Package ‘Mega2R’

June 18, 2018

Version 1.0.4
Date 2018-06-18
Title Accessing and Processing a 'Mega2' Genetic Database
Description Uses as input genetic data that have been reformatted and stored in a 'SQLite' database; this database is initially created by the standalone 'mega2' C++ program (available freely from <https://watson.hgen.pitt.edu/register/>). Loads and manipulates data frames containing genotype, phenotype, and family information from the input 'SQLite' database, and decompresses needed subsets of the genotype data, on the fly, in a memory efficient manner. We have also created several more functions that illustrate how to use the data frames as well as perform useful tasks: these permit one to run the 'pedgene' package to carry out gene-based association tests on family data using selected marker subsets, to run the 'SKAT' package to carry out gene-based association tests using selected marker subsets, to output the 'Mega2R' data as a VCF file and related files (for phenotype and family data), and to convert the data frames into CoreArray Genomic Data Structure (GDS) format.

URL https://watson.hgen.pitt.edu/mega2/mega2r/
BugReports https://groups.google.com/forum/#!forum/mega2-users
Depends R (>= 3.5.0), SKAT, pedgene, gdsfmt
License GPL-2
LinkingTo Rcpp
Imports AnnotationDbi, DBI, GenomeInfoDb, RSQLite, methods
Suggests knitr, rmarkdown, formatR, TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db
NeedsCompilation yes
RoxygenNote 6.0.1
LazyData true
VignetteBuilder knitr
R topics documented:

applyFnToGenes ... 3
applyFnToMarkers .. 5
applyFnToRanges .. 6
clean_mega2rtutorial_data 8
dbmega2_import .. 9
DOPedgene .. 9
DOSKAT ... 11
dump_mega2rtutorial_data 12
getgenotypes .. 13
getgenotypesgenabel .. 14
getgenotypesraw ... 15
init_pedgene .. 16
init_SKAT ... 17
Mega2ENVGenABEL .. 18
Mega2gdsfmt .. 19
Mega2GenABEL ... 20
Mega2GenABELtst .. 21
Mega2pedgene ... 22
Mega2R ... 23
Mega2R-TBLS .. 23
Mega2R-TBLSFilter .. 23
Mega2SKAT .. 24
Mega2VCF ... 25
mkfam .. 26
mkMarkers ... 27
mkphenotype ... 28
read.Mega2DB ... 29
setAnnotations ... 30
setfam .. 31
setRanges .. 31
showMapNames ... 33
showMega2ENV ... 34
showPhenoNames ... 34
uniqueFamMember ... 35
where_mega2rtutorial_data 36

Index 37
applyFnToGenes

apply a function to the genotypes (markers) in each gene transcript and/or base pair range

Description

This function generates base pair ranges from its input arguments. Each range specifies a chromosome, a start base pair and end base pair. Typically, a range could be a gene transcript, though it could be a whole chromosome, or a run of base pairs on a chromosome. Once the ranges are generated, applyFnToRanges is called to find all the rows (i.e. markers) from the markers data frame that fall in each range. For these markers, a matrix of the genotypes is generated. Finally, the op function is called for each range with the arguments: markers, range, and 'environment'.

Usage

applyFnToGenes(op = function (markers, range, envir) {}, genes_arg = NULL, ranges_arg = matrix(ncol = 3, nrow = 0), chrs_arg = vector("integer", 0), markers_arg = vector("character", 0), type_arg = "TX", fuzz_arg = 0, envir = ENV)

Arguments

op Is a function of three arguments. It will be called repeatedly by applyFnToGenes in a try/catch context. The arguments are:

markers Marker data for each marker selected. A marker is a data frame with the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding marker genotype data in the unified_genotype_table

MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker
range An indicator of which range argument these markers correspond to.
envir An ’environment’ holding Mega2R data frames and state data.

genes_arg a character vector of gene names. All the transcripts identified with the specified gene in BioConductor Annotation, TxDb.Hsapiens.UCSC.hg19.knownGene, are selected. This produces multiple "range" elements containing chromosome, start base pair, end base pair. (If the gene name is ",", all the transcript will be selected.) Note: BioConductor Annotation org.Hs.eG.db is used to convert from gene name to ENTREZ gene id.
ranges_arg: An integer matrix of three columns. The columns define a range: a chromosome number, a start base pair value, and an end base pair value.

chrs_arg: An integer vector of chromosome numbers. All of the base pairs on each chromosome will be selected as a single range.

markers_arg: A data frame with the following 5 observations:
- locus_link: The ordinal ranking of this marker among all loci
- locus_link_fill: The position of corresponding marker genotype data in the unified_genotype_table
- MarkerName: The text name of the marker
- chromosome: The integer chromosome number
- position: The integer base pair position of marker

type_arg: A character vector of length 1 that contains "TX" or does not. If it is "TX", which is the default, the TX fields of BioConductor Annotation, TxDb.Hsapiens.UCSC.hg19.knownGene are used to define the base pair ranges and chromosome. Otherwise, the CDS fields are used.

fuzz_arg: An integer vector of length one or two. The first argument is used to reduce the start base pair selected from each transcript and the second to increase the end base pair position. (If only one value is present, it is used for both adjustments.) Note: The values can be positive or negative.

envir: An 'environment' that contains all the data frames created from the SQLite database.

