Package ‘MetaIntegrator’

October 12, 2022

Type Package
Title Meta-Analysis of Gene Expression Data
Version 2.1.3
Date 2020-02-25
Author Winston A. Haynes, Francesco Vallania, Aurelie Tomczak, Timothy Sweeney, Erika Bongen, Aditya M. Rao, Purvesh Khatri
Maintainer Aditya M. Rao <adityamr@stanford.edu>
Description A pipeline for the meta-analysis of gene expression data. We have assembled several analysis and plot functions to perform integrated multi-cohort analysis of gene expression data (meta-analysis). Methodology described in:
<http://biorxiv.org/content/early/2016/08/25/071514>.
License LGPL

biocViews

Imports BiocManager, rmeta, multtest, ggplot2, parallel, Rmisc, gplots, Biobase, RMySQL, DBI, stringr, preprocessCore, GEOquery, GEOmetadb, RSQLite, data.table, ggpubr, ROCR, zoo, pracma, COCONUT, Metrics, manhattanly, DT, heatmap, plyr, boot, dplyr, reshape2, rmarkdown, AnnotationDbi, HGNChelper, magrittr, readr, plotly, httpuv
Suggests BiocStyle, knitr, RUnit, BiocGenerics, snpList, magick
VignetteBuilder knitr
LazyData true
RoxygenNote 6.1.1
Depends R (>= 3.6)
Encoding UTF-8

URL http://biorxiv.org/content/early/2016/08/25/071514

NeedsCompilation no
Repository CRAN
Date/Publication 2020-02-26 13:00:11 UTC
R topics documented:

backwardSearch .. 3

calcMetaPower .. 4
calculateROC .. 5
calculateScore .. 6
checkDataObject ... 7
classFunction .. 9
cleanUpPheno .. 9
coconutMetaIntegrator .. 10
ens_ensgID_table .. 11
ens_entrez_table .. 11
filterGenes ... 11
forestPlot .. 12
forwardSearch ... 13
geneSymbolCorrection .. 15
getGEOData .. 16
getMostRecentFilter .. 16
getSampleLevelGeneData 17
ggForestPlot ... 18
heatmapPlot .. 19
immunoStatesDecov .. 20
immunoStatesGenePropCorr 20
immunoStatesMatrix ... 21
immunoStatesMeta ... 21
imputeSex .. 22
lincsBaitCorr ... 23
lincsCorrelate .. 24
lincsTools .. 26
manhattanPlot .. 27
MetaIntegrator .. 28
multiplePRCPlot .. 29
multipleROCPlot .. 31
pooledROCPlot ... 31
prcPlot ... 33
predvalPlot .. 35
regressionPlot .. 36
rocPlot ... 37
runMetaAnalysis ... 38
subsetOriginalData .. 39
summarizeFilterResults 39
summaryROCCalc .. 40
summaryROCPlot .. 41
tinyMetaObject .. 42
ucsc_genbank_table .. 42
ucsc_refseq_table .. 42
violinPlot .. 43

Index .. 45
backwardSearch

backwardSearch (metaObject, filterObject, backThresh = 0)

Arguments

- **metaObject**: The metaObject from the main metaIntegrator function.
- **filterObject**: An object matching the specifications for Filter
- **backThresh**: Stopping threshold for the backward search. Default=0.

Details

The forwardSearch and backwardSearch functions are designed to assist in selection of gene sets optimized for discriminatory power. The selection of an optimized set is a non-convex problem, and hence both functions will yield gene sets that are only locally optimized (i.e., they are not global optima). Both the forwardSearch and backwardSearch functions follow a greedy algorithm, either adding (or removing) genes that contribute the most (or the least) to the overall weighted AUC of the discovery datasets from the metaObject.

Both search functions allow a user to set a stopping threshold; the fundamental tradeoff here will be sparsity of the returned gene set vs. overall discriminatory power. The default threshold is 0, such the functions will return the set of genes at which no gene could be added or removed for the forward or backward functions, respectively, and increase the weighted AUC.

Note that the weighted AUC returned during the function run is dependent on sample size; this was done (instead of a simple mean) so that the gene set discriminates the MOST SAMPLES, rather than being optimized for any particular dataset.

Value

A Filter object which has results from backward search
calcMetaPower

Calculates the statistical power of a random effects meta-analysis

Description

Calculates the statistical power of a random effects meta-analysis based on the methods described by Valentine et al. 2010, J of Educational and Behavioral Studies.

Usage

calcMetaPower(es, avg_n, nStudies, hg, tail=2)

Arguments

es: effect size you’re trying to detect (e.g. 0.6)

avg_n: the average sample size of each GROUP in each STUDY (e.g. 10)

nStudies: the number of studies you put in the meta-analysis (aka Discovery cohort) (e.g. 5)

hg: heterogeneity, (".33" for small, "1" for moderate, & "3" for large) (e.g. 0.33)

tail: whether you have a one tail or two tail p-value

Examples

#Run backward search to reduce the size of our filter results
backwardRes <- backwardSearch(tinyMetaObject, tinyMetaObject$filterResults[[1]], backThresh = -3)
#See the results
print(backwardRes$posGeneNames)
print(backwardRes$negGeneNames)
Details

The code itself is adapted from a blog post by Dan Quintana, Researcher at Oslo University in Biological Psychiatry On the website Towards Data Science, July 2017

https://towardsdatascience.com/how-to-calculate-statistical-power-for-your-meta-analysis-e108ee586ae8

avg_n is the average number people in each group in each study, so if you have 4 studies, and each study compared 10 cases and 10 controls, then avg_n = 10.

NOTE: THIS CODE DOES NOT TAKE MULTIPLE HYPOTHESIS TESTING INTO ACCOUNT IT ASSUMES P< 0.05

For clarity, avg_n is the average number people in each group in each study, so if you have 4 studies, and each study compared 10 cases and 10 controls, then avg_n = 10.

Value

Statistic Power of the random effects meta-analysis described. Most statisticians want a statistical power of at least 0.8, which means that there is an 80 that if there is a true effect, you will detect it.

Examples

effect size =0.7
10 samples on average in each group in each study
5 studies included in meta-analysis
low heterogeneity (0.33)
calcMetaPower(es=0.7, avg_n=10, nStudies=5, hg=0.33)

calculateROC

Calculate ROC Curve Statistics

Description

Calculates receiver operating characteristic curve data, including AUC (using trapezoidal method). Takes only a vector of labels and a vector of predictions.

Usage

calculateROC(labels, predictions, AUOnly = FALSE)

Arguments

labels Vector of labels; must have exactly two unique values (ie, cases and controls).
predictions Vector of predictions (for instance, test scores) to be evaluated for ability to separate the two classes. Must be exactly the same length as labels.
AUOnly Return all ROC values, or just the AUC.
Details
The code borrows its core ROC calculations from the ROCR package. AUC is calculated by the trapezoidal method. AUC standard errors are calculated according to Hanley’s method.

Value
Assuming AUConly=F, returns a list of values:

- **roc**: dataframe consisting of two columns, FPR and TPR, meant for plotting
- **auc**: area under the curve
- **auc.CI**: 95% confidence interval for AUC

Author(s)
Timothy E. Sweeney

References
The code borrows its core ROC calculations from the ROCR package.

