Package ‘MaximinInfer’

November 8, 2021

Type Package
Title Inference for Maximin Effect in High-Dimensional Settings
Version 1.0.0
Author Zhenyu Wang; Zijian Guo
Maintainer Zhenyu Wang <wangzy0701@gmail.com>
Description Implementation of the sampling and aggregation method for the covariate shift maximin effect, which was proposed in <arXiv:2011.07568>. It constructs the confidence interval for any linear combination of the high-dimensional maximin effect.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests knitr, rmarkdown
Imports MASS, stats, CVXR, glmnet, intervals, SIHR
Depends R (>= 2.10)
NeedsCompilation no
Repository CRAN
Date/Publication 2021-11-08 12:10:15 UTC

R topics documented:

 decide_delta .. 2
 infer .. 3
 Maximin ... 4
 MaximinInfer .. 5
 measure_instability ... 7
 sample_data .. 8

Index 9
decide_delta

Description

decide_delta will tell if the estimator is stable or not without ridge penalty at first. If instable, it picks a ridge penalty data-dependently.

Usage

decide_delta(
 object,
 gen.size = 500,
 step_delta = 0.1,
 MAX_iter = 100,
 verbose = FALSE
)

Arguments

- `object` Object of class inheriting from "Maximin"
- `gen.size` The generating sample size (Default = 500)
- `step_delta` The step size of searching delta (Default = 0.1)
- `MAX_iter` Maximum of iterations for searching (Default = 100)
- `verbose` Print information about delta and reward (Default = ‘FALSE’)

Value

- `delta` The data-dependent ridge penalty
- `reward.ratio` The ratio of penalized reward over non-penalized reward

Examples

```r
## The problem is low-dimensional for testings
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

## loading
loading = rep(0, 5) # dimension p=5
loading[5] = 1

## call
mm <- Maximin(list(X1, X2), list(Y1, Y2), loading, X.target)
```
infer

out <- decide_delta(mm, gen.size=5)
out$delta
out$reward.ratio

infer Inference method for class "Maximin"

Description
Point estimator and Confidence interval based on Maximin object

Usage
infer(
 object,
 delta = 0,
 gen.size = 500,
 threshold = 0,
 alpha = 0.05,
 alpha.thres = 0.01
)

Arguments
 object Object of class inheriting from "Maximin"
 delta The ridge penalty (Default = 0)
 gen.size The generating sample size (Default = 500)
 threshold Should generated samples be filtered or not? if 0, use normal threshold to filter; if 1, use chi-square threshold to filter; if 2, do not filter (Default = 0)
 alpha confidence value to construct confidence interval (Default = 0.05)
 alpha.thres confidence value to select generated samples (Default = 0.01)

Value
 weight The weight vector for groups, of length L
 point The point estimator of the linear combination
 mm.effect The aggregated maximin effect (coefficients), of length p or $p + 1$
 CI Confidence interval for the linear combination
Examples

The problem is low-dimensional and we do sampling only 5 times instead of 500 for testings
heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

loading
loading = rep(0, 5) # dimension p=5
loading[5] = 1

call
mm <- Maximin(list(X1, X2), list(Y1, Y2), loading, X.target, covariate.shift = TRUE)
mmInfer <- infer(mm, gen.size=5)

Maximin

Class Maximin

Description

‘Maximin’ returns the class "Maximin", which provides materials for later inference method.

Usage

Maximin(
 Xlist,
 Ylist,
 loading,
 X.target = NULL,
 cov.target = NULL,
 covariate.shift = TRUE,
 lam.value = c("CV", "CV.min"),
 intercept = TRUE,
 intercept.loading = FALSE
)

Arguments

Xlist list of design matrix for source data, of length L
Ylist list of outcome vector for source data, of length L
loading Loading, of length p
X.target Design matrix for target data, of dimension n.target x p (default = ‘NULL’)
cov.target Covariance matrix for target data, of dimension p x p (default = ‘NULL’)
covariate.shift Covariate shifts or not between source and target data (default = ‘TRUE’)
The method to be used to obtain Lasso estimator of high-dimensional regression vector for each group

Should intercept be fitted for the initial estimator (default = ‘TRUE’)

Should intercept be included for the loading (default = ‘FALSE’)

The algorithm implemented scenarios with or without covariate shift. If ‘cov.target’ is specified, the ‘X.target’ will be ignored; if not, while ‘X.target’ is specified, ‘cov.target’ will be estimated by ‘X.target’. If both are not specified, the algorithm will automatically set ‘covariate.shift’ as ‘FALSE’.

‘Maximin’ returns an object of class "Maximin". The function ‘infer’ is used to do further inference. An object of class "Maximin" is a list containing the following components.