Value:
None

Note:
If you want subsequent calls to apply to share information, data can be placed in a data frame that is added to the 'environment'.

Examples:
```r
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

show = function(m, r, e) {
  print(r)
  print(m)
  print(head(getgenotypes(m, envir = e)))
}

# apply function "show" to all transcripts on genes ELL2 and CARD15

# donttestcheck: time
applyFnToGenes(show, genes_arg = c("CEP184"))
```
applyFnToMarkers

apply a function to the genotypes from a set of markers

Description

A matrix of the genotypes for all the specified markers is generated. Then, the call back function, \(\text{op} \), is called with the markers, NULL (for the range), and the 'environment'.

Usage

```r
applyFnToMarkers(op = function (markers, range, envir) {},
                  markers_arg,
                  envir = ENV)
```

Arguments

- **op**: Is a function of three arguments. It will be called once by `applyFnToMarkers` in a try/catch context. The arguments are:
 - **markers**: Marker data for each marker in `geno`. A marker is a data frame with the following 5 observations:
 - **locus_link**: is the ordinal ranking of this marker among all loci
 - **locus_link_fill**: is the position of corresponding marker genotype data in the `unified_genotype_table`
 - **MarkerName**: is the text name of the marker
 - **chromosome**: is the integer chromosome number
 - **position**: is the integer base pair position of marker
 - **range**: NULL: to indicate no explicit range was specified.
 - **envir**: An 'environment' holding Mega2R data frames and state data.

- **markers_arg**: a data frame with the following 5 observations:
 - **locus_link**: is the ordinal ranking of this marker among all loci
 - **locus_link_fill**: is the position of corresponding marker genotype data in the `unified_genotype_table`
 - **MarkerName**: is the text name of the marker
applyFnToRanges

- **chromosome** is the integer chromosome number
- **position** is the integer base pair position of marker
- **envir** an 'environment' that contains all the data frames created from the SQLite database.

Value
None

Examples

```r
db = system.file("exdata", "seqsim.db", package="MegaR")
ENV = read.MegaRDB(db)
show = function(m, r, e) {
  print(r)
  print(m)
  print(head(getgenotypes(m, envir = e)))
}

# apply function "show" to all genotypes > 5,000,000 bp
applyFnToMarkers(show, ENV$markers[ENV$markers$position > 5000000,])
```

Description

First, for each range, determine the markers that fall between the start and end base pair of the range. Then, for each set of markers generate a matrix of the genotypes of those markers. Finally, the op function is called for each range with the arguments: markers, range, and 'environment'.

Usage

```r
applyFnToRanges(op = function (markers, range, envir) {},
 ranges_arg = NULL,
 indices_arg = NULL,
 fuzz_arg = 0,
 envir = ENV)
```

Arguments

- **op** Is a function of three arguments. It will be called repeatedly by applyFnToRanges in a try/catch context. The arguments are:
 - **markers** Marker data for each marker in geno. A marker is a data frame with the following 5 observations:
applyFnToRanges

- **locus_link** is the ordinal ranking of this marker among all loci
- **locus_link_fill** is the position of corresponding marker genotype data in the `unified_genotype_table`
- **MarkerName** is the text name of the marker
- **chromosome** is the integer chromosome number
- **position** is the integer base pair position of marker

range An indicator of which range argument of `applyFnToRanges` these markers correspond to.

envir An 'environment' holding Mega2R data frames and state data.

- **ranges_arg** is a data frame that contains at least 4 observations: a name, a chromosome, a start base pair position and an end base pair position.
- **indices_arg** is a vector of 3 integers that specify the location of chromosome, start base pair column and end base pair column of the `ranges_arg` data frame. An optional fourth integer indicates the column containing the name of the ranges.
- **fuzz_arg** is an integer vector of length one or two. The first argument is used to reduce the start base pair selected from each range and the second to increase the end base pair position. (If only one value is present, it is used for both changes.) Note: The values can be positive or negative.

envir an 'environment' that contains all the data frames created from the SQLite database.

Value

None

Note

If the `ranges_arg` and `indices_arg` are NULL or missing, then the default ranges that have been set by `setRanges` are used. If `setRanges` has not been called, a default set of the ranges is used.

Examples

```r
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

show = function(m, r, e) {
  print(r)
  print(m)
  print(head(getgenotypesraw(m, envir = e)))
}

# apply function "show" to all genotypes on chromosomes 1 for two base pair
# ranges
applyFnToRanges(show,
  ranges_arg =
    matrix(c(1, 2244000, 2245000,
             1, 3762500, 3765000),
             ncol = 3, nrow = 2, byrow = TRUE),
```
Description

This function removes the Mega2R tutorial (inst/exdata) data that was copied to the specified directory.

Usage

```r
clean_mega2rtutorial_data(dir = file.path(tempdir(), "Mega2Rtutorial"))
```

Arguments

- **dir**

 The directory to remove the tutorial data to. By default, this is `tempdir()`/Mega2Rtutorial

Value

None

Examples

```r
clean_mega2rtutorial_data()
```
Description

Read the fields of SQLite data base tables that are required for Mega2R into data frames. These data frames are stored in an ‘environment’ which is returned. This function also adds some state data, extra data frames, and computed data frames to the ‘environment’.