See Also
calculateScore, rocPlot

Examples
expect an AUC near 0.5 with random test
labels <- c(rep(0, 500), rep(1, 500))
scores <- runif(1000)
calculateROC(labels, scores)
#With the real data, AUC should be around 0.85606
scoreResults <- calculateScore(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])
rocRes <- calculateROC(predictions=scoreResults, labels=tinyMetaObject$originalData[[1]]$class)
print(rocRes$auc[[1]])

calculateScore
Calculate a signature Z-score for a set of genes in a single dataset

Description
Given a gene set of interest, it is often desirable to summarize the expression of that gene set using a single integrated score. The calculateScore method calculates the geometric mean of the expression level of all positive genes, minus the geometric mean of the expression level of all negative genes. The resulting scores are then standardized within the given dataset, such that the output Z-score has mean=0 and std. dev=1. Such a Z-score can then be used for classification, etc.

Usage
calculateScore(filterObject, datasetObject, suppressMessages=FALSE)
Arguments

- `filterObject`: A MetaFilter object generated with `filterGenes()` containing the signature genes that will be used for Z-score calculation.
- `datasetObject`: A Dataset object for which the signature score (Z-score) will be calculated. This vector would typically be added as $score$ column in `datasetObject$pheno`.
- `suppressMessages`: Boolean value (TRUE/FALSE) about whether to display verbose output. Default: FALSE.

Details

The Z-score is based off of the geometric mean of expression. As such, negative expression values are not allowed. A dataset is thus always scaled by its minimum value + 1, such that the lowest value = 1. Any individual NANs or NAs are also set to 1. If a dataset does not have any information on a given gene, the entire gene is simply left out of the score. When run, the function will print to command line the number of genes used, and the number passed in. Although mostly used internally, the function has been exported in case users want to compare multiple classes, etc., using the same Z-score as is used for producing two-class comparisons.

Value

A vector of Z-scores, of length `ncols(datasetObject$expr)` (and in the same order).

Author(s)

Timothy E. Sweeney, Winston A. Haynes

See Also

- `filterGenes`

Examples

```r
calculateScore(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])
```

checkDataObject

Check for errors in objects used for analysis

Description

Given an object to check, its `objectType` and the `objectStage`, the function `checkDataObject` looks for errors within Meta, Dataset, MetaAnalysis, or MetaFilter objects. It returns TRUE if the object passed error checking, FALSE otherwise, and it prints warning messages explaining failed checks.

Usage

```r
checkDataObject(object, objectType, objectStage="")
```
checkDataObject

Arguments

object the object to be checked
objectType one type of "Meta", "Dataset", "MetaAnalysis", "MetaFilter"
objectStage if a metaObject, one of "Pre-Analysis", "Pre-Filter", or "Post-Filter". Otherwise: ""

Details

For metaAnalysisObject and filterObject, it makes sure that each entry within the object is 1) not NULL and 2) the correct type. For datasetObjects, it makes sure that: 1) the entries are not null (except $class, which is permitted to be NULL) 2) the entries are the correct type and 3) the sample names (within $pheno, $expr, and $class) match 4) the probeIDs (within $expr and $keys) match.

For metaObject, it recursively checks the Dataset, MetaAnalysis, and MetaFilter objects contained within the metaObject.

The objectStage defines what entries a metaObject contains. Thus, "Pre-Analysis" metaObjects only contain $originalData. "Pre-Filter" metaObjects contain $originalData, $metaAnalysis, and $leaveOneOutAnalysis. "Post-Filter" metaObjects contain $originalData, $metaAnalysis, $leaveOneOutAnalysis, and $filterResults.

Value

TRUE if passed error checking, FALSE otherwise Prints warning messages explaining the portion of the error checking failed

Author(s)

Erika Bongen

Examples

check a datasetObject
checkDataObject(tinyMetaObject$originalData$Whole.Blood.Study.1, "Dataset")

check a metaObject before running the meta-analysis
checkDataObject(tinyMetaObject, "Meta", "Pre-Analysis")

check a metaObject after running the meta-analysis with runMetaAnalysis()
checkDataObject(tinyMetaObject, "Meta", "Pre-Filter")

check a metaObject after filtering the meta-analysis results with filterGenes()
checkDataObject(tinyMetaObject, "Meta", "Post-Filter")

check a metaAnalysisObject
checkDataObject(tinyMetaObject$metaAnalysis, "MetaAnalysis")

check a filterObject
checkDataObject(tinyMetaObject$filterResults[[1]], "MetaFilter")
classFunction

Helper function to build the class vector

Description
Helper function to build the class vector

Usage
classFunction(datasetObject, column, diseaseTerms)

Arguments
- datasetObject: the Dataset object to build a class vector for
- column: column from the $pheno slot to look for the disease terms
- diseaseTerms: a list of terms identifying the disease samples

Details
Based on a defined set of disease terms, builds a class vector.

Value
returns a Dataset object that has a class vector inserted

Author(s)
Winston A. Haynes

Examples
classObj <- classFunction(tinyMetaObject$originalData$Whole.Blood.Study.1,
 column="group", diseaseTerms=c("Disease"))

cleanUpPheno

Automatic preprocessing of $pheno dataframe

Description
Takes a Dataset object and:

Usage
cleanUpPheno(myDataset)
coconutMetaIntegrator

Arguments

myDataset a datasetObject that contains unprocessed $pheno

Value

myDataset a datasetObject that contains processed $pheno and original unprocessed $rawPheno

Author(s)

Erika Bongen

Examples

Not run:
Download and automatically preprocess pheno
gse53195 = getGEOData("GSE53195")
gse53195 = gse53195$originalData$GSE53195
View(gse53195$pheno) # Original $pheno
gse53195 = cleanUpPheno(gse53195)
View(gse53195$rawPheno) # Original $pheno
View(gse53195$pheno) # Preprocessed $Pheno

End(Not run)
ens_ensgID_table

Description

Cached data to prevent cumbersome database connections.

ens_entrez_table

Description

Cached data to prevent cumbersome database connections.

filterGenes

Filter out significant genes from meta-analysis results

Description

After the Meta-Analysis results have been written to the `metaObject`, the results can be examined using different gene filtering criteria. This function will use the given `filterParameter` to select genes that fulfill the filter conditions. The function returns a modified version of the `metaObject` with results stored in `metaObject$filterResults`.

Usage

```r
filterGenes(metaObject, isLeaveOneOut = TRUE, effectSizeThresh = 0, FDRThresh = 0.05, numberStudiesThresh = 1, heterogeneityPvalThresh = 0)
```

Arguments

- `metaObject`: a Meta object which must have the `$originalData`, `$metaAnalysis` populated
- `isLeaveOneOut`: Do leave-one-out analysis on discovery datasets (default: TRUE). Needs at least 2 datasets for discovery.
- `effectSizeThresh`: a gene is selected, if the absolute value of its effect size is above this threshold (default: 0)
- `FDRThresh`: FDR cutoff: a gene is selected, if it has a p-value less than or equal to the FDR cutoff (default: 0.05)
- `numberStudiesThresh`: number of studies in which a selected gene has to be significantly up/down regulated (default: 1)
heterogeneityPvalThresh
	null heterogeneity p-value cutoff (filter is off by default: heterogeneityPvalThresh = 0). Genes with significant heterogeneity and, thus a significant (low) heterogeneity p-value, can be filtered out by using e.g.: heterogeneityPvalThresh = 0.05 (removes all genes with heterogeneity p-value < 0.05)

Value

A modified version of the input metaObject with an additional filterObject stored within metaObject$filterResults

Note

Use checkDataObject(metaObject, "Meta", "Pre-Filter") to make sure your metaObject has the right format for filtering after running the meta-analysis with runMetaAnalysis().

