further arguments passed to or from methods.

Details

If x is sparse and structurally rank deficient, having structural rank $r < n$, then x is augmented with $(n - r)$ rows of (partly non-structural) zeros, such that the augmented matrix has structural rank n. This augmented matrix is factorized as described above:

$$P_1 A P_2 = P_1 \begin{bmatrix} A_0 \\ 0 \end{bmatrix} P_2 = QR$$

where A_0 denotes the original, user-supplied $(m - (n - r)) \times n$ matrix.

Value

An object representing the factorization, inheriting from virtual S4 class QR or S3 class qr. The specific class is qr unless x inherits from virtual class sparseMatrix, in which case it is sparseQR.
References

See Also

Class `sparseQR` and its methods.

Class `dgCMatrix`.

Generic function `qr` from `base`, whose default method `qr.default` “defines” the S3 class `qr` of dense QR factorizations.

Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.

Generic functions `Cholesky`, `BunchKaufman`, `Schur`, and `lu`, for computing other factorizations.

Examples

```r
showMethods("qr", inherited = FALSE)
## Rank deficient: columns 3 {b2} and 6 {c3} are "extra"
M <- as(cbind(a1 = 1,
          b1 = rep(c(1, 0), each = 3L),
          b2 = rep(c(0, 1), each = 3L),
          c1 = rep(c(1, 0, 0), 2L),
          c2 = rep(c(0, 1, 0), 2L),
          c3 = rep(c(0, 0, 1), 2L)),
          "CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps
## .... [1] full rank ..................................................
## ===> a least squares solution of A x = b exists
## and is unique _in exact arithmetic_ 
(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))
stopifnot(exprs = { 
  rankMatrix(A1) == ncol(A1) 
  { d1 <- diag(qr.A1@R); sum(d1 < max(d1) * eps) == 0L } 
  rcond(crossprod(A1)) >= eps 
  all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b)))) 
  all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b) 
})
## .... [2] numerically rank deficient with full structural rank ........
## ===> a least squares solution of A x = b does not 
## exist or is not unique _in exact arithmetic_
```

(A2 <- M)
(qr.A2 <- qr(A2))

stopifnot(exprs = {
 rankMatrix(A2) == ncol(A2) - 2L
 { d2 <- diag(qr.A2@R); sum(d2 < max(d2) * eps) == 2L }
 rcond(crossprod(A2)) < eps

 ## 'qr.coef' computes unique least squares solution of "nearby" problem
 ## Z x = b for some full rank Z ~ A, currently without warning [FIXME]!
 tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)
 all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})

.... [3] numerically and structurally rank deficient
===> factorization of _augmented_ matrix with
full structural rank proceeds as in [2]
NB: implementation details are subject to change; see (*) below
A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"

stopifnot(exprs = {
 ## sparseQR object preserves the unaugmented dimensions (*)
 dim(qr.A3) == dim(A3)
 dim(qr.A3@V) == dim(A3) + c(2L, 0L)
 dim(qr.A3@R) == dim(A3) + c(2L, 0L)

 ## The augmented matrix remains numerically rank deficient
 rankMatrix(A3) == ncol(A3) - 2L
 { d3 <- diag(qr.A3@R); sum(d3 < max(d3) * eps) == 2L }
 rcond(crossprod(A3)) < eps
})

Auxiliary functions accept and return a vector or matrix
with dimensions corresponding to the unaugmented matrix (*),
in all cases with a warning
qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)

.... [4] yet more examples ...

By disabling column pivoting, one gets the "vanilla" factorization
A = Q^- R, where Q^- := P1' Q is orthogonal because P1 and Q are
(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting
rankMatrix

Rank of a Matrix

Description

Compute ‘the’ matrix rank, a well-defined functional in theory(*), somewhat ambiguous in practice. We provide several methods, the default corresponding to Matlab’s definition.

(*) The rank of a $n \times m$ matrix A, $rk(A)$, is the maximal number of linearly independent columns (or rows); hence $rk(A) \leq \min(n, m)$.

Usage

```r
rankMatrix(x, tol = NULL,
    method = c("tolNorm2", "qr", "qrLINPACK", "qr",
    "useGrad", "maybeGrad"),
    sval = svd(x, 0, 0)$d, warn.t = TRUE, warn.qr = TRUE)

qr2rankMatrix(qr, tol = NULL, isBqr = is.qr(qr), do.warn = TRUE)
```

Arguments

- **x** numeric matrix, of dimension $n \times m$, say.
- **tol** nonnegative number specifying a (relative, “scalefree”) tolerance for testing of “practically zero” with specific meaning depending on method; by default, $\max(\text{dim}(x)) \times .Machine$double.eps is according to Matlab’s default (for its only method which is our method="tolNorm2").
- **method** a character string specifying the computational method for the rank, can be abbreviated:
 - "tolNorm2": the number of singular values $\geq \text{tol} \times \max(\text{sval})$;
 - "qrLINPACK": for a dense matrix, this is the rank of qr(x, tol, LAPACK=FALSE) (which is qr(...)$rank);
 - "qr*": dense) version used to be the recommended way to compute a matrix rank for a while in the past.
 - For sparse x, this is equivalent to "qr .R".
"qr.R": this is the rank of triangular matrix R, where $\text{qr}()$ uses LAPACK or a "sparseQR" method (see qr-methods) to compute the decomposition QR. The rank of R is then defined as the number of "non-zero" diagonal entries d_i of R, and "non-zero"s fulfill $|d_i| \geq \text{tol} \cdot \text{max}(|d_i|)$.

"qr": is for back compatibility; for dense x, it corresponds to "qrLINPACK", whereas for sparse x, it uses "qr.R".

For all the "qr*" methods, singular values sval are not used, which may be crucially important for a large sparse matrix x, as in that case, when sval is not specified, the default, computing $\text{svd}()$ currently coerces x to a dense matrix.

"useGrad": considering the “gradient” of the (decreasing) singular values, the index of the smallest gap.

"maybeGrad": choosing method "useGrad" only when that seems reasonable; otherwise using "tolNorm2".

$sval$ numeric vector of non-increasing singular values of x; typically unspecified and computed from x when needed, i.e., unless method = "qr".

warn.t logical indicating if rankMatrix() should warn when it needs $t(x)$ instead of x. Currently, for method = "qr" only, gives a warning by default because the caller often could have passed $t(x)$ directly, more efficiently.

warn.qr in the QR cases (i.e., if method starts with "qr"), rankMatrix() calls qr2rankMatrix(..., do.warn = warn.qr), see below.

qr an R object resulting from $\text{qr}(x,..)$, i.e., typically inheriting from class "qr" or "sparseQR".

isBqr logical indicating if qr is resulting from $\text{base qr}()$. (Otherwise, it is typically from Matrix package sparse qr.)

do.warn logical; if true, warn about non-finite (or in the sparseQR case negative) diagonal entries in the R matrix of the QR decomposition. Do not change lightly!

Details

qr2rankMatrix() is typically called from rankMatrix() for the "qr"* methods, but can be used directly - much more efficiently in case the qr-decomposition is available anyway.

Value

If x is a matrix of all 0 (or of zero dimension), the rank is zero; otherwise, typically a positive integer in $1:\text{min}(\text{dim}(x))$ with attributes detailing the method used.

There are rare cases where the sparse QR decomposition “fails” in so far as the diagonal entries of R, the d_i (see above), end with non-finite, typically NaN entries. Then, a warning is signalled (unless warn.qr / do.warn is not true) and NA (specifically, NA_integer_) is returned.

Note

For large sparse matrices x, unless you can specify sval yourself, currently method = "qr" may be the only feasible one, as the others need sval and call $\text{svd}()$ which currently coerces x to a denseMatrix which may be very slow or impossible, depending on the matrix dimensions.
Note that in the case of sparse x, method = "qr", all non-strictly zero diagonal entries d, where counted, up to including Matrix version 1.1-0, i.e., that method implicitly used tol = 0, see also the set.seed(42) example below.

Author(s)

Martin Maechler; for the "*Grad" methods building on suggestions by Ravi Varadhan.

See Also

qr, svd.

Examples

rankMatrix(cbind(1, 0, 1:3)) # 2

(meths <- eval(formals(rankMatrix)$method))

a "border" case:
H12 <- Hilbert(12)
rankMatrix(H12, tol = 1e-20) # 12; but 11 with default method & tol.
sapply(meths, function(.m.) rankMatrix(H12, method = .m.))
tolNorm2 qr.R qrLINPACK qr useGrad maybeGrad
11 11 12 12 11 11
The meaning of 'tol' for method="qrLINPACK" and *dense* x is not entirely "scale free"
rMQL <- function(ex, M) rankMatrix(M, method="qrLINPACK", tol = 10^-ex)
rMQR <- function(ex, M) rankMatrix(M, method="qr.R", tol = 10^-ex)
sapply(5:15, rMQL, M = H12) # result is platform dependent
7 7 8 10 10 11 11 12 12 12 (x86_64)
sapply(5:15, rMQL, M = 1000 * H12) # not identical unfortunately
7 7 8 10 11 11 12 12 12 12
sapply(5:15, rMQR, M = H12)
5 6 7 8 8 9 9 10 10 11 11
sapply(5:15, rMQR, M = 1000 * H12) # the *same*

"sparse" case:
M15 <- kronecker(diag(x=c(100,1,10)), Hilbert(5))
sapply(meths, function(.m.) rankMatrix(M15, method = .m.))
#-- all 15, but 'useGrad' has 14.
sapply(meths, function(.m.) rankMatrix(M15, method = .m., tol = 1e-7)) # all 14

"large" sparse
n <- 250000; p <- 33; nnz <- 10000
L <- sparseMatrix(i = sample.int(n, nnz, replace=TRUE),
 j = sample.int(p, nnz, replace=TRUE),
 x = rnorm(nnz))
(st1 <- system.time(r1 <- rankMatrix(L))) # warning+ ~1.5 sec (2013)
(st2 <- system.time(r2 <- rankMatrix(L, method = "qr"))) # considerably faster!
r1[1] == print(r2[1]) ## --> (33 TRUE)
another sparse-"qr" one, which `failed' till 2013-11-23:
set.seed(42)
f1 <- factor(sample(50, 1000, replace=TRUE))
f2 <- factor(sample(50, 1000, replace=TRUE))
f3 <- factor(sample(50, 1000, replace=TRUE))
D <- t(do.call(rbind, lapply(list(f1,f2,f3), as.sparseMatrix)))
dim(D); nnzero(D) ## 1000 x 150 // 3000 non-zeros (= 2%)
stopifnot(rankMatrix(D, method='qr') == 148,
 rankMatrix(crossprod(D),method='qr') == 148)

zero matrix has rank 0 :
stopifnot(sapply(meths, function(.m.)
 rankMatrix(matrix(0, 2, 2), method = .m.)) == 0)

rcond-methods

Estimate the Reciprocal Condition Number

Description

Estimate the reciprocal of the condition number of a matrix.

This is a generic function with several methods, as seen by `showMethods(rcond).

Usage

```r
rcond(x, norm, ...)

## S4 method for signature 'sparseMatrix,character'
rcond(x, norm, useInv=FALSE, ...)
```

Arguments

- `x` an R object that inherits from the `Matrix` class.
- `norm` character string indicating the type of norm to be used in the estimate. The default is "O" for the 1-norm ("O" is equivalent to "1"). For sparse matrices, when `useInv=TRUE`, `norm` can be any of the kinds allowed for `norm`; otherwise, the other possible value is "I" for the infinity norm, see also `norm`.
- `useInv` logical (or "Matrix" containing `solve(x)`) If not false, compute the reciprocal condition number as \(1/(\|x\| \cdot \|x^{-1}\|)\), where \(x^{-1}\) is the inverse of \(x\), `solve(x)`. This may be an efficient alternative (only) in situations where `solve(x)` is fast (or known), e.g., for (very) sparse or triangular matrices. Note that the `result` may differ depending on `useInv`, as per default, when it is false, an approximation is computed.
- `...` further arguments passed to or from other methods.

Value

An estimate of the reciprocal condition number of \(x\).
BACKGROUND

The condition number of a regular (square) matrix is the product of the norm of the matrix and the norm of its inverse (or pseudo-inverse).

More generally, the condition number is defined (also for non-square matrices A) as

$$\kappa(A) = \frac{\max_{\|v\|=1} \|Av\|}{\min_{\|v\|=1} \|Av\|}$$

Whenever x is not a square matrix, in our method definitions, this is typically computed via $r\, \text{cond}(\text{qr}\,. \text{R}(\text{qr}(x)), \ldots)$ where X is x or $t(x)$.

The condition number takes on values between 1 and infinity, inclusive, and can be viewed as a factor by which errors in solving linear systems with this matrix as coefficient matrix could be magnified.

$r\, \text{cond}()$ computes the reciprocal condition number $1/\kappa$ with values in $[0, 1]$ and can be viewed as a scaled measure of how close a matrix is to being rank deficient (aka “singular”).

Condition numbers are usually estimated, since exact computation is costly in terms of floating-point operations. An (over) estimate of reciprocal condition number is given, since by doing so overflow is avoided. Matrices are well-conditioned if the reciprocal condition number is near 1 and ill-conditioned if it is near zero.

References

See Also

`norm, kappa()` from package `base` computes an approximate condition number of a “traditional” matrix, even non-square ones, with respect to the $p = 2$ (Euclidean) norm. `solve`.

`condest`, a newer approximate estimate of the (1-norm) condition number, particularly efficient for large sparse matrices.

Examples

```r
x <- Matrix(rnorm(9), 3, 3)
rcond(x)
## typically "the same" (with more computational effort):
1 / (norm(x) * norm(solve(x)))
rcond(Hilbert(9)) # should be about 9.1e-13

## For non-square matrices:
rcond(x1 <- cbind(1,1:10))# 0.05278
rcond(x2 <- cbind(x1, 2:11))# practically 0, since x2 does not have full rank

## sparse
(S1 <- Matrix(rbind(0:1,0, diag(3:-2))))
rcond(S1)
m1 <- as(S1, "denseMatrix")
```
all.equal(rcond(S1), rcond(m1))

wide and sparse
rcond(Matrix(cbind(0, diag(2:-1)))))

Large sparse example ---------
m <- Matrix(c(3,0:2), 2,2)
M <- bdiag(kronecker(Diagonal(2), m), kronecker(m,m))
36*(iM <- solve(M)) # still sparse
MM <- kronecker(Diagonal(10), kronecker(Diagonal(5),kronecker(m,M)))
 dim(M3 <- kronecker(bdiag(H,M),MM)) # 12'800 ^ 2
 if(interactive()) ## takes about 2 seconds if you have >= 8 GB RAM
 system.time(r <- rcond(M3))
 ## whereas this is *fast* even though it computes solve(M3)
 system.time(r. <- rcond(M3, useInv=TRUE))
 if(interactive()) ## the values are not the same
 c(r, r.) # 0.05555 0.013888
 ## for all 4 norms available for sparseMatrix :
 cbind(rr <- sapply(c("1","I","F","M"),
 function(N) rcond(M3, norm=N, useInv=TRUE)))

rep2abI

Replicate Vectors into 'abIndex' Result

Description

rep2abI(x, times) conceptually computes rep.int(x, times) but with an abIndex class result.

Usage

rep2abI(x, times)

Arguments

- **x** numeric vector
- **times** integer (valued) scalar: the number of repetitions

Value

a vector of class abIndex

See Also

rep.int(), the base function; abIseq, abIndex.

Examples

(ab <- rep2abI(2:7, 4))
stopifnot(identical(as(ab, "numeric"),
 rep(2:7, 4)))
replValue-class

Virtual Class "replValue" - Simple Class for Subassignment Values

Description

The class "replValue" is a virtual class used for values in signatures for sub-assignment of Matrix matrices.

In fact, it is a simple class union (setClassUnion) of "numeric" and "logical" (and maybe "complex" in the future).

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

See Also

Subassign-methods, also for examples.

Examples

showClass("replValue")

rleDiff-class

Class "rleDiff" of rle(diff(.)) Stored Vectors

Description

Class "rleDiff" is for compactly storing long vectors which mainly consist of linear stretches. For such a vector x, diff(x) consists of constant stretches and is hence well compressable via rle().

Objects from the Class

Objects can be created by calls of the form new("rleDiff", ...).

Currently experimental, see below.

Slots

- **first**: A single number (of class "numLike", a class union of "numeric" and "logical").
- **rle**: Object of class "rle", basically a list with components "lengths" and "values", see rle(). As this is used to encode potentially huge index vectors, lengths may be of type double here.

Methods

There is a simple show method only.
Note

This is currently an experimental auxiliary class for the class abIndex, see there.

See Also

rle, abIndex.

Examples

showClass("rleDiff")

ab <- c(abIseq(2, 100), abIseq(20, -2))
ab@rleD # is "rleDiff"

rsparsematrix
Random Sparse Matrix

Description

Generate a random sparse matrix efficiently. The default has rounded gaussian non-zero entries, and rand.x = NULL generates random pattern matrices, i.e. inheriting from nsparseMatrix.

Usage

rsparsematrix(nrow, ncol, density, nnz = round(density * maxE),
 symmetric = FALSE,
 rand.x = function(n) signif(rnorm(n), 2), ...)

Arguments

nrow, ncol number of rows and columns, i.e., the matrix dimension (dim).
density optional number in [0, 1], the density is the proportion of non-zero entries among all matrix entries. If specified it determines the default for nnz, otherwise nnz needs to be specified.

nnz number of non-zero entries, for a sparse matrix typically considerably smaller than nrow*ncol. Must be specified if density is not.
symmetric logical indicating if result should be a matrix of class symmetricMatrix. Note that in the symmetric case, nnz denotes the number of non zero entries of the upper (or lower) part of the matrix, including the diagonal.

rand.x NULL or the random number generator for the x slot, a function such that rand.x(n) generates a numeric vector of length n. Typical examples are ran.x = rnorm, or rand.x = runif; the default is nice for didactical purposes.

... optionally further arguments passed to sparseMatrix(), notably repr.
Details

The algorithm first samples “encoded" \((i, j)\)s without replacement, via one dimensional indices, if not symmetric \(\text{sample.int}(\text{nrow}*\text{ncol}, \text{nnz})\), then—if \(\text{rand.x}\) is not \(\text{NULL}\)—gets \(x \leftarrow \text{rand.x}(\text{nnz})\) and calls \(\text{sparseMatrix}(i=i, j=j, x=x, ..)\). When \(\text{rand.x}=\text{NULL}\), \(\text{sparseMatrix}(i=i, j=j, ..)\) will return a pattern matrix (i.e., inheriting from \(\text{nsparseMatrix}\)).

Value

A \(\text{sparseMatrix}\), say \(M\) of dimension \((\text{nrow}, \text{ncol})\), i.e., with \(\text{dim}(M) = c(\text{nrow}, \text{ncol})\), if symmetric is not true, with \(\text{nzM} \leftarrow \text{nnzero}(M)\) fulfilling \(\text{nzM} \leq \text{nnz}\) and typically, \(\text{nzM} = \text{nnz}\).

Author(s)

Martin Maechler

Examples

```r
set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M
M1 <- rsparsematrix(1000, 20, nnz = 123, rand.x = runif)
summary(M1)

## a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"

## a random pattern aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))

## a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")
head(T2)
```

RsparseMatrix-class

Class "RsparseMatrix" of Sparse Matrices in Row-compressed Form

Description

The "RsparseMatrix" class is the virtual class of all sparse matrices coded in sorted compressed row-oriented form. Since it is a virtual class, no objects may be created from it. See `showClass("RsparseMatrix")` for its subclasses.
Schur-class

Slots

- j: Object of class "integer" of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.
- p: Object of class "integer" of pointers, one for each row, to the initial (zero-based) index of elements in the row.

Dim, Dimnames: inherited from the superclass, see `sparseMatrix`.

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Originally, few methods were defined on purpose, as we rather use the `CsparseMatrix` in `Matrix`. Then, more methods were added but beware that these typically do not return "RsparseMatrix" results, but rather C sparse* or T sparse* ones; e.g., R[1, j] <- v for an "RsparseMatrix" R works, but after the assignment, R is a (triplet) "TsparseMatrix".

- t signature(x = "RsparseMatrix"): ...
- coerce signature(from = "RsparseMatrix", to = "CsparseMatrix"): ...
- coerce signature(from = "RsparseMatrix", to = "TsparseMatrix"): ...

See Also

its superclass, `sparseMatrix`, and, e.g., class `dgRMatrix` for the links to other classes.

Examples

```r
showClass("RsparseMatrix")
```

Schur-class Schur Factorizations

Description

Schur is the class of Schur factorizations of $n \times n$ real matrices A, having the general form

$$ A = QTQ' $$

where Q is an orthogonal matrix and T is a block upper triangular matrix with 1×1 or 2×2 diagonal blocks specifying the real and complex conjugate eigenvalues of A. The column vectors of Q are the Schur vectors of A, and T is the Schur form of A.

The Schur factorization generalizes the spectral decomposition of normal matrices A, whose Schur form is block diagonal, to arbitrary square matrices.
Details

The matrix A and its Schur form T are similar and thus have the same spectrum. The eigenvalues are computed trivially as the eigenvalues of the diagonal blocks of T.

Slots

- Dim, Dimnames inherited from virtual class `MatrixFactorization`.
- Q an orthogonal matrix, inheriting from virtual class `Matrix`.
- T a block upper triangular matrix, inheriting from virtual class `Matrix`. The diagonal blocks have dimensions 1-by-1 or 2-by-2.
- EValues a numeric or complex vector containing the eigenvalues of the diagonal blocks of T, which are the eigenvalues of T and consequently of the factorized matrix.

Extends

Class `SchurFactorization`, directly. Class `MatrixFactorization`, by class `SchurFactorization`, distance 2.

Instantiation

Objects can be generated directly by calls of the form `new("Schur", ...)`, but they are more typically obtained as the value of `Schur(x)` for x inheriting from `Matrix` (often `dgeMatrix`).

Methods

determinant signature(from = "Schur", logarithm = "logical"): computes the determinant of the factorized matrix A or its logarithm.

- expand1 signature(x = "Schur"): see `expand1-methods`.
- expand2 signature(x = "Schur"): see `expand2-methods`.
- solve signature(a = "Schur", b = .): see `solve-methods`.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.

See Also

Class `dgeMatrix`.
Generic functions `Schur`, `expand1` and `expand2`.
Examples

showClass("Schur")
set.seed(0)

n <- 4L
(A <- Matrix(rnorm(n * n), n, n))

With dimnames, to see that they are propagated :
dimnames(A) <- list(paste0("r", seq_len(n)),
 paste0("c", seq_len(n)))

(sch.A <- Schur(A))
str(e.sch.A <- expand2(sch.A), max.level = 2L)

A = Q T Q' in floating point
stopifnot(exprs = {
 identical(names(e.sch.A), c("Q", "T", "Q"))
 all.equal(A, with(e.sch.A, Q %*% T %*% Q.))
})

Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(all.equal(det(A), det(sch.A)),
 all.equal(solve(A, b), solve(sch.A, b)))

One of the non-general cases:
Schur(Diagonal(6L))

Schur-methods

Methods for Schur Factorization

Description

Computes the Schur factorization of an \(n \times n \) real matrix \(A \), which has the general form

\[
A = QTQ'
\]

where \(Q \) is an orthogonal matrix and \(T \) is a block upper triangular matrix with \(1 \times 1 \) and \(2 \times 2 \) diagonal blocks specifying the real and complex conjugate eigenvalues of \(A \). The column vectors of \(Q \) are the Schur vectors of \(A \), and \(T \) is the Schur form of \(A \).

Methods are built on LAPACK routine dgees.

Usage

\[\text{Schur}(x, \text{vectors = TRUE}, \ldots)\]
Schur-methods

Arguments

- **x**
 a finite square matrix or Matrix to be factorized.

- **vectors**
 a logical. If TRUE (the default), then Schur vectors are computed in addition to the Schur form.

- **...**
 further arguments passed to or from methods.

Value

An object representing the factorization, inheriting from virtual class `SchurFactorization` if `vectors = TRUE`. Currently, the specific class is always `Schur` in that case.

An exception is if `x` is a traditional matrix, in which case the result is a named list containing `Q`, `T`, and `EValues` slots of the `Schur` object.

If `vectors = FALSE`, then the result is the same named list but without `Q`.

References

The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.

See Also

- Class `Schur` and its methods.
- Class `dgeMatrix`.
- Generic functions `expand1` and `expand2`, for constructing matrix factors from the result.
- Generic functions `Cholesky`, `BunchKaufman`, `lu`, and `qr`, for computing other factorizations.

Examples

```r
showMethods("Schur", inherited = FALSE)
set.seed(0)
Schur(Hilbert(9L)) # real eigenvalues

(A <- Matrix(round(rnorm(25L, sd = 100)), 5L, 5L))
(sch.A <- Schur(A)) # complex eigenvalues

## A ~ Q T Q' in floating point
str(e.sch.A <- expand2(sch.A), max.level = 2)
stopifnot(all.equal(A, Reduce("%*%", e.sch.A)))

(e1 <- eigen(sch.A@T, only.values = TRUE)$values)
(e2 <- eigen(A, only.values = TRUE)$values)
(e3 <- sch.A@EValues)

stopifnot(exprs = {
  "e1 == e2 == e3"
})
```

```r
```
Methods in Package Matrix for Function solve

Description

Methods for generic function solve for solving linear systems of equations, i.e., for \(X \) in \(AX = B \), where \(A \) is a square matrix and \(X \) and \(B \) are matrices with dimensions consistent with \(A \).

Usage

solve(a, b, ...)

S4 method for signature 'dgeMatrix,ANY'
solve(a, b, tol = .Machine$double.eps, ...)

S4 method for signature 'dgCMatrix,missing'
solve(a, b, sparse = TRUE, ...)

S4 method for signature 'dgCMatrix,matrix'
solve(a, b, sparse = FALSE, ...)

S4 method for signature 'dgCMatrix,denseMatrix'
solve(a, b, sparse = FALSE, ...)

S4 method for signature 'dgCMatrix,sparseMatrix'
solve(a, b, sparse = TRUE, ...)

S4 method for signature 'denseLU,dgeMatrix'
solve(a, b, ...)

S4 method for signature 'BunchKaufman,dgeMatrix'
solve(a, b, ...)

S4 method for signature 'Cholesky,dgeMatrix'
solve(a, b, ...)

S4 method for signature 'sparseLU,dgCMatrix'
solve(a, b, tol = .Machine$double.eps, ...)

S4 method for signature 'sparseQR,dgCMatrix'
solve(a, b, ...)