Usage

```r
dbmega2_import(dbname,
    bpPosMap = 1,
    verbose = FALSE)
```

Arguments

- `dbname` file path to SQLite database.
- `bpPosMap` index that specifies which map in the map_table should be used for marker chromosome/position. `showMapNames()` shows the association between map name and map number.
- `verbose` print out statistics on the name/size of each table read and show column headers. Also, save the verbose value for use by other Mega2R functions.

Value

- `envir` an environment that contains all the data frames made from the SQLite database.

Examples

```r
db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = dbmega2_import(db, verbose = TRUE)

ENV = dbmega2_import(db)
```

DOpedgene

pedgene call back function

Description

First, ignore call backs that have less than two markers. Second, convert the genotypesraw() patterns of 0x10001, 0x10002 (or 0x20001), 0x20002, 0 from the genotype matrix to the numbers 0, 1, 2, 0 for each marker. (Reverse, the order iff allele “1” has the minor allele frequency.) Next, prepend the pedigree and person columns of the family data to this modified genotype matrix. Finally, invoke `pedgene` with the family data and genotype matrix for several different weights. Save the kernel and burden, value and p-value for each measurement in `envir$pedgene_results`.
DOpedgene

Usage

DOpedgene(markers_arg, range_arg, envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:
 locus_link is the ordinal ranking of this marker among all loci
 locus_link_fill is the position of corresponding genotype data in the uniform_genotype_table
 MarkerName is the text name of the marker
 chromosome is the integer chromosome number
 position is the integer base pair position of marker

range_arg one row of a ranges_arg. The latter is a data frame of at least three integer columns. The columns indicate a range: a chromosome number, a start base pair value, and an end base pair value.

envir 'environment' containing SQLite database and other globals

Value

None

Note

This function appends output to the data frame, envir$pedgene_results. It will print out the lines as they are generated if envir$verbose is TRUE. The data frame envir$pedgene_results is initialized by init_pedgene, and is appended to each time DOpedgene is run.

See Also

init_pedgene

Examples

db = system.file("exdata", "seqsimm.db", package="MegaRr")
ENV = init_pedgene(db)
ENV$verbose = TRUE
applyFnToRanges(DOpedgene, ENV$refRanges[50:60,], ENV$refIndices)

Donttestcheck: try this below if there is time
applyFnToGenes(DOpedgene, genes_arg = c("CEP104"))
DOSKAT

SKAT call back function

Description

Convert the genotypes raw() allele patterns of 0x10001, 0x10002 (or 0x20001), 0x20002, 0 to the numbers 0, 1, 2, 9 for each marker. (Reverse, the order iff allele "1" has the minor allele frequency.) Ignore markers that have no variants (unless allMarkers is TRUE). Finally, invoke SKAT with the converted genotype matrix, Null model saved in envir$obj, and any additionally supplied arguments. Save information about the range and the p.value calculated by SKAT in envir$SKAT_results.

Usage

DOSKAT(markers_arg, range_arg, envir, ...)

Arguments

markers_arg a data.frame with the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

range_arg one row of a ranges_arg. The latter is a data frame of at least three integer columns. The columns indicate a range: a chromosome number, a start base pair value, and an end base pair value.

envir 'environment' containing SQLite database and other globals
... extra arguments for SKAT

Value

None

Note

This function accumulates output in the data frame, envir$SKAT_results. It will print out the lines as they are generated if envir$verbose is TRUE. It does not write the data frame to a file. You must save the data frame. You also must initialize the data frame when necessary.

See Also

init_SKAT, Mega2SKAT
dump_mega2rtutorial_data

dump tutorial data

dump_mega2rtutorial_data

Description

This function retrieves data stored in the Mega2tutorial (inst/exdata). It dumps them in the specified directory.

Usage

dump_mega2rtutorial_data(dir = file.path(tempdir(), "Mega2Rtutorial"))

Arguments

dir The directory to store the tutorial data to. By default, this is tempdir()/Mega2Rtutorial

Value

None

Examples

dump_mega2rtutorial_data()
getgenotypes

fetch genotype character matrix for specified markers

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary for the C++ function: some from the caller’s arguments and some from data frames that are in the "global" environment, `envir`. From the `markers_arg` argument, it fetches the locus_index and the index in the `unified_genotype_table`. It also passes the allele nucleotide separator argument. From the "global" environment, `envir`, it gets a bit vector of compressed genotype information, the alleles for each marker, and some bookkeeping related data. Note: This function also contains a dispatch/switch on the type of compression in the genotype vector. A different C++ function is called when there is compression versus when there is no compression.

Usage

```r
getgenotypes(markers_arg, sepstr = "", envir = ENV)
```

Arguments

- `markers_arg`: a data.frame with the following 5 observations:
 - **locus_link**: is the ordinal ranking of this marker among all loci
 - **locus_link_fill**: is the position of corresponding genotype data in the `unified_genotype_table`
 - **MarkerName**: is the text name of the marker
 - **chromosome**: is the integer chromosome number
 - **position**: is the integer base pair position of marker

- `sepstr`: separator string inserted between the alleles (default is none). When present, this is typically a space, a tab or "/".

- `envir`: an environment that contains all the data frames created from the SQLite database.

Details

The `unified_genotype_table` contains one raw vector for each person. In the vector there are two bits for each genotype. This function creates an output matrix by fixing the marker and collecting genotype information for each person and then repeating for all the needed markers. (Currently, this appears slightly faster than a scan which is fixes the person and iterates over markers.)