Author(s)

Francesco Vallania

See Also

checkDataObject

Examples

filter genes with default settings
#(false discovery rate cutoff of 5 percent and WITH leave-one-out analysis)
testMetaObject <- filterGenes(tinyMetaObject)
summarizeFilterResults(testMetaObject, getMostRecentFilter(testMetaObject))

filter genes with false discovery rate of 1 percent and WITHOUT leave-one-out analysis
testMetaObject <- filterGenes(testMetaObject, FDRThresh = 0.01, isLeaveOneOut = FALSE)
summarizeFilterResults(testMetaObject, getMostRecentFilter(testMetaObject))

forestPlot

Compare effect sizes of a gene across all datasets in meta-analysis

Description

A forest plot can be used to compare the expression values of a gene across different datasets. The size of the blue boxes is proportional to the number of samples in the study and light blue lines indicate the standard error of the effect sizes for each study (95% confidence interval). The summary effect size for all studies is indicated as yellow diamond below and the width of the diamond indicates the summary standard error.

Usage

forestPlot(metaObject, geneName, boxColor = "blue", whiskerColor = "lightblue", zeroLineColor = "black", summaryColor = "orange", textColor = "red")
Arguments

- `metaObject` : a filtered metaObject, i.e. it needs to include a `filterObject` generated by the function `filterGenes()`
- `geneName` : name of the gene for which the forest plot should be generated
- `boxColor` : desired color for the box (default: "blue")
- `whiskerColor` : desired color for the whiskers (default: "lightblue")
- `zeroLineColor` : desired color for the line indicating 0 (default: "black")
- `summaryColor` : desired color for the diamond representing the summary effect size (default: "orange")
- `textColor` : desired color for the text of the dataset names (default: "red")

Value

Plot to compare effect sizes of a gene across datasets

Author(s)

Winston A. Haynes, Jiaying Toh

See Also

`filterGenes`, `runMetaAnalysis`, `violinPlot`

Examples

```r
# compare effect sizes of the Gene1 for all discovery datasets in tinyMetaObject
forestPlot(tinyMetaObject, geneName="Gene1")
```

Description

Forward search is useful for reducing the size of the gene set in your `filterObject`. In general, forward search identifies a small set of genes with maximum ability to distinguish cases from controls.

`forwardSearch` is a method of optimizing a given set of significant genes to maximize discriminatory power, as measured by area under the ROC curve (AUC). The function works by taking a given set of genes (presumably a set that has been filtered for statistical significance), and iteratively adding one gene at a time, until the stopping threshold is reached. At each round, the gene whose addition contributes the greatest increase in weighted AUC is added. Weight AUC is defined as the sum of the AUC of each dataset, times the number of samples in that dataset. The stopping threshold is in units of weighted AUC.
Usage

`forwardSearch(metaObject, filterObject, yes.pos = NULL, yes.neg = NULL, forwardThresh = 0)`

Arguments

- **metaObject**: The metaObject from the main metaIntegrator function.
- **filterObject**: An object matching the specifications for Filter
- **yes.pos**: Optional- if passed, the forwardSearch will start with the genes in yes.pos and yes.neg (instead of starting from zero genes).
- **yes.neg**: Optional- if passed, the forwardSearch will start with the genes in yes.pos and yes.neg (instead of starting from zero genes).
- **forwardThresh**: Stopping threshold for the forward search. Default=0.

Details

The `forwardSearch` and `backwardSearch` functions are designed to assist in selection of gene sets optimized for discriminatory power. The selection of an optimized set is a non-convex problem, and hence both functions will yield gene sets that are only locally optimized (i.e., they are not global optima). Both the `forwardSearch` and `backwardSearch` functions follow a greedy algorithm, either adding (or removing) genes that contribute the most (or the least) to the overall weighted AUC of the discovery datasets from the metaObject.

Both search functions allow a user to set a stopping threshold; the fundamental tradeoff here will be sparsity of the returned gene set vs. overall discriminatory power. The default threshold is 0, such the functions will return the set of genes at which no gene could be added or removed for the forward or backward functions, respectively, and increase the weighted AUC.

Note that the weighted AUC returned during the function run is dependent on sample size; this was done (instead of a simple mean) so that the gene set discriminates the MOST SAMPLES, rather than being optimized for any particular dataset.

Value

A Filter object which has results from forward search

Author(s)

Timothy E. Sweeney

References

Sweeney et al., Science Translational Medicine, 2015

See Also

`backwardSearch`
Examples

Run forward search to reduce the size of our filter results
forwardRes <- forwardSearch(tinyMetaObject,
 tinyMetaObject$filterResults[[1]],
 forwardThresh = 0)

See the results
print(forwardRes$posGeneNames)
print(forwardRes$negGeneNames)

geneSymbolCorrection Correct/update gene symbols in a metaObject

Description

The gene symbols in gene expression data are sometimes outdated or incorrect, so this function goes through your metaObject and updates the symbols based on the HGNChelper package, as well as correcting some other known issues.

Usage

geneSymbolCorrection(metaObject)

Arguments

metaObject your metaObject

Value

A modified version of the input metaObject with updated gene symbols for each dataset in metaObject$originalData

Author(s)

Aditya M. Rao

Examples

tinyMetaObject = geneSymbolCorrection(tinyMetaObject)
getGEOData

GEO download/processing through GEOquery

Description

Creates MetaIntegrator formatted objects by downloading and formatting data from GEO.

Usage

`getGEOData(gseVector, formattedNames = gseVector, qNorm = FALSE, ...)`

Arguments

- `gseVector`: a vector of GSE ids (each a string)
- `formattedNames`: a vector of formatted names corresponding to the GSE ids. Default: `gseVector`
- `qNorm`: perform quantile normalization of expression data within a dataset or not. Default: `FALSE`
- `...`: will pass additional parameters to `getGEO`, including `destdir`, which specifies download location

Details

Note: if you get the error "Error: Couldn’t find driver MySQL" then just `library(RMySQL)` and then re-run `getGEOData`

Value

a Pre-Analysis MetaObject containing the datasets loaded in `$originalData`

Author(s)

Francesco Vallania, Andrew Tam, Ravi Shankar, Aditya M. Rao

getMostRecentFilter

Get name of most recent filter

Description

Given a `metaObject` this function will look through `$filterResults` for the most recent filter used and return the filter name.

Usage

`getMostRecentFilter(metaObject)`
getSampleLevelGeneData

Arguments

- `metaObject` A meta object

Value

Name of the most recent filter

Author(s)

Francesco Vallania

Examples

`getMostRecentFilter(tinyMetaObject)`

getSampleLevelGeneData

Extract gene-level data from a given data object

Description

Given a datasetObject, and a set of target genes, this function will summarize probe-level data to gene-level data for the target genes. Returns a data frame with only the genes of interest, for each sample in the dataset.

