Package ‘MetaAnalyser’

October 12, 2022

Type Package

Title An Interactive Visualisation of Meta-Analysis as a Physical Weighing Machine

Version 0.2.1

Date 2016-10-12

Author Jack Bowden <j.bowden@bristol.ac.uk> (conception), Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk> (programming)

Maintainer Christopher Jackson <chris.jackson@mrc-bsu.cam.ac.uk>

Description An interactive application to visualise meta-analysis data as a physical weighing machine. The interface is based on the Shiny web application framework, though can be run locally and with the user's own data.

License GPL (>= 2)

Depends R (>= 2.10), shiny

Imports ggvis, DT (>= 0.1.40), rstudioapi

Suggests rmeta

URL https://github.com/chjackson/MetaAnalyser

BugReports https://github.com/chjackson/MetaAnalyser/issues

LazyData yes

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-10-13 00:24:55

R topics documented:

aspirin .. 2
catheter ... 3
magnesium ... 4
MetaAnalyser ... 4
Description

63 randomized controlled trials reported by Edwards et al. (1998) that each investigated the benefit of oral aspirin for pain relief.

Usage

data("aspirin")

Format

A data frame with 63 observations on the following 3 variables.

name Study name
est Study estimate: log-odds ratio for the proportion of patients in each arm who had at least a 50% reduction in pain
se Corresponding standard errors

Details

This dataset is included in this package to demonstrate asymmetry in meta-analysis, where smaller studies tend to show larger effect size estimates, whereas larger studies tend to report more modest results.

Source

Examples

Not run: MetaAnalyser(aspirin)
Description

Data on the effectiveness of silver sulfadiazine coating on venous catheters for preventing bacterial colonisation of the catheter and bloodstream infection. A modified version of the data provided by the rmeta package, excluding four small or uninformative studies.

Usage

data("catheter")

Format

A data frame with 11 observations on the following 3 variables.

name Study name
est Log odds ratio of bacteria colonisation (treatment compared to control)
se Corresponding standard error

Details

The Appavi, Pemberton, Logghe and Bach (a) studies are excluded. The data here are produced from the source numerators and denominators using the meta.MH method in rmeta.

Source

References

The rmeta package (Lumley, 2012).

Examples

Not run:
MetaAnalyser(catheter)

End(Not run)
magnesium

Magnesium and myocardial infarction meta-analysis data

Description

8 randomised trials assessing the use of magnesium to treat myocardial infarction, previously analysed by Higgins and Spiegelhalter (2002).

Usage

```r
data("magnesium")
```

Format

A data frame with 8 observations on the following 3 variables.

- `name` Study name
- `est` Log odds ratio of death (magnesium versus control)
- `se` Standard error for the log odds ratio

Source

Examples

```r
## Not run: MetaAnalyser(magnesium)
```

MetaAnalyser

The Meta-Analyser

Description

An interactive application to visualise meta-analysis data as a physical weighing machine.

Usage

```r
MetaAnalyser(dat, rstudio = FALSE)
MetaAnalyzer(dat, rstudio = FALSE)
```
Arguments

- **dat**: Meta-analysis data. This should be a data frame with three columns, called "name", "est" and "se" giving the study name, study-specific parameter estimates and corresponding standard errors respectively. Numeric or character study names are permitted. If the data frame has more than three columns, the first three are used. If the first three columns are called "name", "est" and "se" in some order, they are re-ordered appropriately, otherwise they are re-named.

- **rstudio**: The default of FALSE opens the app in the system default web browser. If running RStudio and `rstudio=TRUE`, the app is opened in the RStudio built-in viewer.

Details

Opens a web browser with the interactive application.

If `dat` is omitted, the default `magnesium` dataset is used.

MetaAnalyzer is an alias for MetaAnalyser.

Value

None

References

Examples

```r
## Not run: MetaAnalyser(magnesium)
```

metasumm

Meta-analysis summary statistics

Description

Compute meta-analysis weights and corresponding pooled estimates given a set of estimates and standard errors. Weights are simply defined by the inverse variance, where the variance is the sum of the study-specific and random effects variance.

Usage

```r
metasumm(dat, resd, egger = FALSE)
```
Arguments

dat
Meta-analysis data. This should be a data frame with three columns, called "name", "est" and "se" giving the study name, study-specific parameter estimates and corresponding standard errors respectively.
Numeric or character study names are permitted. If the data frame has more than three columns, the first three are used. If the first three columns are called "name", "est" and "se" in some order, they are re-ordered appropriately, otherwise they are re-named.

resd
Random effects standard deviation. Set resd=0 for a fixed effects meta-analysis. If resd is omitted, a random effects meta-analysis is performed using the typical DerSimonian and Laird method to obtain the standard deviation (resd_dsl).

egger
Set to TRUE to perform Egger correction.

Value
A list with the following components:

est
Original study-specific estimates (if egger=FALSE) or Egger-corrected version of these (if egger=TRUE).

pool
Pooled estimate

poolse
Pooled standard error

poolci
Pooled 95% confidence interval

pwtfe
Weights for fixed effects model, normalised to sum to 1

pwtre
Weights for desired random effects standard deviation, normalised to sum to 1

resd_dsl
Heterogeneity standard deviation in meta-analysis

Description
Random effects standard deviation using the classic DerSimonian & Laird formula.

Usage

```r
resd_dsl(dat)
```

Arguments

dat
Meta-analysis data. This should be a data frame with three columns, called "name", "est" and "se" giving the study name, study-specific parameter estimates and corresponding standard errors respectively.
Numeric or character study names are permitted. If the data frame has more than three columns, the first three are used. If the first three columns are called "name", "est" and "se" in some order, they are re-ordered appropriately, otherwise they are re-named.
Value
 Estimated random effects standard deviation

Examples
 resd_dsl(magnesium)

Description
 Artificial meta-analysis dataset with a symmetric pattern about the pooled estimate.

Usage
 data("symmetric")

Format
 A data frame with 13 observations on the following 3 variables.
 name Study name, here simply a numeric vector from 1 to 13
 est Study-specific estimate
 se Standard error

Details
 Used in this package to illustrate an idealised situation where there is no correlation between effect size and precision across studies.

Examples
 ## Not run: MetaAnalyser(symmetric)
Index

* datasets
 aspirin, 2
 catheter, 3
 magnesium, 4
 symmetric, 7

aspirin, 2

catheter, 3

magnesium, 4, 5
MetaAnalyser, 4
MetaAnalyzer (MetaAnalyser), 4
metasumm, 5

resd_dsl, 6, 6

symmetric, 7