Value

A matrix of genotypes represented as two allele pairs. The matrix has one column for each marker in `markers_arg` argument. There is one row for each person in the family (`fam`) table.

getgenotypes

fetch genotype character matrix for specified markers
Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

getgenotypes(ENV$markers)

getgenotypesgenabel process the genotype matrix for specified markers and return the corresponding GenABEL genotype matrix

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary for the C++ function: some from the caller’s arguments and some from data frames that are in the "global" environment, envir. From its markers_arg argument, it gets the locus_index and the index in the unified_genotype_table. From the "global" environment, envir, it gets a bit vector of compressed genotype information, allele information, and some bookkeeping related data. Note: This function also contains a dispatch/switch on the type of compression in the genotype vector. A different C++ function is called when there is compression versus when there is no compression.

Usage

getgenotypesgenabel(markers_arg, envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:
locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

envir an environment that contains all the data frames created from the SQLite database.

Details

This function reads the genotype data in Mega2 compressed format and converts it to the GenABEL compressed format. The unified_genotype_table contains one raw vector for each person. In the vector, there are two bits for each genotype; each byte has the data for 4 markers. In GenABEL, there is one raw vector per marker, and each byte has the data for 4 persons. The C++ function does the conversion as well as adjusts the bits’ contents. For example, in GenABEL the genotype represented by bits == 0, is what Mega2 represents with 2. Doing the conversion in C++ is 10 - 20 times faster than converting the Mega2 data to PLINK .tped files and then having GenABEL read in and process/convert those files.
Value

the GenABEL gwaa.data-class object component that contains the genotype data.

Note

This function is called from Mega2ENVGenABEL; it is not intended to be called by the programmer.

Examples

db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db)

aa = getgenotypesgenabel(ENV$markers[ENV$markers$chromosome == 1,])

aa

Description

This function calls a C++ function that does all the heavy lifting. It passes the arguments necessary for the C++ function: some from the caller's arguments and some from data frames that are in the "global" environment, envir. From its markers_arg argument, it gets the locus_index and the index in the unified_genotype_table. From the "global" environment, envir, it gets a bit vector of compressed genotype information, and some bookkeeping related data. Note: This function also contains a dispatch/switch on the type of compression in the genotype vector. A different C++ function is called when there is compression versus when there is no compression.

Usage

getgenotypesraw(markers_arg, envir = ENV)

Arguments

markers_arg a data.frame with the following 5 observations:

locus_link is the ordinal ranking of this marker among all loci
locus_link_fill is the position of corresponding genotype data in the unified_genotype_table
MarkerName is the text name of the marker
chromosome is the integer chromosome number
position is the integer base pair position of marker

envir an environment that contains all the data frames created from the SQLite database.
The *unified_genotype_table* contains one raw vector for each person. In the vector, there are two bits for each genotype. This function creates an output matrix by fixing the marker and collecting genotype information for each person and then repeating for all the needed markers.

Value

A matrix of genotypes represented as integers. Each 32-bit integer represents contains two allele values: the high 16 bits contains the index of allele1 and the low 16 bits contains the index of allele2. In the matrix, there is one column for each marker in the *markers_arg* argument. There is one row for each person in the family (*fam*) table.

Examples

```r
db = system.file("exdata", "seqsimm.db", package="Mega2R"")
ENV = read.Mega2DB(db)

# two ints in upper/lower half integer representing allele # for all persons in chromosome 1
getgenotypesraw(ENV$markers[ENV$markers$chromosome == 1,])
```

Description

This populates the *R* data frames from the specified *Mega2* SQLite database. It then prunes the samples to only include members that have a definite case or control status. Undefined samples are ignored; this is necessary for CRAN pedgene.

Usage

```r
init_pedgene(db = NULL, verbose = FALSE)
```

Arguments

- `db` specifies the path of a *Mega2* SQLite database containing study data.
- `verbose` TRUE indicates that diagnostic printouts should be enabled. This value is saved in the returned environment.

Value

"environment" containing data frames from an SQLite database and some computed values.
Note

`init_pedgene` calculates `schaidPed` and `pedPer` that are used later in the `Dopedgene` calculation. In addition, it initializes a matrix to aid in translating a genotype allele matrix to a genotype count matrix.

It also initializes the dataframe `envir$pedgene_results` to zero rows.

See Also

`D0pedgene`, `Mega2pedgene`

Examples

```r
db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = init_pedgene(db)
ls(ENV)
```

init_SKAT

Description

This populates the **R** data frames from the specified **Mega2** SQLite database. It then prunes the samples to only include members that have a definite case or control status. Undefined samples are ignored.

Usage

```r
init_SKAT(db = NULL, verbose = FALSE, allMarkers = FALSE)
```

Arguments

- `db`: specifies the path of a **Mega2** SQLite database containing study data.
- `verbose`: TRUE indicates that diagnostic printouts should be enabled. This value is saved in the returned environment.
- `allMarkers`: TRUE means use all markers in a given transcript even if there is no variation. FALSE means ignore markers that show no variation; this is the default.

Value

"environment" containing data frames from an SQLite database and some computed values.

Note

`init_SKAT` creates a data frame, `envir$phe`, of phenotype observations. In addition, it initializes a matrix to aid in translating a genotype allele matrix to a genotype count matrix.