Usage

`getSampleLevelGeneData(datasetObject, geneNames)`

Arguments

- `datasetObject` a Dataset object that is used to extract sample level data (At least, must have a `$expr` of probe-level data, and `$keys` of probe:gene mappings).
- `geneNames` A vector of geneNames

Details

Summarizes probe-level data to gene-level data, using the mean of the probes, according to the probe:gene mapping in the `$keys` item in the dataset object. This is done only for the genes in the filter object.

Value

Returns a data frame with expression levels of only the genes of interest, for each sample in the dataset. Mostly used internally, but has been exposed to the user to allow advanced functionality on external datasets if desired.
ggForestPlot

Author(s)

Timothy E. Sweeney, Winston A. Haynes

Examples

```r
sampleResults <- getSampleLevelGeneData(datasetObject=tinyMetaObject$originalData[[1]],
genename=c(tinyMetaObject$filterResults[[1]]$posGeneNames,
tinyMetaObject$filterResults[[1]]$negGeneNames))
```  

```r
ggForestPlot
```

Description

A forest plot can be used to compare the expression values of a gene across different datasets. The area of the blue boxes is proportional to the number of samples in the study and black lines indicate the standard error of the effect sizes for each study (by default the 95% confidence interval). The summary effect size for all studies is indicated as an orange diamond below and the width of the diamond indicates the summary standard error.

Usage

```r
ggForestPlot(metaObject, genes, confLevel = 0.95, facetCols = NULL,
facetScales = "free_x", boxScales = c(6, 16))
```

Arguments

- `metaObject` a filtered metaObject, i.e. it needs to include a filterObject generated by the function `filterGenes()`
- `genes` character vector containing the genes for which the forest plot should be generated
- `confLevel` confidence level
- `facetCols` integer that specifies how many columns are going to be used for the plot
- `facetScales` same as ggplot’s `facet_wrap`: should Scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y")
- `boxScales` a numeric vector of length 2 providing scaling factors for the plot. Specifies minimum and maximum size.

Value

`ggplot2` Plot comparing effect sizes of a gene across datasets

Author(s)

Winston A. Haynes, Jiaying Toh, Michele Donato
See Also

filterGenes, runMetaAnalysis, violinPlot

Examples

compare effect sizes of the Gene1 for all discovery datasets in tinyMetaObject
ggForestPlot(tinyMetaObject, genes="Gene1")

heatmapPlot
Generates a heatmap with effect sizes for all genes which pass a filter in all measured diseases

Description
Generates a heatmap with effect sizes for all genes which pass a filter in all measured diseases

Usage

heatmapPlot(metaObject, filterObject, colorRange = c(-1, 1),
geneOrder = FALSE, datasetOrder = FALSE, displayPooled = TRUE,
useFormattedNames = TRUE)

Arguments

metaObject a Meta object which must have the $originalData, $metaAnalysis populated
filterObject a MetaFilter object containing the signature genes that will be used for the heatmap
colorRange a vector of length two with the minimum and maximum values for the heatmap colors. (default: c(-1,1))
geneOrder FALSE if the genes should be ordered by pooled effect size in this datasets. Otherwise, the ordered names of the genes. (default: FALSE)
datasetOrder FALSE if the datasets should be ordered alphabetically. Otherwise, the ordered names of the datasets (default: FALSE)
displayPooled TRUE if the pooled effect sizes should be displayed. (default: TRUE)
useFormattedNames TRUE if the formatted datasetNames should be displayed. (default: TRUE)

Value
Generates a heatmap with effect sizes for all genes which pass a filter

Author(s)
Winston A. Haynes

Examples

heatmapPlot(tinyMetaObject, tinyMetaObject$filterResults[[1]])
immunoStatesDecov

Description

immunoStates deconvolution analysis on MetaIntegrator object(s)

Usage

```r
immunoStatesDecov(metaObject)
```

Arguments

- `metaObject`
 a MetaIntegrator formatted Meta object.

Value

Results from immunoStates on the MetaIntegrator object are stored in `$immunoStates` of the original Meta object

Author(s)

Francesco Vallania

Examples

```r
## Not run:
# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909", "GSE50635", "GSE39088"))

# Run immunoStates
immunoStatesEstimates <- immunoStateDecov(sleData)
## End(Not run)
```

immunoStatesGenePropCorr

Description

Correct gene expression using cell proportions from immunoStates

Usage

```r
immunoStatesGenePropCorr(metaObject)
```
Arguments

`metaObject`
a MetaIntegrator formatted Meta object.

Value

Results from immunoStates gene proportion correction on the MetaIntegrator object are stored in `$iScorrExp` of the original Meta object.

Author(s)

Francesco Vallania copyright by Francesco Vallania

Examples

```r
## Not run:
# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909", "GSE50635", "GSE39088"))

# Run immunoStates
immunoStatesCorrected <- immunoStateGenePropCorr(sleData)

## End(Not run)
```

immunoStatesMatrix
`immunoStates basis matrix`

Description

`immunoStates basis matrix`

Usage

data("immunoStatesMatrix")

immunoStatesMeta
`immunoStates deconvolution analysis on MetaIntegrator object(s)`

Description

Run immunoStates and load the results into `$originalData` for running meta-analysis on the cell proportion estimates.

Usage

`immunoStatesMeta(metaObject)`
imputeSex

Imputes biological sex of each sample in a Dataset object

Description
Imputes the sex of each sample in a Dataset object. It assigns the sex of each sample to a biological sex based on the expression of known X-escape and Y-chromosome genes.

Usage
imputeSex(myDataset, femGenes = NULL, malGenes = NULL)

Arguments
- myDataset: datasetObject
- femGenes: vector of gene symbols of genes higher expressed in females. Defaults to NULL.
- malGenes: vector of gene symbols of genes higher expressed in males. Defaults to NULL.

Details
Imputes the sex of each sample in a Dataset object by performing K means clustering. If the user provides femGenes and malGenes, then clustering is performed on these genes. Otherwise, known X-escape and Y-chromosome genes are used. Known X-escape genes include "XIST", "RPS4X", "CD40LG", "ZRSR2", "EFHC2", "CA5B", "ZFX", "EIF1AX", "CA5BP1", "UBA1", "SYAP1", "DDX3X", "FUNDC1", "USP9X", "SMC1A", "NUP62CL", "NAA10". Known Y-chromosome genes include "KDM5D", "RPS4Y1", "EIF1AY", "USP9Y", "DDX3Y", "UTY", "PRKY", "ZFY", "TMSB4Y".
lincsBaitCorr

Value

a vector indicating whether each sample is classified as "male" or "female"

Author(s)

Erika Bongen

Examples

```r
# Add sex labels to your dataset of choice
## Not run:
myDatasets = getGEOData(c("GSE13485","GSE17156","GSE19442"))
myDatasets$originalData$GSE13485$pheno$sex = imputeSex(myDatasets$originalData$GSE13485)
myDatasets$originalData$GSE13485$pheno$sex
## End(Not run)
```

lincsBaitCorr
Run Shane’s LINCS bait-based correlation on MetaIntegrator

Description

LINCS Bait Corr finds perturbagens similar to a set of interest, called baits. It searches within a defined sub space of relevant genes, usually a disease signature. See below for an example that recreates the work we did to find the antiviral drugs.