S4 method for signature 'CHMfactor,dgCMatrix'
solve(a, b, system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"), ...)
Arguments

a a finite square matrix or Matrix containing the coefficients of the linear system, or otherwise a MatrixFactorization, in which case methods behave (by default) as if the factorized matrix were specified.

b a vector, sparseVector, matrix, or Matrix satisfying NROW(b) == nrow(a), giving the right-hand side(s) of the linear system. Vectors b are treated as length(b)-by-1 matrices. If b is missing, then methods take b to be an identity matrix.

tol a non-negative number. For a inheriting from denseMatrix, an error is signaled if the reciprocal one-norm condition number (see rcond) of a is less than tol, indicating that a is near-singular. For a of class sparseLU, an error is signaled if the ratio \(\min(d)/\max(d) \) is less than tol, where \(d = \text{abs} \left(\text{diag}(a@U) \right) \). (Interpret with care, as this ratio is a cheap heuristic and not in general equal to or even proportional to the reciprocal one-norm condition number.) Setting tol = 0 disables the test.

sparse a logical indicating if the result should be formally sparse, i.e., if the result should inherit from virtual class sparseMatrix. Only methods for sparse a and missing or matrix b have this argument. Methods for missing or sparse b use sparse = TRUE by default. Methods for dense b use sparse = FALSE by default.

system a string specifying a linear system to be solved. Only methods for a inheriting from CHMfactor have this argument. See ‘Details’.

... further arguments passed to or from methods.

Details

Methods for general and symmetric matrices a compute a triangular factorization (LU, Bunch-Kaufman, or Cholesky) and call the method for the corresponding factorization class. The factorization is sparse if a is. Methods for sparse, symmetric matrices a attempt a Cholesky factorization and perform an LU factorization only if that fails (typically because a is not positive definite).

Triangular, diagonal, and permutation matrices do not require factorization (they are already “factors”), hence methods for those are implemented directly. For triangular a, solutions are obtained by forward or backward substitution; for diagonal a, they are obtained by scaling the rows of b; and for permutations a, they are obtained by permuting the rows of b.

Methods for dense a are built on 14 LAPACK routines: class d..Matrix, where ..=(ge|tr|tp|sy|sp|po|pp), uses routines d..tri and d..trs for missing and non-missing b, respectively. A corollary is that these methods always give a dense result.

Methods for sparse a are built on CSparse routines cs_lsolve, cs_usolve, and cs_spsolve and CHOLMOD routines cholmod_solve and cholmod_spsolve. By default, these methods give a vector result if b is a vector, a sparse matrix result if b is missing or a sparse matrix, and a dense matrix result if b is a dense matrix. One can override this behaviour by setting the sparse argument, where available, but that should be done with care. Note that a sparse result may be sparse only in the formal sense and not at all in the mathematical sense, depending on the nonzero patterns of a and b. Furthermore, whereas dense results are fully preallocated, sparse results must be “grown” in a loop over the columns of b.

Methods for a of class sparseQR are simple wrappers around qr.coef, giving the least squares solution in overdetermined cases.
Methods for a inheriting from `CHMfactor` can solve systems other than the default one $AX = B$. The correspondence between its system argument the system actually solved is outlined in the table below. See `CHMfactor-class` for a definition of notation.

<table>
<thead>
<tr>
<th>system</th>
<th>isLDL(a)=TRUE</th>
<th>isLDL(a)=FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A"</td>
<td>$AX = B$</td>
<td>$AX = B$</td>
</tr>
<tr>
<td>"LDL'"</td>
<td>$L_1D_1X = B$</td>
<td>$LL'X = B$</td>
</tr>
<tr>
<td>"LD"</td>
<td>$L_1D_1X = B$</td>
<td>$LX = B$</td>
</tr>
<tr>
<td>"DL'"</td>
<td>$D_1L_1X = B$</td>
<td>$L'X = B$</td>
</tr>
<tr>
<td>"L"</td>
<td>$L_1X = B$</td>
<td>$LX = B$</td>
</tr>
<tr>
<td>"L'"</td>
<td>$L'X = B$</td>
<td>$L'X = B$</td>
</tr>
<tr>
<td>"D"</td>
<td>$DX = B$</td>
<td>$X = B$</td>
</tr>
<tr>
<td>"P"</td>
<td>$X = P_1B$</td>
<td>$X = P_1B$</td>
</tr>
<tr>
<td>"Pt"</td>
<td>$X = P_1'\hspace{1mm}B$</td>
<td>$X = P_1'B$</td>
</tr>
</tbody>
</table>

See Also

Virtual class `MatrixFactorization` and its subclasses.

Generic functions `Cholesky`, `BunchKaufman`, `Schur`, `lu`, and `qr` for computing factorizations.

Generic function `solve` from `base`.

Function `qr.coef` from `base` for computing least squares solutions of overdetermined linear systems.

Examples

```r
## A close to symmetric example with "quite sparse" inverse:
nl <- 7; n2 <- 3
dd <- data.frame(a = gl(nl,n2), b = gl(n2,1,nl*n2))# balanced 2-way
X <- sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
XXt <- tcrossprod(X)
diag(XXt) <- rep(c(0,0,1,0), length.out = nrow(XXt))

n <- nrow(ZZ <- kronecker(XXt, Diagonal(x=c(4,1))))
image(a <- 2*Diagonal(n) + ZZ %*% Diagonal(x=c(10, rep(1, n-1))))
isSymmetric(a) # FALSE
image(drop0(skewpart(a)))

## Fails on 32-bit [Fedora 19, R 3.0.2] from Matrix 1.1-0 on [FIXME ??] only
stopifnot(all.equal(as.matrix(ia.), as.matrix(ia0)))
a <- a + Diagonal(n)
iad <- solve(a)
ias <- solve(a, sparse=FALSE)
stopifnot(all.equal(as(iad,"denseMatrix"), ias, tolerance=1e-14))
I. <- iad %*% a ; image(I.)
I0 <- drop0(zapsmall(I.)) ; image(I0)
.I <- a %*% iad
.I0 <- drop0(zapsmall(.I))
```
sparse.model.matrix

Construct Sparse Design / Model Matrices

Description

Construct a sparse model or “design” matrix, from a formula and data frame (sparse.model.matrix) or a single factor (fac2sparse).

The fac2[Ss]parse() functions are utilities, also used internally in the principal user level function sparse.model.matrix().

Usage

sparse.model.matrix(object, data = environment(object),
contrast.arg = NULL, xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE,
sep = "", verbose = FALSE, ...)

fac2sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse)
fac2Sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse,
factorPatt12, contrasts.arg = NULL)

Arguments

object an object of an appropriate class. For the default method, a model formula or terms object.
data a data frame created with model.frame. If another sort of object, model.frame is called first.
contrast.arg for sparse.model.matrix(): A list, whose entries are contrasts suitable for input to the contrasts replacement function and whose names are the names of columns of data containing factors.
for fac2Sparse(): character string or NULL or (coercable to) "sparseMatrix", specifying the contrasts to be applied to the factor levels.
xlev to be used as argument of model.frame if data has no "terms" attribute.
transpose logical indicating if the transpose should be returned; if the transposed is used anyway, setting transpose = TRUE is more efficient.
drop.unused.levels should factors have unused levels dropped? The default for sparse.model.matrix has been changed to FALSE, 2010-07, for compatibility with R’s standard (dense) model.matrix().
row.names logical indicating if row names should be used.
sep character string passed to `paste()` when constructing column names from the variable name and its levels.
verbose logical or integer indicating if (and how much) progress output should be printed.
... further arguments passed to or from other methods.
from (for `fac2sparse()`): a `factor`.
to a character indicating the “kind” of sparse matrix to be returned. The default, "d" is for `double`.
giveCsparse `deprecated`, replaced with `repr`; logical indicating if the result must be a `CsparseMatrix`.
repr character string, one of "C", "T", or "R", specifying the sparse representation to be used for the result, i.e., one from the super classes `CsparseMatrix`, `TsparseMatrix`, or `RsparseMatrix`.
factorPatt12 logical vector, say `fp`, of length two; when `fp[1]` is true, return “contrasted” `t(X)`; when `fp[2]` is true, the original (“dummy”) `t(X)`, i.e, the result of `fac2sparse()`.

Value

a sparse matrix, extending `CsparseMatrix` (for `fac2sparse()` if `repr = "C"` as per default; a `TsparseMatrix` or `RsparseMatrix`, otherwise).

For `fac2Sparse()`, a list of length two, both components with the corresponding transposed model matrix, where the corresponding `factorPatt12` is true.

`fac2sparse()` the basic workhorse of `sparse.model.matrix()`, returns the transpose (`t`) of the model matrix.

Note

`model.Matrix(sparse = TRUE)` from package `MatrixModels` may be nowadays be preferable to `sparse.model.matrix`, as `model.Matrix` returns an object of class `modelMatrix` with additional slots `assign` and `contrasts` relating to the model variables.

Author(s)

Doug Bates and Martin Maechler, with initial suggestions from Tim Hesterberg.

See Also

`model.matrix` in package `stats`, part of base `R`.

`model.Matrix` in package `MatrixModels`; see ‘Note’.

`as(f, "sparseMatrix")` (see `coerce(from = "factor", ..)` in the class doc `sparseMatrix`) produces the transposed sparse model matrix for a single factor `f` (and no contrasts).
Examples

```
dd <- data.frame(a = gl(3,4), b = gl(4,1,12)) # balanced 2-way
options("contrasts") # the default: "contr.treatment"
sparse.model.matrix(~ a + b, dd)
sparse.model.matrix(~ -1 + a + b, dd) # no intercept --> even sparser
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))
```

```
## Sparse method is equivalent to the traditional one :
stopifnot(all(sparse.model.matrix(~ a + b, dd) ==
            Matrix(model.matrix(~ a + b, dd), sparse=TRUE)),
         all(sparse.model.matrix(~0 + a + b, dd) ==
            Matrix(model.matrix(~0 + a + b, dd), sparse=TRUE)))
```

```
(ff <- gl(3,4,, c("X","Y", "Z")))
fac2sparse(ff) # 3 x 12 sparse Matrix of class "dgCMatrix"
```

```
## can also be computed via sparse.model.matrix():
f30 <- gl(3,0 )
f12 <- gl(3,0, 12)
stopifnot(
    all.equal(t( fac2sparse(ff) ),
            sparse.model.matrix(~ 0+ff),
            tolerance = 0, check.attributes=FALSE),
    is(M <- fac2sparse(f30, drop= TRUE),"CsparseMatrix"), dim(M) == c(0, 0),
    is(M <- fac2sparse(f30, drop=FALSE),"CsparseMatrix"), dim(M) == c(3, 0),
    is(M <- fac2sparse(f12, drop= TRUE),"CsparseMatrix"), dim(M) == c(0,12),
    is(M <- fac2sparse(f12, drop=FALSE),"CsparseMatrix"), dim(M) == c(3,12) )
```

```
sparseLU-class

Sparse LU Factorizations

Description

sparseLU is the class of sparse, row- and column-pivoted LU factorizations of \( n \times n \) real matrices \( A \), having the general form

\[
P_1 A P_2 = LU
\]

or (equivalently)

\[
A = P_1' L U P_2'
\]

where \( P_1 \) and \( P_2 \) are permutation matrices, \( L \) is a unit lower triangular matrix, and \( U \) is an upper triangular matrix.
Slots

- Dim, Dimnames inherited from virtual class MatrixFactorization.
- L an object of class dtCMatrix, the unit lower triangular $L$ factor.
- U an object of class dtCMatrix, the upper triangular $U$ factor.
- p, q 0-based integer vectors of length Dim[1], specifying the permutations applied to the rows and columns of the factorized matrix. q of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using R syntax, the matrix $P_1 A P_2$ is precisely $A[p+1, q+1]$ ($A[p+1,]$ when q has length 0).

Extends

Class LU, directly. Class MatrixFactorization, by class LU, distance 2.

Instantiation

Objects can be generated directly by calls of the form new("sparseLU", ...), but they are more typically obtained as the value of lu(x) for x inheriting from sparseMatrix (often dgCMatrix).

Methods

determinant signature(from = "sparseLU", logarithm = "logical"): computes the determinant of the factorized matrix $A$ or its logarithm.
expand signature(x = "sparseLU"): see expand-methods.
expand1 signature(x = "sparseLU"): see expand1-methods.
expand2 signature(x = "sparseLU"): see expand2-methods.
solve signature(a = "sparseLU", b = .): see solve-methods.

References


See Also

Class denseLU for dense LU factorizations.
Class dgCMatrix.
Generic functions lu, expand1 and expand2.
sparseMatrix
175

Examples

dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
paste0("c", seq_len(n)))

(n <- A@Dim[1L])

## With dimnames, to see that they are propagated :

with(e.lu.A, P1. %*% L %*% U %*% P2.)

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)

ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' L U P2' in floating point

## Factorization handled as factorized matrix

det(A), det(lu.A)),

identical(solve(A, b), solve(lu.A, b)))

## With dimnames, to see that they are propagated :

## Factorization handled as factorized matrix

## With dimnames, to see that they are propagated :

identical(names(e.lu.A), c("P1.", "L", "U", "P2."))

## Factorization handled as factorized matrix

## With dimnames, to see that they are propagated :

identical(names(e.lu.A), c("P1.", "L", "U", "P2."))

identical(e.lu.A["P1."],

new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),

margin = 1L, perm = invertPerm(lu.A@p, 0L, 1L)))

identical(e.lu.A["P2."],

new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),

margin = 2L, perm = invertPerm(lu.A@q, 0L, 1L)))

identical(e.lu.A["L"], lu.A@L

identical(e.lu.A["U"], lu.A@U)

ae1(A, with(e.lu.A, P1. %*% L %*% U %*% P2.))

ae2(A[, , lu.A@p + 1L, lu.A@q + 1L], with(e.lu.A, L %*% U))

## Factorization handled as factorized matrix

b <- rnorm(n)

stopifnot(identical(det(A), det(lu.A)),

identical(solve(A, b), solve(lu.A, b)))


describe(sparseMatrix)

General Sparse Matrix Construction from Nonzero Entries

Description

User-friendly construction of sparse matrices (inheriting from virtual class CsparseMatrix, RsparseMatrix, or TsparseMatrix) from the positions and values of their nonzero entries.

This interface is recommended over direct construction via calls such as new("...")
sparseMatrix

sparseMatrix(i, j, p, x, dims, dimnames, 
  symmetric = FALSE, triangular = FALSE, index1 = TRUE, 
  repr = c("C", "R", "T"), giveCsparse, 
  check = TRUE, use.last.ij = FALSE)

Arguments

i, j        integer vectors of equal length specifying the positions (row and column indices) of the nonzero (or non-TRUE) entries of the matrix. Note that, when x is non-missing, the \( x_k \) corresponding to repeated pairs \( (i_k, j_k) \) are added, for consistency with the definition of class `TsparseMatrix`, unless use.last.ij is TRUE, in which case only the last such \( x_k \) is used.

p          integer vector of pointers, one for each column (or row), to the initial (zero-based) index of elements in the column (or row). Exactly one of i, j, and p must be missing.

x          optional, typically nonzero values for the matrix entries. If specified, then the length must equal that of i (or j) or equal 1, in which case x is recycled as necessary. If missing, then the result is a nonzero pattern matrix, i.e., inheriting from class `nsparseMatrix`.

dims       optional length-2 integer vector of matrix dimensions. If missing, then \( !index1+c(max(i),max(j)) \) is used.

dimnames   optional list of dimnames; if missing, then NULL ones are used.

symmetric  logical indicating if the resulting matrix should be symmetric. In that case, \( (i, j, p) \) should specify only one triangle (upper or lower).

triangular logical indicating if the resulting matrix should be triangular. In that case, \( (i, j, p) \) should specify only one triangle (upper or lower).

index1     logical. If TRUE (the default), then i and j are interpreted as 1-based indices, following the R convention. That is, counting of rows and columns starts at 1. If FALSE, then they are interpreted as 0-based indices.

repr       character string, one of "C", "R", and "T", specifying the representation of the sparse matrix result, i.e., specifying one of the virtual classes CsparseMatrix, RsparseMatrix, and TsparseMatrix.

giveCsparse (deprecated, replaced by repr) logical indicating if the result should inherit from CsparseMatrix or TsparseMatrix. Note that operations involving CsparseMatrix are very often (but not always) more efficient.

check      logical indicating whether to check that the result is formally valid before returning. Do not set to FALSE unless you know what you are doing!

use.last.ij logical indicating if, in the case of repeated (duplicated) pairs \( (i_k, j_k) \), only the last pair should be used. FALSE (the default) is consistent with the definition of class `TsparseMatrix`.

Details

Exactly one of the arguments i, j and p must be missing.
In typical usage, \( p \) is missing, \( i \) and \( j \) are vectors of positive integers and \( x \) is a numeric vector. These three vectors, which must have the same length, form the triplet representation of the sparse matrix.

If \( i \) or \( j \) is missing then \( p \) must be a non-decreasing integer vector whose first element is zero. It provides the compressed, or “pointer” representation of the row or column indices, whichever is missing. The expanded form of \( p \), \( \text{rep(seq_along(dp), dp)} \) where \( dp <- \text{diff(p)} \), is used as the (1-based) row or column indices.

You cannot set both singular and triangular to true; rather use \( \text{Diagonal()} \) (or its alternatives, see there).

The values of \( i \), \( j \), \( p \) and \( \text{index1} \) are used to create 1-based index vectors \( i \) and \( j \) from which a \( \text{TsparseMatrix} \) is constructed, with numerical values given by \( x \), if non-missing. Note that in that case, when some pairs \( (i_k, j_k) \) are repeated (aka “duplicated”), the corresponding \( x_k \) are added, in consistency with the definition of the \( \text{TsparseMatrix} \) class, unless \( \text{use.last.ij} \) is set to true.

By default, when \( \text{repr = “C”} \), the \( \text{CsparseMatrix} \) derived from this triplet form is returned, where \( \text{repr = “R”} \) now allows to directly get an \( \text{RsparseMatrix} \) and \( \text{repr = “T”} \) leaves the result as \( \text{TsparseMatrix} \).

The reason for returning a \( \text{CsparseMatrix} \) object instead of the triplet format by default is that the compressed column form is easier to work with when performing matrix operations. In particular, if there are no zeros in \( x \) then a \( \text{CsparseMatrix} \) is a unique representation of the sparse matrix.

Value

A sparse matrix, by default in compressed sparse column format and (formally) without symmetric or triangular structure, i.e., by default inheriting from both \( \text{CsparseMatrix} \) and \( \text{generalMatrix} \).

Note

You \textit{do} need to use \( \text{index1 = FALSE} \) (or add + 1 to \( i \) and \( j \)) if you want use the 0-based \( i \) (and \( j \)) slots from existing sparse matrices.

See Also

\( \text{Matrix}(\ast, \text{sparse=TRUE}) \) for the constructor of such matrices from a \textit{dense} matrix. That is easier in small sample, but much less efficient (or impossible) for large matrices, where something like \( \text{sparseMatrix()} \) is needed. Further \( \text{bdiag} \) and \( \text{Diagonal} \) for (block-)diagonal and \( \text{bandSparse} \) for banded sparse matrix constructors.

Random sparse matrices via \( \text{rsparsematrix()} \).

The standard \( \text{Rxtabs}(\ast, \text{sparse=TRUE}) \), for sparse tables and \( \text{sparse.model.matrix()} \) for building sparse model matrices.

Consider \( \text{CsparseMatrix} \) and similar class definition help files.

Examples