It also initializes the data frame `envir$SKAT_results` to zero rows.
See Also

`Mega2SKAT`

Examples

```r
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_SKAT(db, verbose = FALSE, allMarkers = FALSE)
ls(ENV)
```

Description

create a `gwaa.data-class` object from the data frames in a Mega2 environment. This function is a front end that eventually calls a C++ Rcpp function that reads the genotype data in Mega2 compressed format and converts it to the GenABEL compressed format. The results of `Mega2ENVGenABEL` are/should be the same as `Mega2GenABEL`, but the calculation is much faster, typically a factor of 10 to 20.

Usage

```r
Mega2ENVGenABEL(markers = NULL, force = TRUE, makemap = FALSE,
sort = TRUE, envir = ENV)
```

Arguments

- `markers`: data frame of markers to be processed
- `force`: pass value to gwaa conversion function
- `makemap`: pass value to gwaa conversion function
- `sort`: pass value to gwaa conversion function
- `envir`: 'environment' containing SQLite database and other globals

Value

gwaa.data-class object created from Mega2R database

Examples

```r
## Not run:
require("GenABEL")
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
gwaa = Mega2ENVGenABEL(markers=ENV$markers[1:10,])
str(gwaa)
```
Mega2gdsfmt

transcode mega2 to gdsfmt/SNP_ARRAY

Description

Reads the data frames in "envir" and builds a GDSFMT COREARRAY file from them.

Usage

Mega2gdsfmt(filename = "test.gds", markers = NULL, snp.order = FALSE, SeqArray = FALSE, envir = ENV)

Arguments

filename gdsfmt file to create
markers data frame of markers to be processed
snp.order TRUE indicates that the "genotype" data matrix has SNP as the first index which changes more quickly than subsequent indices. FALSE indicates that SAMPLE is the first index.
SeqArray TRUE uses SeqArray labels for the gdsfmt vector elements. FALSE it uses labels shown in SNPRelate
envir 'environment' containing SQLite database and other globals

Value

writes the "filename" file containing the CoreArray data. Then returns an internal pointer, class .gds, to the file data.

See Also

gdsfmt

Examples

db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db)
gdsfmtfile = file.path(where_mega2rtutorial_data(), "test.gds")
append_genotype_a = TRUE
append_genotype_b = append_genotype_c = FALSE
gn = Mega2gdsfmt(gdsfmtfile, envir=ENV)
gn
generate gwaa.data-class object from a Mega2R database

Description

Call the Mega2R functions to: create a .tped file, a .tfam file and a .phe file. Then call the GenABEL functions to process these files: the .tped and the .tfam file are processed by convert.snp.tped to produce a tped.raw file. The latter is combined with a .phe (phenotype) file by load.gwaa.data to create a gwaa.data-class object in memory. All these files are deleted when the exits.

Usage

Mega2GenABEL(markers = NULL, mapno = 0, envir = ENV)

Arguments

- markers: data frame of markers to be processed
- mapno: specify which map index to use for physical distances
- envir: 'environment' containing SQLite database and other globals

Value

gwaa.data-class object generated from the Mega2R database

Examples

```r
## Not run:
require("GenABEL")
db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
seqsimgwaa = Mega2GenABEL(markers=ENV$markers[1:10,])

str(seqsimgwaa)
head(summary(seqsimgwaa))

## End(Not run)
```
Mega2GenABELtst

Description

Verify by fields, all the fields in two gwaa.data-class objects. Show more detailed marker information if the coding values are different. (When comparing two gwaa.data-class objects, one native and one created via Mega2R sometimes when an allele frequency is .5 for both alleles, the allele order 1/2 vs 2/1 can not be currently be determined.)

Usage

Mega2GenABELtst(mega_ = mega, gwaa_ = srdta, full = TRUE, envir = ENV)

Arguments

- mega_
 name of first gwaa.data-class object

- gwaa_
 name of second gwaa.data-class object

- full
 if TRUE convert genotypes to text as.character(gwaa_@gtdata) and as.character(mega_@gtdata). Then standardize the order for heterozygous alleles and finally compare. This step is optional because it can be rather slow.

- envir
 'environment' containing SQLite database and other globals

Value

None

Examples

```r
# Not run:
db = system.file("exdata", "seqsimm.db", package="Mega2R")
require("GenABEL")
ENV = read.Mega2DB(db)

y = Mega2ENVGenABEL()
Mega2GenABELtst(y, y, full = FALSE)

# Not run

x = Mega2GenABEL()
Mega2GenABELtst(x, y, full = FALSE)
```

End(Not run)

Not run:
donttestcheck: if you have more time, try ...

```r
x = Mega2GenABEL()
Mega2GenABELtst(x, y, full = FALSE)
```

End(Not run)
Description

Execute the pedgene function on the first gs default gene transcript ranges (gs = 1:100). Update the
envir$pedgene_results data frame with the results.

Usage

Mega2pedgene(gs = 1:100, genes = NULL, envir = ENV)

Arguments

gs a subrange of the default transcript ranges over which to calculate the Dopedgene function.

genes a list of genes over which to calculate the DOpedgene function. The value "*".

envir means use all the transcripts in the selected Bioconductor database. If genes is

NULL, the gs range of the internal refRanges will be used.