Usage

```r
lincsBaitCorr(metaObject, filterObject, dataset = "CP", baits,
just_clin = F, hit.number.hm = 20, hm_baits = T,
direction = "aggravate", bait_type = NULL)
```

Arguments

- **metaObject**: a Meta object which must have the $originalData populated.
- **filterObject**: a MetaFilter object containing the signature genes that will be used for calculating the score.
- **dataset**: The LINCS dataset to use. One of "CP" (drugs), "SH" (shRNA), "OE" (overexpression), "LIG" (ligands), "MUT" (mutants) (default: CP).
- **baits**: vector containing names of the baits being used (relevant drugs, shRNAs, etc.). See example.
- **just_clin**: only consider clinically relevant results (default: FALSE).
- **hit.number.hm**: How many hits to show in a heatmap (default: 20).
- **hm_baits**: whether or not to include the baits in the heatmap (default: FALSE).
- **direction**: one of "reverse", "aggravate", or "absolute" (default: "reverse") for whether you want to reverse the signature, aggravate it, or just want the top absolute hits.
bait_type The LINCS dataset where the baits come from. One of "CP" (drugs), "SH" (shRNA), "OE" (over-expression), "LIG" (ligands), "MUT" (mutants), or NULL (don't specify) (default: NULL)

Value

The full list of correlations as well as the dataframe with the expression of the top hits. Also generates the heatmap of the top hits.

Examples

```r
# Not run:

## Not run:

# Not run:

### DATA SETUP #######

# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing.

sleData <- getGEOData(c("GSE11909", "GSE50635", "GSE39088"))

# Label classes in the datasets

sleData$originalData$GSE50635 <-- classFunction(sleData$originalData$GSE50635, 
   column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))

sleData$originalData$GSE11909_GPL96 <-- classFunction(sleData$originalData$GSE11909_GPL96, 
   column = "Illness:ch1", diseaseTerms = c("SLE"))

sleData$originalData$GSE39088 <-- classFunction(sleData$originalData$GSE39088, 
   column = "disease state:ch1", diseaseTerms = c("SLE"))

# Remove the GPL97 platform that was downloaded

sleData$originalData$GSE11909_GPL97 <- NULL

# Run Meta-Analysis

sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)

# Filter genes

sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F, 
   effectSizeThresh = 1, FDRThresh = 0.05)

### END DATA SETUP #######

# Note: these are not relevant baits for SLE, just examples

lincsBaitCorr(metaObject = sleMetaAnalysis, filterObject = sleMetaAnalysis$filterResults[[1]], 
   dataset = "CP", baits = c("NICLOSAMIDE", "TYRPHOSTINA9", "DISULFIRAM", "SU4312", "RESERPINE"))

# End(Not run)
```

Description

Run Shane’s LINCS Correlate on MetaIntegrator
Usage

`lincsCorrelate(metaObject, filterObject, dataset = "CP", hit.number.hm = 20, direction = "reverse", cor.method = "pearson", drop.string = NULL, just_clin = F, show_clin = F, gene_ann = F)`

Arguments

- `metaObject`: a Meta object which must have the $originalData populated
- `filterObject`: a MetaFilter object containing the signature genes that will be used for calculating the score
- `dataset`: The LINCS dataset to use. One of "CP" (drugs), "SH" (shRNA), "OE" (over-expression), "LIG" (ligands), "MUT" (mutants) (default: CP)
- `hit.number.hm`: How many hits to show in a heatmap (default: 20)
- `direction`: one of "reverse", "aggravate", or "absolute" (default: "reverse") for whether you want to reverse the signature, aggravate it, or just want the top absolute hits.
- `cor.method`: method to use for correlation (pearson or spearman) (default: "pearson")
- `drop.string`: lets you include a string to drop drugs that contain a regular expression. Useful for getting rid of screening hits. One useful option is "^[B]RD", which gets rid of all of the Broad screening hits that aren’t characterized. (default: NULL)
- `just_clin`: only consider clinically relevant results (default: FALSE)
- `show_clin`: Generate a list of clinically relevant results (default: FALSE)
- `gene_ann`: whether to annotate genes (default: FALSE)

Value

The full list of correlations as well as the dataframe with the expression of the top hits. Also generates the heatmap of the top hits.

Examples

```r
## Not run:
########## DATA SETUP ##########
# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing.
sleData <- getGEOData(c("GSE11909", "GSE50635", "GSE39088"))

# Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635, column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96, column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088, column = "disease state:ch1", diseaseTerms=c("SLE"))

# Remove the GPL97 platform that was downloaded
sleData$originalData$GSE11909_GPL96 <- NULL

# Run Meta-Analysis
```
lincsTools <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)

Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F,
effectSizeThresh = 1, FDRThresh = 0.05)

END DATA SETUP

lincsCorrelate(metaObject = sleMetaAnalysis, filterObject = sleMetaAnalysis$filterResults[[1]],
dataset = "CP", direction = "reverse")

End(Not run)
Examples

```r
### Not run:

############ DATA SETUP ############
# Example won't work on tinyMetaObject because it requires real gene names
# Download the needed datasets for processing,
sleData <- getGEOData(c("GSE11909", "GSE50635", "GSE39088"))

#Label classes in the datasets
sleData$originalData$GSE50635 <- classFunction(sleData$originalData$GSE50635,
                                              column = "subject type:ch1", diseaseTerms = c("Subject RBP +", "Subject RBP -"))
sleData$originalData$GSE11909_GPL96 <- classFunction(sleData$originalData$GSE11909_GPL96,
                                                       column = "Illness:ch1", diseaseTerms = c("SLE"))
sleData$originalData$GSE39088 <- classFunction(sleData$originalData$GSE39088,
                                                      column = "disease state:ch1", diseaseTerms = c("SLE"))
#Remove the GPL97 platform that was downloaded
sleData$originalData$GSE11909_GPL97 <- NULL

#Run Meta-Analysis
sleMetaAnalysis <- runMetaAnalysis(sleData, runLeaveOneOutAnalysis = F, maxCores = 1)

#Filter genes
sleMetaAnalysis <- filterGenes(sleMetaAnalysis, isLeaveOneOut = F, effectSizeThresh = 1, FDRThresh = 0.05)

############ END DATA SETUP ############

# Run immunoStates
lincsTools(influenzaMeta, influenzaMeta$filterResults$FDR0.05_es0_nStudies4_looaTRUE_hetero0)

## End(Not run)
```

manhattanPlot

Generates a Manhattan plot with effect size FDR as y-axis

Description
Generates a Manhattan plot with effect size FDR as y-axis

Usage

```r
manhattanPlot(metaObject)
```

Arguments

- **metaObject**
 - a Meta object which must have meta-analysis run

Value
Generates a Manhattan plot with effect size FDR as y-axis
Author(s)

Winston A. Haynes

Description

The package comprises several analysis and plot functions to perform integrated multi-cohort analysis of gene expression data (meta-analysis).