```r
simple example
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(A <- sparseMatrix(i, j, x = x)) # 8 x 10 "dgCMatrix"
```
summary(A)
str(A) # note that *internally* 0-based row indices are used

(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
stopifnot( all(sA == tA + t(tA)),
           identical(sA, as(tA + t(tA), "symmetricMatrix")))

## dims can be larger than the maximum row or column indices
(AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)))
summary(AA)

## i, j and x can be in an arbitrary order, as long as they are consistent
set.seed(1); (perm <- sample(1:7))
(A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]))
stopifnot(identical(A, A1))

## The slots are 0-index based, so
try( sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x)) )
## fails and you should say so: 1-indexing is FALSE:
sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x), index1 = FALSE)

## the (i,j) pairs can be repeated, in which case the x's are summed
(args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)))
(Aa <- do.call(sparseMatrix, args))
## explicitly ask for elimination of such duplicates, so
## that the last one is used:
(A <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))))
stopifnot(Aa[1,2] == 9, # 2+7 == 9
         A.[1,2] == 2) # 2 was *after* 7

## for a pattern matrix, of course there is no "summing":
(nA <- do.call(sparseMatrix, args[c("i","j")]))

dn <- list(LETTERS[1:3], letters[1:5])
## pointer vectors can be used, and the (i,x) slots are sorted if necessary:
m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
m
str(m)
stopifnot(identical(dimnames(m), dn))

sparseMatrix(x = 2.72, i=1:3, j=2:4) # recycling x
sparseMatrix(x = TRUE, i=1:3, j=2:4) # recycling x, |--> "lgCMatrix"

## no 'x' --> pattern* matrix:
(n <- sparseMatrix(i=1:6, j=rev(2:7)))# -> ngCMatrix

## an empty sparse matrix:
(e <- sparseMatrix(dims = c(4,6), i=(), j=()))

## a symmetric one:
(sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,
  dims = c(7,7), symmetric=TRUE))
stopifnot(isSymmetric(sy),
  identical(sy, ## switch i <-> j (and transpose )
  t( sparseMatrix(j= c(2,4,3:5), i= c(4,7:5,5), x = 1:5,
      dims = c(7,7), symmetric=TRUE))))

## rsparsematrix() calls sparseMatrix() :
M1 <- rsparsematrix(1000, 20, nnz = 200)
summary(M1)

## pointers example in converting from other sparse matrix representations.
if(requireNamespace("SparseM") &&
  packageVersion("SparseM") >= "0.87" &&
  nzchar(dfil <- system.file("extdata", "rua_32_ax.rua", package = "SparseM"))) {
  X <- SparseM::model.matrix(SparseM::read.matrix.hb(dfil))
  XX <- sparseMatrix(j = X@ja, p = X@ia - 1L, x = X@ra, dims = X@dimension)
  validObject(XX)

  ## Alternatively, and even more user friendly :
  X. <- as(X, "Matrix") # or also
  X2 <- as(X, "sparseMatrix")
  stopifnot(identical(XX, X.), identical(X., X2))
}
format signature(x = "sparseMatrix"), ....

The format method for sparse matrices, see formatSpMatrix() for details such as the extra optional arguments.

summary (object = "sparseMatrix", uniqT=FALSE): Returns an object of S3 class "sparseSummary" which is basically a data.frame with columns (i,j,x) (or just (i,j) for nsparseMatrix class objects) with the stored (typically non-zero) entries. The print method resembles Matlab's way of printing sparse matrices, and also the MatrixMarket format, see writeMM.

cbind2 (x = *, y = *): several methods for binding matrices together, column-wise, see the basic cbind and rbind functions.

Note that the result will typically be sparse, even when one argument is dense and larger than the sparse one.

rbind2 (x = *, y = *): binding matrices together row-wise, see cbind2 above.

determinant (x = "sparseMatrix", logarithm=TRUE): determinant() methods for sparse matrices typically work via Cholesky or lu decompositions.

diag (x = "sparseMatrix"): extracts the diagonal of a sparse matrix.

dim< signature(x = "sparseMatrix", value = "ANY"): allows to reshape a sparse matrix to a sparse matrix with the same entries but different dimensions. value must be of length two and fulfill prod(value) == prod(dim(x)).

coerce signature(from = "factor", to = "sparseMatrix"): Coercion of a factor to "sparseMatrix" produces the matrix of indicator rows stored as an object of class "dgCMatrix". To obtain columns representing the interaction of the factor and a numeric covariate, replace the "x" slot of the result by the numeric covariate then take the transpose. Missing values (NA) from the factor are translated to columns of all 0s.

See also colSums, norm, ... for methods with separate help pages.

Note

In method selection for multiplication operations (i.e. %*% and the two-argument form of crossprod) the sparseMatrix class takes precedence in the sense that if one operand is a sparse matrix and the other is any type of dense matrix then the dense matrix is coerced to a dgeMatrix and the appropriate sparse matrix method is used.

See Also

sparseMatrix, and its references, such as xtabs(*, sparse=TRUE), or sparse.model.matrix(), for constructing sparse matrices.

T2graph for conversion of "graph" objects (package graph) to and from sparse matrices.

Examples

showClass("sparseMatrix") ## and look at the help() of its subclasses
M <- Matrix(0, 10000, 100)
M[1,1] <- M[2,3] <- 3.14
M ## show(.) method suppresses printing of the majority of rows

data(CAex, package = "Matrix")
sparseQR-class

Sparse QR Factorizations

Description

sparseQR is the class of sparse, row- and column-pivoted QR factorizations of \( m \times n \) (\( m \geq n \)) real matrices, having the general form

\[
P_1 AP_2 = QR = \begin{bmatrix} Q_1 & Q_2 \\ \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1
\]

or (equivalently)

\[
A = P'_2 Q R P'_1 = P'_2 \begin{bmatrix} Q_1 & Q_2 \\ \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} P'_2 = P'_1 Q_1 R_1 P'_2
\]

where \( P_1 \) and \( P_2 \) are permutation matrices, \( Q = \prod_{j=1}^{n} H_j \) is an \( m \times m \) orthogonal matrix (\( Q_1 \) contains the first \( n \) column vectors) equal to the product of \( n \) Householder matrices \( H_j \), and \( R \) is an \( m \times n \) upper trapezoidal matrix (\( R_1 \) contains the first \( n \) row vectors and is upper triangular) with non-negative diagonal elements.

Usage

\[
\text{qrR}(\text{qr}, \text{complete} = \text{FALSE}, \text{backPermute} = \text{TRUE}, \text{row.names} = \text{TRUE})
\]

Arguments

- **qr**: an object of class `sparseQR`, almost always the result of a call to generic function `qr` with sparse `x`.
- **complete**: a logical indicating if \( R \) should be returned instead of \( R_1 \).
- **backPermute**: a logical indicating if \( R \) or \( R_1 \) should be multiplied on the right by \( P'_2 \).
- **row.names**: a logical indicating if `dimnames(qr)[1]` should be propagated unpermuted to the result. If `complete = FALSE`, then only the first \( n \) names are kept.
Details

The method for \texttt{qr.Q} does not return \(Q\) but rather the (also orthogonal) product \(P_1' Q\). This behaviour is algebraically consistent with the \texttt{base} implementation (see \texttt{qr}), which can be seen by noting that \texttt{qr.default} in \texttt{base} does not pivot rows, constraining \(P_1\) to be an identity matrix. It follows that \(\texttt{qr.Q(qr.default(x))}\) also returns \(P_1' Q\).

Similarly, the methods for \texttt{qr.qy} and \texttt{qr.qty} multiply on the left by \(P_1' Q\) and \(Q' P_1\) rather than \(Q\) and \(Q'\).

It is wrong to expect the values of \texttt{qr.Q} (or \texttt{qr.R}, \texttt{qr.qy}, \texttt{qr.qty}) computed from “equivalent” sparse and dense factorizations (say, \texttt{qr(x)} and \texttt{qr(as(x, "matrix"))} for \(x\) of class \texttt{dgCMatrix}) to compare equal. The underlying factorization algorithms are quite different, notably as they employ different pivoting strategies, and in general the factorization is not unique even for fixed \(P_1\) and \(P_2\).

On the other hand, the values of \texttt{qr.X}, \texttt{qr.coef}, \texttt{qr.fitted}, and \texttt{qr.resid} are well-defined, and in those cases the sparse and dense computations should compare equal (within some tolerance).

The method for \texttt{qr.R} is a simple wrapper around \texttt{qrR}, but not back-permuting by default and never giving row names. It did not support \texttt{backPermute = TRUE} until \texttt{Matrix} 1.6-0, hence code needing the back-permuted result should call \texttt{qrR} if \texttt{Matrix} \(\geq 1.6-0\) is not known.

Slots

\begin{itemize}
  \item \texttt{Dim}, \texttt{Dimnames} inherited from virtual class \texttt{MatrixFactorization}.
  \item \texttt{beta} a numeric vector of length \texttt{Dim}[2], used to construct Householder matrices; see \texttt{V} below.
  \item \texttt{V} an object of class \texttt{dgCMatrix} with \texttt{Dim}[2] columns. The number of rows \texttt{nrow(V)} is at least \texttt{Dim[1]} and at most \texttt{Dim[1]+Dim[2]}. \texttt{V} is lower trapezoidal, and its column vectors generate the Householder matrices \(H_j\) that compose the orthogonal \(Q\) factor. Specifically, \(H_j\) is constructed as \(\text{diag(Dim[1])} - \texttt{beta[j]} \times \text{tcrossprod(V[, j])}\).
  \item \texttt{R} an object of class \texttt{dgCMatrix} with \texttt{nrow(V)} rows and \texttt{Dim[2]} columns. \texttt{R} is the upper trapezoidal \(R\) factor with non-negative diagonal elements.
  \item \texttt{p}, \texttt{q} 0-based integer vectors of length \texttt{nrow(V)} and \texttt{Dim[2]}, respectively, specifying the permutations applied to the rows and columns of the factorized matrix. \texttt{q} of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using \texttt{R} syntax, the matrix \(P_1 A P_2\) is precisely \(A[p+1, q+1]\) (\(A[p+1, ]\) when \texttt{q} has length 0).
\end{itemize}

Extends

\texttt{Class \texttt{QR}, directly. Class \texttt{MatrixFactorization}, by class \texttt{QR}, distance 2.}

Instantiation

Objects can be generated directly by calls of the form \texttt{new("sparseQR", \ldots)}, but they are more typically obtained as the value of \texttt{qr(x)} for \(x\) inheriting from \texttt{sparseMatrix} (often \texttt{dgCMatrix}).

Methods

\begin{itemize}
  \item \texttt{determinant} \texttt{signature(from = "sparseQR", logarithm = "logical")}: computes the determinant of the factorized matrix \(A\) or its logarithm.
  \item \texttt{expand1} \texttt{signature(x = "sparseQR")}: see \texttt{expand1-methods}.
\end{itemize}
expand2 signature(x = "sparseQR"): see expand2-methods.

qr.Q signature(qr = "sparseQR"): returns as a dgeMatrix either \( P_1^t Q \) or \( P_1^t Q_1 \), depending on optional argument complete. The default is FALSE, indicating \( P_1^t Q_1 \).

qr.R signature(qr = "sparseQR"): qrR returns \( R, R_1, R P_2' \), or \( R_1 P_2' \), depending on optional arguments complete and backPermute. The default in both cases is FALSE, indicating \( R_1 \), for compatibility with \texttt{base}. The class of the result in that case is \texttt{dtCMatrix}. In the other three cases, it is \texttt{dgCMatrix}.

qr.X signature(qr = "sparseQR"): returns \( A \) as a dgeMatrix, by default. If \( m > n \) and optional argument ncol is greater than \( n \), then the result is augmented with \( P_1^t Q J \), where \( J \) is composed of columns \((n + 1)\) through ncol of the \( m \times m \) identity matrix.

qr.coef signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_2 R_1^{-1} Q_1' P_1 \).

qr.fitted signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_1^t Q_1 Q_1' P_1 \).

qr.resid signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_1^t Q_2 Q_2' P_1 \).

qr.qty signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( Q_1' \).

qr.qy signature(qr = "sparseQR", y = .): returns as a dgeMatrix or vector the result of multiplying \( y \) on the left by \( P_1^t Q \).

solve signature(a = "sparseQR", b = .): see solve-methods.

References


See Also

Class \texttt{dgCMatrix}.

Generic function \texttt{qr} from \texttt{base}, whose default method \texttt{qr.default} “defines” the S3 class \texttt{qr} of dense QR factorizations.

\texttt{qr-methods} for methods defined in \texttt{Matrix}.

Generic functions \texttt{expand1} and \texttt{expand2}.

The many auxiliary functions for QR factorizations: \texttt{qr.Q}, \texttt{qr.R}, \texttt{qr.X}, \texttt{qr.coef}, \texttt{qr.fitted}, \texttt{qr.resid}, \texttt{qr.qty}, \texttt{qr.qy}, and \texttt{qr.solve}.

Examples

showClass("sparseQR")
set.seed(2)
m <- 300L
n <- 60L
A <- rsparsematrix(m, n, 0.05)

## With dimnames, to see that they are propagated:
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),
                         paste0("c", seq_len(n)))

(qr.A <- qr(A))
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)

t(sapply(e.qr.A, dim))
t(sapply(E.qr.A, dim))

## Horribly inefficient, but instructive:
slowQ <- function(V, beta) {
  d <- dim(V)
  Q <- diag(d[1L])
  if(d[2L] > 0L) {
    for(j in d[2L]:1L) {
      cat(j, "\n", sep = "")
      Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q
    }
  }
  Q
}

ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)

## A ~ P1' Q R P2' ~ P1' Q1 R1 P2' in floating point
stopifnot(exprs = {
  identical(names(e.qr.A), c("P1.", "Q1", "R1", "P2."))
  identical(names(E.qr.A), c("P1.", "Q", "R", "P2."))
  identical(e.qr.A[["P1."]],
            new("pMatrix", Dim = c(m, m), Dimnames = c(dn[1L], list(NULL)),
                 margin = 1L, perm = invertPerm(qr.A@p, 0L, 1L)))
  identical(e.qr.A[["P2."]],
            new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
                 margin = 2L, perm = invertPerm(qr.A@q, 0L, 1L)))
  identical(e.qr.A[["R1"]], triu(E.qr.A["R"])[seq_len(n),])
  identical(e.qr.A[["Q1"]], E.qr.A["Q"][, seq_len(n)])
  identical(E.qr.A["R"], qr.A@R)
  ## ae1(E.qr.A["Q"], slowQ(qr.A@V, qr.A@beta))
  ae1(crossprod(E.qr.A["Q"]), diag(m))
  ae1(A, with(e.qr.A, P1. %*% Q1 %*% R1 %*% P2.))
  ae1(A, with(E.qr.A, P1. %*% Q %*% R %*% P2.))
  ae2(A.perm <- A[qr.A@p + 1L, qr.A@q + 1L], with(e.qr.A, Q1 %*% R1))
  ae2(A.perm , with(E.qr.A, Q %*% R ))
})

## More identities
b <- rnorm(m)
stopifnot(exprs = {
  ae1(qrX <- qr.X(qr.A), A)
  ae2(qrQ <- qr.Q(qr.A), with(e.qr.A, P1. %*% Q1))
  ae2(qr.R(qr.A), with(e.qr.A, R1))
  ae2(qrc <- qr.coef(qr.A, b), with(e.qr.A, solve(R1 %*% P2, t(qrQ)) %*% b))
  ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% b))
  ae2(qrr <- qr.resid(qr.A, b), b - qrf)
  ae2(qrq <- qr.qty(qr.A, qrq), b)
  ae2(qr.qty(qr.A, qrq), b)
})
## Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <= qr.default(A)
stopifnot(exprs = {
  ae2(qrX, qr.X(qr.Am))
  ae2(qrc, qr.coef(qr.Am, b))
  ae2(qrf, qr.fitted(qr.Am, b))
  ae2(qrr, qr.resid(qr.Am, b))
})

---

**sparseVector**

*Sparse Vector Construction from Nonzero Entries*

**Description**

User friendly construction of sparse vectors, i.e., objects inheriting from *class sparseVector*, from indices and values of its non-zero entries.

**Usage**

sparseVector(x, i, length)

**Arguments**

- **x**
  - vector of the non zero entries; may be missing in which case a "nsparseVector" will be returned.
- **i**
  - integer vector (of the same length as x) specifying the indices of the non-zero (or non-TRUE) entries of the sparse vector.
- **length**
  - length of the sparse vector.

**Details**

Zero entries in x are dropped automatically, analogously as *drop0()* acts on sparse matrices.

**Value**

A sparse vector, i.e., inheriting from *class sparseVector*. 
Author(s)

Martin Maechler

See Also

sparseMatrix() constructor for sparse matrices; the class sparseVector.

Examples

str(sv <- sparseVector(x = 1:10, i = sample(999, 10), length=1000))

sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
ss <- as(sx, "sparseVector")
stopifnot(identical(ss,
  sparseVector(x = c(2, -1, -2, 3, 1, -3, 5, 3.2),
  i = c(15L, 10:9, 3L,12L,8L,18L, 4L), length = 20L)))

(ns <- sparseVector(i= c(7, 3, 2), length = 10))
stopifnot(identical(ns,
  new("nsparseVector", length = 10, i = c(2, 3, 7))))

---

sparseVector-class  Sparse Vector Classes

Description

Sparse Vector Classes: The virtual mother class "sparseVector" has the five actual daughter classes "dsparseVector", "lsparseVector", "nsparseVector", "zsparseVector", and "isparseVector", where we've mainly implemented methods for the d*, l*, and n* ones.

Slots

length: class "numeric" - the length of the sparse vector. Note that "numeric" can be considerably larger than the maximal "integer", .Machine$integer.max, on purpose.

i: class "numeric" - the (1-based) indices of the non-zero entries. Must not be NA and strictly sorted increasingly.
  Note that "integer" is "part of" "numeric", and can (and often will) be used for non-huge sparseVectors.

x: (for all but "nsparseVector"): the non-zero entries. This is of class "numeric" for class "dsparseVector", "logical" for class "lsparseVector", etc.
  Note that "nsparseVector"s have no x slot. Further, mainly for ease of method definitions, we've defined the class union (see setClassUnion) of all sparse vector classes which have an x slot, as class "xsparseVector".
Methods

length signature(x = "sparseVector"): simply extracts the length slot.

show signature(object = "sparseVector"): The show method for sparse vectors prints “structural” zeroes as "." using the non-exported prSpVector function which allows further customization such as replacing "." by " " (blank).

Note that options(max.print) will influence how many entries of large sparse vectors are printed at all.

as.vector signature(x = "sparseVector", mode = "character") coerces sparse vectors to “regular”, i.e., atomic vectors. This is the same as as(x, "vector").

as ..: see coerce below

coerce signature(from = "sparseVector", to = "sparseMatrix"), and

coerce signature(from = "sparseMatrix", to = "sparseVector"), etc: coercions to and from sparse matrices (sparseMatrix) are provided and work analogously as in standard R, i.e., a vector is coerced to a 1-column matrix.

dim<- signature(x = "sparseVector", value = "integer") coerces a sparse vector to a sparse Matrix, i.e., an object inheriting from sparseMatrix, of the appropriate dimension.

head signature(x = "sparseVector"): as with R’s (package util) head, head(x, n) (for n >= 1) is equivalent to x[1:n], but here can be much more efficient, see the example.

tail signature(x = "sparseVector"): analogous to head, see above.

toeplitz signature(x = "sparseVector"): as toeplitz(x), produce the $n \times n$ Toeplitz matrix from x, where $n = \text{length}(x)$.

rep signature(x = "sparseVector") repeat x, with the same argument list (x, times, length.out, each, ...) as the default method for rep().

which signature(x = "nsparseVector") and

which signature(x = "lsparseVector") return the indices of the non-zero entries (which is trivial for sparse vectors).

Ops signature(e1 = "sparseVector", e2 = "+") define arithmetic, compare and logic operations, (see Ops).

Summary signature(x = "sparseVector"): define all the Summary methods.

[ signature(x = "atomicVector", i = ...): not only can you subset (aka “index into”) sparseVectors x[i] using sparseVectors i, but we also support efficient subsetting of traditional vectors x by logical sparse vectors (i.e., i of class "nsparseVector" or "lsparseVector").

is.na, is.finite, is.infinite (x = "sparseVector"), and

is.na, is.finite, is.infinite (x = "nsparseVector"): return logical or "nsparseVector" of the same length as x, indicating if/where x is NA (or NaN), finite or infinite, entirely analogously to the corresponding base R functions.

c.sparseVector() is an S3 method for all "sparseVector"s, but automatic dispatch only happens for the first argument, so it is useful also as regular R function, see the examples.

See Also

sparseVector() for friendly construction of sparse vectors (apart from as(*, "sparseVector").
Examples

getClass("sparseVector")
getClass("dsparseVector")
getClass("xsparseVector")# those with an 'x' slot
sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
(ss <- as(sx, "sparseVector"))

ix <- as.integer(round(sx))
(is <- as(ix, "sparseVector")) ## an "isparseVector" (!)
(ns <- sparseVector(i= c(7, 3, 2), length = 10)) # "nsparseVector"
## rep() works too:
(ri <- rep(is, length.out= 25))

## Using `dim<-` as in base R :
r <- ss
dim(r) <- c(4,5) # becomes a sparse Matrix:
r
## or coercion (as as.matrix() in base R):
as(ss, "Matrix")
stopifnot(all(ss == print(as(ss, "CsparseMatrix"))))

## currently has "non-structural" FALSE -- printing as ":"
(lis <- is & FALSE)
(nn <- is[is == 0]) # all "structural" FALSE

## NA-case
sN <- sx; sN[4] <- NA
(svN <- as(sN, "sparseVector"))

v <- as(c(0,0,3, 3.2, rep(0,9),-3,0,-1, rep(0,20),5,0),
      "sparseVector")
v <- rep(rep(v, 50), 5000)
set.seed(1); v[sample(v@i, 1e6)] <- 0
str(v)

system.time(for(i in 1:4) hv <- head(v, 1e6))
## user system elapsed
## 0.033 0.000 0.032
system.time(for(i in 1:4) h2 <- v[1:1e6])
## user system elapsed
## 1.317 0.000 1.319
stopifnot(identical(hv, h2),
          identical(is | FALSE, is != 0),
          validObject(svN), validObject(lis), as.logical(is.na(svN[4])),
          identical(is^2 > 0, is & TRUE),
          all(!lis), !any(lis), length(nn@i) == 0, !any(nn), all(!nn),
### spMatrix

**Sparse Matrix Constructor From Triplet**

**Description**

User friendly construction of a sparse matrix (inheriting from class `TsparseMatrix`) from the triplet representation. This is much less flexible than `sparseMatrix()` and hence somewhat deprecated.

**Usage**

```r
spMatrix(nrow, ncol, i = integer(), j = integer(), x = double())
```

**Arguments**

- `nrow, ncol` integers specifying the desired number of rows and columns.
- `i, j` integer vectors of the same length specifying the locations of the non-zero (or non-TRUE) entries of the matrix.
- `x` atomic vector of the same length as `i` and `j`, specifying the values of the non-zero entries.
A sparse matrix in triplet form, as an \texttt{R} object inheriting from both \texttt{TsparseMatrix} and \texttt{generalMatrix}. The matrix \( M \) will have \( M[i[k], j[k]] = x[k] \), for \( k = 1, 2, \ldots, n \), where \( n = \text{length}(i) \) and \( M[i'[k], j'[k]] = 0 \) for all other pairs \((i', j')\).

### See Also

\texttt{Matrix(*, sparse=TRUE)} for the more usual constructor of such matrices. Then, \texttt{sparseMatrix} is more general and flexible than \texttt{spMatrix()} and by default returns a \texttt{CsparseMatrix} which is often slightly more desirable. Further, \texttt{bdiag} and \texttt{Diagonal} for (block-)diagonal matrix constructors.

Consider \texttt{TsparseMatrix} and similar class definition help files.

### Examples

```r
simple example
A <- spMatrix(10,20, i = c(1,3:8),
 j = c(2,9,6:10),
 x = 7 * (1:7))
A # a "dgTMatrix"
summary(A)
str(A) # note that *internally* 0-based indices (i,j) are used

L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27,
 (1:27) %% 4 != 1)
L # an "lgTMatrix"

A simplified predecessor of Matrix' rsparsematrix() function:

rSpMatrix <- function(nrow, ncol, nnz,
 rand.x = function(n) round(rnorm(nnz), 2)) {
 ## Purpose: random sparse matrix
 ## --
 ## Arguments: (nrow,ncol): dimension
 ## nnz : number of non-zero entries
 ## rand.x: random number generator for 'x' slot
 ## --
 ## Author: Martin Maechler, Date: 14.-16. May 2007
 stopifnot((nnz <- as.integer(nnz)) >= 0,
 nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
 spMatrix(nrow, ncol,
 i = sample(nrow, nnz, replace = TRUE),
 j = sample(ncol, nnz, replace = TRUE),
 x = rand.x(nnz))
}

M1 <- rSpMatrix(100000, 20, nnz = 200)
summary(M1)
```
Methods for "[<-", i.e., extraction or subsetting mostly of matrices, in package \texttt{Matrix}.

Note: Contrary to standard \texttt{matrix} assignment in base \texttt{R}, in \texttt{x[\ldots] <- val} it is typically an \texttt{error} (see \texttt{stop}) when the \texttt{type} or \texttt{class} of \texttt{val} would require the class of \texttt{x} to be changed, e.g., when \texttt{x} is logical, say \texttt{"lsparseMatrix"}, and \texttt{val} is numeric. In other cases, e.g., when \texttt{x} is a \"\texttt{"nsparseMatrix"}\" and \texttt{val} is not \texttt{TRUE} or \texttt{FALSE}, a warning is signalled, and \texttt{val} is "interpreted" as \texttt{logical}, and (logical) \texttt{NA} is interpreted as \texttt{TRUE}.

Methods

There are \textit{many many} more than these:

\begin{verbatim}
x = "Matrix", i = "missing", j = "missing", value= "ANY"  is currently a simple fallback method implementation which ensures "readable" error messages.
x = "Matrix", i = "ANY", j = "ANY", value= "ANY"  currently gives an error
x = "denseMatrix", i = "index", j = "missing", value= "numeric"  ...
x = "denseMatrix", i = "index", j = "index", value= "numeric"  ...
x = "denseMatrix", i = "missing", j = "index", value= "numeric"  ...
\end{verbatim}

See Also

\texttt{[-methods} for subsetting "Matrix" objects; the \texttt{index} class; \texttt{Extract} about the standard subset assignment (and extraction).

Examples

\begin{verbatim}
set.seed(101)
(a <- m <- Matrix(round(rnorm(7*4),2), nrow = 7))

a[] <- 2.2 # <<- replaces **every** entry
a
  ## as do these:
a[,] <- 3 ; a[TRUE,] <- 4

m[2, 3] <- 3.14 # simple number
m[3, 3:4]<- 3:4  # simple numeric of length 2

## sub matrix assignment:
m[-(4:7), 3:4] <- cbind(1,2:4)  #-> upper right corner of \texttt{m}'
m[3:5, 2:3] <- 0
m[6:7, 1:2] <- Diagonal(2)
\end{verbatim}
## Description

Methods for ": Extraction or Subsetting in Package 'Matrix'.

### Methods

There are more than these:

- \( x = \text{"Matrix"}, \ i = \text{"missing"}, \ j = \text{"missing"}, \ \text{drop} = \text{"ANY"} \)
- \( x = \text{"Matrix"}, \ i = \text{"numeric"}, \ j = \text{"missing"}, \ \text{drop} = \text{"missing"} \)
- \( x = \text{"Matrix"}, \ i = \text{"missing"}, \ j = \text{"numeric"}, \ \text{drop} = \text{"missing"} \)
- \( x = \text{"dsparseMatrix"}, \ i = \text{"missing"}, \ j = \text{"numeric"}, \ \text{drop} = \text{"logical"} \)
- \( x = \text{"dsparseMatrix"}, \ i = \text{"numeric"}, \ j = \text{"missing"}, \ \text{drop} = \text{"logical"} \)
- \( x = \text{"dsparseMatrix"}, \ i = \text{"numeric"}, \ j = \text{"numeric"}, \ \text{drop} = \text{"logical"} \)

### See Also

\(<-\text{methods}\>\) for subassignment to "Matrix" objects. \texttt{Extract} about the standard extraction.

### Examples

```r
str(m <- Matrix(round(rnorm(7*4),2), nrow = 7))
stopifnot(identical(m, m[]))
m[2,3] # simple number
m[2,3:4] # simple numeric of length 2
m[2,3:4, drop=FALSE] # sub matrix of class 'dgeMatrix'
rows or columns only:
m[1,] # first row, as simple numeric vector
m[,1:2] # sub matrix of first two columns
showMethods("[", inherited = FALSE)
```
Virtual Class of Symmetric Matrices in Package Matrix

Description

The virtual class of symmetric matrices, "symmetricMatrix", from the package Matrix contains numeric and logical, dense and sparse matrices, e.g., see the examples with the “actual” subclasses.

The main use is in methods (and C functions) that can deal with all symmetric matrices, and in as(*, "symmetricMatrix").

Slots

- **uplo**: Object of class "character". Must be either "U", for upper triangular, and "L", for lower triangular.
- **Dim, Dimnames**: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there. See below, about storing only one of the two Dimnames components.
- **factors**: a list of matrix factorizations, also from the Matrix class.

Extends

Class "Matrix", directly.

Methods

- **dimnames** signature(object = "symmetricMatrix"): returns symmetric dimnames, even when the Dimnames slot only has row or column names. This allows to save storage for large (typically sparse) symmetric matrices.

- **isSymmetric** signature(object = "symmetricMatrix"): returns TRUE trivially.

There’s a C function symmetricMatrix_validate() called by the internal validity checking functions, and also from getValidity(getClass("symmetricMatrix")).

Validity and dimnames

The validity checks do not require a symmetric Dimnames slot, so it can be list(NULL, <character>), e.g., for efficiency. However, dimnames() and other functions and methods should behave as if the dimnames were symmetric, i.e., with both list components identical.

See Also

isSymmetric which has efficient methods (isSymmetric-methods) for the Matrix classes. Classes triangularMatrix, and, e.g., dsyMatrix for numeric dense matrices, or lsCMatrix for a logical sparse matrix class.
## An example about the symmetric Dimnames:

```r
sy <- sparseMatrix(i = c(2,4,3:5), j = c(4,7:5,5), x = 1:5, dims = c(7,7), symmetric=TRUE, dimnames = list(NULL, letters[1:7]))
sy # shows symmetrical dimnames
sy@Dimnames # internally only one part is stored
dimnames(sy) # both parts - as sy *is* symmetrical
showClass("symmetricMatrix")
```

## The names of direct subclasses:

```r
scl <- getClass("symmetricMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]
```

## Methods -- applicable to all subclasses above:

```r
showMethods(classes = "symmetricMatrix")
```

---

### symmpart-methods

#### Symmetric Part and Skew(symmetric) Part of a Matrix

**Description**

symmpart(x) computes the symmetric part \((x + t(x))/2\) and skewpart(x) the skew symmetric part \((x - t(x))/2\) of a square matrix \(x\), more efficiently for specific Matrix classes.

Note that \(x = \text{symmpart}(x) + \text{skewpart}(x)\) for all square matrices – apart from extraneous NA values in the RHS.

**Usage**