- Gamma.prop: The proposed debiased regression covariance matrix
- Coef.est: matrix, of dimension $p(+1) \times L$ where each column corresponds to the Lasso estimator of the high-dimensional regression vector for a given group
- Point.vec: vector, of length L with the l-th entry as the debiased estimator of the linear combination of the l-th high-dimensional regression vector
- L: The number of groups
- gen.mu: The mean vector for sampling the regression covariance matrix
- gen.Cov: The variance matrix for sampling the regression covariance matrix

MaximinInfer is a wrapper for class Maximin and the method infer.

MaximinInfer("Xlist", "Ylist", "loading", "X.target = NULL", "cov.target = NULL", "covariate.shift = TRUE", "lam.value = c("CV", "CV.min")", "intercept = TRUE", "intercept.loading = FALSE")
delta = 0,
gen.size = 500,
threshold = 0,
alpha = 0.05,
alpha.thres = 0.01
)

Arguments

Xlist list of design matrix for source data, of length \(L \)
Ylist list of outcome vector for source data, of length \(L \)
loading Loading, of length \(p \)
X.target Design matrix for target data, of dimension \(n.target \times p \) (default = ‘NULL’)
cov.target Covariance matrix for target data, of dimension \(p \times p \) (default = ‘NULL’)
covariate.shift Covariate shifts or not between source and target data (default = ‘TRUE’)
lam.value The method to be used to obtain Lasso estimator of high-dimensional regression vector for each group
intercept Should intercept be fitted for the initial estimator (default = ‘TRUE’)
intercept.loading Should intercept be included for the loading (default = ‘FALSE’)
delta The ridge penalty (Default = 0)
gen.size The generating sample size (Default = 500)
threshold Should generated samples be filtered or not? If 0, use normal threshold to filter; if 1, use chi-square threshold to filter; if 2, do not filter. (Default = 0)
alpha confidence value to construct confidence interval (Default = 0.05)
alpha.thres confidence value to select generated samples (Default = 0.01)

Details

The algorithm implemented scenarios with or without covariate shift. If ‘cov.target’ is specified, the ‘X.target’ will be ignored; if not, while ‘X.target’ is specified, ‘cov.target’ will be estimated by ‘X.target’. If both are not specified, the algorithm will automatically set ‘covariate.shift’ as ‘FALSE’.

Value

weight The weight vector for groups, of length \(L \)
point The point estimator of the linear combination
mm.effect The aggregated maximin effect (coefficients), of length \(p \) or \(p + 1 \)
CI Confidence interval for the linear combination
Examples

```R
## The problem is low-dimensional and we do sampling only 5 times instead of 500 for testings
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

## loading
loading = rep(0, 5) # dimension p=5
loading[5] = 1

## call
mmInfer <- MaximinInfer(list(X1, X2), list(Y1, Y2), loading, X.target, gen.size=5)
```

`measure_instability`
measurement of instability

Description

compute the instability measurement given a specific ridge penalty

Usage

```R
measure_instability(
  object,
  delta = 0,
  gen.size = 500,
  threshold = 0,
  alpha.thres = 0.01
)
```

Arguments

- `object`: Object of class inheriting from "Maximin"
- `delta`: The ridge penalty (Default = 0)
- `gen.size`: The generating sample size (Default = 500)
- `threshold`: Should generated samples be filtered or not? if 0, use normal threshold to filter; if 1, use chi-square threshold to filter; if 2, do not filter. (Default = 0)
- `alpha.thres`: confidence value to select generated samples (Default = 0.01)

Value

- `measure`: The measurement of instability
Examples

```r
## The problem is low-dimensional and we do sampling only 5 times instead of 500 for testings
## heterogenous data and covariates shift
X1 = sample_data$X1
X2 = sample_data$X2
Y1 = sample_data$Y1
Y2 = sample_data$Y2
X.target = sample_data$X.target

## loading
loading = rep(0, 5)
loading[5] = 1

## call
mm <- Maximin(list(X1, X2), list(Y1, Y2), loading, X.target, covariate.shift = TRUE)
out <- measure_instability(mm, gen.size=5)
out$measure
```

sample_data
Sample Data for Analysis

Description

Datasets for the simple testing and running examples. The data is heterogenous with 2 groups, and covariates shift between target data and source data.

Usage

`sample_data`

Format

list with source data and target data, which are:

- **X1** Design matrix for the 1st group source data
- **X2** Design matrix for the 2nd group source data
- **Y1** Outcome vector for the 1st group source data
- **Y2** Outcome vector for the 2nd group source data
- **X.target** Design matrix for the target data
Index

* datasets
 sample_data, 8

decide_delta, 2

infer, 3

Maximin, 4
MaximinInfer, 5
measure_instability, 7

sample_data, 8