<table>
<thead>
<tr>
<th>Package:</th>
<th>metaIntegrator_public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-02-25</td>
</tr>
<tr>
<td>License:</td>
<td>LGPL</td>
</tr>
</tbody>
</table>

For detailed documentation of functions and use cases read: `vignette(MetaIntegrator)`.

Details

The advent of the gene expression microarray has allowed for a rapid increase in gene expression studies. There is now a wealth of publicly available gene expression data available for re-analysis. An obvious next step to increase statistical power in detecting changes in gene expression associated with some condition is to aggregate data from multiple studies.

The MetaIntegrator package will perform a DerSimonian & Laird random-effects meta-analysis for each gene (not probeset) between all target studies between cases and controls; it also performs a Fischer’s sum-of-logs method on the same data, and requires that a gene is significant by both methods. The resulting p-values are False discovery rate (FDR) corrected to q-values, and will evaluate the hypothesis of whether each gene is differentially expressed between cases and controls across all studies included in the analysis.

The resulting list of genes with significantly different expression between cases and controls can be used for multiple purposes, such as (1) a new diagnostic or prognostic test for the disease of interest, (2) a better understanding of the underlying biology, (3) identification of therapeutic targets, and multiple other applications.

Our lab has already used these methods in a wide variety of diseases, including organ transplant reject, lung cancer, neurodegenerative disease, and sepsis (Khatri et al., J Exp Med 2013; Chen et al., Cancer Res 2014; Li et al., Acta Neur Comm 2014; Sweeney et al, Sci Trans Med 2015).

Author(s)

Winston A. Haynes, Francesco Vallania, Aurelie Tomczak, Timothy E. Sweeney, Erika Bongen, Purvesh Khatri

Maintainer: Winston A. Haynes <hayneswa@stanford.edu>
multiplePRCPlot

References

Sweeney et al., Science Translational Medicine, 2015

See Also

vignette(MetaIntegrator)

Examples

Not run:
Run a meta analysis.
maxCores is set to 1 for package guideline compliance.
For personal purposes, leave parameter un-set.
runMetaAnalysis(tinyMetaObject, maxCores=1)

a standard meta-analysis would follow this work flow:

make input metaObjects from individual GEO datasetObjects
metaObject = list()
metaObject$originalData <- tinyMetaObject$originalData
make test datasetObject
datasetObject1 <- tinyMetaObject$originalData$Whole.Blood.Study.1

run the meta-analysis
metaObject <- runMetaAnalysis(metaObject, maxCores=1)

select significant genes (default parameter)
metaObject <- filterGenes(metaObject)

print a meta-analysis result summary for selected genes
summarizeFilterResults(metaObject, getMostRecentFilter(metaObject))

use selected genes to generate a violin plot
violinPlot(metaObject$filterResults$FDR0.05_es0_nStudies1_looaTRUE_hetero0, datasetObject1, labelColumn = 'group')

use selected genes to generate a ROC plot
rocPlot(metaObject$filterResults$FDR0.05_es0_nStudies1_looaTRUE_hetero0, datasetObject1)

generate a forest plot for a gene of interest with forestPlot(metaObject, geneName)
forestPlot(metaObject, "Gene27")

End(Not run)

multiplePRCPlot Generate a plot with multiple PRC curves
multiplePRCPlot

Description

for each dataset in the metaObject, prcPlot will return a ggplot of a Precision-Recall curve (and return the AUPRC) that describes how well a gene signature (as defined in a filterObject) classifies groups in a dataset (in the form of a datasetObject).

Usage

multiplePRCPlot(metaObject, filterObject, title = NULL, legend.names = NULL, curveColors = NULL, size = 22)

Arguments

metaObject a metaObject which must have metaObject$originalData populated with a list of datasetObjects that will be used for discovery filterObject a metaFilter object containing the signature genes that will be used for calculating the score title title of the plot legend.names the name listed for each dataset in the legend (default: the datasetObject$formattedName for each dataset) curveColors Graphical: vector of colors for the PRC curves size use this to easily increase or decrease the size of all the text in the plot

Details

Each PRC plot evaluates the ability of a given gene set to separate two classes. As opposed to ROC curves, PRC curves are more sensitive to class imbalances. The gene set is evaluated as a Z-score of the difference in means between the positive genes and the negative genes (see calculateScore).

Value

Returns a ggplot PRC plot for all datasets

Author(s)

Aditya M. Rao, Andrew B. Liu

See Also

prcPlot, multipleROCPplot

Examples

multiplePRCPlot(tinyMetaObject, filterObject = tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)
multipleROCPlot

multipleROCPlot
Generate a plot with multiple ROC curves

Description
Generate a plot with multiple ROC curves

Usage
```r
multipleROCPlot(metaObject, filterObject, title = "title", size = 16)
```

Arguments
- `metaObject`
a Meta object which must have the $originalData populated
- `filterObject`
a MetaFilter object containing the signature genes that will be used for calculating the score
- `title`
title of the plot
- `size`
use this to easily increase or decrease the size of all the text in the plot

Value
Generates an ROC plot for all datasets

Author(s)
Aditya M. Rao, Andrew B. Liu

Examples
```r
multipleROCPlot(tinyMetaObject, filterObject = tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)
```

pooledROCPlot

pooledROCPlot
Generate a plot with a pooled ROC curve

Description
Given a `metaObject` with `$originalData` populated, this function calculates and plots a "pooled" ROC curve that represents the average of all the individual ROC curves. This version of the function is for use with MetaIntegrator.

Usage
```r
pooledROCPlot(metaObject, filterObject, points = 1000, weighting = TRUE, title = NULL, size = 14, rounding = 3, smoothed = FALSE, auc1.thresh = 0.99, bootReps = 1000, minPoints = 5, numCores = 1, method = "random")
```
Arguments

metaObject: a metaObject which must have metaObject$originalData populated with a list of datasetObjects that will be used for discovery.

filterObject: a metaFilter object containing the signature genes that will be used for calculating the score.

points: number of points to simulate for the approximated ROC curves during the linear interpolation (default: 1000).

weighting: when calculating the mean AUC, if weighting=TRUE then the weighted mean AUC is calculated (default: TRUE).

title: title of the plot.

size: size of the text/legend/etc (default: 14).

rounding: how many digits to round the AUC and CI to (default: 3).

smoothed: if TRUE, then a smoothed ROC curve is estimated using a modified version of the Kester and Buntinx Method.

auc1.thresh: (if smoothed=TRUE) if the AUC of a dataset is above this threshold, then it is treated as if the AUC were 1 (default: 0.99).

bootReps: (if smoothed=TRUE) number of bootstrap iterations (default: 1000).

minPoints: (if smoothed=TRUE) minimum number of points required for bootstrap to be used (default: 5).

numCores: (if smoothed=TRUE) number of CPUs to use if parallel computing is desired (default: 1).

method: (if smoothed=TRUE) method used to compute summary meta-statistics (default: "random").

Details

To make sure the input is correctly formatted, the input metaObject should be checked with checkDataObject(metaObject, "Meta", "Pre-Analysis") before starting the meta-analysis.

By default, this average ROC curve is calculated by first using linear interpolation to create approximated versions of each given ROC curve that all have the same set of FPR values. A pooled ROC curve is then calculated by taking the weighted mean of the corresponding TPR values (weighting corresponds to the number of samples in each dataset). This pooled curve is represented as a black curve. In addition, the weighted standard deviation is calculated for each TPR, which is represented by a grey area on the plot. The pooled AUC is calculated by using the trapezoid method on the pooled ROC curve, and the 95% confidence interval of the pooled AUC is calculated using the pooled standard error of the individual ROC curves.