```r
symmpart(x)
skewpart(x)
```

**Arguments**

- `x` a square matrix; either “traditional” of class "matrix", or typically, inheriting from the Matrix class.

**Details**

These are generic functions with several methods for different matrix classes, use e.g., `showMethods(symmpart)` to see them.

If the row and column names differ, the result will use the column names unless they are (partly) NULL where the row names are non-NULL (see also the examples).
Value

symmpart() returns a symmetric matrix, inheriting from symmetricMatrix iff x inherited from Matrix.
skewpart() returns a skew-symmetric matrix, typically of the same class as x (or the closest "general" one, see generalMatrix).

See Also

isSymmetric.

Examples

m <- Matrix(1:4, 2,2)
symmpart(m)
skewpart(m)

stopifnot(all(m == symmpart(m) + skewpart(m)))

dn <- dimnames(m) <- list(row = c("r1", "r2"), col = c("var.1", "var.2"))
stopifnot(all(m == symmpart(m) + skewpart(m)))

colnames(m) <- NULL
stopifnot(all(m == symmpart(m) + skewpart(m)))
dimnames(m) <- unname(dn)
stopifnot(all(m == symmpart(m) + skewpart(m)))

## investigate the current methods:
showMethods(skewpart, include = TRUE)

---

triangularMatrix-class

Virtual Class of Triangular Matrices in Package Matrix

Description

The virtual class of triangular matrices, "triangularMatrix", the package Matrix contains square (nrow == ncol) numeric and logical, dense and sparse matrices, e.g., see the examples. A main use of the virtual class is in methods (and C functions) that can deal with all triangular matrices.

Slots

uplo: String (of class "character"). Must be either "U", for upper triangular, and "L", for lower triangular.
diag: String (of class "character"). Must be either "U", for unit triangular (diagonal is all ones), or "N" for non-unit. The diagonal elements are not accessed internally when diag is "U". For denseMatrix classes, they need to be allocated though, such that the length of the x slot does not depend on diag.
Dim, Dimnames: The dimension (a length-2 "integer") and corresponding names (or NULL), inherited from the Matrix, see there.
TsparseMatrix-class

Extends

Class "Matrix", directly.

Methods

There's a C function triangularMatrix_validity() called by the internal validity checking functions.
Currently, Schur, isSymmetric and as() (i.e. coerce) have methods with triangularMatrix in their signature.

See Also

isTriangular() for testing any matrix for triangularity; classes symmetricMatrix, and, e.g., dtrMatrix for numeric dense matrices, or ltCMatrix for a logical sparse matrix subclass of "triangularMatrix".

Examples

showClass("triangularMatrix")

## The names of direct subclasses:
scl <- getClass("triangularMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]

(m <- matrix(c(5,1,0,3), 2))
as(m, "triangularMatrix")

---

TsparseMatrix-class  Class "TsparseMatrix" of Sparse Matrices in Triplet Form

Description

The "TsparseMatrix" class is the virtual class of all sparse matrices coded in triplet form. Since it is a virtual class, no objects may be created from it. See showClass("TsparseMatrix") for its subclasses.

Slots

Dim, Dimnames: from the "Matrix" class,
i: Object of class "integer" - the row indices of non-zero entries in 0-base, i.e., must be in 0:(nrow(.)-1).
j: Object of class "integer" - the column indices of non-zero entries. Must be the same length as slot i and 0-based as well, i.e., in 0:(ncol(.)-1). For numeric Tsparse matrices, (i,j) pairs can occur more than once, see dgTMatrix.
uniqTsparse

Extends

Class "sparseMatrix", directly. Class "Matrix", by class "sparseMatrix".

Methods

Extraction ("[" methods, see \[-methods\].

Note

Most operations with sparse matrices are performed using the compressed, column-oriented or CsparseMatrix representation. The triplet representation is convenient for creating a sparse matrix or for reading and writing such matrices. Once it is created, however, the matrix is generally coerced to a CsparseMatrix for further operations.

Note that all new(.), spMatrix and sparseMatrix(*, repr="T") constructors for "TsparseMatrix" classes implicitly add (i.e., “sum up”) $x_k$'s that belong to identical $\langle i_k, j_k \rangle$ pairs, see, the example below, or also "dgTMatrix".

For convenience, methods for some operations such as %*% and crossprod are defined for TsparseMatrix objects. These methods simply coerce the TsparseMatrix object to a CsparseMatrix object then perform the operation.

See Also

its superclass, sparseMatrix, and the dgTMatrix class, for the links to other classes.

Examples

showClass("TsparseMatrix")
## or just the subclasses' names
names(getClass("TsparseMatrix")@subclasses)

T3 <- spMatrix(3,4, i=c(1,3:1), j=c(2,4:2), x=1:4)
T3 # only 3 non-zero entries, 5 = 1+4 !

uniqTsparse

Unique (Sorted) TsparseMatrix Representations

Description

Detect or “unify” (or “standardize”) non-unique TsparseMatrix matrices, producing unique $\langle i, j, x \rangle$ triplets which are sorted, first in $j$, then in $i$ (in the sense of order(j,i)).

Note that new(.), spMatrix or sparseMatrix constructors for "dgTMatrix" (and other "TsparseMatrix" classes) implicitly add $x_k$’s that belong to identical $\langle i_k, j_k \rangle$ pairs.

anyDuplicatedT() reports the index of the first duplicated pair, or $\emptyset$ if there is none.

uniqTsparse(x) replaces duplicated index pairs $\langle i, j \rangle$ and their corresponding $x$ slot entries by the triple $\langle i, j, sx \rangle$ where $sx = \text{sum}(x [\text{<all pairs matching } (i,j)])$, and for logical $x$, addition is replaced by logical or.
uniqTsparse

Usage

uniqTsparse(x, class.x = c(class(x)))
anyDuplicatedT(x, di = dim(x))

Arguments

x a sparse matrix stored in triplet form, i.e., inheriting from class TsparseMatrix.
class.x optional character string specifying class(x).
di the matrix dimension of x, dim(x).

Value

uniqTsparse(x) returns a TsparseMatrix “like x”, of the same class and with the same elements,
just internally possibly changed to “unique” (i,j,x) triplets in sorted order.
anyDuplicatedT(x) returns an integer as anyDuplicated, the index of the first duplicated entry
(from the (i,j) pairs) if there is one, and 0 otherwise.

See Also

TsparseMatrix, for uniqueness, notably dgTMatrix.

Examples

eexample("dgTMatrix-class", echo=FALSE)
## -> '/quotesingle.Var
T2 = /quotesingle.Var
with (i,j,x) slots of length 5 each
T2u <- uniqTsparse(T2)
stopifnot(# They "are" the same (and print the same):
  all.equal(T2, T2u, tol=0),
  # but not internally:
  anyDuplicatedT(T2) == 2,
  anyDuplicatedT(T2u) == 0,
  length(T2 @x) == 5,
  length(T2u@x) == 3)

## is '/quotesingle.Var a "uniq Tsparse" Matrix ? [requires x to be TsparseMatrix!]
non_uniqT <- function(x, di = dim(x))
  is.unsorted(x@j) || anyDuplicatedT(x, di)
non_uniqT(T2) # TRUE
non_uniqT(T2u) # FALSE

T3 <- T2u
T3[1, c(1,3)] <- 10; T3[2, c(1,5)] <- 20
T3u <- uniqTsparse(T3)
str(T3u) # sorted in 'j', and within j, sorted in i
stopifnot(!non_uniqT(T3u))

## Logical l.TMatrix and n.TMatrix :
(L2 <- T2 > 0)
validObject(L2u <- uniqTsparse(L2))
unpackedMatrix-class

199

(N2 <- as(L2, "nMatrix"))
validObject(N2u <- uniqTsparse(N2))
stopifnot(N2u@i == L2u@i, L2u@i == T2u@i, N2@i == L2@i, L2@i == T2@i,
          N2u@j == L2u@j, L2u@j == T2u@j, N2@j == L2@j, L2@j == T2@j)
# now with a nasty NA [partly failed in Matrix 1.1-5]:
L.0N <- L.1N <- L2
L.0N@x[1:2] <- c(FALSE, NA)
L.1N@x[1:2] <- c(TRUE, NA)
validObject(L.0N)
validObject(L.1N)
(m.0N <- as.matrix(L.0N))
(m.1N <- as.matrix(L.1N))
stopifnot(identical(10L, which(is.na(m.0N))), !anyNA(m.1N))
symnum(m.0N)
symnum(m.1N)

unpackedMatrix-class Virtual Class "unpackedMatrix" of Unpacked Dense Matrices

Description

Class "unpackedMatrix" is the virtual class of dense matrices in "unpacked" format, storing all m*n elements of an m-by-n matrix. It is used to define common methods for efficient subsetting, transposing, etc. of its proper subclasses: currently "[dln]geMatrix" (unpacked general), "[dln]syMatrix" (unpacked symmetric), "[dln]trMatrix" (unpacked triangular), and subclasses of these, such as "dpoMatrix", "Cholesky", and "BunchKaufman".

Slots

Dim, Dimnames: as all Matrix objects.

Extends


Methods

pack signature(x = "unpackedMatrix"): ...
unpack signature(x = "unpackedMatrix"): ...
isSymmetric signature(object = "unpackedMatrix"): ...
isTriangular signature(object = "unpackedMatrix"): ...
isDiagonal signature(object = "unpackedMatrix"): ...
t signature(x = "unpackedMatrix"): ...
diag signature(x = "unpackedMatrix"): ...
diag<- signature(x = "unpackedMatrix"): ...
Description
Computes a rank-\(k\) update or downdate of a sparse Cholesky factorization
\[
P_1AP'_1 = L_1DL_1' = LL'
\]
which for some \(k\)-column matrix \(C\) is the factorization
\[
P_1(A + sCC')P'_1 = \tilde{L}_1\tilde{D}\tilde{L}_1' = \tilde{L}\tilde{L}'
\]
Here, \(s = 1\) for an update and \(s = -1\) for a downdate.

Usage
updown(update, C, L)

Arguments
update a logical (TRUE or FALSE) or character ("+" or "-") indicating if \(L\) should be updated (or otherwise downdated).
C a finite matrix or Matrix such that tcrossprod(C) has the dimensions of \(L\).
L an object of class dCHMsimpl or dCHMsuper specifying a sparse Cholesky factorization.

Value
A sparse Cholesky factorization with dimensions matching \(L\), typically of class dCHMsimpl.

Author(s)
Initial implementation by Nicholas Nagle, University of Tennessee.
USCounties

References


See Also

Classes `dCHMsimpl` and `dCHMsuper` and their methods, notably for generic function `update`, which is not equivalent to `updown(update = TRUE)`.

Generic function `Cholesky`.

Examples

```r
m <- sparseMatrix(i = c(3, 1, 3:2, 2:1), p = c(0:2, 4, 4, 6), x = 1:6,
 dimnames = list(LETTERS[1:3], letters[1:5]))
uc0 <- Cholesky(A <- crossprod(m) + Diagonal(5))
uc1 <- updown(“+”, Diagonal(5, 1), uc0)
uc2 <- updown(“-”, Diagonal(5, 1), uc1)
stopifnot(all.equal(uc0, uc2))
```

USCounties

Contiguity Matrix of U.S. Counties

Description

This matrix gives the contiguities of 3111 U.S. counties, using the queen criterion of at least one shared vertex or edge.

Usage

```r
data(USCounties)
```

Format

A 3111 x 3111 sparse, symmetric matrix of class `dsCMatrix`, with 9101 nonzero entries.

Source

GAL lattice file ‘usc_q.GAL’ (retrieved in 2008 from ‘http://sal.uiuc.edu/weights/zips/usc.zip’ with permission from Luc Anselin for use and distribution) was read into R using function `read.gal` from package `spdep`.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights, using functions `nb2listw` and `similar.listw` from packages `spdep` and `spatialreg`. The resulting `listw` object was coerced to class `dsTMatrix` using `as_dsTMatrix_listw` from `spatialreg`, and subsequently to class `dsCMatrix`. 
References


Examples

```r
data(USCounties, package = "Matrix")
(n <- ncol(USCounties))
I <- .symDiagonal(n)

set.seed(1)
r <- 50L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
 determinant(USCounties + mult * I, logarithm = TRUE)$modulus))
Can be done faster by updating the Cholesky factor:
C1 <- Cholesky(USCounties, Imult = 2)

system.time(MJ1 <- sapply(rho, function(mult)
 determinant(update(C1, USCounties, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(USCounties, super = TRUE, Imult = 2)

system.time(MJ2 <- sapply(rho, function(mult)
 determinant(update(C2, USCounties, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ2))
```

wrld_1deg

*Contiguity Matrix of World One-Degree Grid Cells*

Description

This matrix gives the contiguities of 15260 one-degree grid cells of world land areas, using a criterion based on the great-circle distance between centers.

Usage

```r
data(wrld_1deg)
```

Format

A $15260 \times 15260$ sparse, symmetric matrix of class `dsCMatrix`, with 55973 nonzero entries.
Shoreline data were read into \texttt{R} from the GSHHS database using function \texttt{Rgshhs} from package \texttt{maptools}. Antarctica was excluded. An approximately one-degree grid was generated using function \texttt{Sobj\_SpatialGrid}, also from \texttt{maptools}. Grid cells with centers on land were identified using the \texttt{over} method for classes \texttt{SpatialPolygons} and \texttt{SpatialGrid}, defined in package \texttt{sp}. Neighbours of these were identified by passing the resulting \texttt{SpatialPixels} object to function \texttt{dnearneigh} from package \texttt{spdep}, using as a cut-off a great-circle distance of \( \sqrt{2} \) kilometers between centers.

Neighbour lists were augmented with row-standardized (and then symmetrized) spatial weights, using functions \texttt{nb2listw} and \texttt{similar.listw} from packages \texttt{spdep} and \texttt{spatialreg}. The resulting \texttt{listw} object was coerced to class \texttt{dsTMatrix} using \texttt{as\_dsTMatrix\_listw} from \texttt{spatialreg}, and subsequently to class \texttt{dsCMatrix}.

### References


### Examples

```r
data(wrld_1deg, package = "Matrix")
(n <- ncol(wrld_1deg))
I <- .symDiagonal(n)

doExtras <- interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))
set.seed(1)
r <- if(doExtras) 20L else 3L
rho <- 1 / runif(r, 0, 0.5)

system.time(MJ0 <- sapply(rho, function(mult)
 determinant(wrld_1deg + mult * I, logarithm = TRUE)$modulus))
Can be done faster by updating the Cholesky factor:
C1 <- Cholesky(wrld_1deg, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)
 determinant(update(C1, wrld_1deg, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ1))

