Package ‘MazamaRollUtils’

October 12, 2022

Type Package
Title Efficient Rolling Functions
Version 0.1.3
Date 2021-09-15
Author Jonathan Callahan [aut, cre],
 Hans Martin [aut]
Maintainer Jonathan Callahan <jonathan.s.callahan@gmail.com>
Description A suite of compiled functions calculating rolling mins, means,
 maxes and other statistics. This package is designed to meet the needs of
 data processing systems for environmental time series.
License GPL-3
URL https://github.com/MazamaScience/MazamaRollUtils
BugReports https://github.com/MazamaScience/MazamaRollUtils/issues
Depends R (>= 3.5.0)
Imports Rcpp (>= 1.0.6),
Suggests knitr, markdown, rmarkdown, roxygen2, testthat (>= 2.1.0),
 zoo
LinkingTo Rcpp
Encoding UTF-8
VignetteBuilder knitr
LazyData true
RoxygenNote 7.1.2
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-09-23 09:10:02 UTC
R topics documented:

MazamaRollUtils-package .. 2
example_pm25 ... 2
findOutliers ... 3
roll_hampel ... 4
roll_MAD ... 6
roll_max ... 7
roll_mean ... 8
roll_median ... 10
roll_min ... 11
roll_prod ... 12
roll.sd ... 14
roll_sum ... 15
roll_var ... 16

Index 18

MazamaRollUtils-package

Mazama Science Rolling Utilities

Description
A suite of utility functions for calculating rolling mins, means, maxes and other functions written with an efficient Rcpp/C++ backend.

Author(s)
Jonathan Callahan, Hans Martin

example_pm25 Example timeseries dataset

Description
The example_pm25_data dataset provides example timeseries data for practicing and code examples. This data represents hourly air quality measurements.
This dataset was was generated on 2021-09-22 by running:

library(AirSensor)

example_pm25 <- example_sensor$data
names(example_pm25) <- c("datetime", "pm25")

save(example_pm25, file = "data/example_pm25.rda")
findOutliers

Usage

example_pm25

Format

A dataframe with columns "datetime" and "pm25".

Description

A wrapper for the roll_hampel() function that counts outliers using either a user specified threshold value or a threshold value based on the statistics of the incoming data.

Usage

findOutliers(
 x,
 width = 25,
 thresholdMin = 7,
 selectivity = NA,
 fixedThreshold = TRUE
)

Arguments

x Numeric vector.
width Integer width of the rolling window.
thresholdMin Numeric threshold for outlier detection
selectivity Value between [0-1] used in determining outliers, or NA if fixedThreshold=TRUE.
fixedThreshold Logical specifying whether outlier detection uses selectivity (see Details).

Details

The thresholdMin level is similar to a sigma value for normally distributed data. Hampel filter values above 6 indicate a data value that is extremely unlikely to be part of a normal distribution (~ 1/500 million) and therefore very likely to be an outlier. By choosing a relatively large value for thresholdMin we make it less likely that we will generate false positives. False positives can include high frequency environmental noise.

With the default setting of fixedThreshold = TRUE any value above the threshold is considered an outlier and the selectivity is ignored.

The selectivity is a value between 0 and 1 and is used to generate an appropriate threshold for outlier detection based on the statistics of the incoming data. A lower value for selectivity will
result in more outliers while a value closer to 1.0 will result in fewer. If `fixedThreshold=TRUE`, `selectivity` may have a value of `NA`.

When the user specifies `fixedThreshold=FALSE`, the `thresholdMin` and `selectivity` parameters work like squelch and volume on a CB radio: `thresholdMin` sets a noise threshold below which you don’t want anything returned while `selectivity` adjusts the number of points defined as outliers by setting a new threshold defined by the maximum value of `roll_hampel` multiplied by `selectivity`. `width`, the window width, is a parameter that is passed to `roll_hampel()`.

Value

A vector of indices associated with outliers in the incoming data `x`.

Note

This function is copied from the `seismicRoll` package.

See Also

`roll_hampel`

Examples

```r
# Noisy sinusoid with outliers
a <- jitter(sin(0.1*seq(1e4)), amount=0.2)
indices <- sample(seq(1e4), 20)
a[indices] <- a[indices]*10

# Outlier detection should identify many of these altered indices
sort(indices)
o_indices <- findOutliers(a)
o_indices

plot(a)
points(o_indices, a[o_indices], pch = 16, cex = 0.8, col = 'red')
title("Outlier detection using a Hampel filter")
```

roll_hampel

Roll Hampel

Description

Apply a moving-window Hampel function to a numeric vector.
roll_hampel

Usage

```r
roll_hampel(
  x,
  width = 1L,
  by = 1L,
  align = c("center", "left", "right"),
  na.rm = FALSE
)
```

Arguments

- **x**: Numeric vector.
- **width**: Integer width of the rolling window.
- **by**: Integer shift to use when sliding the window to the next location
- **align**: Character position of the return value within the window. One of: "left" | "center" | "right".
- **na.rm**: Logical specifying whether NA values should be removed before the calculations within each window.

