Package ‘MatrixCorrelation’

September 24, 2017

Encoding latin1
Type Package
Title Matrix Correlation Coefficients
Version 0.9.2
Date 2017-09-24
Author Kristian Hovde Liland [aut, cre],
 Tormod Næs [ctb],
 Ulf Geir Indahl [ctb]
Maintainer Kristian Hovde Liland <kristian.liland@nmbu.no>
Description Computation and visualization of matrix correlation coefficients.
 The main method is the Similarity of Matrices Index, while various related
 measures like r1, r2, r3, r4, Yanai's GCD, RV, RV2 and adjusted RV are included
 for comparison.
Depends R (>= 3.0.1)
Imports Rcpp, plotrix, pracma, progress, RSpectra
License GPL-2
LazyData TRUE
RoxygenNote 6.0.1
LinkingTo progress, Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-09-24 21:13:52 UTC

R topics documented:

allCorrelations .. 2
candy .. 3
cor.test_eq ... 4
MatrixCorrelation ... 5
PCAcv .. 5
Description

Compare all correlation measures in the package (or a subset)

Usage

\texttt{allcorrelations}(X1, X2, ncomp1, ncomp2, methods = c("SMI", "RV", "RV2", "RVadj", "PSI", "r1", "r2", "r3", "r4", "GCD"), digits = 3, plot = TRUE, xlab = ", ylab = , ...)\n
Arguments

\begin{itemize}
 \item \texttt{X1} \hspace{1cm} first matrix to be compared (data.frames are also accepted).
 \item \texttt{X2} \hspace{1cm} second matrix to be compared (data.frames are also accepted).
 \item \texttt{ncomp1} \hspace{1cm} maximum number of subspace components from the first matrix.
 \item \texttt{ncomp2} \hspace{1cm} maximum number of subspace components from the second matrix.
 \item \texttt{methods} \hspace{1cm} character vector containing a subset of the supported methods: "SMI", "RV", "RV2", "RVadj", "PSI", "r1", "r2", "r3", "r4", "GCD".
 \item \texttt{digits} \hspace{1cm} number of digits for numerical output.
 \item \texttt{plot} \hspace{1cm} logical indicating if plotting should be performed (default = TRUE).
 \item \texttt{xlab} \hspace{1cm} optional x axis label.
 \item \texttt{ylab} \hspace{1cm} optional y axis label.
 \item \ldots \hspace{1cm} additional arguments for SMI or plot.
\end{itemize}

Details

For each of the three coefficients a single scalar is computed to describe the similarity between the two input matrices.

Value

A single value measuring the similarity of two matrices.
candy

Author(s)
Kristian Hovde Liland

References

See Also

SMI, RV (RV2/RVadj), r1 (r2/r3/r4/GCD).

Examples

```r
X1 <- scale( matrix( rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,,-3] %% diag(usv$d[-3]) %% t(usv$v[,,-3])
allCorrelations(X1,X2, ncomp1 = 5,ncomp2 = 5)
```

candy

Candy data

Description

Measurements from sensory analysis (professional tasting) on a number of candy products obtained by sensory labs. The two labs and the associated data sets are parts of a larger study described in Tomic et al. (2010).

Usage

data(candy)

Format

Two matrices of dimension 18 x 6.

References

cor.test_eq

Test for no correlation between paired samples

Description
Permutation test for squared Pearson correlation between to vectors of samples.

Usage
```
cor.test_eq(x, y, B = 10000)
```

Arguments
- `x`: first vector to be compared (or two column matrix/data.frame).
- `y`: second vector to be compared (ommit if included in `x`).
- `B`: integer number of permutations, default = 10000.

Details
This is a convenience function combining SMI and significant for the special case of vector vs vector comparisons. The null hypothesis is that the correlation between the vectors is +/-1, while significance signifies a deviance toward 0.

Value
A value indicating if the two input vectors are significantly different.