C2 <- Cholesky(wrld_1deg, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)
 determinant(update(C2, wrld_1deg, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ2))
```
Index

!,Matrix-method (Matrix-class), 126
!,ldiMatrix-method (ldiMatrix-class), 113
!,lgeMatrix-method (lgeMatrix-class), 114
!,lsyMatrix-method (lsyMatrix-class), 117
!,ltpMatrix-method (ltrMatrix-class), 118
!,ltrMatrix-method (ltrMatrix-class), 118
!,ngeMatrix-method (ngeMatrix-class), 135
!,nsyMatrix-method (nsyMatrix-class), 142
!,nspMatrix-method (nsyMatrix-class), 140
!,nsyMatrix-method (nsyMatrix-class), 142
!,ntpMatrix-method (ntrMatrix-class), 143
!,ntrMatrix-method (ntrMatrix-class), 143
!,sparseVector-method (sparseVector-class), 186

* Choleski
  * Cholesky-methods, 34
* NA
  * is.na-methods, 103
* algebra
  * boolmatmult-methods, 15
    * BunchKaufman-class, 16
    * BunchKaufman-methods, 19
    * CHMfactor-class, 22
    * chol-methods, 27
  * chol2inv-methods, 30
    * Cholesky-class, 31
    * Cholesky-methods, 34
    * colSums-methods, 42
    * compMatrix-class, 44
    * condest, 45
    * denseLU-class, 50
    * dimScale, 63
    * dimperm, 65
    * expand-methods, 81
    * KhatriRao, 108
    * kronecker-methods, 111
    * lu-methods, 119
    * matmult-methods, 122
    * MatrixFactorization-class, 130
    * nearPD, 132
    * norm-methods, 139
    * qr-methods, 151
    * rankMatrix, 155
    * rcond-methods, 158
    * Schur-class, 164
    * Schur-methods, 166
    * solve-methods, 168
    * sparseLU-class, 173
    * sparseQR-class, 181
    * symmpart-methods, 194
    * updown-methods, 200
* arith
  * all.equal-methods, 8
    * colSums-methods, 42
    * dimScale, 63
    * facmul-methods, 87
    * KhatriRao, 108
    * kronecker-methods, 111
    * matmult-methods, 122
    * symmpart-methods, 194
* array
  * band-methods, 9
    * bandSparse, 11
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bdiag</td>
<td>13</td>
</tr>
<tr>
<td>boolmatmult-methods</td>
<td>15</td>
</tr>
<tr>
<td>BunchKaufman</td>
<td>16</td>
</tr>
<tr>
<td>BunchKaufman-methods</td>
<td>19</td>
</tr>
<tr>
<td>cbind2-methods</td>
<td>21</td>
</tr>
<tr>
<td>CHMfactor-class</td>
<td>22</td>
</tr>
<tr>
<td>chol-methods</td>
<td>27</td>
</tr>
<tr>
<td>chol2inv-methods</td>
<td>30</td>
</tr>
<tr>
<td>Cholesky-class</td>
<td>31</td>
</tr>
<tr>
<td>chol-methods</td>
<td>34</td>
</tr>
<tr>
<td>colSums-methods</td>
<td>42</td>
</tr>
<tr>
<td>compMatrix-class</td>
<td>44</td>
</tr>
<tr>
<td>CsparseMatrix-class</td>
<td>47</td>
</tr>
<tr>
<td>ddenseMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>ddiMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>denseLU-class</td>
<td>50</td>
</tr>
<tr>
<td>denseMatrix-class</td>
<td>52</td>
</tr>
<tr>
<td>dgCMatrix-class</td>
<td>53</td>
</tr>
<tr>
<td>dgeMatrix-class</td>
<td>54</td>
</tr>
<tr>
<td>dgRMatrix-class</td>
<td>56</td>
</tr>
<tr>
<td>dgTMatrix-class</td>
<td>57</td>
</tr>
<tr>
<td>Diagonal</td>
<td>58</td>
</tr>
<tr>
<td>diagonalMatrix-class</td>
<td>60</td>
</tr>
<tr>
<td>diagU2N</td>
<td>61</td>
</tr>
<tr>
<td>dimScale</td>
<td>63</td>
</tr>
<tr>
<td>dMatrix-class</td>
<td>64</td>
</tr>
<tr>
<td>dmperm</td>
<td>65</td>
</tr>
<tr>
<td>dpoMatrix-class</td>
<td>67</td>
</tr>
<tr>
<td>drop0</td>
<td>69</td>
</tr>
<tr>
<td>dsCMatrix-class</td>
<td>70</td>
</tr>
<tr>
<td>dsparseMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dsRMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dsyMatrix-class</td>
<td>74</td>
</tr>
<tr>
<td>dtCMatrix-class</td>
<td>75</td>
</tr>
<tr>
<td>dtpMatrix-class</td>
<td>77</td>
</tr>
<tr>
<td>dtrMatrix-class</td>
<td>79</td>
</tr>
<tr>
<td>dtrMatrix-class</td>
<td>80</td>
</tr>
<tr>
<td>expand-methods</td>
<td>81</td>
</tr>
<tr>
<td>expm-methods</td>
<td>84</td>
</tr>
<tr>
<td>facmul-methods</td>
<td>87</td>
</tr>
<tr>
<td>forceSymmetric-methods</td>
<td>92</td>
</tr>
<tr>
<td>generalMatrix-class</td>
<td>94</td>
</tr>
<tr>
<td>Hilbert</td>
<td>95</td>
</tr>
<tr>
<td>indMatrix-class</td>
<td>99</td>
</tr>
<tr>
<td>is.null.DN</td>
<td>104</td>
</tr>
<tr>
<td>isSymmetric-methods</td>
<td>105</td>
</tr>
<tr>
<td>isTriangular-methods</td>
<td>107</td>
</tr>
<tr>
<td>KhatriRao</td>
<td>108</td>
</tr>
<tr>
<td>kronecker-methods</td>
<td>111</td>
</tr>
<tr>
<td>ldenseMatrix-class</td>
<td>111</td>
</tr>
<tr>
<td>ldiMatrix-class</td>
<td>112</td>
</tr>
<tr>
<td>lgeMatrix-class</td>
<td>114</td>
</tr>
<tr>
<td>lsparseMatrix-classes</td>
<td>115</td>
</tr>
<tr>
<td>lsyMatrix-class</td>
<td>117</td>
</tr>
<tr>
<td>ltrMatrix-class</td>
<td>118</td>
</tr>
<tr>
<td>lu-methods</td>
<td>119</td>
</tr>
<tr>
<td>mat2triplet</td>
<td>121</td>
</tr>
<tr>
<td>matmult-methods</td>
<td>122</td>
</tr>
<tr>
<td>Matrix</td>
<td>124</td>
</tr>
<tr>
<td>Matrix-class</td>
<td>126</td>
</tr>
<tr>
<td>Matrix-notyet</td>
<td>128</td>
</tr>
<tr>
<td>MatrixFactorization-class</td>
<td>130</td>
</tr>
<tr>
<td>ndenseMatrix-class</td>
<td>131</td>
</tr>
<tr>
<td>nearPD</td>
<td>132</td>
</tr>
<tr>
<td>ngeMatrix-class</td>
<td>135</td>
</tr>
<tr>
<td>nMatrix-class</td>
<td>136</td>
</tr>
<tr>
<td>nnzero-methods</td>
<td>137</td>
</tr>
<tr>
<td>nsparseMatrix-classes</td>
<td>140</td>
</tr>
<tr>
<td>nsyMatrix-class</td>
<td>142</td>
</tr>
<tr>
<td>ntrMatrix-class</td>
<td>143</td>
</tr>
<tr>
<td>pack</td>
<td>144</td>
</tr>
<tr>
<td>packedMatrix-class</td>
<td>146</td>
</tr>
<tr>
<td>pMatrix-class</td>
<td>147</td>
</tr>
<tr>
<td>qr-methods</td>
<td>151</td>
</tr>
<tr>
<td>RsparseMatrix-class</td>
<td>163</td>
</tr>
<tr>
<td>Schur-class</td>
<td>164</td>
</tr>
<tr>
<td>Schur-methods</td>
<td>166</td>
</tr>
<tr>
<td>solve-methods</td>
<td>168</td>
</tr>
<tr>
<td>sparse.model.matrix</td>
<td>171</td>
</tr>
<tr>
<td>sparseLU-class</td>
<td>173</td>
</tr>
<tr>
<td>sparseMatrix</td>
<td>175</td>
</tr>
<tr>
<td>sparseMatrix-class</td>
<td>179</td>
</tr>
<tr>
<td>sparseQR-class</td>
<td>181</td>
</tr>
<tr>
<td>spMatrix</td>
<td>189</td>
</tr>
<tr>
<td>Subassign-methods</td>
<td>191</td>
</tr>
<tr>
<td>Subscript-methods</td>
<td>192</td>
</tr>
<tr>
<td>symmetricMatrix-class</td>
<td>193</td>
</tr>
<tr>
<td>symmpart-methods</td>
<td>194</td>
</tr>
<tr>
<td>triangularMatrix-class</td>
<td>195</td>
</tr>
<tr>
<td>TsparseMatrix-class</td>
<td>196</td>
</tr>
<tr>
<td>uniqTsparse</td>
<td>197</td>
</tr>
<tr>
<td>unpackedMatrix-class</td>
<td>199</td>
</tr>
<tr>
<td>updown-methods</td>
<td>200</td>
</tr>
</tbody>
</table>

*attribute*

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagU2N</td>
<td>61</td>
</tr>
<tr>
<td>Package</td>
<td>Method</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>is.null.DN</td>
<td>104</td>
</tr>
<tr>
<td>character</td>
<td></td>
</tr>
<tr>
<td>formatSparseM</td>
<td>93</td>
</tr>
<tr>
<td>printSpMatrix</td>
<td>149</td>
</tr>
<tr>
<td>classes</td>
<td></td>
</tr>
<tr>
<td>abIndex-class</td>
<td>5</td>
</tr>
<tr>
<td>atomicVector-class</td>
<td>9</td>
</tr>
<tr>
<td>BunchKaufman-class</td>
<td>16</td>
</tr>
<tr>
<td>CHMfactor-class</td>
<td>22</td>
</tr>
<tr>
<td>Cholesky-class</td>
<td>31</td>
</tr>
<tr>
<td>compMatrix-class</td>
<td>44</td>
</tr>
<tr>
<td>CsparseMatrix-class</td>
<td>47</td>
</tr>
<tr>
<td>ddenseMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>ddiMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>denseLU-class</td>
<td>50</td>
</tr>
<tr>
<td>denseMatrix-class</td>
<td>52</td>
</tr>
<tr>
<td>dgCMatrix-class</td>
<td>53</td>
</tr>
<tr>
<td>dgeMatrix-class</td>
<td>54</td>
</tr>
<tr>
<td>dgRMMatrix-class</td>
<td>56</td>
</tr>
<tr>
<td>dgTMatrix-class</td>
<td>57</td>
</tr>
<tr>
<td>diagonalMatrix-class</td>
<td>60</td>
</tr>
<tr>
<td>dMatrix-class</td>
<td>64</td>
</tr>
<tr>
<td>dpoMatrix-class</td>
<td>67</td>
</tr>
<tr>
<td>dsCMatrix-class</td>
<td>70</td>
</tr>
<tr>
<td>dsparseMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dsRMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dsyMatrix-class</td>
<td>72</td>
</tr>
<tr>
<td>dtCMatrix-class</td>
<td>75</td>
</tr>
<tr>
<td>dtpMatrix-class</td>
<td>77</td>
</tr>
<tr>
<td>dtRMatrix-class</td>
<td>79</td>
</tr>
<tr>
<td>dtrMatrix-class</td>
<td>80</td>
</tr>
<tr>
<td>generalMatrix-class</td>
<td>94</td>
</tr>
<tr>
<td>index-class</td>
<td>98</td>
</tr>
<tr>
<td>indMatrix-class</td>
<td>99</td>
</tr>
<tr>
<td>ldenseMatrix-class</td>
<td>112</td>
</tr>
<tr>
<td>ldiMatrix-class</td>
<td>113</td>
</tr>
<tr>
<td>lgeMatrix-class</td>
<td>114</td>
</tr>
<tr>
<td>lSparseMatrix-classes,115</td>
<td></td>
</tr>
<tr>
<td>lsyMatrix-class</td>
<td>117</td>
</tr>
<tr>
<td>ltrMatrix-class</td>
<td>118</td>
</tr>
<tr>
<td>Matrix-class</td>
<td>126</td>
</tr>
<tr>
<td>Matrix-notyet</td>
<td>128</td>
</tr>
<tr>
<td>MatrixFactorization-class,130</td>
<td></td>
</tr>
<tr>
<td>ndenseMatrix-class</td>
<td>131</td>
</tr>
<tr>
<td>ngeMatrix-class</td>
<td>135</td>
</tr>
<tr>
<td>nMatrix-class</td>
<td>136</td>
</tr>
<tr>
<td>nsparseMatrix-classes,140</td>
<td></td>
</tr>
<tr>
<td>nsyMatrix-class</td>
<td>142</td>
</tr>
<tr>
<td>ntrMatrix-class</td>
<td>143</td>
</tr>
<tr>
<td>number-class</td>
<td>143</td>
</tr>
<tr>
<td>packedMatrix-class</td>
<td>146</td>
</tr>
<tr>
<td>pMatrix-class</td>
<td>147</td>
</tr>
<tr>
<td>replValue-class</td>
<td>161</td>
</tr>
<tr>
<td>rleDiff-class</td>
<td>161</td>
</tr>
<tr>
<td>RsparseMatrix-class</td>
<td>163</td>
</tr>
<tr>
<td>Schur-class</td>
<td>164</td>
</tr>
<tr>
<td>sparseLU-class</td>
<td>173</td>
</tr>
<tr>
<td>sparseMatrix-class</td>
<td>179</td>
</tr>
<tr>
<td>sparseQR-class</td>
<td>181</td>
</tr>
<tr>
<td>sparseVector-class</td>
<td>186</td>
</tr>
<tr>
<td>symmetricMatrix-class</td>
<td>193</td>
</tr>
<tr>
<td>triangularMatrix-class</td>
<td>195</td>
</tr>
<tr>
<td>TsparseMatrix-class</td>
<td>196</td>
</tr>
<tr>
<td>unpackedMatrix-class</td>
<td>199</td>
</tr>
<tr>
<td>connection</td>
<td></td>
</tr>
<tr>
<td>externalFormats</td>
<td>85</td>
</tr>
<tr>
<td>datasets</td>
<td></td>
</tr>
<tr>
<td>CAex,20</td>
<td></td>
</tr>
<tr>
<td>KNex,110</td>
<td></td>
</tr>
<tr>
<td>USCounties,201</td>
<td></td>
</tr>
<tr>
<td>wrld_1deg,202</td>
<td></td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>rsparsematrix,162</td>
<td></td>
</tr>
<tr>
<td>logic</td>
<td></td>
</tr>
<tr>
<td>all-methods</td>
<td>7</td>
</tr>
<tr>
<td>all.equal-methods</td>
<td>8</td>
</tr>
<tr>
<td>boolmatmult-methods</td>
<td>15</td>
</tr>
<tr>
<td>nnzero-methods</td>
<td>137</td>
</tr>
<tr>
<td>uniqTsparse,197</td>
<td></td>
</tr>
<tr>
<td>manip</td>
<td></td>
</tr>
<tr>
<td>abIseq,6</td>
<td></td>
</tr>
<tr>
<td>cbind2-methods</td>
<td>21</td>
</tr>
<tr>
<td>drop0,69</td>
<td></td>
</tr>
<tr>
<td>rep2abI,160</td>
<td></td>
</tr>
<tr>
<td>sparseVector-class</td>
<td>186</td>
</tr>
<tr>
<td>uniqTsparse,197</td>
<td></td>
</tr>
<tr>
<td>math</td>
<td></td>
</tr>
<tr>
<td>condest,45</td>
<td></td>
</tr>
<tr>
<td>expm-methods</td>
<td>84</td>
</tr>
<tr>
<td>is.na-methods</td>
<td>103</td>
</tr>
<tr>
<td>norm-methods</td>
<td>139</td>
</tr>
<tr>
<td>rcond-methods</td>
<td>158</td>
</tr>
</tbody>
</table>
INDEX

* **methods**
  - all-methods, 7
  - all.equal-methods, 8
  - band-methods, 9
  - boolmatmult-methods, 15
  - BunchKaufman-methods, 19
  - cbind2-methods, 21
  - chol-methods, 27
  - chol2inv-methods, 30
  - Cholesky-methods, 34
  - coerce-methods-graph, 40
  - coerce-methods-SparseM, 41
  - colSums-methods, 42
  - expand-methods, 81
  - expm-methods, 84
  - externalFormats, 85
  - facmul-methods, 87
  - forceSymmetric-methods, 92
  - image-methods, 96
  - is.na-methods, 103
  - isSymmetric-methods, 105
  - isTriangular-methods, 107
  - kronecker-methods, 111
  - lu-methods, 119
  - nnzero-methods, 137
  - norm-methods, 139
  - pack, 144
  - qr-methods, 151
  - rcond-methods, 158
  - Schur-methods, 166
  - solve-methods, 168
  - Subassign-methods, 191
  - Subscript-methods, 192
  - symmpart-methods, 194
  - updown-methods, 200

* **models**
  - sparse.model.matrix, 171

* **print**
  - formatSparseM, 93
  - printSpMatrix, 149

* **programming**
  - all.equal-methods, 8
  - CHMfactor-class, 22
  - is.na-methods, 103
  - is.null.DN, 104
  - isSymmetric-methods, 105
  - isTriangular-methods, 107

* **utilities**
  - abIseq, 6
  - bandSparse, 11
  - bdiag, 13
  - CHMfactor-class, 22
  - coerce-methods-graph, 40
  - condest, 45
  - Diagonal, 58
  - diagU2N, 61
  - dimScale, 63
  - dimperm, 65
  - drop0, 69
  - externalFormats, 85
  - fastMisc, 88
  - formatSparseM, 93
  - Hilbert, 95
  - invertPerm, 101
  - is.null.DN, 104
  - KhatriRao, 108
  - mat2triplet, 121
  - Matrix, 124
  - MatrixClass, 129
  - nearPD, 132
  - printSpMatrix, 149
  - rankMatrix, 155
  - rep2abI, 160
  - rsparsematrix, 162
  - sparse.model.matrix, 171
  - sparseMatrix, 175
  - sparseQR-class, 181
  - sparseVector, 185
  - spMatrix, 189
  - uniqTsparses, 197
  - *,Matrix,ddiMatrix-method (Matrix-class), 126
  - *,Matrix,ldiMatrix-method (Matrix-class), 126
  - *,ddenseMatrix,ddiMatrix-method (ddenseMatrix-class), 49
  - *,ddenseMatrix,ldiMatrix-method (ddenseMatrix-class), 49
  - *,ddiMatrix,ddiMatrix-method (ddiMatrix-class), 49
  - *,ddiMatrix,ddenseMatrix-method (ddiMatrix-class), 49
  - *,ddiMatrix,ldiMatrix-method (ddiMatrix-class), 49
  - *,ddiMatrix,ndenseMatrix-method (ddiMatrix-class), 49
  - *,ddiMatrix,ndiMatrix-method (ddiMatrix-class), 49
*.,ldenseMatrix, ddiMatrix-method
  (ldenseMatrix-class), 112
*.,ldenseMatrix,ldiMatrix-method
  (ldenseMatrix-class), 112
*.,ldiMatrix,Matrix-method
  (ldiMatrix-class), 113
*.,ldiMatrix,ddenseMatrix-method
  (ldiMatrix-class), 113
*.,ldiMatrix,ldenseMatrix-method
  (ldiMatrix-class), 113
*.,ldiMatrix,ndenseMatrix-method
  (ldiMatrix-class), 113
*.,ldiMatrix,ldiMatrix-method
  (ldiMatrix-class), 113
*.,ldiMatrix,ndenseMatrix-method
  (ldiMatrix-class), 113
*.,ndenseMatrix,ddiMatrix-method
  (ndenseMatrix-class), 131
*.,ndenseMatrix,ldiMatrix-method
  (ndenseMatrix-class), 131
+.,Matrix,missing-method
  (Matrix-class), 126
+.,dgTMatrix,dgTMatrix-method
  (dgTMatrix-class), 57
-.,Matrix,missing-method
  (Matrix-class), 126
-.,ddiMatrix,missing-method
  (ddiMatrix-class), 49
-.,denseMatrix,missing-method
  (denseMatrix-class), 52
-.,dsparseVector,missing-method
  (dsparseVector-class), 186
-.,indMatrix,missing-method
  (indMatrix-class), 99
-.,ldiMatrix,missing-method
  (ldiMatrix-class), 113
-.,nsparseMatrix,missing-method
  (nsparseMatrix-classes), 140
-.,sparseMatrix,missing-method
  (sparseMatrix-class), 179
  .CR2RC (fastMisc), 88
  .CR2T (fastMisc), 88
  .M2diag (fastMisc), 88
  .M2sym (fastMisc), 88
  .M2tri (fastMisc), 88
  .Machine, 155, 186
  .SuiteSparse_version
  (Cholesky-methods), 34
  .T2CR (fastMisc), 88
  .bdiag (bdiag), 13
  .dense2g (fastMisc), 88
  .dense2kind (fastMisc), 88
  .dense2m (fastMisc), 88
  .dense2sparse (fastMisc), 88
  .dense2v (fastMisc), 88
  .diag.dsC (fastMisc), 88
  .diag2dense (fastMisc), 88
  .diag2sparse (fastMisc), 88
  .diagN2U (diagU2N), 61
  .diagU2N (diagU2N), 61
  .formatSparseSimple, 150
  .formatSparseSimple (formatSparseM), 93
  .m2dense (fastMisc), 88
  .m2sparse (fastMisc), 88
  .selectSuperClasses, 129
  .solve.dgC.chol (fastMisc), 88
  .solve.dgC.lu (fastMisc), 88
  .solve.dgC.qr (fastMisc), 88
  .sparse2dense (fastMisc), 88
  .sparse2g (fastMisc), 88
  .sparse2kind (fastMisc), 88
  .sparse2m (fastMisc), 88
  .sparse2v (fastMisc), 88
  .sparseDiagonal (Diagonal), 58
  .symDiagonal (Diagonal), 58
  .tCR2RC (fastMisc), 88
  .trDiagonal (Diagonal), 58
  .updateCHMfactor (fastMisc), 88
  .validateCsparse (CsparseMatrix-class), 47
  ,.ddiMatrix,Matrix-method
    (ddiMatrix-class), 49
  ,.ddiMatrix,dddenseMatrix-method
    (ddiMatrix-class), 49
  ,.ddiMatrix,ldenseMatrix-method
    (ddiMatrix-class), 49
  ,.ddiMatrix,ndenseMatrix-method
    (ddiMatrix-class), 49
  ,.ldiMatrix,Matrix-method
    (ldiMatrix-class), 113
  ,.ldiMatrix,dddenseMatrix-method
    (ldiMatrix-class), 113
  ,.ldiMatrix,ldenseMatrix-method
    (ldiMatrix-class), 113
  ,.ldiMatrix,ndenseMatrix-method
    (ldiMatrix-class), 113
  ,.sparseMatrix,missing-method
    (sparseMatrix-class), 179
  [. (Subscript-methods), 192
  [,Matrix,ANY,NULL,ANY-method
    (Subscript-methods), 192
  [,Matrix,NULL,ANY,ANY-method
(Subscript-methods), 192
[,Matrix,NULL,NULL,ANY-method
(Subscript-methods), 192
[,Matrix,index,index,logical-method
(Subscript-methods), 192
[,Matrix,index,index,missing-method
(Subscript-methods), 192
[,Matrix,index,missing,logical-method
(Subscript-methods), 192
[,Matrix,index,missing,missing-method
(Subscript-methods), 192
[,Matrix,lMatrix,missing,missing-method
(Subscript-methods), 192
[,Matrix,matrix,missing,missing-method
(Subscript-methods), 192
[,Matrix,missing,index,logical-method
(Subscript-methods), 192
[,Matrix,missing,index,missing-method
(Subscript-methods), 192
[,Matrix,missing,missing,logical-method
(Subscript-methods), 192
[,Matrix,missing,missing,missing-method
(Subscript-methods), 192
[,Matrix,nMatrix,missing,missing-method
(Subscript-methods), 192
[,abIndex,index,ANY,ANY-method
(Subscript-methods), 192
[,sparseVector,index,ANY,ANY-method
(Subscript-methods), 192
[,sparseVector,lsparseVector,ANY,ANY-method
(Subscript-methods), 192
[,sparseVector,nsparseVector,ANY,ANY-method
(Subscript-methods), 192
[-methods (Subscript-methods), 192
<- (Subassign-methods), 191
<-,CsparseMatrix,missing,index,sparseVector-method
(Subassign-methods), 191
<-,Matrix,ANY,ANY,ANY-method
(Subassign-methods), 191
<-,Matrix,ANY,ANY,Matrix-method
(Subassign-methods), 191
<-,Matrix,ANY,ANY,matrix-method
(Subassign-methods), 191
<-,Matrix,ldenseMatrix,missing,replValue-method
(Subassign-methods), 191
<-,Matrix,1sparseMatrix,missing,replValue-method
(Subassign-methods), 191
<-,Matrix,matrix,missing,replValue-method
(Subassign-methods), 191
<-,Matrix,missing,ANY,Matrix-method
(Subassign-methods), 191
<-,Matrix,missing,ANY,matrix-method
(Subassign-methods), 191
<-,Matrix,nMatrix,missing,repValue-method
(Subassign-methods), 191
<-,Matrix,ndenseMatrix,missing,repValue-method
(Subassign-methods), 191
<-,Matrix.nsparseMatrix,missing,repValue-method
(Subassign-methods), 191
(Subassign-methods), 191

[<-, TsparseMatrix, index, missing, sparseVector-method
(Subassign-methods), 191

[<-, TsparseMatrix, matrix, missing, replValue-method
sparseMatrix, ANY, missing, sparseMatrix-method
(Subassign-methods), 191

[<-, TsparseMatrix, missing, index, replValue-method
sparseMatrix, missing, ANY, sparseMatrix-method
(Subassign-methods), 191

[<-, TsparseMatrix, missing, index, sparseVector-method
(Subassign-methods), 191

[<-, denseMatrix, index, index, replValue-method
[<-, sparseVector, index, missing, replValueSp-method
(Subassign-methods), 191

[<-, denseMatrix, index, index, sparseVector-method
(Subassign-methods), 191

[<-, denseMatrix, missing, index, replValue-method
ANY, ANY, Matrix-method
(Subassign-methods), 191

[<-, denseMatrix, missing, missing, ANY-method
ANY, TsparseMatrix-method
(Subassign-methods), 191

[<-, diagonalMatrix, index, index, replValue-method
CsparseMatrix, CsparseMatrix-method
(Subassign-methods), 191

[<-, diagonalMatrix, index, index, sparseMatrix-method
sparseMatrix, diagonalMatrix-method
(Subassign-methods), 191

[<-, diagonalMatrix, index, missing, replValue-method
CsparseMatrix, matrix-method
(Subassign-methods), 191

[<-, diagonalMatrix, index, missing, sparseMatrix-method
numLike-method
(Subassign-methods), 191

[<-, diagonalMatrix, index, sparseVector-method
matrix, ANY-method
(Subassign-methods), 191

[<-, diagonalMatrix, matrix, missing, replValue-method
matrix, TsparseMatrix-method
(Subassign-methods), 191

[<-, diagonalMatrix, missing, index, replValue-method
matrix, method
(Subassign-methods), 191

[<-, diagonalMatrix, missing, index, sparseVector-method
matrix, method
(Subassign-methods), 191

[<-, diagonalMatrix, missing, ANY-method
ANY-method
(Subassign-methods), 191

[<-, indMatrix, index, index, ANY-method
ANY-method
(Subassign-methods), 191

[<-, indMatrix, index, missing, ANY-method
RsparseMatrix, diagonalMatrix-method
(Subassign-methods), 191

[<-, indMatrix, index, ANY-method
RsparseMatrix, mMatrix-method
(Subassign-methods), 191

[<-, indMatrix, missing, ANY-method
TsparseMatrix, ANY-method
(Subassign-methods), 191

[<-, indMatrix, missing, ANY-method
TsparseMatrix, Matrix-method
(matmult-methods), 122

%%, TsparseMatrix, TsparseMatrix-method (matmult-methods), 122

%%, TsparseMatrix, diagonalMatrix-method (matmult-methods), 122

%%, dMatrix, lMatrix-method (matmult-methods), 122

%%, dMatrix, nMatrix-method (matmult-methods), 122

%%, ddenseMatrix, CsparseMatrix-method (matmult-methods), 122

%%, ddenseMatrix, ddenseMatrix-method (matmult-methods), 122

%%, ddenseMatrix, dtrMatrix-method (matmult-methods), 122

%%, ddenseMatrix, ldenseMatrix-method (matmult-methods), 122

%%, ddenseMatrix, matrix-method (matmult-methods), 122

%%, dspMatrix, ddenseMatrix-method (matmult-methods), 122

%%, spMatrix, sparseVector-method (matmult-methods), 122

%%, dMatrix, lMatrix-method (matmult-methods), 122

%%, dMatrix, nMatrix-method (matmult-methods), 122

%%, ddenseMatrix, dtrMatrix-method (matmult-methods), 122

%%, ddenseMatrix, dtpMatrix-method (matmult-methods), 122

%%, dtrMatrix, dtrMatrix-method (matmult-methods), 122

%%, dtrMatrix, matrix-method (matmult-methods), 122

%%, mMatrix, sparseVector-method (matmult-methods), 122

%%, mMatrix, RsparseMatrix-method (matmult-methods), 122

%%, mMatrix, ddenseMatrix-method (matmult-methods), 122

%%, matrix, CsparseMatrix-method (matmult-methods), 122

%%, dtrMatrix, ddenseMatrix-method (matmult-methods), 122

%%, dtrMatrix, dtrMatrix-method (matmult-methods), 122

%%, dtrMatrix, matrix-method (matmult-methods), 122

%%, mMatrix, sparseVector-method (matmult-methods), 122

%%, matrix, CsparseMatrix-method (matmult-methods), 122

%%, dtrMatrix, ddenseMatrix-method (matmult-methods), 122

%%, dtrMatrix, dtrMatrix-method (matmult-methods), 122

%%, dtrMatrix, matrix-method (matmult-methods), 122

%%, mMatrix, sparseVector-method (matmult-methods), 122

%%, matrix, CsparseMatrix-method (matmult-methods), 122
(matmult-methods), 122
%%*, matrix, Matrix-method
(mult-methods), 122
%%*, matrix, ddiMatrix-method
(matmult-methods), 122
%%*, matrix, dgeMatrix-method
(matmult-methods), 122
%%*, matrix, diagonalMatrix-method
(matmult-methods), 122
%%*, matrix, dgeMatrix-method
(matmult-methods), 122
%%*, matrix, dtrMatrix-method
(matmult-methods), 122
%%*, matrix, indMatrix-method
(matmult-methods), 122
%%*, matrix, ldenseMatrix-method
(matmult-methods), 122
%%*, matrix, ndenseMatrix-method
(matmult-methods), 122
%%*, matrix, pMatrix-method
(matmult-methods), 122
%%*, matrix, sparseMatrix-method
(matmult-methods), 122
%%*, nMatrix, dMatrix-method
(matmult-methods), 122
%%*, nMatrix, lMatrix-method
(matmult-methods), 122
%%*, nMatrix, denseMatrix-method
(matmult-methods), 122
%%*, ndenseMatrix, dMatrix-method
(matmult-methods), 122
%%*, ndenseMatrix, ldenseMatrix-method
(matmult-methods), 122
%%*, ndenseMatrix, matrix-method
(matmult-methods), 122
%%*, ndenseMatrix, ndenseMatrix-method
(matmult-methods), 122
%%*, ndenseMatrix, sparseMatrix-method
(matmult-methods), 122
%%*, numLike, dMatrix-method
(matmult-methods), 122
%%*, numLike, ldenseMatrix-method
(matmult-methods), 122
%%*, numLike, ndenseMatrix-method
(matmult-methods), 122
%%*, numLike, sparseMatrix-method
(matmult-methods), 122
%%*, pMatrix, Matrix-method
(matmult-methods), 122
%%*, pMatrix, indMatrix-method
(matmult-methods), 122
%%*, pMatrix, matrix-method
(matmult-methods), 122
%%*, pMatrix, ndenseMatrix-method
(matmult-methods), 122
%%*, sparseVector, mMatrix-method
(matmult-methods), 122
%%*, sparseVector, sparseVector-method
(matmult-methods), 122
%%*, sparseVector, numLike-method
(matmult-methods), 122
%%*, sparseVector, ndenseMatrix-method
(matmult-methods), 122
%%*, lMatrix, ddiMatrix-method
(lMatrix-class), 49
%%*, lMatrix, ldenseMatrix-method
(lMatrix-class), 49
%%*, lMatrix, ndenseMatrix-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 113
%%*, lMatrix, dMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ldenseMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ndenseMatrix-method
(lMatrix-class), 113
%%*, lMatrix, sparseVector-method
(lMatrix-class), 113
%%*, lMatrix, dMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ldenseMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ndenseMatrix-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 49
%%*, lMatrix, numLike-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 49
%%*, lMatrix, numLike-method
(lMatrix-class), 113
%%*, lMatrix, sparseVector-method
(lMatrix-class), 113
%%*, lMatrix, dMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ldenseMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ndenseMatrix-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 49
%%*, lMatrix, numLike-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 113
%%*, lMatrix, dMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ldenseMatrix-method
(lMatrix-class), 113
%%*, lMatrix, ndenseMatrix-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 49
%%*, lMatrix, numLike-method
(lMatrix-class), 49
%%*, lMatrix, sparseVector-method
(lMatrix-class), 113
%%,ldiMatrix,ldenseMatrix-method
(ldiMatrix-class), 113
%%,ldiMatrix,ndenseMatrix-method
(ldiMatrix-class), 113
%% (boolmatmult-methods), 15
%%,ANY,ANY-method