Details

The Hampel filter is a robust outlier detector using Median Absolute Deviation (MAD).

For every index in the incoming vector `x`, a value is returned that is the Hampel function of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1` \[**------\] will cause the returned vector to have `width-1` NA values at the right end.
- `align = 0` \[---*---\] will cause the returned vector to have `width/2` NA values at either end.
- `align = 1` \[------*\] will cause the returned vector to have `width-1` NA values at the left end.

For large vectors, the `by` parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as `x`.

Examples

```r
library(MazamaRollUtils)

x <- c(0, 0, 0, 1, 1, 2, 2, 4, 6, 9, 0, 0, 0)
roll_hampel(x, 3)
```
roll_MAD

Roll MAD

Description

Apply a moving-window Median Absolute Deviation function to a numeric vector.

Usage

```r
roll_MAD(
  x, 
  width = 1L, 
  by = 1L, 
  align = c("center", "left", "right"), 
  na.rm = FALSE 
)
```

Arguments

- `x` Numeric vector.
- `width` Integer width of the rolling window.
- `by` Integer shift to use when sliding the window to the next location
- `align` Character position of the return value within the window. One of: "left" | "center" | "right".
- `na.rm` Logical specifying whether NA values should be removed before the calculations within each window.

Details

For every index in the incoming vector `x`, a value is returned that is the Median Absolute Deviation (MAD) of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1 [----------]` will cause the returned vector to have width-1 NA values at the right end.
- `align = 0 [------]` will cause the returned vector to have width/2 NA values at either end.
- `align = 1 [--*--]` will cause the returned vector to have width-1 NA values at the left end.

For large vectors, the `by` parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as `x`.
Examples

```r
library(MazamaRollUtils)

# Wikipedia example
x <- c(0, 0, 0, 1, 1, 2, 2, 4, 6, 9, 0, 0, 0)
roll_MAD(x, 3)
roll_MAD(x, 5)
roll_MAD(x, 7)
```

Roll Max

Description

Apply a moving-window maximum function to a numeric vector.

Usage

```r
roll_max(
x,  
width = 1L,  
by = 1L,  
align = c("center", "left", "right"),  
na.rm = FALSE
)
```

Arguments

- `x`: Numeric vector.
- `width`: Integer width of the rolling window.
- `by`: Integer shift to use when sliding the window to the next location.
- `align`: Character position of the return value within the window. One of: "left" | "center" | "right".
- `na.rm`: Logical specifying whether NA values should be removed before the calculations within each window.

Details

For every index in the incoming vector `x`, a value is returned that is the maximum of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1 [-------]` will cause the returned vector to have width-1 NA values at the right end.
- `align = 0 [-------]` will cause the returned vector to have width/2 NA values at either end.
• align = 1 [-----*] will cause the returned vector to have width-1 NA values at the left end.

For large vectors, the by parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as x.

Examples

library(MazamaRollUtils)

Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

plot(t, x, pch = 16, cex = 0.5)
lines(t, roll_max(x, width = 12), col = 'red')
lines(t, roll_min(x, width = 12), col = 'deepskyblue')
title("12-hr Rolling Max and Min")

plot(t, x, pch = 16, cex = 0.5)
points(t, roll_max(x, width = 12, na.rm = TRUE), pch = 16, col = 'red')
points(t, roll_max(x, width = 12, na.rm = FALSE), pch = 16, col = adjustcolor('black', 0.4))
legend("topright", pch = c(1, 16),
 col = c("red", adjustcolor("black", 0.4)),
 legend = c("na.rm = TRUE", "na.rm = FALSE"))
title("12-hr Rolling max with/out na.rm")
Arguments

- **x**: Numeric vector.
- **width**: Integer width of the rolling window.
- **by**: Integer shift by which the window is moved each iteration.
- **align**: Character position of the return value within the window. One of: "left" | "center" | "right".
- **na.rm**: Logical specifying whether NA values should be removed before the calculations within each window.
- **weights**: Numeric vector of size width specifying each window index weight. If NULL, unit weights are used.

Details

For every index in the incoming vector x, a value is returned that is the mean of all values in x that fall within a window of width width.

The align parameter determines the alignment of the return value within the window. Thus:

- **align = -1 [-------------]** will cause the returned vector to have width-1 NA values at the right end.
- **align = 0 [---------]** will cause the returned vector to have width/2 NA values at either end.
- **align = 1 [----------]** will cause the returned vector to have width-1 NA values at the left end.