‘environment’ containing SQLite database and other globals

Value

None the data frame with the results is stored in the environment and named pedgene_results, viz.
envir$pedgene_results

See Also

init_pedgene

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = init_pedgene(db)
ENV$verbose = TRUE
Mega2pedgene(gs = 50:60)
Mega2R

Mega2R package

Description

This package reads a Mega2 SQLite3 database into data frames and makes the contained genotypes/phenotypes/linkage data available for analysis.

Author(s)

Robert V. Baron and Daniel E. Weeks

Mega2R-TBLS

Mega2R SQLite3 tables

Description

This character vector indicates the names of the Mega2 SQLite3 database tables to load. (Not all of the existing tables are loaded.)

Usage

TBLS

Format

An object of class character of length 15.

Author(s)

Robert V Baron

Mega2R-TBLSFilter

Mega2R SQLite3 table filter

Description

This list contains named values. The name corresponds to an SQLite database table. The value is a character string of column names from the "named" table that should be fetched. A table is in this list, if not all the database table columns are needed. The columns for each table are separated by commas.

Usage

TBLSFilter
Format

An object of class list of length 7.

Note

For the data base tables not in this list, all columns are stored in the corresponding data frame.

Author(s)

Robert V Baron

Usage

Mega2SKAT(f, tyL gs = 1:1PPL genes = NULL, skat = SKAT::SKAT,
envir = ENV, ...)

Arguments

f
SKAT_Null_Model formula. If this is non NULL, envir$obj is initialized by
calling SKAT_Null_Model(f, out_type = ty). If you need to specify additional
arguments to the Model viz. (data, Adjustment, n.Resampling, type.Resampling)
or need to use a different model viz. SKAT_NULL_emmaX,
SKAT_Null_Model_ChrX set the formula to NULL, then before Mega2SKAT
is called, build the model you need and assign it to ENV$obj.
ty
a subrange of the default phenotype C/D = Continuous/Binary 5 (internal type 1/2)
genes
a list of genes over which to calculate the DOSKAT function.
A value, "*", means use all the transcripts in the selected Bioconductor database. If genes is
NULL, the gs range of the internal refRanges will be used.
Nskat
alternate SKAT function, viz. SKATBinary, SKAT_CommonRare. If it is also
necessary is to pass additional arguments to the SKAT function, they may be
added to the end of the Mega2SKAT function and will be passed. See examples
envir
'environment' containing SQLite database and other globals
... extra arguments for SKAT
None the data frame with the results is stored in the environment and named `SKAT_results`, viz. `envir$SKAT_results`.

Note

The `SKAT_Null_Model` is called if the formula, `f`, is not `NULL`. A helper function `SKAT3arg` is defined for the 3 argument callback function which in turn calls `DOSKAT` with the appropriate arguments (including those additional to the `Mega2SKAT` function).

See Also

`init_SKAT`

Examples

```r
db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = init_SKAT(db, verbose = FALSE, allMarkers = FALSE)
ENV$verbose = FALSE
ENV$SKAT_results = ENV$SKAT_results[0, ]
Mega2SKAT(ENV$phes[, 3] - 1 ~ 1, "D", kernel = "linear.weighted",
weights.beta = c(0.5, 0.5), gs=50:60)

# donttestcheck: try this below if there is time
Mega2SKAT(ENV$phes[, 3] - 1 ~ 1, "D", kernel = "linear.weighted",
weights.beta = c(0.5, 0.5), genes=c("CEP104"))

ENV$SKAT_results
```

Mega2VCF

generate a VCF file set for a collection of markers

Description

Generate a VCF file from the specified Mega2 SQLite database. The file is named "prefix".vcf If the markers argument is `NULL()`, the entire `envir$markers` set is used, otherwise markers argument MUST be rows of the markers (`envir$markers`) data frame. In addition, several other files are generated to hold additional database information: "prefix".fam, "prefix".freq, "prefix".map, "prefix".phe, and "prefix".pen, which contain the pedigree, allele frequency, marker genetic and physical map position, member phenotype and phenotype penetrance data.

Usage

```r
Mega2VCF(prefix, markers = NULL, mapno = 0, alleleOrder = "default",
envir = ENV)
```
Arguments

- **prefix**: prefix of output files including the VCF file (see Description section above). This prefix can include a path.
- **markers**: markers selected to be in the VCF output file
- **mapno**: specify which map index to use for genetic distances. The function `showMapNames()` will print out the internal map numbers corresponding to all the maps in the Mega2 database.
- **alleleOrder**: how to order alleles in VCF file. 'default' is Mega2order, 'minor' is minor allele freq first, 'major' is major allele freq first, and 'name' is ascending ascii character order of allele name.
- **envir**: 'environment' containing SQLite database and other globals

Value

None

Note

This code in this package illustrates how to extract the various kinds of data in the Mega2 data frames to use for further processing. Some of the data internal representations are a bit quirky but the code "explains" it all.