(boolmatmult-methods), 15
%%,ANY,Matrix-method
(boolmatmult-methods), 15
%%,Matrix,ANY-method
(boolmatmult-methods), 15
%%,Matrix,Matrix-method
(boolmatmult-methods), 15
%%,mMatrix,CsparseMatrix-method
(boolmatmult-methods), 15
%%,mMatrix,RsparseMatrix-method
(boolmatmult-methods), 15
%%,mMatrix,TsparseMatrix-method
(boolmatmult-methods), 15
%%,mMatrix,sparseMatrix-method
(boolmatmult-methods), 15
%%,mMatrix,sparseVector-method
(boolmatmult-methods), 15
%%,matrix,ANY-method
(boolmatmult-methods), 15
%%,matrix,diagonalMatrix-method
(boolmatmult-methods), 15
%%,matrix,matrix-method
(boolmatmult-methods), 15
%%,matrix,pMatrix-method
(boolmatmult-methods), 15
%%,nCsparseMatrix,ncsparseMatrix-method
(boolmatmult-methods), 15
%%,nCsparseMatrix,ncsparseMatrix-method
(boolmatmult-methods), 15
%%,nMatrix,nMatrix-method
(boolmatmult-methods), 15
#%%,denseMatrix,denseMatrix-method
all.equal, 8, 106
all.equal(all.equal-methods), 8
all.equal(abIndex, abIndex-method (all.equal-methods), 8
all.equal(abIndex, numLike-method (all.equal-methods), 8
all.equal(ANY, Matrix-method (all.equal-methods), 8
all.equal(ANY, sparseMatrix-method (all.equal-methods), 8
all.equal(ANY, sparseVector-method (all.equal-methods), 8
all.equal-methods, 8
all.equal.numeric, 8
any, 7, 64
any (all-methods), 7
any, ddiMatrix-method (all-methods), 7
any, ldiMatrix-method (all-methods), 7
any, lMatrix-method (all-methods), 7
any, nMatrix-method (all-methods), 7
any-methods (all-methods), 7
anyDuplicated, 198
anyDuplicatedT (uniqTsparse), 197
anyNA, 103
anyNA (is.na-methods), 103
anyNA, ddenseMatrix-method (is.na-methods), 103
anyNA, diagonalMatrix-method (is.na-methods), 103
anyNA, dsparseMatrix-method (is.na-methods), 103
anyNA, indMatrix-method (is.na-methods), 103
anyNA, ldenseMatrix-method (is.na-methods), 103
anyNA, l sparseMatrix-method (is.na-methods), 103
anyNA, nMatrix-method (is.na-methods), 103
anyNA, nsparseVector-method (is.na-methods), 103
anyNA, sparseVector-method (is.na-methods), 103
apply, 127
Arith, 55, 64
Arith, abIndex, abIndex-method (abIndex-class), 5
Arith, abIndex, numLike-method (abIndex-class), 5
Arith, CsparseMatrix, CsparseMatrix-method (CsparseMatrix-class), 47
Arith, CsparseMatrix, numeric-method (CsparseMatrix-class), 47
Arith, ddenseMatrix, logical-method (ddenseMatrix-class), 49
Arith, ddenseMatrix, numeric-method (ddenseMatrix-class), 49
Arith, ddenseMatrix, sparseVector-method (ddenseMatrix-class), 49
Arith, ddiMatrix, logical-method (ddiMatrix-class), 49
Arith, ddiMatrix, numeric-method (ddiMatrix-class), 49
Arith, dgCMatrix, dgCMatrix-method (dgCMatrix-class), 53
Arith, dgCMatrix, logical-method (dgCMatrix-class), 53
Arith, dgCMatrix, numeric-method (dgCMatrix-class), 53
Arith, dgeMatrix, dgeMatrix-method (dgeMatrix-class), 54
Arith, dgeMatrix, logical-method (dgeMatrix-class), 54
Arith, dgeMatrix, numeric-method (dgeMatrix-class), 54
Arith,dgeMatrix,sparseVector-method
  (dgeMatrix-class), 54
Arith,dpoMatrix,logical-method
  (dpoMatrix-class), 67
Arith,dpoMatrix,numeric-method
  (dpoMatrix-class), 67
Arith,dppMatrix,logical-method
  (dpoMatrix-class), 67
Arith,dppMatrix,numeric-method
  (dpoMatrix-class), 67
Arith,dsCMatrix,dsCMatrix-method
  (dsCMatrix-class), 70
Arith,dsparseMatrix,logical-method
  (dsparseMatrix-class), 72
Arith,dsparseMatrix,numeric-method
  (dsparseMatrix-class), 72
Arith,dsparseMatrix,nsparseMatrix-method
  (nsparseMatrix-classes), 140
Arith,dtCMatrix,dtCMatrix-method
  (dtCMatrix-class), 75
Arith,ldiMatrix,logical-method
  (ldiMatrix-class), 113
Arith,ldiMatrix,numeric-method
  (ldiMatrix-class), 113
Arith,lgCMatrix,lgCMatrix-method
  (lgCMatrix-class), 114
Arith,lgTMatrix,lgTMatrix-method
  (lgTMatrix-class), 115
Arith,lMatrix,logical-method
  (lMatrix-class), 64
Arith,lMatrix,numeric-method
  (lMatrix-class), 64
Arith,logical,ddenseMatrix-method
  (ddenseMatrix-class), 49
Arith,logical,ddiMatrix-method
  (ddiMatrix-class), 49
Arith,logical,dgCMatrix-method
  (dgCMatrix-class), 53
Arith,logical,dgeMatrix-method
  (dgeMatrix-class), 54
Arith,logical,dpoMatrix-method
  (dpoMatrix-class), 67
Arith,logical,dppMatrix-method
  (dppMatrix-class), 67
Arith,logical,ldiMatrix-method
  (ldiMatrix-class), 113
Arith,logical,dsparseMatrix-method
  (dsparseMatrix-class), 72
Arith,logical,ldiMatrix-method
  (ldiMatrix-class), 113
Arith,logical,lMatrix-method
  (dMatrix-class), 64
Arith,logical,nMatrix-method
  (nMatrix-class), 136
Arith,logical,lsparseMatrix-method
  (lsparseMatrix-classes), 140
Arith,logical,nsparseMatrix-method
  (nsparseMatrix-classes), 140
Arith,logical,lgeMatrix-method
  (lgeMatrix-class), 135
Arith,logical,nMatrix-method
  (nMatrix-class), 136
Arith,logical,lsparseMatrix-method
  (lsparseMatrix-classes), 140
Arith,logical,nsparseMatrix-method
  (nsparseMatrix-classes), 140
Arith,logical,dgeMatrix-method
  (dgeMatrix-class), 54
Arith,logical,dpoMatrix-method
  (dpoMatrix-class), 67
Arith,logical,dppMatrix-method
  (dppMatrix-class), 67
Arith,logical,ldiMatrix-method
  (ldiMatrix-class), 113
INDEX

Arith, numeric, lMatrix-method (dMatrix-class), 64
Arith, numeric, nMatrix-method (nMatrix-class), 136
Arith, numLike, abIndex-method (abIndex-class), 5
Arith, sparseVector, ddenseMatrix-method (sparseVector-class), 186
Arith, sparseVector, dgeMatrix-method (sparseVector-class), 186
Arith, sparseVector, sparseVector-method (sparseVector-class), 186
Arith, triangularMatrix, diagonalMatrix-method (triangularMatrix-class), 195
as, 40, 42, 114, 117, 118, 136, 142, 143
as.array, 127
as.array, Matrix-method (Matrix-class), 126
as.integer, abIndex-method (abIndex-class), 5
as.logical, denseMatrix-method (denseMatrix-class), 52
as.logical, diagonalMatrix-method (diagonalMatrix-class), 60
as.logical, dsparseMatrix-method (dsparseMatrix-class), 72
as.logical, indMatrix-method (indMatrix-class), 99
as.logical, ldiMatrix-method (ldiMatrix-class), 113
as.logical, lsparseMatrix-method (lsparseMatrix-classes), 115
as.logical, Matrix-method (Matrix-class), 126
as.logical, ngeMatrix-method (ngeMatrix-class), 135
as.logical, sparseMatrix-method (sparseMatrix-class), 186
as.logical, sparseVector-method (sparseVector-class), 186
as.matrix, 127
as.matrix, Matrix-method (Matrix-class), 126
as.numeric, abIndex-method (abIndex-class), 5
as.numeric, ddiMatrix-method (ddiMatrix-class), 49
as.numeric, denseMatrix-method (denseMatrix-class), 52
as.numeric, diagonalMatrix-method (diagonalMatrix-class), 60
as.numeric, dsparseMatrix-method (dsparseMatrix-class), 72
as.numeric, indMatrix-method (indMatrix-class), 99
as.numeric, ldsparseMatrix-method (ldsparseMatrix-classes), 115
as.numeric, Matrix-method (Matrix-class), 126
as.numeric, nsparseMatrix-method (nsparseMatrix-classes), 140
as.numeric, sparseVector-method (sparseVector-class), 186
as.vector, 8
as.vector, abIndex-method (abIndex-class), 5
as.vector, CsparseMatrix-method (CsparseMatrix-class), 47
as.vector, denseMatrix-method (denseMatrix-class), 52
as.vector, dgeMatrix-method (dgeMatrix-class), 54
as.vector, diagonalMatrix-method (diagonalMatrix-class), 60
as.vector, indMatrix-method (indMatrix-class), 99
as.vector, lgeMatrix-method (lgeMatrix-class), 114
as.vector, Matrix-method (Matrix-class), 126
as.vector, ngeMatrix-method (ngeMatrix-class), 135
as.vector, RsparseMatrix-method (RsparseMatrix-class), 163
as.vector, sparseVector-method (sparseVector-class), 186
as.vector, TsparseMatrix-method (TsparseMatrix-class), 196
asPerm, 51
asPerm (invertPerm), 101
atomicVector-class, 9
attribute, 106, 108

band, 11, 12, 59
band (band-methods), 9
band, CsparseMatrix-method (band-methods), 9
band, denseMatrix-method (band-methods), 9
band, diagonalMatrix-method (band-methods), 9
band, indMatrix-method (band-methods), 9
band, matrix-method (band-methods), 9
band, RsparseMatrix-method (band-methods), 9
band, TsparseMatrix-method (band-methods), 9
band-methods, 9
bandSparse, 10, 11, 13, 59, 125, 177
bdiag, 12, 13, 125, 177, 190
boolmatmult-methods, 15
BunchKaufman, 17–20, 37, 45, 68, 82, 83, 120, 131, 153, 167, 170, 199
BunchKaufman (BunchKaufman-methods), 19
BunchKaufman, dspMatrix-method (BunchKaufman-methods), 19
BunchKaufman, dsyMatrix-method (BunchKaufman-methods), 19
BunchKaufman, matrix-method (BunchKaufman-methods), 19
BunchKaufman-class, 16
BunchKaufman-methods, 19
BunchKaufmanFactorization, 17, 19
BunchKaufmanFactorization-class (MatrixFactorization-class), 130
c, 5
c.abIndex (abIseq), 6
c.sparseVector (sparseVector-class), 186
CAex, 20
cbind, 21, 22, 180
cbind2, 21, 22
cbind2 (cbind2-methods), 21
cbind2, ANY, Matrix-method (cbind2-methods), 21
cbind2, atomicVector, ddiMatrix-method (cbind2-methods), 21
cbind2, atomicVector, ldiMatrix-method (cbind2-methods), 21
cbind2, atomicVector, Matrix-method (cbind2-methods), 21
cbind2, ddiMatrix, atomicVector-method (cbind2-methods), 21
cbind2, ddiMatrix, matrix-method (cbind2-methods), 21
cbind2, denseMatrix, denseMatrix-method (cbind2-methods), 21
cbind2, denseMatrix, matrix-method (cbind2-methods), 21
cbind2, denseMatrix, numeric-method (cbind2-methods), 21
cbind2, denseMatrix, sparseMatrix-method (cbind2-methods), 21
cbind2, diagonalMatrix, sparseMatrix-method (cbind2-methods), 21
cbind2, indMatrix, indMatrix-method (cbind2-methods), 21
cbind2, ldiMatrix, atomicVector-method (cbind2-methods), 21
cbind2, ldiMatrix, matrix-method (cbind2-methods), 21
cbind2, Matrix, ANY-method (cbind2-methods), 21
cbind2, Matrix, atomicVector-method (cbind2-methods), 21
cbind2, matrix, ddiMatrix-method (cbind2-methods), 21
cbind2, matrix, denseMatrix-method (cbind2-methods), 21
cbind2, matrix, ldiMatrix-method (cbind2-methods), 21
cbind2, Matrix, Matrix-method (cbind2-methods), 21
cbind2, Matrix, missing-method (cbind2-methods), 21
cbind2, Matrix, NULL-method (cbind2-methods), 21
cbind2, matrix, sparseMatrix-method (cbind2-methods), 21
cbind2,NULL,Matrix-method (cbind2-methods), 21
cbind2, numeric, denseMatrix-method (cbind2-methods), 21
cbind2, sparseMatrix, denseMatrix-method (cbind2-methods), 21
cbind2, sparseMatrix, diagonalMatrix-method (cbind2-methods), 21
cbind2, sparseMatrix, matrix-method (cbind2-methods), 21
cbind2, sparseMatrix, sparseMatrix-method (cbind2-methods), 21
cbind2-methods, 21
character, 5, 11, 59, 60, 64, 129, 136, 172, 176
CHMfactor, 33, 131, 169, 170
INDEX

(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, lSparseMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, matrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, ndenseMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, nMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, nsparseMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, packedMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, RSparseMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, symmetricMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, triangularMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, TSparseMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, unpackedMatrix-method)
(coerce, diagonalMatrix-class, 60)
(coerce, diagonalMatrix, vector-method)
(coerce, diagonalMatrix-class, 60)
(coerce, dpoMatrix, corMatrix-method)
(coerce, dpoMatrix-class, 74)
(coerce, dsCMatrix, RsparseMatrix-method)
(coerce, dsCMatrix-class, 70)
(coerce, dsPMatrix, lMatrix-method)
(coerce, dsparseMatrix-class, 72)
(coerce, dssparseMatrix, lSparseMatrix-method)
(coerce, dssparseMatrix-class, 72)
(coerce, dsparseMatrix, nMatrix-method)
(coerce, dsparseMatrix-class, 72)
(coerce, dsparseMatrix, nSparseMatrix-method)
(coerce, dsparseMatrix-class, 72)
(coerce, dspMatrix, dpoMatrix-method)
(coerce, dsyMatrix-class, 70)
(coerce, factor, sparseMatrix-method)
(coerce, factor-class, 179)
(coerce, graph, sparseMatrix-method)
(coerce, graph-class, 40)
(coerce, graph, TMatrix-method)
(coerce, graph-class, 40)
(coerce, graph, sparseMatrix-method)
(coerce, graph-class, 40)
(coerce, indMatrix, sparseMatrix-method)
(coerce, indMatrix-class, 99)
(coerce, indMatrix, dMatrix-method)
(coerce, indMatrix-class, 99)
(coerce, indMatrix, denseMatrix-method)
(coerce, indMatrix-class, 99)
coerce,indMatrix,diagonalMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,dMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,dsparseMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,generalMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,idenseMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,lmatrix-method
  (indMatrix-class), 99
coerce,indMatrix,lMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,matrix-method
  (indMatrix-class), 99
coerce,indMatrix,packedMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,pMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,RsparseMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,sparseVector-method
  (indMatrix-class), 99
coerce,indMatrix,TsparseMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,unpackedMatrix-method
  (indMatrix-class), 99
coerce,indMatrix,vector-method
  (indMatrix-class), 99
coerce,lgeMatrix,corMatrix-method
  (lgeMatrix-class), 47
coerce,lsCMatrix,RsparseMatrix-method
  (lsparseMatrix-classes), 115
coerce,lsRMatrix,CsparseMatrix-method
  (lsparseMatrix-classes), 115
coerce,Matrix,complex-method
  (Matrix-class), 126
coerce,Matrix,dMatrix-method
  (Matrix-class), 64
coerce,Matrix,dpoMatrix-method
  (Matrix-class), 126
coerce,Matrix,dpoMatrix-method
  (dpoMatrix-class), 67
coerce,Matrix,dsparseMatrix-method
  (dsparseMatrix-class), 72
coerce,Matrix,graph-method
  (graph-methods-graph), 40
coerce,Matrix,graphNEL-method
  (graph-methods-graph), 40
coerce,Matrix,indMatrix-method
  (indMatrix-class), 99
<table>
<thead>
<tr>
<th>(Matrix-class), 126</th>
<th>(\text{Matrix-class})), 126</th>
</tr>
</thead>
<tbody>
<tr>
<td>coerce, matrix, indMatrix-method (\text{indMatrix-class})), 99</td>
<td>(\text{coerce, matrix, triangularMatrix-method} \text{triangularMatrix-class})), 195</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix, TsparseMatrix-method} \text{TsparseMatrix-class})), 196</td>
</tr>
<tr>
<td>coerce, matrix, ldenseMatrix-method (\text{ldenseMatrix-class})), 112</td>
<td>(\text{coerce, matrix, unpackedMatrix-method} \text{unpackedMatrix-class})), 199</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix, vector-method} \text{Matrix-class})), 126</td>
</tr>
<tr>
<td>coerce, matrix, logical-method (\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, CsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, dgCMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, dgTMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, Matrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, RsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, sparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.coo, TsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csc, CsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csc, dgCMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csc, Matrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csc, RsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csc, sparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csc, TsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, CsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, dgCMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, dgRMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, Matrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, RsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, sparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
<tr>
<td>(\text{Matrix-class})), 126</td>
<td>(\text{coerce, matrix.csr, TsparseMatrix-method} \text{coerce-methods-SparseM})), 41</td>
</tr>
</tbody>
</table>
coerce, sparseVector-class, dsparseVector-method (sparseVector-class), 186
coerce, sparseVector-class, integer-method (sparseVector-class), 186
coerce, sparseVector-class, isparseVector-method (sparseVector-class), 186
coerce, sparseVector-class, logical-method (sparseVector-class), 186
coerce, sparseVector-class, lsparseVector-method (sparseVector-class), 186
coerce, sparseVector-class, Matrix-method (sparseVector-class), 186
coerce, sparseVector-class, nsparseVector-method (sparseVector-class), 186
coerce, sparseVector-class, numeric-method (sparseVector-class), 186
coerce, sparseVector-class, RsparseMatrix-method (sparseVector-class), 186
coerce, sparseVector-class, sparseMatrix-method (sparseVector-class), 186
coerce, sparseVector-class, TsparseMatrix-method (sparseVector-class), 186
coerce, sparseVector-class, vector-method (sparseVector-class), 186
coerce, sparseVector-class, zsparseVector-method (sparseVector-class), 186
colMeans, colSums-methods (colSums-methods), 42
colMeans, CsparseMatrix-method (colSums-methods), 42
colMeans, denseMatrix-method (colSums-methods), 42
colMeans, diagonalMatrix-method (colSums-methods), 42
colMeans, indMatrix-method (colSums-methods), 42
colMeans, RsparseMatrix-method (colSums-methods), 42
colMeans, TsparseMatrix-method (colSums-methods), 42
colMeans-methods (colSums-methods), 42
colScale (dimScale), 63
colSums, 42, 43, 48, 53, 127, 180
colSums, colSums-methods, 42
colSums, CsparseMatrix-method (colSums-methods), 42
colSums, denseMatrix-method (colSums-methods), 42
colSums, diagonalMatrix-method (colSums-methods), 42
colSums, indMatrix-method (colSums-methods), 42
colSums, RsparseMatrix-method (colSums-methods), 42
colSums, TsparseMatrix-method (colSums-methods), 42
colSums-methods, 42
Compare, CsparseMatrix-class, CsparseMatrix-method (CsparseMatrix-class), 47
Compare, dMatrix, logical-method (dMatrix-class), 64
Compare, dMatrix, numeric-method (dMatrix-class), 64
Compare, lgeMatrix-class, lgeMatrix-method (lgeMatrix-class), 114
Compare, lMatrix, logical-method (dMatrix-class), 64
Compare, lMatrix, numeric-method (dMatrix-class), 64
Compare, logical, dMatrix-method (dMatrix-class), 64
Compare, logical, lMatrix-method (dMatrix-class), 64
(dMatrix-class), 64
Compare, logical, nMatrix-method
(nMatrix-class), 136
Compare, ngeMatrix, ngeMatrix-method
(ngeMatrix-class), 135
Compare, nMatrix, logical-method
(nMatrix-class), 136
Compare, nMatrix, nMatrix-method
(nMatrix-class), 136
Compare, nMatrix, numeric-method
(nMatrix-class), 136
Compare, numeric, dMatrix-method
(dMatrix-class), 64
Compare, numeric, lMatrix-method
(dMatrix-class), 64
Compare, numeric, nMatrix-method
(nMatrix-class), 136
Compare, triangularMatrix, diagonalMatrix-method
(triangularMatrix-class), 195
complex, 9, 128
compMatrix, 83, 95, 120, 131
compMatrix-class, 44
condest, 45, 46, 159
contrasts, 171
corMatrix, 75
corMatrix-class (dpoMatrix-class), 67
cov2cor, 63
cov2cor, packedMatrix-method
(packedMatrix-class), 146
cov2cor, sparseMatrix-method
(sparseMatrix-class), 179
cov2cor, unpackedMatrix-method
(unpackedMatrix-class), 199
crossprod, 47, 55, 68, 100, 122, 124, 180
crossprod (matmult-methods), 122
crossprod, ANY, ANY-method
(matmult-methods), 122
crossprod, ANY, Matrix-method
(matmult-methods), 122
crossprod, ANY, RsparseMatrix-method
(matmult-methods), 122
crossprod, ANY, TsparseMatrix-method
(matmult-methods), 122
crossprod, CsparseMatrix, CsparseMatrix-method
crossprod, diagonalMatrix, CsparseMatrix-method
(matmult-methods), 122
crossprod, CsparseMatrix, ddenseMatrix-method
crossprod, diagonalMatrix, dlightMatrix-method
(matmult-methods), 122
crossprod, CsparseMatrix, RsparseMatrix-method
crossprod, diagonalMatrix, RsparseMatrix-method
(matmult-methods), 122
crossprod, CsparseMatrix, diagonalMatrix-method
crossprod, diagonalMatrix, RsparseMatrix-method
(matmult-methods), 122
crossprod, CsparseMatrix, diagonalMatrix-method
crossprod, diagonalMatrix, TsparseMatrix-method
(matmult-methods), 122
(matmult-methods), 122

crossprod,dsparseMatrix,ddenseMatrix-method
(matmult-methods), 122
crossprod,dsparseMatrix,dgeMatrix-method
(matmult-methods), 122
crossprod,dtpMatrix,ddenseMatrix-method
(matmult-methods), 122
crossprod,dtpMatrix,dtrMatrix-method
(matmult-methods), 122
crossprod,dtrMatrix,ddenseMatrix-method
(matmult-methods), 122
crossprod,dtrMatrix,dtrMatrix-method
(matmult-methods), 122
crossprod,dtrMatrix,matrix-method
(matmult-methods), 122
crossprod,indMatrix,Matrix-method
(matmult-methods), 122
crossprod,indMatrix,matrix-method
(matmult-methods), 122
crossprod,indMatrix,missing-method
(matmult-methods), 122
crossprod,ldenseMatrix,ddenseMatrix-method
(matmult-methods), 122
crossprod,ldenseMatrix,ldenseMatrix-method
(matmult-methods), 122
crossprod,ldenseMatrix,lsparseMatrix-method
(matmult-methods), 122
crossprod,ldenseMatrix,matrix-method
(matmult-methods), 122
crossprod,ldenseMatrix,missing-method
(matmult-methods), 122
crossprod,ldenseMatrix,numLike-method
(matmult-methods), 122
crossprod,ldenseMatrix,pMatrix-method
(matmult-methods), 122
crossprod,matrix,Matrix-method
(matmult-methods), 122
crossprod,matrix,indMatrix-method
(matmult-methods), 122
crossprod,matrix,CsparseMatrix-method
(matmult-methods), 122
crossprod,matrix,dgeMatrix-method
(matmult-methods), 122
crossprod,matrix,diagonalMatrix-method
(matmult-methods), 122
crossprod,matrix,dtrMatrix-method
(matmult-methods), 122
crossprod,mMatrix,RsparseMatrix-method
(matmult-methods), 122
crossprod,mMatrix,sparseVector-method
(matmult-methods), 122
crossprod,ndenseMatrix,ddenseMatrix-method
(matmult-methods), 122
crossprod,ndenseMatrix,ldenseMatrix-method
(matmult-methods), 122
crossprod,ndenseMatrix,matrix-method
(matmult-methods), 122
crossprod,ndenseMatrix,missing-method
(matmult-methods), 122
crossprod,ndenseMatrix,ndenseMatrix-method
(matmult-methods), 122
crossprod,ndenseMatrix,nsparseMatrix-method
(matmult-methods), 122
crossprod,nsparseMatrix,ndenseMatrix-method
(matmult-methods), 122
crossprod,nsparseMatrix,nsparseMatrix-method
(matmult-methods), 122
crossprod,numLike,CsparseMatrix-method
(matmult-methods), 122
crossprod,numLike,dgeMatrix-method
(matmult-methods), 122
crossprod,numLike,Matrix-method
(matmult-methods), 122
crossprod,numLike,sparseVector-method
(matmult-methods), 122
crossprod,pMatrix,missing-method
(matmult-methods), 122
<table>
<thead>
<tr>
<th>Function</th>
<th>Method/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>crossprod, RsparseMatrix, ANY-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, RsparseMatrix, diagonalMatrix-method</td>
<td>denseMatrix-class 52</td>
</tr>
<tr>
<td>crossprod, RsparseMatrix, mMatrix-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, sparseVector, missing-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, sparseVector, mMatrix-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, sparseVector, numLike-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, sparseVector, sparseVector-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, symmetricMatrix, ANY-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, symmetricMatrix, Matrix-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, symmetricMatrix, missing-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, TsparseMatrix, ANY-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, TsparseMatrix, diagonalMatrix-method</td>
<td>denseMatrix-class 52</td>
</tr>
<tr>
<td>crossprod, TsparseMatrix, Matrix-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, TsparseMatrix, missing-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod, TsparseMatrix, TsparseMatrix-method</td>
<td>(matmult-methods) 122</td>
</tr>
<tr>
<td>crossprod-methods</td>
<td>54</td>
</tr>
<tr>
<td>crossprod-methods (matmult-methods)</td>
<td>122</td>
</tr>
<tr>
<td>CsparseMatrix</td>
<td>11–13, 53, 58, 59–71, 76, 89, 90, 109, 115, 124, 140, 164, 172, 175–177, 190, 197</td>
</tr>
<tr>
<td>CsparseMatrix-class</td>
<td>47</td>
</tr>
<tr>
<td>cumsum</td>
<td>61</td>
</tr>
<tr>
<td>data.frame</td>
<td>86, 180</td>
</tr>
<tr>
<td>dCHMsimpl</td>
<td>36, 37, 200, 201</td>
</tr>
<tr>
<td>dCHMsimpl-class (CHMfactor-class)</td>
<td>22</td>
</tr>
<tr>
<td>dCHMsuper</td>
<td>36, 37, 200, 201</td>
</tr>
<tr>
<td>dCHMsuper-class (CHMfactor-class)</td>
<td>22</td>
</tr>
<tr>
<td>ddenseMatrix</td>
<td>52, 53, 81</td>
</tr>
<tr>
<td>ddenseMatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>ddimatrix</td>
<td>61, 82, 113</td>
</tr>
<tr>
<td>ddimatrix-class</td>
<td>49</td>
</tr>
<tr>
<td>denseLU</td>
<td>82, 120, 131, 174</td>
</tr>
<tr>
<td>denseLU-class</td>
<td>50</td>
</tr>
<tr>
<td>denseMatrix</td>
<td>22, 27, 35, 51, 62, 90, 112, 119, 131, 146, 152, 156, 169, 195, 199</td>
</tr>
<tr>
<td>det</td>
<td>127</td>
</tr>
<tr>
<td>det (Matrix-class)</td>
<td>126</td>
</tr>
<tr>
<td>determinant</td>
<td>68, 78, 180</td>
</tr>
<tr>
<td>determinant, BunchKaufman, logical-method</td>
<td>(BunchKaufman-class) 16</td>
</tr>
<tr>
<td>determinant, CHMfactor, logical-method</td>
<td>(CHMfactor-class) 22</td>
</tr>
<tr>
<td>determinant, Cholesky, logical-method</td>
<td>(Cholesky-class) 31</td>
</tr>
<tr>
<td>determinant, denseLU, logical-method</td>
<td>(denseLU-class) 50</td>
</tr>
<tr>
<td>determinant, dgCMatrix, logical-method</td>
<td>(dgCMatrix-class) 53</td>
</tr>
<tr>
<td>determinant, dgeMatrix, logical-method</td>
<td>(dgeMatrix-class) 54</td>
</tr>
<tr>
<td>determinant, dgRMatrix, logical-method</td>
<td>(dgRMatrix-class) 56</td>
</tr>
<tr>
<td>determinant, dgTMatrix, logical-method</td>
<td>(dgTMatrix-class) 57</td>
</tr>
<tr>
<td>determinant, diagonalMatrix, logical-method</td>
<td>(diagonalMatrix-class) 60</td>
</tr>
<tr>
<td>determinant, dpoMatrix, logical-method</td>