Author(s)
Kristian Hovde Liland

References
Similarity of Matrices Index - Ulf Geir Indahl, Tormod NÃås, Kristian Hovde Liland

See Also
- `plot.SMI` (print.SMI/summary.SMI)
- `RV` (RV2/RVadj)
- `r1` (r2/r3/r4/GCD)
- `allCorrelations` (matrix correlation comparison)
- `PCAcv` (cross-validated PCA)

Examples
```
a <- 1:5 + rnorm(5)
b <- 1:5 + rnorm(5)
cor.test_eq(a,b)
```
MatrixCorrelation

MatrixCorrelation
Similiarity of Matrices Coefficients

Description

Computation and visualization of matrix correlation coefficients. The main method is the Similarity of Matrices Index, while various related measures like r1, r2, r3, r4, Yanai’s GCD, RV, RV2 and adjusted RV are included for comparison.

Author(s)

Maintainer: Kristian Hovde Liland <kristian.liland@nmbu.no>

Other contributors:

- Tormod Næs [contributor]
- Ulf Geir Indahl [contributor]

See Also

SMI.plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison).

PCAcv
Principal Component Analysis cross-validation error

Description

PRESS values for PCA as implemented by Eigenvector and described by Bro et al. (2008).

Usage

PCAcv(X, ncomp)

Arguments

- **X** matrix object to perform PCA on.
- **ncomp** integer number of components.

Details

For each number of components predicted residual sum of squares are calculated based on leave-one-out cross-validation. The implementation ensures no over-fitting or information bleeding.

Value

A vector of PRESS-values.
Author(s)

Kristian Hovde Liland

References

See Also

plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison).

Examples

```r
x1 <- scale( matrix( rnorm(100*300), 100,300), scale = FALSE)
PCAcv(x1,10)
```

plot.SMI

Result functions for the Similarity of Matrices Index (SMI)

Description

Plotting, printing and summary functions for SMI, plus significance testing.

Usage

```r
## S3 method for class 'SMI'
plot(x, y = NULL, x1lab = attr(x, "mat.names")[[1]],
    x2lab = attr(x, "mat.names")[[2]], main = "SMI", signif = 0.05,
    xlim = c(-((pq[1] + 1)/2, (pq[2] + 1)/2), ylim = c(0.5, (sum(pq) + 3)/2),
    B = 10000, cex = 1, cex.sym = 1, frame = NULL, frame.col = "red",
    frame.lwd = 2, replicates = NULL, ...)
```

```r
## S3 method for class 'SMI'
print(x, ...)
```

```r
## S3 method for class 'SMI'
summary(object, ...)
```

```r
is.signif(x, signif = 0.05, B = 10000, ...)
```
Arguments

- **x**: object of class SMI.
- **y**: not used.
- **xlab**: optional label for first matrix.
- **x2lab**: optional label for second matrix.
- **main**: optional heading (default = SMI).
- **signif**: significance level for testing (default=0.05).
- **xlim**: optional plotting limits.
- **ylim**: optional plotting limits.
- **B**: number of permutations (for significant, default=10000).
- **cex**: optional text scaling (default = 1)
- **cex.sym**: optional scaling for significance symbols (default = 1)
- **frame**: two element integer vector indicating framed components.
- **frame.col**: color for framed components.
- **frame.lwd**: line width for framed components.
- **replicates**: vector of replicates for significance testing.
- **...**: additional arguments for plot.
- **object**: object of class SMI.

Details

For plotting a diamond plot is used. High SMI values are light and low SMI values are dark. If orthogonal projections have been used for calculating SMIs, significance symbols are included in the plot unless signif=NULL.

Value

plot silently returns NULL. print and summary return the printed matrix.