Examples

```r
db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db)
vcfdir = file.path(where_mega2rtutorial_data(), "vcfr")
if (!dir.exists(vcfdir)) dir.create(vcfdir)
vcffile = file.path(where_mega2rtutorial_data(), "vcfr", "vcf.01")
Mega2VCF(vcffile, ENV$markers[ENV$markers$chromosome == 1, ][1:10, ], envir = ENV)
list.files(vcfdir)
```

Description

Generate a data frame with a row for each person. The observations are:

- **pedigree**: family pedigree name
- **person**: person name
- **father**: father of person
- **mother**: mother of person
- **sex**: sex of person
- **trait**: value of case/control phenotype for person

mkfam

assemble pedigree information into a data frame
Usage

```r
mkfam(brkloop = FALSE, traitname = "default", envir = ENV)
```

Arguments

- `brkloop`: I haven't needed to set this TRUE yet. Maybe never will. If loops are broken, a person will be replaced by a dopple ganger in the same family with a different father/mother. The number of persons per family will be different when there are broken loops. Also, the person_link numbers will be different for all the persons after the first loop is broken.
- `traitname`: name for trait to use as case/control value; by default, "default"
- `envir`: an 'environment' that contains all the data frames created from the SQLite database.

Value

data frame that is described above

Note

The columns of this data frame come by selecting the values after merging the data frames: `pedigree_table`, `person_table`, and `trait_table`.

Also, the father and mother columns from `person_table` are translated from the row index in the `person_table` to the corresponding name.

This function stores the data frame in the 'environment' and also returns it. The function `setfam()` stores the data frame into the 'environment' and adjusts the `genotype_table` and the `phenotype_table`.

Examples

```r
db = system.file("exdata", "seqsimm", package="MegaR")
ENV = read.Mega2DB(db)

fam = mkfam()

fam
```

Description

Create the markers data frame. It contains 5 observations:

- **locus_link**: locus offset of this marker
locus_link_fill: locus offset plus an accumulating fudge factor that jumps with each new chromosome because the count of markers per chromosome is force to be a multiple of 4. (This value corresponds to the offset of the marker in the unified_genotype_table.)

MarkerName: name of the marker
chromosome: chromosome number of the marker
position: base pair position of the marker (selected by bpPosMap[below])

Usage
mkMarkers(bpPosMap = 1, envir = ENV)

Arguments
bpPosMap An integer that indicates the map (index) to use to merge the chromosome/position fields from the map_table data frame to the marker_table data frame. See showMapNames() for the string name to index mapping.
envir an environment that contains all the data frames created from the SQLite database.

Details
Select a map (index) from the map_table to merge with the select marker_table data frame to make the marker data frame. See showMapNames() for the string name to index mapping.

Value
None

Examples
db = system.file("exdata", "seqsimm.db", package="MegaR")
ENV = read.Mega2DB(db, verbose = FALSE)

mkMarkers(1)
ENV$markers

mkphenotype

generate a phenotype data frame

Description
Convert data in phenotype_table to a data frame of columns that are phenotypes. The columns may be affection status or quantitative values

Usage
mkphenotype(envir)
Arguments

envir "environment" containing SQLite database and other globals

Value

is a data frame with FID column, then IID column, and then an additional column for each phenotype.

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
out = mkphenotype()

Description

Call dbmega2_import() with the specified database and create an 'environment', with the SQLite table data loaded into data frames. Also run mkfam() to create the pedigree data frame fam and then store it with setfam(). setfam() modifies the unified_genotype_table (and phenotype_table) to match the family members that remain.

Usage

read.Mega2DB(db, ...)

Arguments

db specify SQLite database to load
...
additional arguments to pass to dbmega2_import

Value

an 'environment' that contains all the data frames created from the SQLite database.

Note

By default, mkfam will remove one of each person that was replicated to break loops in the pedigree, see mkfam for details. If you want to leave loops broken, the code is available, but you will have to write your own version of read.Mega2DB with a different invocation of mkfam().
Examples

db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db, verbose = TRUE)

setAnnotations(txdb, entrezGene, envir = ENV)

Arguments

txdb name of Bioconductor transcription database.
etrezGene name of Bioconductor mapping of gene name or gene alias to entrez gene id
envir an 'environment' that contains all the data frames created from the SQLite database.

Value

None

Note

Mega2R will take care to load the necessary databases, but you will have to install them from Bioconductor. This is explained at length in the package Vignette.

Examples

db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db)

setAnnotations("TxDb.Hsapiens.UCSC.hg19.knownGene", "org.Hs.eg.db")

ENV$txdb
ENV$entrezGene

Description

This function takes two string parameters: one to specify entrez gene ids to transcripts, the other to map gene names to entrez gene id's.
setfam

replace the pedigree data frame

Description
You should first modify the fam data frame to filter the members you need to remove. (For example, you might want to delete members that have an unknown case/control status.) This function takes a new data frame of pedigree information and replaces the fam data frame in the 'environment' with it. Additionally, changing fam data frame will filter the genotypes data frame to only contain persons matching those in the fam data frame. setfam also filters for the phenotype data records.

Usage
setfam(fam, envir = ENV)

Arguments

fam | data frame of family information filtered from fam data frame (generated by mkfam).
envir | an 'environment' that contains all the data frames created from the SQLite database.

Value
None

Examples

db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db)

fam = mkfam()
remove founders
fam = fam[, !((fam[, 5] == fam[, 6]) & (fam[, 5] == 0)),]
setfam(fam)

ENV$fam

setRanges

set default range data: chromosome and start/end base pair

Description
This function sets the default list of ranges used by applyFnToRanges. applyFnToRanges examines each range and the set of markers that fall within the range will be processed.
setRanges

Usage

setRanges(ranges, indices, envir = ENV)

Arguments

ranges a data frame that contains at least 4 observations: a name, a chromosome, a start base pair position and an end base pair position.

indices a vector of 3 or 4 integers that specify the chromosome column, start base pair, column and end base pair column of range data frame and lastly the name column. If the vector only contains 3 integers, a name will be generated from the three range elements and it will be appended to the ranges and the last range column will be added to the indices.

envir an 'environment' that contains all the data frames created from the SQLite database.