<td>(dpoMatrix-class) 67</td>
</tr>
<tr>
<td>determinant, dppMatrix, logical-method</td>
<td>(dpoMatrix-class) 67</td>
</tr>
<tr>
<td>determinant, dsCMatrix, logical-method</td>
<td>(dsCMatrix-class) 70</td>
</tr>
<tr>
<td>determinant, dspMatrix, logical-method</td>
<td>(dsyMatrix-class) 74</td>
</tr>
<tr>
<td>determinant, dsRMatrix, logical-method</td>
<td>(dsRMatrix-class) 72</td>
</tr>
<tr>
<td>determinant, dsmatrix, logical-method</td>
<td>(dsCMatrix-class) 70</td>
</tr>
<tr>
<td>determinant, dsmatrix, logical-method</td>
<td>(dsyMatrix-class) 74</td>
</tr>
<tr>
<td>determinant, indMatrix, logical-method</td>
<td>(indMatrix-class) 99</td>
</tr>
<tr>
<td>determinant, Matrix, logical-method</td>
<td>(Matrix-class) 126</td>
</tr>
<tr>
<td>determinant, Matrix, missing-method</td>
<td>(Matrix-class) 126</td>
</tr>
<tr>
<td>determinant, MatrixFactorization, missing-method</td>
<td>(MatrixFactorization-class) 130</td>
</tr>
</tbody>
</table>
determinant, pBunchKaufman, logical-method
   (BunchKaufman-class), 16

determinant, pCholesky, logical-method
   (Cholesky-class), 31

determinant, pMatrix, logical-method
   (pMatrix-class), 147

determinant, Schur, logical-method
   (Schur-class), 164

determinant, sparseLU, logical-method
   (sparseLU-class), 173

determinant, sparseQR, logical-method
   (sparseQR-class), 181

determinant, triangularMatrix, logical-method
   (triangularMatrix-class), 195


dgCMatrix-class, 53
dgeMatrix, 49, 51, 65, 68, 71, 73, 75, 76, 79, 83, 120, 128, 163, 167, 183
dgeMatrix-class, 54
dgRMatrix, 72, 164
dgRMatrix-class, 56
dgTMatrix-class, 57
diag, 12, 59, 99, 131, 132
diag, CHMfactor-method
   (CHMfactor-class), 22
diag, Cholesky-method (Cholesky-class), 31
diag, CsparseMatrix-method
   (CsparseMatrix-class), 47
diag<-, diagonalMatrix-method
   (diagonalMatrix-class), 60
diag<-, indMatrix-method
   (indMatrix-class), 99
diag<-, packedMatrix-method
   (packedMatrix-class), 146
diag<-, RsparseMatrix-method
   (RsparseMatrix-class), 163
diag<-, TsparseMatrix-method
   (TsparseMatrix-class), 196
diag<-, unpackedMatrix-method
   (unpackedMatrix-class), 199
diagN2U (diagU2N), 61
Diagonal, 13, 49, 50, 58, 61, 113, 125, 177, 190

diagonalMatrix, 13, 22, 28, 31, 50, 58, 59, 90, 95, 108, 113, 122, 125
diagonalMatrix-class, 60
diagU2N, 61
diff, 127, 161
diff, Matrix-method (Matrix-class), 126
dim, 127, 150, 162, 198
dim, Matrix-method (Matrix-class), 126
dim, MatrixFactorization-method
   (MatrixFactorization-class), 130
dim<-, denseMatrix-method
   (denseMatrix-class), 52
dim<-, sparseMatrix-method
   (sparseMatrix-class), 179
dim<-, sparseVector-method
   (sparseVector-class), 186
dimnames, 43, 50, 60, 65, 86, 94, 104, 105, 108, 113, 125, 127, 176, 193
dimnames, Matrix-method (Matrix-class), 126
dimnames, MatrixFactorization-method
   (MatrixFactorization-class), 130
dimnames, symmetricMatrix-method
   (symmetricMatrix-class), 193
dimnames<-, compMatrix, list-method
   (compMatrix-class), 44
dimnames<-, compMatrix, NULL-method
   (compMatrix-class), 44
dimnames<-, Matrix, list-method
   (Matrix-class), 126
dimnames<-,Matrix,NULL-method
   (Matrix-class), 126
dimnames<-,MatrixFactorization,list-method
   (MatrixFactorization-class), 130
dimnames<-,MatrixFactorization,NULL-method
   (MatrixFactorization-class), 130
dimScale, 63
dMatrix, 15, 49, 50, 63, 84
dMatrix-class, 64
dmperm, 65
double, 161, 172
dpoMatrix, 32, 33, 37, 75, 95, 132, 133, 199
dpoMatrix-class, 67
dppMatrix, 32, 33, 37, 146
dppMatrix-class (dpoMatrix-class), 67
drop, abIndex-method (abIndex-class), 5
drop, Matrix-method (Matrix-class), 126
drop0, 15, 65, 69, 138, 185
dscMatrix, 24–26, 37, 54, 83, 89, 90, 201–203
dscMatrix-class, 70
dsparseMatrix, 49, 57, 59, 71, 73
dsparseMatrix-class, 72
dsparseVector-class
   (sparseVector-class), 186
dspMatrix, 17, 20, 32, 147
dspMatrix-class (dsyMatrix-class), 74
dsRMatrix-class, 72
dstMatrix, 201, 203
dstMatrix-class (dsCMatrix-class), 70
dsyMatrix, 17, 18, 20, 32, 55, 68, 193, 200
dsyMatrix-class, 74
dtcMatrix, 25, 54, 62, 66, 82, 83, 174, 183
dtcMatrix-class, 75
dtpMatrix, 17, 32, 33, 81, 82
dtpMatrix-class, 77
dtrMatrix, 17, 32, 33, 55, 76, 78, 82, 83, 196
dtrMatrix-class, 79
dtrMatrix-class, 80
dtTMatrix-class (dtCMatrix-class), 75
eigen, 20, 21, 127
eigen, 153, 165, 167, 174, 183
error, 119
expand (expand-methods), 81
expand, CHMfactor-method
   (expand-methods), 81
expand, denseLU-method (expand-methods), 81
expand, sparseLU-method (expand-methods), 81
expand-methods, 81
expand1, 18, 20, 26, 33, 36, 37, 51, 120, 131, 153, 165, 167, 174, 183
expand1 (expand-methods), 81
expand1, BunchKaufman-method
   (expand-methods), 81
expand1, CHMsimpl-method
   (expand-methods), 81
expand1, CHMsuper-method
   (expand-methods), 81
expand1, Cholesky-method
   (expand-methods), 81
expand1, denseLU-method
   (expand-methods), 81
expand1, pBunchKaufman-method
   (expand-methods), 81
expand1, pCholesky-method
   (expand-methods), 81
expand1, Schur-method (expand-methods), 81
expand1, sparseLU-method
   (expand-methods), 81
expand1, sparseQR-method
   (expand-methods), 81
expand1-methods (expand-methods), 81
expand2, 18, 20, 26, 33, 37, 51, 87, 120, 131, 153, 165, 167, 174, 183
expand2 (expand-methods), 81
expand2, BunchKaufman-method
   (expand-methods), 81
expand2, CHMfactor-method
   (expand-methods), 81
expand2, CHMsimpl-method
   (expand-methods), 81
expand2, CHMsuper-method
   (expand-methods), 81
expand2, Cholesky-method
   (expand-methods), 81
expand2, denseLU-method
   (expand-methods), 81
expand2, pBunchKaufman-method
   (expand-methods), 81
expand2, pCholesky-method
   (expand-methods), 81
expand2, Schur-method (expand-methods), 81
expand2, sparseLU-method
   (expand-methods), 81
expand2, sparseQR-method
  (expand-methods), 81
expand2-methods (expand-methods), 81
expm, 65
expm (expm-methods), 84
expm, ddiMatrix-method (expm-methods), 84
expm, dgeMatrix-method (expm-methods), 84
expm, dMatrix-method (expm-methods), 84
expm, dsparseMatrix-method (expm-methods), 84
expm, dspMatrix-method (expm-methods), 84
expm, dsyMatrix-method (expm-methods), 84
expm, dtpMatrix-method (expm-methods), 84
expm, dtrMatrix-method (expm-methods), 84
expm, Matrix-method (expm-methods), 84
expm, matrix-method (expm-methods), 84
expm-methods, 84
extends, 125
externalFormats, 85
Extract, 191, 192
fac2Sparse (sparse.model.matrix), 171
fac2sparse, 172
fac2sparsen (sparse.model.matrix), 171
facmul (facmul-methods), 87
facmul-methods, 87
factor, 171, 172
FALSE, 104
fastMisc, 88
finite, 19, 27, 28, 35, 36, 119, 152, 167, 169, 200
forceSymmetric, 107
forceSymmetric
  (forceSymmetric-methods), 92
forceSymmetric, CsparseMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, CsparseMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, diagonalMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, diagonalMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, indMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, indMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, matrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, matrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, packedMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, packedMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, RsparseMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, RsparseMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, TsparseMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, TsparseMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric, unpackedMatrix, character-method
  (forceSymmetric-methods), 92
forceSymmetric, unpackedMatrix, missing-method
  (forceSymmetric-methods), 92
forceSymmetric-methods, 92
format, 93, 94, 149, 180
format, sparseMatrix-method
  (sparseMatrix-class), 179
formatSparseM, 93, 151
formatSpMatrix, 93, 94, 180
formatSpMatrix (printSpMatrix), 149
function, 108, 162
generalMatrix, 59, 90, 100, 177, 190, 195
generalMatrix-class, 94
get.gpar, 97
classDef, 150
classDef, 150
getValidity, 68, 193
graph, 40
graph2T (coerce-methods-graph), 40
grey, 96
grey, 96
grid.raster, 96
grid.rect, 97
head, 187
head, Matrix-method (Matrix-class), 126
head, sparseVector-method
  (sparseVector-class), 186
Hilbert, 95
identical, 145
identity, 25
image, 96, 127
image (image-methods), 96
image, ANY-method (image-methods), 96
image, CHMfactor-method (image-methods), 96
image, dgTMatrix-method (image-methods), 96
image, Matrix-method (image-methods), 96
iMatrix-class (Matrix-notyet), 128
index, 191
index-class, 98
indMatrix, 22, 147, 148
indMatrix-class, 99
Inf, 104
initialize, Matrix-method (Matrix-class), 126
initialize, sparseVector-method (sparseVector-class), 186
integer, 9, 47, 57, 70, 76, 138, 198
invertPerm, 101
invisible, 151
invPerm, 147, 148
invPerm (invertPerm), 101
is, 96
is.atomic, 9
is.finite, 103
is.finite (is.na-methods), 103
is.finite, abIndex-method (is.na-methods), 103
is.finite, dgeMatrix-method (is.na-methods), 103
is.finite, diagonalMatrix-method (is.na-methods), 103
is.finite, dspMatrix-method (is.na-methods), 103
is.finite, dsyMatrix-method (is.na-methods), 103
is.finite, dtpMatrix-method (is.na-methods), 103
is.finite, dtRMatrix-method (is.na-methods), 103
is.finite, indMatrix-method (is.na-methods), 103
is.finite, lgeMatrix-method (is.na-methods), 103
is.finite, lMatrix-method (is.na-methods), 103
is.finite, ltpMatrix-method (is.na-methods), 103
is.finite, ltrMatrix-method (is.na-methods), 103
is.finite, nMatrix-method (is.na-methods), 103
is.finite, sparseVector-method (is.na-methods), 103
is.finite, sparseVector-method (is.na-methods), 103
is.finite-methods (is.na-methods), 103
is.infinite, 103
is.infinite (is.na-methods), 103
is.infinite, abIndex-method (is.na-methods), 103
is.infinite, ddiMatrix-method (is.na-methods), 103
is.infinite, dgeMatrix-method (is.na-methods), 103
is.infinite, dsparseMatrix-method (is.na-methods), 103
is.infinite, dspMatrix-method (is.na-methods), 103
is.infinite, dsyMatrix-method (is.na-methods), 103
is.infinite, dtpMatrix-method (is.na-methods), 103
is.infinite, dtRMatrix-method (is.na-methods), 103
is.infinite, indMatrix-method (is.na-methods), 103
is.infinite, lMatrix-method (is.na-methods), 103
is.infinite, nMatrix-method (is.na-methods), 103
is.infinite, sparseVector-method (is.na-methods), 103
is.infinite, sparseVector-method (is.na-methods), 103
is.infinite-methods (is.na-methods), 103
is.na, 103
is.na (is.na-methods), 103
is.na, abIndex-method (is.na-methods), 103
<table>
<thead>
<tr>
<th>Method Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>is.na,dgeMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,dgeMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,diagonalMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,dsparseMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,dspMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,dsyMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,dtpMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,dtrMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,indMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,lgeMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,lsparseMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,lspMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,lsyMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,ltpMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,ltrMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,nMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,nsparseVector-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na,sparseVector-method</td>
<td>103</td>
</tr>
<tr>
<td>is.na-methods</td>
<td>103</td>
</tr>
<tr>
<td>is.nan,dtrMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.nan,indMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.nan,lMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.nan,nMatrix-method</td>
<td>103</td>
</tr>
<tr>
<td>is.nan,nsparseVector-method</td>
<td>103</td>
</tr>
<tr>
<td>is.nan,sparseVector-method</td>
<td>103</td>
</tr>
<tr>
<td>is.nan-methods</td>
<td>103</td>
</tr>
<tr>
<td>is.null,104,105</td>
<td></td>
</tr>
<tr>
<td>is.null.DN,104</td>
<td></td>
</tr>
<tr>
<td>isDiagonal,61</td>
<td></td>
</tr>
<tr>
<td>isDiagonal,isTriangular-methods</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,CsparseMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,diagonalMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,indMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,matrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,packedMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,RsparseMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,TsparseMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal,unpackedMatrix-method</td>
<td>107</td>
</tr>
<tr>
<td>isDiagonal-methods</td>
<td>107</td>
</tr>
<tr>
<td>isLDL,170</td>
<td></td>
</tr>
<tr>
<td>isLDL(CHMfactor-class),22</td>
<td></td>
</tr>
<tr>
<td>isSparseVector-class</td>
<td>186</td>
</tr>
<tr>
<td>isPerm,101</td>
<td></td>
</tr>
<tr>
<td>isSymmetric,89,107,108,133,145,193,195,196</td>
<td></td>
</tr>
<tr>
<td>isSymmetric,isSymmetric-methods,105</td>
<td></td>
</tr>
<tr>
<td>isSymmetric,dgCMatrix-method</td>
<td>105</td>
</tr>
<tr>
<td>Function</td>
<td>Type</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td><code>isSymmetric, dgRMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, dgTMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, diagonalMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, dtCMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, dtpMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, dtRMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, dtrMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, dtTMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, indMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, lgCMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, lgeMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, lgRMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, lgTMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, ngCMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, ngeMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, ngRMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, ngTMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, symmetricMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric, triangularMatrix-method</code></td>
<td>(isSymmetric-methods)</td>
</tr>
<tr>
<td><code>isSymmetric-methods</code></td>
<td></td>
</tr>
<tr>
<td><code>isSymmetric.matrix</code></td>
<td></td>
</tr>
<tr>
<td><code>isTriangular, 89, 145, 196</code></td>
<td></td>
</tr>
<tr>
<td><code>isTriangular, (isTriangular-methods), 107</code></td>
<td></td>
</tr>
<tr>
<td><code>isTriangular, dgCMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, dgeMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, dgRMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, dgTMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, diagonalMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, indMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, lgCMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, lgeMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, lgRMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, lgTMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, matrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, ngCMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, ngeMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, ngRMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, ngTMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, symmetricMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular, triangularMatrix-method</code></td>
<td>(isTriangular-methods)</td>
</tr>
<tr>
<td><code>isTriangular-methods</code></td>
<td></td>
</tr>
<tr>
<td><code>kappa</code></td>
<td></td>
</tr>
<tr>
<td><code>KhatriRao</code></td>
<td></td>
</tr>
<tr>
<td><code>KNex</code></td>
<td></td>
</tr>
<tr>
<td><code>kroncker. 13, 48, 53, 100, 109, 111, 128</code></td>
<td></td>
</tr>
<tr>
<td><code>kroncker (kroncker-methods)</code></td>
<td></td>
</tr>
<tr>
<td><code>kroncker, CsparseMatrix, CsparseMatrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
<tr>
<td><code>kroncker, CsparseMatrix, diagonalMatrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
<tr>
<td><code>kroncker, matrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
<tr>
<td><code>kroncker, denseMatrix, denseMatrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
<tr>
<td><code>kroncker, denseMatrix, Matrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
<tr>
<td><code>kroncker, diagonalMatrix, CsparseMatrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
<tr>
<td><code>kroncker, diagonalMatrix, diagonalMatrix-method</code></td>
<td>(kroncker-methods)</td>
</tr>
</tbody>
</table>
INDEX

(dMatrix-class), 64
Logic, lMatrix, sparseVector-method
(dMatrix-class), 64
Logic, logical, dMatrix-method
(dMatrix-class), 64
Logic, logical, lMatrix-method
(dMatrix-class), 64
Logic, logical, nMatrix-method
(nMatrix-class), 136
Logic, lsCMatrix, lsCMatrix-method
(lsparseMatrix-classes), 115
Logic, lsCMatrix, lsMatrix-method
(lsparseMatrix-classes), 115
Logic, Matrix, ANY-method
(Matrix-class), 126
Logic, Matrix, nMatrix-method
(Matrix-class), 126
Logic, ngeMatrix, ngeMatrix-method
(ngeMatrix-class), 135
Logic, nMatrix, logical-method
(nMatrix-class), 136
Logic, nMatrix, Matrix-method
(nMatrix-class), 136
Logic, nMatrix, nMatrix-method
(nMatrix-class), 136
Logic, numeric, dMatrix-method
(dMatrix-class), 64
Logic, numeric, lMatrix-method
(dMatrix-class), 64
Logic, numeric, nMatrix-method
(nMatrix-class), 136
Logic, sparseVector, dMatrix-method
(sparseVector-class), 186
Logic, sparseVector, dsCMatrix-method
(sparseVector-class), 186
Logic, triangularMatrix, diagonalMatrix-method
(triangularMatrix-class), 195
logical, 22, 59, 65, 68, 99, 100, 104, 106–108, 114, 121, 123, 125, 129, 137, 156, 187, 191
lsCMatrix, 193
lsCMatrix-class
(lsparseMatrix-classes), 115
lsCMatrix-class
(lsparseMatrix-classes), 115
lsCMatrix-class
(lsparseMatrix-classes), 115
lsRMatrix-class
(lsparseMatrix-classes), 115
lsyMatrix-class
(lsparseMatrix-classes), 115
lsyMatrix-class
(lsparseMatrix-classes), 117
lsTMatrix-class
(lsparseMatrix-classes), 115
ltpMatrix-class
(lsparseMatrix-classes), 115
ltrMatrix-class
(lsparseMatrix-classes), 118
ltRMatrix-class
(lsparseMatrix-classes), 115
ltRMatrix-class
(lsparseMatrix-classes), 118
ltTMatrix-class
(lsparseMatrix-classes), 115
LU, 51, 120, 174
lu, 20, 37, 45, 46, 51, 54, 83, 131, 153, 167, 170, 174, 180
lu (lu-methods), 119
lu, denseMatrix-method (lu-methods), 119
lu, dgCMatrix-method (lu-methods), 119
lu, dgeMatrix-method (lu-methods), 119
lu, dgRMatrix-method (lu-methods), 119
lu, dgTMatrix-method (lu-methods), 119
lu, diagonalMatrix-method (lu-methods), 119
lu, dsCMatrix-method (lu-methods), 119
lu, dspMatrix-method (lu-methods), 119
lu, dsRMatrix-method (lu-methods), 119
lu, dsTMatrix-method (lu-methods), 119
INDEX

lu, dsyMatrix-method (lu-methods), 119
lu, dtCMatrix-method (lu-methods), 119
lu, dtTMatrix-method (lu-methods), 119
lu, dtRMatrix-method (lu-methods), 119
lu, dtMatrix-method (lu-methods), 119
lu, dtTMatrix-method (lu-methods), 119
lu, dtMatrix-method (lu-methods), 119
lu, sparseMatrix-method (lu-methods), 119
LU-class (MatrixFactorization-class), 130
lu-methods, 119

mat2triplet, 121
Math, CsparseMatrix-method
(dcsparseMatrix-class), 47
Math, ddenseMatrix-method
(ddenseMatrix-class), 49
Math, denseMatrix-method
(denseMatrix-class), 52
Math, dgeMatrix-method
(dgeMatrix-class), 54
Math, diagonalMatrix-method
(diagonalMatrix-class), 60
Math, sparseMatrix-method
(sparseMatrix-class), 179
Math, sparseVector-method
(sparseVector-class), 186
Math2, dMatrix-method (dMatrix-class), 64
Math2, dsparseVector-method
(dsparseVector-class), 186
Math2, Matrix-method (Matrix-class), 126
Math2, sparseVector-method
(sparseVector-class), 186
matmult-methods, 122
Matrix, 7, 8, 12, 19, 22, 27, 31, 35–37, 43, 44,
49, 50, 53–55, 58–60, 63, 65, 68, 70,
72–77, 79, 82, 85, 89, 90, 92, 100,
103, 105–107, 111–114, 117–119,
122, 123, 124, 125, 128, 129, 131,
132, 135, 137, 138, 142, 143, 146,
148, 152, 156, 167, 169, 177, 179,
190, 193–196, 199, 200
matrix, 7, 10, 15, 61, 92, 93, 100, 104–107,
121, 125, 127, 132, 138, 191
Matrix-class, 126
Matrix-notyet, 128
matrix.csr, 42
MatrixClass, 129

MatrixFactorization, 16, 17, 23, 24, 32, 45,
51, 81, 83, 87, 165, 169, 170, 174,
182
MatrixFactorization-class, 130
max, 64
mean, denseMatrix-method
(denseMatrix-class), 52
mean, sparseMatrix-method
(sparseMatrix-class), 179
mean, sparseVector-method
(sparseVector-class), 186
method, 105
min, 64
model.frame, 171
model.matrix, 171, 172
NA, 22, 61, 65, 104, 107, 108, 111, 115, 136,
137, 180, 187, 191, 194
NA_integer_, 156
names, 43, 59
NaN, 104, 156
nCHMsimpl-class (CHMfactor-class), 22
nCHMsuper-class (CHMfactor-class), 22
ncol, 195
ndenseMatrix, 52
ndenseMatrix-class, 131
nearcor, 134
nearPD, 132
new, 24, 48, 175
ngCMatrices, 136
ngCMatrix-class
(nsparseMatrix-classes), 140
ngEMatrix, 132, 142, 143
ngEMatrix-class, 135
ngRMatrix-class
(nsparseMatrix-classes), 140
ngTMatrix, 41
ngTMatrix-class
(nsparseMatrix-classes), 140
nMatrix, 11, 15, 65, 89, 100, 104, 121, 123,
135
nMatrix-class, 136
nnzero, 69, 79, 163
nnzero (nnzero-methods), 137
nnzero, ANY-method (nnzero-methods), 137
nnzero, array-method (nnzero-methods), 137
nnzero, CHMfactor-method
(nnzero-methods), 137

42, 130, 134, 155, 159, 163
nnzero, denseMatrix-method (nnzero-methods), 137
nnzero, diagonalMatrix-method (nnzero-methods), 137
nnzero, indMatrix-method (nnzero-methods), 137
nnzero, sparseMatrix-method (nnzero-methods), 137
nnzero, vector-method (nnzero-methods), 137
nnzero-methods, 137
norm, 45, 46, 74, 75, 133, 139, 158, 159, 180
norm (norm-methods), 139
norm, ANY, missing-method (norm-methods), 139
norm, denseMatrix, character-method (norm-methods), 139
norm, dgeMatrix, character-method (norm-methods), 139
norm, diagonalMatrix, character-method (norm-methods), 139
norm, dspMatrix, character-method (norm-methods), 139
norm, dgeMatrix, character-method (norm-methods), 139
norm, dtrtMatrix, character-method (norm-methods), 139
norm, indMatrix, character-method (norm-methods), 139
norm, pMatrix, character-method (norm-methods), 139
norm, sparseMatrix, character-method (norm-methods), 139
norm-methods, 139
nrow, 195
nsCMatrix-class (nsparseMatrix-classes), 140
nsparseMatrix, 15, 59, 99, 121, 123, 136, 137, 162, 163, 176, 180
nsparseMatrix-class (nsparseMatrix-classes), 140
nsparseMatrix-classes, 140
nsparseVector, 104
nsparseVector-class (SparseVector-class), 186
nspMatrix-class (nsyMatrix-class), 142
nsRMatrix-class (nsparseMatrix-classes), 140
nsyMatrix, 136
nsyMatrix-class, 142
ntCMatrix-class (nsparseMatrix-classes), 140
ntpMatrix-class (ntnMatrix-class), 143
ntRMatrix-class (nsparseMatrix-classes), 140
ntnMatrix-class, 143
ntTMatrix-class (nsparseMatrix-classes), 140
NULL, 85, 94, 104, 125, 150, 162, 176
number-class, 144
numeric, 5, 6, 9, 42, 43, 57, 68, 72, 110, 137
onenormest, 139
onenormest (condest), 45
Ops, 5, 61, 80, 187
Ops, abIndex, abIndex-method (abIndex-class), 5
Ops, abIndex, ANY-method (abIndex-class), 5
Ops, ANY, abIndex-method (abIndex-class), 5
Ops, ANY, ddiMatrix-method (ddiMatrix-class), 49
Ops, ANY, ldiMatrix-method (ldiMatrix-class), 113
Ops, ANY, Matrix-method (Matrix-class), 126
Ops, ANY, sparseVector-method (SparseVector-class), 186
Ops, atomicVector, sparseVector-method (atomicVector-class), 9
Ops, ddiMatrix, ANY-method (ddiMatrix-class), 49
Ops, ddiMatrix, ddiMatrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, dMatrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, ldiMatrix-method (ddiMatrix-class), 49
Ops, ddiMatrix, logical-method (ddiMatrix-class), 49
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ops,\texttt{ddiMatrix},\texttt{Matrix}-method</td>
<td>(\texttt{ddiMatrix}-class)</td>
<td>49</td>
</tr>
<tr>
<td>Ops,\texttt{ddiMatrix},\texttt{numeric}-method</td>
<td>(\texttt{ddiMatrix}-class)</td>
<td>49</td>
</tr>
<tr>
<td>Ops,\texttt{ddiMatrix},\texttt{sparseMatrix}-method</td>
<td>(\texttt{ddiMatrix}-class)</td>
<td>49</td>
</tr>
<tr>
<td>Ops,\texttt{diagonalMatrix},\texttt{triangularMatrix}-method</td>
<td>(\texttt{diagonalMatrix}-class)</td>
<td>60</td>
</tr>
<tr>
<td>Ops,\texttt{dMatrix},\texttt{ddiMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{dMatrix},\texttt{dMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{dMatrix},\texttt{ldiMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{dMatrix},\texttt{lMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{dMatrix},\texttt{nMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{dpoMatrix},\texttt{logical}-method</td>
<td>(\texttt{dpoMatrix}-class)</td>
<td>67</td>
</tr>
<tr>
<td>Ops,\texttt{dpoMatrix},\texttt{numeric}-method</td>
<td>(\texttt{dpoMatrix}-class)</td>
<td>67</td>
</tr>
<tr>
<td>Ops,\texttt{dppMatrix},\texttt{logical}-method</td>
<td>(\texttt{dppMatrix}-class)</td>
<td>67</td>
</tr>
<tr>
<td>Ops,\texttt{dppMatrix},\texttt{numeric}-method</td>
<td>(\texttt{dppMatrix}-class)</td>
<td>67</td>
</tr>
<tr>
<td>Ops,\texttt{dsparseMatrix},\texttt{nsparseMatrix}-method</td>