Author(s)

Kristian Hovde Liland

References

Similarity of Matrices Index - Ulf G. Indahl, Tormod NÅs, Kristian Hovde Liland

See Also

SMI, PCAcv (cross-validated PCA).
Examples

```R
X1 <- scale( matrix( rnorm(100*300), 100, 300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$v[,3] %*% diag(usv$d[-3]) %*% t(usv$v[,3])

psi1 <- smi(X1, X2, 5)
plot(psi1, B = 1000) # default B = 10000
print(psi1)
summary(psi1)
is.signif(psi1, B = 1000) # default B = 10000
```

Description

An index based on the RV coefficient with Procrustes rotation.

Usage

```R
PSI(X1, X2)
```

Arguments

- `X1`: first matrix to be compared (data.frames are also accepted).
- `X2`: second matrix to be compared (data.frames are also accepted).

Value

The Procrustes Similarity Index

References

Examples

```R
X1 <- scale( matrix( rnorm(100*300), 100, 300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$v[,3] %*% diag(usv$d[-3]) %*% t(usv$v[,3])
PSI(X1, X2)
```
Correlational Measures for Matrices

Description
Matrix similarity as described by Ramsey et al. (1984).

Usage
\[r1(x1L, xRI) \]
\[r2(x1L, xRI) \]
\[r3(x1L, xRI) \]
\[r4(x1L, xRI) \]
\[\text{GCD}(x1L, xRI, ncomp1 = \text{Rank}(x1) - 1, ncomp2 = \text{Rank}(xRI) - 1) \]

Arguments
- \text{X1}\: \text{first matrix to be compared (data.frames are also accepted).}
- \text{X2}\: \text{second matrix to be compared (data.frames are also accepted).}
- \text{ncomp1}\: \text{(GCD) number of subspace components from the first matrix (default: full subspace).}
- \text{ncomp2}\: \text{(GCD) number of subspace components from the second matrix (default: full subspace).}

Details
Details can be found in Ramsey’s paper:
- r1: inner product correlation
- r2: orientation-independent inner product correlation
- r3: spectra-independent inner product correlations (including orientation)
- r4: Spectra-Independent inner product Correlations
- GCD: Yanai’s GCD Measure. To reproduce the original GCD, use all components.

Value
A single value measuring the similarity of two matrices.

Author(s)
Kristian Hovde Liland
References

See Also

SMI, RV (RV2/RVadj).

Examples

```r
X1 <- matrix(rnorm(100*300),100,300)
usv <- svd(X1)
X2 <- usv$u[,3] %*% diag(usv$d[,-3]) %*% t(usv$v[,,-3])
r1(X1,X2)
r2(X1,X2)
r3(X1,X2)
r4(X1,X2)
GCD(X1,X2)
GCD(X1,X2, 5,5)
```

<table>
<thead>
<tr>
<th>RV</th>
<th>RV coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Three different RV coefficients: RV, RV2 and adjusted RV.

Usage

```
RV(X1, X2)
RV2(X1, X2)
RVadjMaye(X1, X2)
RVadjGhaziri(X1, X2)
RVadj(X1, X2, version = c("Maye", "Ghaziri"))
```

Arguments

- `X1`: first matrix to be compared (data.frames are also accepted).
- `X2`: second matrix to be compared (data.frames are also accepted).
- `version`: Which version of RV adjusted to apply: "Maye" (default) or "Ghaziri" RV adjusted is run using the RVadj function.
Details
For each of the four coefficients a single scalar is computed to describe the similarity between the two input matrices.

Value
A single value measuring the similarity of two matrices.

Author(s)
Kristian Hovde Liland, Benjamin Leutner (RV2)

References

See Also
SMI, r1 (r2/r3/r4/GCD).

Examples
X1 <- matrix(rnorm(100*300),100,300)
usv <- svd(X1)
X2 <- usv$u[,3] ** diag(usv$d[-3]) ** t(usv$v[,,-3])
RV(X1,X2)
RV2(X1,X2)
RVadj(X1,X2)

significant
Significance estimation for Similarity of Matrices Index (SMI)

Description
Permutation based hypothesis testing for SMI. The nullhypothesis is that a linear function of one matrix subspace is included in the subspace of another matrix.
Usage

significant(smi, B = 10000, replicates = NULL)

Arguments

smi smi object returned by call to SMI.
B integer number of permutations, default = 10000.
replicates integer vector of replicates.