If smoothed=TRUE, then a smoothed version of the pooled ROC curve will be plotted instead, with the surrounding gray area representing the weighted standard deviation of the pooled ROC curve. The statistics for this smoothed curve are based on the Kester and Buntinx Method, from (Kester and Buntinx, Med Decis Making, 2000). Methods have been added by Tim Sweeney (2015) for better estimates in cases with low numbers of tpr/fpr values. Methods have also been added by Aditya Rao (2018) to predict the curve’s alpha parameter for a given beta parameter and AUC, as well as to calculate the weighted standard deviation of the given ROC curves.
Value
Generates a plot with each individual ROC curve as well as the pooled ROC curve

Author(s)
Aditya M. Rao (with help from Hayley Warsinske and Francesco Vallania, original idea from Madeleine Scott, and some code adapted from Tim Sweeney)

References

See Also
summaryROCPlot

Examples
pooledROCPlot(tinyMetaObject, filterObject =
tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)

prcPlot

Plot the PRC Curve for a Dataset

Description
prcPlot will plot a Precision-Recall curve (and return the AUPRC) that describes how well a gene signature (as defined in a filterObject) classifies groups in a dataset (in the form of a datasetObject).

Usage
prcPlot(filterObject, datasetObject, title = datasetObject$formattedName, subtitle = NULL, textSize = NULL, rounding = 3, curveColors = "red", legend = TRUE, PRC.lty = 1, PRC.lwd = 1, backgroundColor = "gray93", grid.marks = 0.1, grid.color = "white", grid.lty = 1, grid.lwd = 0.9, legend.lty = 0, cex.main = 1, cex.subtitle = 0.9)

Arguments
filterObject a metaFilter object containing the signature genes that will be used for calculating the score
datasetObject a Dataset object for group comparison in the PRC plot. (At least, must have a $expr of probe-level data, $keys of probe:gene mappings, and $class of two-class labels.)
title title of the plot (default: datasetObject$formattedName)
subtitle subtitle of the figure
use this to easily increase or decrease the size of all the text in the plot
how many digits to round the AUPRC and CI to (default: 3)
the color for the PRC curves (default: "red")
if TRUE, a legend will be included
PRC curve line type
PRC curve line width
background color of the plot
increment between grid lines
grid line color
grid line type
grid line width
legend style (0 is no box, 1 is boxed legend)
title size
subtitle size

Evaluates the ability of a given gene set to separate two classes. As opposed to ROC curves, PRC curves are more sensitive to class imbalances. The gene set is evaluated as a Z-score of the difference in means between the positive genes and the negative genes (see calculateScore).

Returns a standard PRC plot, plus AUPRC with 95% CI (calculated with the trapezoid method).

Aditya M. Rao, Jiaying Toh

multiplePRCPlot, rocPlot

prcPlot(tinyMetaObject$filterResults[[1]], tinyMetaObject$originalData[[1]])
predvalPlot

Plot positive and negative predictive values across different prevalences

Description

Positive and negative predictive values (PPV and NPV) are two diagnostic statistics that change depending on the prevalence, so if you don't have a discrete prevalence to work with this function can create a plot that shows the positive and negative predictive values across all possible prevalences (as long as you have already calculated the sensitivity and specificity).

Usage

```r
predvalPlot(sens, spec, nsteps=1000, title=NULL, rounding=2)
```

Arguments

- `sens`: the sensitivity of the prediction
- `spec`: the specificity of the prediction
- `nsteps`: the number of steps between prevalence 0% and 100% (i.e. the number of steps in the X-axis) (default: 1000)
- `title`: title of the plot (if left blank, it will just indicate the input sensitivity and specificity)
- `rounding`: number of significant digits for displaying the sensitivity, specificity, PPV, and NPV (default: 2)

Value

Plotly plot of predictive values vs. prevalence

Author(s)

Lara Murphy, Aditya M. Rao

Examples

```r
predvalPlot(sens = 0.9, spec = 0.8)
```
regressionPlot Generate a plot which draws a regression line between the Meta Score and a continuous variable phenotype.

Description
Generate a plot which draws a regression line between the Meta Score and a continuous variable phenotype.

Usage

regressionPlot(filterObject, datasetObject,
continuousVariableColumn = "continuous",
formattedVariableName = "Continuous Variable", corMethod = "pearson",
correlationCorner = "bottomRight")

Arguments

filterObject a MetaFilter object containing the signature genes that will be used for the z-score calculation

datasetObject a Dataset object (typically independent validation dataset) for comparison in a regression plot

continuousVariableColumn
the label of the column in $pheno that specifies the continuous variable to compare (default: 'continuousVariableColumn')

formattedVariableName
label which will be used on the x-axis on the plot

corMethod
method which will be passed to cor.test

correlationCorner
one of topLeft, topRight, bottomLeft, bottomRight (default: bottomRight)

Value
Returns a regression plot as ggplot2 plot object

Author(s)
Winston A. Haynes

Examples

regressionPlot(tinyMetaObject$filterResults[[1]],
tinyMetaObject$originalData$Whole.Blood.Study.1,
continuousVariableColumn="age",
formattedVariableName="Age")
rocPlot

Plot ROC Curve for a Dataset

Description
rocPlot will plot an ROC curve (and return the AUC) that describes how well a gene signature (as defined in a \texttt{filterObject}) classifies groups in a dataset (in the form of a \texttt{datasetObject}).

Usage
rocPlot(\texttt{filterObject}, \texttt{datasetObject}, \texttt{title} = \texttt{datasetObject$\texttt{formattedName}})

Arguments
\texttt{filterObject} \hspace{1cm} a MetaFilter object containing the signature genes that will be used for calculation of the ROC plot.
\texttt{datasetObject} \hspace{1cm} a Dataset object for group comparison in the ROC plot. (At least, must have a \texttt{$expr$} of probe-level data, \texttt{$keys$} of probe:gene mappings, and \texttt{$class$} of two-class labels.)
\texttt{title} \hspace{1cm} Title for the ROC plot.

Details
Evaluates the ability of a given gene set to separate two classes. The gene set is evaluated as a Z-score of the difference in means between the positive genes and the negative genes (see calculateScore). Returns a standard ROC plot, plus AUC with 95\% CI (calculated according to Hanley method).

Value
Returns a ggplot2 plot object

Author(s)
Timothy E. Sweeney

See Also
calculateScore, calculateROC

Examples
rocPlot(\texttt{tinyMetaObject$filterResults[[1]]}, \texttt{tinyMetaObject$originalData[[1]]})
runMetaAnalysis \hspace{1cm} \textit{Run the meta-analysis algorithm}

\textbf{Description}

Given a metaObject with \$originalData populated this function will run the meta-analysis algorithm. It returns a modified version of the metaObject with the meta-analysis results written into metaObject\$metaAnalysis and the results of the leave-one-out analysis into metaObject\$leaveOneOutAnalysis.