For large vectors, the by parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

The roll_mean() function supports an additional weights argument that can be used to calculate a "weighted moving average" – a convolution of the incoming data with the kernel (weighting function) provided in weights.

Value

Numeric vector of the same length as x.

Examples

```r
library(MazamaRollUtils)

# Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25
plot(t, x, pch = 16, cex = 0.5)
```
```r
lines(t, roll_mean(x, width = 3), col = "goldenrod")
lites(t, roll_mean(x, width = 23), col = "purple")
legend("topright", lty = c(1, 1),
       col = c("goldenrod", "purple"),
       legend = c("3-hr mean", "12-hr mean"))
title("3- and 23-hr Rolling mean")
```

roll_median

Description

Apply a moving-window median function to a numeric vector.

Usage

```r
roll_median(
  x,
  width = 1L,
  by = 1L,
  align = c("center", "left", "right"),
  na.rm = FALSE
)
```

Arguments

- **x**: Numeric vector.
- **width**: Integer width of the rolling window.
- **by**: Integer shift by which the window is moved each iteration.
- **align**: Character position of the return value within the window. One of: "left" | "center" | "right".
- **na.rm**: Logical specifying whether NA values should be removed before the calculations within each window.

Details

For every index in the incoming vector `x`, a value is returned that is the median of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1` [*-------*] will cause the returned vector to have width-1 NA values at the right end.
- `align = 0` [*----*] will cause the returned vector to have width/2 NA values at either end.
- `align = 1` [*-*-] will cause the returned vector to have width-1 NA values at the left end.

For large vectors, the `by` parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.
roll_min

Value

Numeric vector of the same length as x.

Examples

library(MazamaRollUtils)

Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

plot(t, x, pch = 16, cex = 0.5)
lines(t, roll_median(x, width = 3), col = "goldenrod")
lines(t, roll_median(x, width = 23), col = "purple")
legend("topright", lty = c(1, 1),
 col = c("goldenrod", "purple"),
 legend = c("3-hr median", "12-hr median"))
title("3- and 23-hr Rolling median")

roll_min

Roll Min

Description

Apply a moving-window minimum function to a numeric vector.

Usage

roll_min(
 x,
 width = 1L,
 by = 1L,
 align = c("center", "left", "right"),
 na.rm = FALSE
)

Arguments

x Numeric vector.
width Integer width of the rolling window.
by Integer shift by which the window is moved each iteration.
align Character position of the return value within the window. One of: "left" | "center" | "right".
na.rm Logical specifying whether NA values should be removed before the calculations within each window.
Details

For every index in the incoming vector \(x \), a value is returned that is the minimum of all values in \(x \) that fall within a window of width \(\text{width} \).

The align parameter determines the alignment of the return value within the window. Thus:

- \(\text{align} = -1 \) \([*------]\) will cause the returned vector to have \(\text{width}-1 \) NA values at the right end.
- \(\text{align} = 0 \) \([---*---]\) will cause the returned vector to have \(\text{width}/2 \) NA values at either end.
- \(\text{align} = 1 \) \([------*]\) will cause the returned vector to have \(\text{width}-1 \) NA values at the left end.

For large vectors, the by parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as \(x \).

Examples

```r
library(MazamaRollUtils)
# Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

plot(t, x, pch = 16, cex = 0.5)
lines(t, roll_max(x, width = 12), col = "red")
lines(t, roll_min(x, width = 12), col = "deepskyblue")
title("12-hr Rolling Max and Min")

plot(t, x, pch = 16, cex = 0.5)
points(t, roll_min(x, width = 12, na.rm = TRUE),
      pch = 16, col = "deepskyblue")
points(t, roll_min(x, width = 12, na.rm = FALSE),
      pch = 16, col = adjustcolor("black", 0.4))
legend("topright", pch = c(16, 16),
      col = c("deepskyblue", adjustcolor("black", 0.4)),
      legend = c("na.rm = TRUE", "na.rm = FALSE"))

title("12-hr Rolling min with/out na.rm")
```

roll_prod

Roll Product

Description

Apply a moving-window product function to a numeric vector.
Usage

```r
roll_prod(
  x,
  width = 1L,
  by = 1L,
  align = c("center", "left", "right"),
  na.rm = FALSE
)
```

Arguments

- **x**: Numeric vector.
- **width**: Integer width of the rolling window.
- **by**: Integer shift by which the window is moved each iteration.
- **align**: Character position of the return value within the window. One of: "left" | "center" | "right".
- **na.rm**: Logical specifying whether NA values should be removed before the calculations within each window.