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="MegaR")
ENV = read.MegaDB(db)

ranges = matrix(c(1, 2240000, 2245000,
 1, 2245000, 2250000,
 1, 3760000, 3761000,
 1, 3761000, 3762000,
 1, 3762000, 3763000,
 1, 3763000, 3764000,
 1, 3764000, 3765000,
 1, 3765000, 3763760,
 1, 3763760, 3767000,
 1, 3767000, 3768000,
 1, 3768000, 3769000,
 1, 3769000, 3778000),
 ncol = 3, nrow = 12, byrow = TRUE)

setRanges(ranges, 1:3)

ENV$refRanges

ranges = matrix(c(1, 2240000, 2245000,
 1, 2245000, 2250000,
 1, 3760000, 3761000,
 1, 3761000, 3762000,
 1, 3762000, 3763000,
 1, 3763000, 3764000,
 1, 3764000, 3765000,
 1, 3765000, 3763760,
showMapNames

1, 3763760, 3767000,
1, 3767000, 3768000,
1, 3768000, 3769000,
1, 3769000, 3770000),
ncol = 3, nrow = 12, byrow = TRUE)
ranges = data.frame(ranges)
ranges$name = LETTERS[1:12]
names(ranges) = c("chr", "start", "end", "name")

setRanges(ranges, 1:4)

ENV$refRanges

showMapNames show the association between mapno and mapname

Description

Mega2R allows several different physical and genetic maps to be stored and used to select positions. This function shows the association between map number and map name.

Usage

showMapNames(envir = ENV)

Arguments

envir an environment that contains all the data frames created from the SQLite database.

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

showMapNames()
showPhenoNames

show PhenoNames

show the association between index no and phenotype

Description

Mega2R stores several phenotypes, both affective and quantitative. This function displays the mapping between phenotype (name), index, and the phenotype type (affection or quantitative).

Usage

showPhenoNames(envir = ENV)

Arguments

envir an environment that contains all the data frames created from the SQLite database.

Value

None

Examples

env

showMega2ENV

show Mega2R environment, viz. data frames and related info.

Description

Mega2R uses an environment to store the data frames when it reads SQLite database tables. This function shows the data frames and their sizes; it also shows the count of samples and markers in the database. Note: It is not necessary to provide an argument, if the environment is named ENV.

Usage

showMega2ENV(envir = ENV)

Arguments

envir an environment that contains all the data frames created from the SQLite database.

Value

None

Examples

db = system.file("exdata", "seqsim.db", package="Mega2R")
ENV = read.Mega2DB(db)
showMega2ENV()
uniqueFamMember

Value

None

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)

showPhenoNames()

uniqueFamMember regenerate fam data frame with unique values in member column

Description

Reads the fam data frame in "envir" and returns a new one with unique entries in the member column.

Usage

uniqueFamMember(envir = ENV)

Arguments

envir 'environment' containing SQLite database and other globals

Value

a data frame with columns the same as the "fam" data frame but with the member column containing unique entries

See Also

mkfam

Examples

db = system.file("exdata", "seqsimm.db", package="Mega2R")
ENV = read.Mega2DB(db)
setfam(uniqueFamMember(envir = ENV))
where_mega2rtutorial_data
show directory of tutorial data

Description
This function shows the directory the Mega2Rtutorial (inst/exdata) was copied to.

Usage
where_mega2rtutorial_data(dir = file.path(tempdir(), "Mega2Rtutorial"))

Arguments
dir The directory to store the tutorial data to. By default, this is tempdir()/Mega2Rtutorial

Value
dir tutorial to hold vignette

Examples
directory = where_mega2rtutorial_data()
Index

*Topic datasets
 Mega2R-TBLS, 23
 Mega2R-TBLSFilter, 23

applyFnToGenes, 3
applyFnToMarkers, 5
applyFnToRanges, 6

clean_mega2rtutorial_data, 8
dbmega2_import, 9
D0pedgene, 9, 17
DOSKAT, 11
dump_mega2rtutorial_data, 12

gdsfmt, 19
getgenotypes, 13
getgenotypesgenabel, 14
getgenotypesraw, 15

init_pedgene, 10, 16, 22
init_SKAT, 11, 17, 25

Mega2GENGenABEL, 18
Mega2gdsfmt, 19
Mega2GenABEL, 20
Mega2GenABELtst, 21
Mega2pedgene, 17, 22
Mega2R, 23
Mega2R-package (Mega2R), 23
Mega2R-TBLS, 23
Mega2R-TBLSFilter, 23
Mega2SKAT, 11, 18, 24
Mega2VCF, 25
mkfam, 26, 35
mkMarkers, 27
mkphenotype, 28

read.Mega2DB, 29

setAnnotations, 30

setfam, 31
setRanges, 31
showMapNames, 33
showMega2ENV, 34
showPhenoNames, 34

TBLS (Mega2R-TBLS), 23
TBLSFilter (Mega2R-TBLSFilter), 23

uniqueFamMember, 35

where_mega2rtutorial_data, 36