Details

For each combination of components significance is estimated by sampling from a null distribution of no similarity, i.e. when the rows of one matrix is permuted B times and corresponding SMI values are computed. If the vector replicates is included, replicates will be kept together through permutations.

Value

A matrix containing P-values for all combinations of components.

Author(s)

Kristian Hovde Liland

References

Similarity of Matrices Index - Ulf G. Indahl, Tormod NAâls, Kristian Hovde Liland

See Also

plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison).

Examples

X1 <- scale(matrix(rnorm(100*300), 100, 300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[, -3] %*% diag(usv$d[-3]) %*% t(usv$v[, -3])

(smi <- SMI(X1,X2,5,5))
significant(smi, B = 100) # default B = 10000
SMI

Similarity of Matrices Index (SMI)

Description

A similarity index for comparing coupled data matrices.

Usage

```r
SMI(X1, X2, ncomp1 = Rank(X1) - 1, ncomp2 = Rank(X2) - 1,
    projection = "Orthogonal", Scores1 = NULL, Scores2 = NULL)
```

Arguments

- `X1`: first matrix to be compared (data frames are also accepted).
- `X2`: second matrix to be compared (data frames are also accepted).
- `ncomp1`: maximum number of subspace components from the first matrix.
- `ncomp2`: maximum number of subspace components from the second matrix.
- `projection`: type of projection to apply, defaults to "Orthogonal", alternatively "Procrustes".
- `Scores1`: user supplied score-matrix to replace singular value decomposition of first matrix.
- `Scores2`: user supplied score-matrix to replace singular value decomposition of second matrix.

Details

A two-step process starts with extraction of stable subspaces using Principal Component Analysis or some other method yielding two orthonormal bases. These bases are compared using Orthogonal Projection (OP / ordinary least squares) or Procrustes Rotation (PR). The result is a similarity measure that can be adjusted to various data sets and contexts and which includes explorative plotting and permutation based testing of matrix subspace equality.

Value

A matrix containing all combinations of components. Its class is "SMI" associated with print, plot, summary methods.

Author(s)

Kristian Hovde Liland

References

A similarity index for comparing coupled matrices - Ulf Geir Indahl, Tormod Næs, Kristian Hovde Liland
See Also

plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison), PCAcv (cross-validated PCA).

Examples

Simulation
X1 <- scale(matrix(rnorm(100*300), 100, 300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,3] %*% diag(usv$d[-3]) %*% t(usv$v[,3])

(smi <- SMI(X1,X2,5))
plot(smi, B = 1000) # default B = 10000

Sensory analysis
data(candy)
plot(SMI(candy$Panel1, candy$Panel2, 3,3, projection = "Procrustes"),
 frame = c(2,2), B = 1000) # default B = 10000
Index

allCorrelations, 2, 4–6, 12, 14

candy, 3
cor.test.eq, 4

GCD (r1), 9

is.signif (plot.SMI), 6

MatrixCorrelation, 5
MatrixCorrelation-package
 (MatrixCorrelation), 5

PCAcv, 4, 5, 7, 14
plot.SMI, 4–6, 6, 12, 14
print.SMI (plot.SMI), 6

PSI, 8

r1, 3–6, 9, 11, 12, 14
r2 (r1), 9
r3 (r1), 9
r4 (r1), 9

RV, 3–6, 10, 10, 12, 14
RV2 (RV), 10
RVadj (RV), 10
RVadjGhaziri (RV), 10
RVadjMaye (RV), 10

significant, 11
SMI, 3, 5, 7, 10, 11, 13
summary.SMI (plot.SMI), 6