Details

For every index in the incoming vector `x`, a value is returned that is the product of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1` [*------*] will cause the returned vector to have `width-1` NA values at the right end.
- `align = 0` [---*---] will cause the returned vector to have `width/2` NA values at either end.
- `align = 1` [------*] will cause the returned vector to have `width-1` NA values at the left end.

For large vectors, the `by` parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as `x`.

Examples

```r
library(MazamaRollUtils)

# Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

x[1:10]
roll_prod(x, width = 5)[1:10]
```
roll_sd

Roll Standard Deviation

Description

Apply a moving-window standard deviation function to a numeric vector.

Usage

roll_sd(x, width = 1L, by = 1L, align = c("center", "left", "right"))

Arguments

x Numeric vector.
width Integer width of the rolling window.
by Integer shift by which the window is moved each iteration.
align Character position of the return value within the window. One of: "left" | "center" | "right".

Details

For every index in the incoming vector `x`, a value is returned that is the standard deviation of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1` [*------] will cause the returned vector to have width-1 NA values at the right end.
- `align = 0` [---*---] will cause the returned vector to have width/2 NA values at either end.
- `align = 1` [------*] will cause the returned vector to have width-1 NA values at the left end.

For large vectors, the `by` parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as `x`.

Note

No `na.rm` argument is provided as interpretation of the results is not at all clear.
Examples

```r
library(MazamaRollUtils)

# Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

x[1:10]
roll_sd(x, width = 5)[1:10]
```

roll_sum

Roll Sum

Description

Apply a moving-window sum to a numeric vector.

Usage

```r
roll_sum(
  x, 
  width = 1L, 
  by = 1L, 
  align = c("center", "left", "right"), 
  na.rm = FALSE
)
```

Arguments

- **x**: Numeric vector.
- **width**: Integer width of the rolling window.
- **by**: Integer shift by which the window is moved each iteration.
- **align**: Character position of the return value within the window. One of: "left" | "center" | "right".
- **na.rm**: Logical specifying whether NA values should be removed before the calculations within each window.

Details

For every index in the incoming vector `x`, a value is returned that is the sum of all values in `x` that fall within a window of width `width`.

The `align` parameter determines the alignment of the return value within the window. Thus:

- `align = -1 [---------]` will cause the returned vector to have `width-1` NA values at the right end.
- `align = 0 [----------]` will cause the returned vector to have `width/2` NA values at either end.
- align = 1 [------*] will cause the returned vector to have width-1 NA values at the left end.

For large vectors, the by parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as \(x \).

Examples

```r
library(MazamaRollUtils)

# Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

x[1:10]
roll_sum(x, width = 5)[1:10]
```

<table>
<thead>
<tr>
<th>roll_var</th>
<th>Roll Variance</th>
</tr>
</thead>
</table>

Description

Apply a moving-window variance function to a numeric vector.

Usage

```
roll_var(x, width = 1L, by = 1L, align = c("center", "left", "right"))
```

Arguments

- **x**: Numeric vector.
- **width**: Integer width of the rolling window.
- **by**: Integer shift by which the window is moved each iteration.
- **align**: Character position of the return value within the window. One of: "left" | "center" | "right".
Details

For every index in the incoming vector \(x \), a value is returned that is the variance of all values in \(x \) that fall within a window of width \(width \).

The \(align \) parameter determines the alignment of the return value within the window. Thus:

- \(align = -1 \) [*------] will cause the returned vector to have \(width-1 \) NA values at the right end.
- \(align = 0 \) [---*---] will cause the returned vector to have \(width/2 \) NA values at either end.
- \(align = 1 \) [------*] will cause the returned vector to have \(width-1 \) NA values at the left end.

For large vectors, the \(by \) parameter can be used to force the window to jump ahead by indices for the next calculation. Indices that are skipped over will be assigned NA values so that the return vector still has the same length as the incoming vector. This can dramatically speed up calculations for high resolution time series data.

Value

Numeric vector of the same length as \(x \).

Note

No \(na.rm \) argument is provided as interpretation of the results is not at all clear.

Examples

```r
library(MazamaRollUtils)

# Example air quality time series
t <- example_pm25$datetime
x <- example_pm25$pm25

x[1:10]
roll_var(x, width = 5)[1:10]
```
Index

* datasets
 example_pm25, 2

* package
 MazamaRollUtils-package, 2

example_pm25, 2
findOutliers, 3
MazamaRollUtils
 (MazamaRollUtils-package), 2
MazamaRollUtils-package, 2
roll_hampel, 4, 4
roll_MAD, 6
roll_max, 7
roll_mean, 8
roll_median, 10
roll_min, 11
roll_prod, 12
roll_sd, 14
roll_sum, 15
roll_var, 16