<td>(\texttt{dsparseMatrix}-class)</td>
<td>72</td>
</tr>
<tr>
<td>Ops,\texttt{ldenseMatrix},\texttt{ldenseMatrix}-method</td>
<td>(\texttt{ldenseMatrix}-class)</td>
<td>112</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{ANY}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{ddiMatrix}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{dMatrix}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{ldiMatrix}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{logical}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{Matrix}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{ldiMatrix},\texttt{sparseMatrix}-method</td>
<td>(\texttt{ldiMatrix}-class)</td>
<td>113</td>
</tr>
<tr>
<td>Ops,\texttt{lMatrix},\texttt{dMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{lMatrix},\texttt{lMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{lMatrix},\texttt{nMatrix}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{lMatrix},\texttt{numeric}-method</td>
<td>(\texttt{dMatrix}-class)</td>
<td>64</td>
</tr>
<tr>
<td>Ops,\texttt{logical},\texttt{dpoMatrix}-method</td>
<td>(\texttt{dpoMatrix}-class)</td>
<td>67</td>
</tr>
<tr>
<td>Ops,\texttt{logical},\texttt{dppMatrix}-method</td>
<td>(\texttt{dppMatrix}-class)</td>
<td>67</td>
</tr>
<tr>
<td>Ops,\texttt{lsparseMatrix},\texttt{lsparseMatrix}-method</td>
<td>(\texttt{lsparseMatrix}-classes)</td>
<td>115</td>
</tr>
<tr>
<td>Ops,\texttt{lsparseMatrix},\texttt{nsparseMatrix}-method</td>
<td>(\texttt{lsparseMatrix}-classes)</td>
<td>115</td>
</tr>
<tr>
<td>Ops,\texttt{Matrix},\texttt{ANY}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{Matrix},\texttt{ddiMatrix}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{Matrix},\texttt{ldiMatrix}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{Matrix},\texttt{matrix}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{matrix},\texttt{Matrix}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{Matrix},\texttt{NULL}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{Matrix},\texttt{sparseVector}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{ndenseMatrix},\texttt{ndenseMatrix}-method (\texttt{ndenseMatrix}-class)</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nMatrix},\texttt{dMatrix}-method (\texttt{nMatrix}-class)</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nMatrix},\texttt{ldiMatrix}-method (\texttt{nMatrix}-class)</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nMatrix},\texttt{ldiMatrix}-method (\texttt{nMatrix}-class)</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nMatrix},\texttt{numeric}-method (\texttt{nMatrix}-class)</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nsparseMatrix},\texttt{dsparseMatrix}-method (\texttt{nsparseMatrix}-classes)</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nsparseMatrix},\texttt{lsparseMatrix}-method (\texttt{nsparseMatrix}-classes)</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{nsparseMatrix},\texttt{nsparseMatrix}-method (\texttt{nsparseMatrix}-classes)</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{NULL},\texttt{Matrix}-method (\texttt{Matrix}-class)</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Ops,\texttt{numeric},\texttt{dpoMatrix}-method (\texttt{dpoMatrix}-class)</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>
Ops, numeric, dppMatrix-method
(dpoMatrix-class), 67
Ops, numeric, tMatrix-method
(tMatrix-class), 64
Ops, numeric, nMatrix-method
(nMatrix-class), 136
Ops, numeric, sparseMatrix-method
(sparseMatrix-class), 179
Ops, sparseMatrix, ddiMatrix-method
(sparseMatrix-class), 179
Ops, sparseMatrix, ldiMatrix-method
(sparseMatrix-class), 179
Ops, sparseMatrix, nMatrix-method
(sparseMatrix-class), 179
Ops, sparseMatrix, sparseVector-method
(sparseVector-class), 186
Ops, sparseVector, ANY-method
(sparseVector-class), 186
Ops, sparseVector, atomicVector-method
(sparseVector-class), 186
Ops, sparseVector, Matrix-method
(sparseVector-class), 186
Ops, sparseVector, sparseVector-method
(sparseVector-class), 186
options, 25, 150, 187
order, 102, 121, 197
outer, 127
pack, 74, 80, 144, 147, 200
pack, dgeMatrix-method (pack), 144
pack, lgeMatrix-method (pack), 144
pack, matrix-method (pack), 144
pack, ngeMatrix-method (pack), 144
pack, packedMatrix-method (pack), 144
pack, sparseMatrix-method (pack), 144
pack-methods (pack), 144
packedMatrix, 19, 36, 52, 89, 144, 200
packedMatrix-class, 146
panel.levelplot.raster, 96
paste, 172
pBunchKaufman, 19, 20, 82, 131, 146
pBunchKaufman-class
(BunchKaufman-class), 16
pCholesky, 36, 37, 82, 131, 146
pCholesky-class (Cholesky-class), 31
pcorMatrix-class (dpoMatrix-class), 67
plot.default, 96
pMatrix, 66, 82, 83, 99, 100, 102
pMatrix-class, 147
posdefify, 132–134
print, 61, 94, 96, 127, 149, 150, 179, 180
print, diagonalMatrix-method
(diagonalMatrix-class), 60
print, sparseMatrix-method
(sparseMatrix-class), 179
print.default, 93, 150
print.sparseMatrix
(sparseMatrix-class), 179
print.trellis, 97
printSpMatrix, 94, 127, 149, 179
printSpMatrix2 (printSpMatrix), 149
prod, 64
prod, ddiMatrix-method
(ddiMatrix-class), 49
prod, ldiMatrix-method
(ldiMatrix-class), 113
QR, 152, 182
qr, 20, 37, 45, 83, 120, 131, 152, 153,
155–157, 167, 170, 182, 183
qr (qr-methods), 151
qr, dgCMatrix-method (qr-methods), 151
qr, sparseMatrix-method (qr-methods), 151
QR-class (MatrixFactorization-class),
130
qr-methods, 151
qr.coef, 169, 170, 183
qr.coef, sparseQR, dgeMatrix-method
(sparseQR-class), 181
qr.coef, sparseQR, Matrix-method
(sparseQR-class), 181
qr.coef, sparseQR, matrix-method
(sparseQR-class), 181
qr.coef, sparseQR, numLike-method
(sparseQR-class), 181
qr.default, 152
qr.fitted, 183
qr.fitted, sparseQR, dgeMatrix-method
(sparseQR-class), 181
qr.fitted, sparseQR, Matrix-method
(sparseQR-class), 181
qr.fitted, sparseQR, matrix-method
(sparseQR-class), 181
qr.fitted, sparseQR, numLike-method
(sparseQR-class), 181
qr.Q, 183
qr.Q, sparseQR-method (sparseQR-class), 181
qr.qty, 183
qr.qty, sparseQR, dgeMatrix-method (sparseQR-class), 181
qr.qty, sparseQR, Matrix-method (sparseQR-class), 181
qr.qty, sparseQR, matrix-method (sparseQR-class), 181
qr.qty, sparseQR, numLike-method (sparseQR-class), 181
qr.R, 183
qr.R, sparseQR-method (sparseQR-class), 181
qr.resid, 183
qr.resid, sparseQR, dgeMatrix-method (sparseQR-class), 181
qr.resid, sparseQR, Matrix-method (sparseQR-class), 181
qr.resid, sparseQR, matrix-method (sparseQR-class), 181
qr.resid, sparseQR, numLike-method (sparseQR-class), 181
qr.solve, 183
qr.X, 183
qr.X, sparseQR-method (sparseQR-class), 181
qr2rankMatrix (rankMatrix), 155
qrR (sparseQR-class), 181
range, 64
rankMatrix, 155
rbind, 21, 22, 180
rbind2, 21
rbind2 (cbind2-methods), 21
rbind2, ANY, Matrix-method (cbind2-methods), 21
rbind2, atomicVector, ddiMatrix-method (cbind2-methods), 21
rbind2, atomicVector, Matrix-method (cbind2-methods), 21
rbind2, ddiMatrix, atomicVector-method (cbind2-methods), 21
rbind2, ddiMatrix, matrix-method (cbind2-methods), 21
rbind2, denseMatrix, denseMatrix-method (cbind2-methods), 21
rbind2, denseMatrix, matrix-method (cbind2-methods), 21
rbind2, denseMatrix, numeric-method (cbind2-methods), 21
rbind2, denseMatrix, sparseMatrix-method (cbind2-methods), 21
rbind2, diagonalMatrix, sparseMatrix-method (cbind2-methods), 21
rbind2, indMatrix, indMatrix-method (cbind2-methods), 21
rbind2, ldiMatrix, atomicVector-method (cbind2-methods), 21
rbind2, ldiMatrix, matrix-method (cbind2-methods), 21
rbind2, Matrix, ANY-method (cbind2-methods), 21
rbind2, Matrix, numeric-method (cbind2-methods), 21
rbind2, Matrix, sparseMatrix-method (cbind2-methods), 21
rbind2, matrix, ddiMatrix-method (cbind2-methods), 21
rbind2, matrix, denseMatrix-method (cbind2-methods), 21
rbind2, matrix, ldiMatrix-method (cbind2-methods), 21
rbind2, matrix, Matrix-method (cbind2-methods), 21
rbind2, matrix, NULL-method (cbind2-methods), 21
rbind2, matrix, sparseMatrix-method (cbind2-methods), 21
rbind2, NULL, Matrix-method (cbind2-methods), 21
rbind2, numeric, denseMatrix-method (cbind2-methods), 21
rbind2, sparseMatrix, denseMatrix-method (cbind2-methods), 21
rbind2, sparseMatrix, diagonalMatrix-method  
  (cbind2-methods), 21
rbind2, sparseMatrix, matrix-method  
  (cbind2-methods), 21
rbind2, sparseMatrix, sparseMatrix-method  
  (cbind2-methods), 21
rbind2-methods (cbind2-methods), 21
rcond, 46, 55, 68, 74, 75, 169
rcond (rcond-methods), 158
rcond, ANY, missing-method  
  (rcond-methods), 158
rcond, denseMatrix, character-method  
  (rcond-methods), 158
rcond, dgeMatrix, character-method  
  (rcond-methods), 158
rcond, diagonalMatrix, character-method  
  (rcond-methods), 158
rcond, dpoMatrix, character-method  
  (rcond-methods), 158
rcond, dppMatrix, character-method  
  (rcond-methods), 158
rcond, dspMatrix, character-method  
  (rcond-methods), 158
rcond, dsymatrix, character-method  
  (rcond-methods), 158
rcond, dtMatrix, character-method  
  (rcond-methods), 158
rcond, dtpMatrix, character-method  
  (rcond-methods), 158
rcond, dsyMatrix, character-method  
  (rcond-methods), 158
rcond, dgeMatrix, character-method  
  (rcond-methods), 158
rcond, indMatrix, character-method  
  (rcond-methods), 158
rcond, pMatrix, character-method  
  (rcond-methods), 158
rcond, sparseMatrix, character-method  
  (rcond-methods), 158
rcond-methods, 158
readHB (externalFormats), 85
readMM (externalFormats), 85
rep, denseMatrix-method  
  (denseMatrix-class), 52
rep, sparseMatrix-method  
  (sparseMatrix-class), 179
rep, sparseVector-method  
  (sparseVector-class), 186
rep.int, 160
rep2abI, 7, 160
replValue-class, 161
rle, 5–7, 161, 162
rleDiff, 5
rleDiff-class, 161
round, 64
rowMeans, 127
rowMeans (colSums-methods), 42
rowMeans, CsparseMatrix-method  
  (colSums-methods), 42
rowMeans, denseMatrix-method  
  (colSums-methods), 42
rowMeans, diagonalMatrix-method  
  (colSums-methods), 42
rowMeans, indMatrix-method  
  (colSums-methods), 42
rowMeans, RsparseMatrix-method  
  (colSums-methods), 42
rowMeans, TsparseMatrix-method  
  (colSums-methods), 42
rowMeans-methods (colSums-methods), 42
rowScale (dimScale), 63
rowSums (colSums-methods), 42
rowSums, CsparseMatrix-method  
  (colSums-methods), 42
rowSums, denseMatrix-method  
  (colSums-methods), 42
rowSums, diagonalMatrix-method  
  (colSums-methods), 42
rowSums, indMatrix-method  
  (colSums-methods), 42
rowSums, RsparseMatrix-method  
  (colSums-methods), 42
rowSums, TsparseMatrix-method  
  (colSums-methods), 42
rowSums-methods (colSums-methods), 42
RsparseMatrix, 11, 56, 73, 89, 90, 115, 140, 172, 175–177
rsparsematrix, 162, 177
RsparseMatrix-class, 163
sample.int, 163
Schur, 20, 37, 45, 66, 82, 83, 85, 120, 131, 153, 165, 167, 170, 196
Schur (Schur-methods), 166
Schur, dgeMatrix-method (Schur-methods), 166
Schur, diagonalMatrix-method  
  (Schur-methods), 166
Schur, dsysMatrix-method (Schur-methods), 166
INDEX

Schur, generalMatrix-method
   (Schur-methods), 166
Schur, matrix-method (Schur-methods), 166
Schur, symmetricMatrix-method
   (Schur-methods), 166
Schur, triangularMatrix-method
   (Schur-methods), 166
Schur-class, 164
Schur-methods, 166
SchurFactorization, 165, 167
SchurFactorization-class
   (MatrixFactorization-class), 130
seq, 6
seqMat-class (abIndex-class), 5
set.seed, 46
setClassUnion, 98, 144, 161, 186
show, 5, 94, 127, 149, 150, 161, 179, 187
show, abIndex-method (abIndex-class), 5
show,BunchKaufmanFactorization-method
   (MatrixFactorization-class), 130
show,CholeskyFactorization-method
   (MatrixFactorization-class), 130
show,denseMatrix-method
   (denseMatrix-class), 52
show,diagonalMatrix-method
   (diagonalMatrix-class), 60
show,LU-method
   (MatrixFactorization-class), 130
show,MatrixFactorization-method
   (MatrixFactorization-class), 130
show,QR-method
   (MatrixFactorization-class), 130
show,rleDiff-method (rleDiff-class), 161
show, SchurFactorization-method
   (MatrixFactorization-class), 130
show,sparseMatrix-method
   (sparseMatrix-class), 179
show,sparseVector-method
   (sparseVector-class), 186
showClass, 50, 74, 117, 118, 142, 143, 158, 194
showMethods, 49, 53, 114, 117, 118, 136, 142,

signif, 64
signPerm (invertPerm), 101
skewpart, 107
skewpart (symmpart-methods), 194
skewpart,CsparseMatrix-method
   (symmpart-methods), 194
skewpart,diagonalMatrix-method
   (symmpart-methods), 194
skewpart,indMatrix-method
   (symmpart-methods), 194
skewpart,matrix-method
   (symmpart-methods), 194
skewpart,packedMatrix-method
   (symmpart-methods), 194
skewpart,RsparseMatrix-method
   (symmpart-methods), 194
skewpart,TsparseMatrix-method
   (symmpart-methods), 194
skewpart,unpackedMatrix-method
   (symmpart-methods), 194
skewpart-methods (symmpart-methods), 194
slot, 106
solve, 31, 47, 55, 68, 75, 158, 159, 168, 170
solve (solve-methods), 168
solve, ANY, ANY-method (solve-methods), 168
solve,BunchKaufman,dgeMatrix-method
   (solve-methods), 168
solve,BunchKaufman,missing-method
   (solve-methods), 168
solve,CHMfactor,dgCMatrix-method
   (solve-methods), 168
solve,CHMfactor,dgeMatrix-method
   (solve-methods), 168
solve,CHMfactor,missing-method
   (solve-methods), 168
solve,Cholesky,dgeMatrix-method
   (solve-methods), 168
solve,Cholesky,missing-method
   (solve-methods), 168
solve,CsparseMatrix,ANY-method
   (solve-methods), 168
solve,ddiMatrix,Matrix-method
   (solve-methods), 168
solve,ddiMatrix,matrix-method
   (solve-methods), 168
solve,ddiMatrix,missing-method
(solve-methods), 168
solve,ddiMatrix,numLike-method (solve-methods), 168
solve,ddiMatrix,missing-method (solve-methods), 168
solve,denseLU,dgeMatrix-method (solve-methods), 168
solve,denseLU,missing-method (solve-methods), 168
solve,denseMatrix,ANY-method (solve-methods), 168
solve,dgCMatrix,denseMatrix-method (solve-methods), 168
solve,dgCMatrix,dgeMatrix-method (solve-methods), 168
solve,dgCMatrix,missing-method (solve-methods), 168
solve,dgCMatrix,numLike-method (solve-methods), 168
solve,dgCMatrix,sparseMatrix-method (solve-methods), 168
solve,dgeMatrix,ANY-method (solve-methods), 168
solve,diagonalMatrix,ANY-method (solve-methods), 168
solve,dpoMatrix,ANY-method (solve-methods), 168
solve,dppMatrix,ANY-method (solve-methods), 168
solve,dsCMatrix,denseMatrix-method (solve-methods), 168
solve,dsCMatrix,dgeMatrix-method (solve-methods), 168
solve,dsCMatrix,missing-method (solve-methods), 168
solve,dsCMatrix,triangularMatrix-method (solve-methods), 168
solve,dsCMatrix,ANY-method (solve-methods), 168
solve,dsCMatrix,numLike-method (solve-methods), 168
solve,dsCMatrix,sparseMatrix-method (solve-methods), 168
solve,dspMatrix,ANY-method (solve-methods), 168
solve,dsyMatrix,ANY-method (solve-methods), 168
solve,dtCMatrix,dgeMatrix-method (solve-methods), 168
solve,dtCMatrix,missing-method (solve-methods), 168
solve,dtCMatrix,triangularMatrix-method (solve-methods), 168
solve,dtCMatrix,ANY-method (solve-methods), 168
solve,dtCMatrix,numLike-method (solve-methods), 168
solve,dtCMatrix,sparseMatrix-method (solve-methods), 168
solve,pBunchKaufman,dgeMatrix-method (solve-methods), 168
solve,pBunchKaufman,missing-method (solve-methods), 168
solve,pCholesky,dgeMatrix-method (solve-methods), 168
solve-methods, 168
solve,pCholesky,missing-method
(solve-methods), 168
solve,pMatrix,Matrix-method
(solve-methods), 168
solve,pMatrix,matrix-method
(solve-methods), 168
solve,pMatrix,missing-method
(solve-methods), 168
solve,pMatrix,numLike-method
(solve-methods), 168
solve,RsparseMatrix,ANY-method
(solve-methods), 168
solve,Schur,ANY-method
(solve-methods), 168
solve,sparseLU,dgCMatrix-method
(solve-methods), 168
solve,sparseLU,dgeMatrix-method
(solve-methods), 168
solve,sparseLU,missing-method
(solve-methods), 168
solve,sparseLU,missing-method
(solve-methods), 168
solve,sparseQR,missing-method
(solve-methods), 168
solve,sparseQR,missing-method
(solve-methods), 168
solve,triangularMatrix,CsparseMatrix-method
(solve-methods), 168
solve,triangularMatrix,denseMatrix-method
(solve-methods), 168
solve,triangularMatrix,dgCMatrix-method
(solve-methods), 168
solve,triangularMatrix,dgeMatrix-method
(solve-methods), 168
solve,triangularMatrix,diagonalMatrix-method
(solve-methods), 168
solve,triangularMatrix,indMatrix-method
(solve-methods), 168
solve,triangularMatrix,matrix-method
(solve-methods), 168
solve,triangularMatrix,numLike-method
(solve-methods), 168
solve,triangularMatrix,RsparseMatrix-method
(solve-methods), 168
solve,triangularMatrix,TsparseMatrix-method
(solve-methods), 168
solve,TsparseMatrix,ANY-method
INDEX

Summary,lMatrix-method (dMatrix-class), 64
Summary,Matrix-method (Matrix-class), 126
Summary,ndenseMatrix-method (ndenseMatrix-class), 131
Summary,nMatrix-method (nMatrix-class), 136
Summary,nsparsesVector-method (sparseVector-class), 186
sum,sparseMatrix-method (sparseMatrix-class), 179
summary,sparseVector-method (sparseVector-class), 186
svd, 127, 139, 156, 157
symmetricMatrix, 11, 31, 59, 63, 71, 73, 90, 92, 95, 107, 122, 123, 125, 138, 145, 162, 195, 196
symmetricMatrix-class, 193
symmpart, 92, 107, 132, 133
symmpart,symmpart-methods, 194
symmpart,CsparseMatrix-method (symmpart-methods), 194
symmpart,diagonalMatrix-method (symmpart-methods), 194
symmpart,indMatrix-method (symmpart-methods), 194
symmpart,matrix-method (symmpart-methods), 194
symmpart,packedMatrix-method (symmpart-methods), 194
symmpart,RsparseMatrix-method (symmpart-methods), 194
symmpart,TsparseMatrix-method (symmpart-methods), 194
symmpart,unpackedMatrix-method (symmpart-methods), 194
symmpart-methods, 194
t, 75, 114, 117, 118, 122, 136, 143, 156, 172
t,CsparseMatrix-method (CsparseMatrix-class), 47
t,diagonalMatrix-method (diagonalMatrix-class), 60
t,indMatrix-method (indMatrix-class), 99
t,packedMatrix-method (packedMatrix-class), 146
t,pMatrix-method (pMatrix-class), 147
t,RsparseMatrix-method (RsparseMatrix-class), 163
t,sparseVector-method (sparseVector-class), 186
t,TsparseMatrix-method (TsparseMatrix-class), 196
t,unpackedMatrix-method (unpackedMatrix-class), 199
T2graph, 180
T2graph (coerce-methods-graph), 40
tail,Matrix-method (Matrix-class), 126
tail,sparseVector-method (sparseVector-class), 186
tcrossprod, 16, 25, 122, 124, 200
tcrossprod (matmult-methods), 122
tcrossprod,ANY,ANY-method (matmult-methods), 122
tcrossprod,ANY,Matrix-method (matmult-methods), 122
tcrossprod,ANY,RsparseMatrix-method (matmult-methods), 122
tcrossprod,ANY,symmetricMatrix-method (matmult-methods), 122
tcrossprod,ANY,TsparseMatrix-method (matmult-methods), 122
tcrossprod,ANY,TsparseMatrix-method (matmult-methods), 122
tcrossprod,CsparseMatrix,CsparseMatrix-method (matmult-methods), 122
tcrossprod,CsparseMatrix,ddenseMatrix-method (matmult-methods), 122
tcrossprod,CsparseMatrix,diagonalMatrix-method (matmult-methods), 122
tcrossprod,CsparseMatrix,matrix-method (matmult-methods), 122
tcrossprod,CsparseMatrix,missing-method (matmult-methods), 122
tcrossprod,CsparseMatrix,numLike-method (matmult-methods), 122
tcrossprod,ddenseMatrix,CsparseMatrix-method (matmult-methods), 122
tcrossprod,ddenseMatrix,ddenseMatrix-method (matmult-methods), 122
tcrossprod,ddenseMatrix,dsCMatrix-method (matmult-methods), 122
tcrossprod,ddenseMatrix,dtMatrix-method (matmult-methods), 122
tcrossprod,ddenseMatrix,ldenseMatrix-method (matmult-methods), 122
tcrossprod,ddenseMatrix,lsCMatrix-method (matmult-methods), 122
Index

(matmult-methods), 122

tcrossprod, ddenseMatrix, matrix-method (matmult-methods), 122
tcrossprod, ddenseMatrix, missing-method (matmult-methods), 122
tcrossprod, ddenseMatrix, ndenseMatrix-method (matmult-methods), 122
tcrossprod, ddenseMatrix, nsCMatrix-method (matmult-methods), 122
tcrossprod, denseMatrix, diagonalMatrix-method (matmult-methods), 122
tcrossprod, denseMatrix, diagonalMatrix-method (matmult-methods), 122
tcrossprod, dgeMatrix, dgeMatrix-method (matmult-methods), 122
tcrossprod, dgeMatrix, matrix-method (matmult-methods), 122
tcrossprod, dgeMatrix, missing-method (matmult-methods), 122
tcrossprod, dgeMatrix, numLike-method (matmult-methods), 122
tcrossprod, diagonalMatrix, CsparseMatrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, denseMatrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, diagonalMatrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, diagonalMatrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, matrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, missing-method (matmult-methods), 122
tcrossprod, diagonalMatrix, RsparseMatrix-method (matmult-methods), 122
tcrossprod, diagonalMatrix, TsparseMatrix-method (matmult-methods), 122
tcrossprod, dtrMatrix, dtrMatrix-method (matmult-methods), 122
tcrossprod, indMatrix, Matrix-method (matmult-methods), 122
tcrossprod, indMatrix, mMatrix-method (matmult-methods), 122
tcrossprod, indMatrix, missing-method (matmult-methods), 122
tcrossprod, ldenseMatrix, ddenseMatrix-method (matmult-methods), 122
tcrossprod, ldenseMatrix, ldenseMatrix-method (matmult-methods), 122
tcrossprod, ldenseMatrix, matrix-method (matmult-methods), 122
tcrossprod, ldenseMatrix, missing-method (matmult-methods), 122
INDEX

(matmult-methods), 122
tcrossprod, ndenseMatrix, ndenseMatrix-method
(matmult-methods), 122
tcrossprod, numLike, CsparseMatrix-method
(matmult-methods), 122
tcrossprod, numLike, dgeMatrix-method
(matmult-methods), 122
tcrossprod, numLike, Matrix-method
(matmult-methods), 122
tcrossprod, numLike, sparseVector-method
(matmult-methods), 122
tcrossprod, pMatrix, Matrix-method
(matmult-methods), 122
tcrossprod, pMatrix, matrix-method
(matmult-methods), 122
tcrossprod, pMatrix, missing-method
(matmult-methods), 122
tcrossprod, RsparseMatrix, ANY-method
(matmult-methods), 122
tcrossprod, RsparseMatrix, diagonalMatrix-method
(matmult-methods), 122
tcrossprod, RsparseMatrix, mMatrix-method
(matmult-methods), 122
tcrossprod, sparseMatrix, sparseVector-method
(matmult-methods), 122
tcrossprod, sparseVector, missing-method
(matmult-methods), 122
tcrossprod, sparseVector, mMatrix-method
(matmult-methods), 122
tcrossprod, sparseVector, numLike-method
(matmult-methods), 122
tcrossprod, sparseVector, sparseMatrix-method
(matmult-methods), 122
tcrossprod, sparseVector, sparseVector-method
(matmult-methods), 122
tcrossprod, TsparseMatrix, ANY-method
(matmult-methods), 122
tcrossprod, TsparseMatrix, diagonalMatrix-method
(matmult-methods), 122
tcrossprod, TsparseMatrix, Matrix-method
(matmult-methods), 122
tcrossprod, TsparseMatrix, missing-method
(matmult-methods), 122
tcrossprod, TsparseMatrix, TsparseMatrix-method
(matmult-methods), 122

tcrossprod-methods (matmult-methods), 122
toeplitz, sparseVector-method
(sparseVector-class), 186
toeplitz, sparseVector-method
(triangularMatrix, 10, 28, 36, 59, 62, 63, 76, 77, 79–81, 90, 92, 95, 108, 118, 123, 125, 143, 145, 193
triangularMatrix-class, 195
tril (band-methods), 9
tril, CsparseMatrix-method
(band-methods), 9
tril, denseMatrix-method (band-methods), 9
tril, diagonalMatrix-method
(band-methods), 9
tril, indMatrix-method (band-methods), 9
tril, matrix-method (band-methods), 9
tril, RsparseMatrix-method
(band-methods), 9
tril, TsparseMatrix-method
(band-methods), 9
tril-methods (band-methods), 9
triu (band-methods), 9
triu, CsparseMatrix-method
(band-methods), 9
triu, denseMatrix-method (band-methods), 9
triu, diagonalMatrix-method
(band-methods), 9
triu, indMatrix-method (band-methods), 9
triu, matrix-method (band-methods), 9
triu, RsparseMatrix-method
(band-methods), 9
triu, TsparseMatrix-method
(band-methods), 9
triu-methods (band-methods), 9
TRUE, 65, 104
tryCatch, 120
TsparseMatrix, 11–13, 40, 41, 57, 71, 89, 90, 115, 121, 140, 172, 175–177, 189, 190, 197, 198
TsparseMatrix-class, 196
type, 191
typeof, 59
uniqTsparse, 57, 115, 121, 197
unnamed, Matrix-method (Matrix-class), 126
unnamed, MatrixFactorization-method
(MatrixFactorization-class), 130
unpack, 147, 200
unpack (pack), 144
unpack, matrix-method (pack), 144
unpack, packedMatrix-method (pack), 144
unpack, sparseMatrix-method (pack), 144
unpack, unpackedMatrix-method (pack), 144
unpack-methods (pack), 144
unpackMatrix, 36, 52, 89, 144, 147
unpackedMatrix-class, 199
update, 201
update, CHMfactor-method
(CHMfactor-class), 22
updown, 26
updown (updown-methods), 200
updown, character, Matrix, CHMfactor-method
(updown-methods), 200
updown, character, matrix, CHMfactor-method
(updown-methods), 200
updown, logical, dgCMatrix, CHMfactor-method
(updown-methods), 200
updown, logical, dsCMatrix, CHMfactor-method
(updown-methods), 200
updown, logical, dtCMatrix, CHMfactor-method
(updown-methods), 200
updown, logical, Matrix, CHMfactor-method
(updown-methods), 200
updown, logical, matrix, CHMfactor-method
(updown-methods), 200
updown-methods, 200
USCounties, 201
validObject, 48
warning, 19, 119
which, 61, 65, 112, 116, 131, 141
which, ldenseMatrix-method
(ldenseMatrix-class), 112
which, ldiMatrix-method
(ldiMatrix-class), 113
which, lsparseMatrix-method
(lsparseMatrix-classes), 115
which, lsparseVector-method
(sparseVector-class), 186
which, ndenseMatrix-method
(ndenseMatrix-class), 131
which, nsparseMatrix-method
(nsparseMatrix-classes), 140
which, nsparseVector-method
(sparseVector-class), 186
writeMM, 180
writeMM (externalFormats), 85
writeMM, CsparseMatrix-method
(externalFormats), 85
writeMM, sparseMatrix-method
(externalFormats), 85
wrld_1deg, 202
xsparseVector-class
(sparseVector-class), 186
xtabs, 177, 180
zapsmall, 69, 138
zapsmall, dMatrix-method
(dMatrix-class), 64
zMatrix-class (Matrix-notyet), 128
zsparsesVector-class
(sparseVector-class), 186