\textbf{Usage}

\begin{verbatim}
runMetaAnalysis(metaObject, runLeaveOneOutAnalysis= TRUE, maxCores=Inf)
\end{verbatim}

\textbf{Arguments}

- \texttt{metaObject}: a metaObject which must have metaObject\$originalData populated with a list of datasetObjects that will be used for discovery
- \texttt{runLeaveOneOutAnalysis}: TRUE to run leave one out analysis, FALSE otherwise (default: TRUE)
- \texttt{maxCores}: maximum number of cores to use during analysis (default: Inf)

\textbf{Details}

To make sure the input is correctly formatted, the input metaObject should be checked with checkDataObject\(\texttt{metaObject, "Meta", "Pre-Analysis"}) before starting the meta-analysis.

\textbf{Value}

modified version of the metaObject with \$metaAnalysis and \$leaveOneOutAnalysis populated

\textbf{Author(s)}

Francesco Vallania, Aditya M. Rao

\textbf{See Also}

\texttt{checkDataObject}

\textbf{Examples}

\begin{verbatim}
#Run a meta analysis.
maxCores is set to 1 for package guideline compliance.
For personal purposes, leave parameter un-set.
runMetaAnalysis(tinyMetaObject, maxCores=1)
\end{verbatim}
subsetOriginalData
Subset samples for a particular dataset

Description
Subset samples for a particular dataset

Usage
subsetOriginalData(datasetObject, keepMe)

Arguments
- datasetObject: the Dataset object to subset
- keepMe: either a binary vector for whether each sample should be in the subset or a list of names of samples to be in the subset

Details
Subsets all relevant slots within the Dataset object to include only the desired samples.

Value
returns a Dataset object that has been subsetted to the desired samples

Author(s)
Winston A. Haynes

Examples
subsetObject <- subsetOriginalData(tinyMetaObject$originalData$Whole.Blood.Study.1,
keepMe= c("Sample 1", "Sample 13", "Sample 43"))

summarizeFilterResults
Summarize the filtered analysis results

Description
Given a metaObject and the name of the filterObject of interest, this function will print a summary style message about genes that passed the filtering step using the function filterGenes() and return a dataFrame that contains the $pooledResults information for each gene which passed the filter.
Usage

summarizeFilterResults(metaObject, metaFilterLabel)

Arguments

metaObject the metaObject that contains the filterObject of interest
metaFilterLabel the name of a filterObject generated with the function filterGenes()

Value

Data frame, which contains $pooledResults information for each gene which passed the filter

Author(s)

Francesco Vallania

See Also

filterGenes

Examples

filter genes with default settings
false discovery rate cutoff of 5 percent and WITH leave-one-out analysis
testMetaObject <- filterGenes(tinyMetaObject)
summarizeFilterResults(testMetaObject, getMostRecentFilter(testMetaObject))

summaryROCCalc Calculate the summaryROC statistics

Description

Calculate the summaryROC statistics

Usage

summaryROCCalc(metaObject, filterObject, bootstrapReps = 500)

Arguments

metaObject a Meta object which must have the $originalData populated
filterObject a MetaFilter object containing the signature genes that will be used for calculating the score
bootstrapReps number of bootstrap simulations to run for confidence interval on summary ROC
Value

Summary AUC statistics

Author(s)

Timothy E. Sweeney

Examples

```r
## Not run:
summaryROCCalc(tinyMetaObject, filterObject = tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)
## End(Not run)
```

summaryROCPlot

Generate a plot with a summary ROC curve

Description

Generate a plot with a summary ROC curve

Usage

```r
summaryROCPlot(metaObject, filterObject, bootstrapReps = 500,
orderByAUC = TRUE, alphaBetaPlots = TRUE)
```

Arguments

- `metaObject`: a Meta object which must have the $originalData populated
- `filterObject`: a MetaFilter object containing the signature genes that will be used for calculating the score
- `bootstrapReps`: number of bootstrap simulations to run for confidence interval on summary ROC
- `orderByAUC`: if TRUE, then order legend by summary AUC. Otherwise, use default ordering.
- `alphaBetaPlots`: if TRUE, then draw forest plots of alpha and beta. If false, suppress plotting.

Value

Generates a ROC plot for all datasets

Author(s)

Timothy E. Sweeney
Examples

```r
## Not run:
summaryROCPlot(tinyMetaObject, filterObject =
    tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0)
## End(Not run)
```

tinyMetaObject

A Tiny MetaObject

Description

This is a minimal working example of a MetaObject. This object is primarily used for example function calls and visualizations.

Author(s)

Winston A. Haynes

ucsc_genbank_table

UCSC genbank table cache

Description

Cached data to prevent cumbersome database connections.

ucsc_refseq_table

UCSC refseq table cache

Description

Cached data to prevent cumbersome database connections.
violinPlot

Compare groups within a single dataset in a violin plot

Description

Given a filterObject and a datasetObject this function will use the selected genes of the filterObject to calculate and compare the z-scores of the groups (e.g. cases vs. controls) from the datasetObject by generating a violin plot. A violin plot is similar to a box plot, except the width of each violin is proportional to the density of points. violinPlot() is commonly used to validate a gene signature in an independent dataset.

Usage

violinPlot(filterObject, datasetObject, labelColumn = "label", comparisonMethod = "wilcox.test", pairwiseComparisons = TRUE, autoLineBreak = TRUE)

Arguments

- **filterObject**: a MetaFilter object containing the signature genes that will be used for the z-score calculation
- **datasetObject**: a Dataset object (typically independent validation dataset) for group comparison in a violin plot
- **labelColumn**: the label of the column in $pheno that specifies the groups to compare, typically case or control (default: 'label')
- **comparisonMethod**: statistical test that will be used (default="wilcox.test"). Other options include "t.test".
- **pairwiseComparisons**: if TRUE, perform pairwise statistical comparisons against the first factor level. If FALSE, perform global statistical comparisons (default: TRUE).
- **autoLineBreak**: if TRUE, insert line breaks into labels on plots. If FALSE, don’t insert line breaks (default: TRUE)

Details

The z-score is based off of the geometric mean of expression. As such, negative expression values are not allowed. A dataset is thus always scaled by its minimum value + 1, such that the lowest value = 1. Any individual NANs or NAs are also set to 1. If a dataset does not have any information on a given gene, the entire gene is simply left out of the score.

Value

Returns a violin plot as ggplot2 plot object
violinPlot

Author(s)
Winston A. Haynes

See Also
filterGenes, runMetaAnalysis

Examples
violinPlot(tinyMetaObject$filterResults$pValueFDR0.05_es0_nStudies1_looaTRUE_hetero0, tinyMetaObject$originalData$Whole.Blood.Study.1, labelColumn="group")
Index

* **MetaIntegrator**
 - MetaIntegrator, 28
* **attribute**
 - getMostRecentFilter, 16
* **classify**
 - calculateROC, 5
* **classify**
 - filterGenes, 11
* **debugging**
 - checkDataObject, 7
* **graphs**
 - forestPlot, 12
 - ggForestPlot, 18
 - rocPlot, 37
 - violinPlot, 43
* **graph**
 - regressionPlot, 36
* **hplot**
 - forestPlot, 12
 - ggForestPlot, 18
 - violinPlot, 43
* **methods**
 - filterGenes, 11
 - runMetaAnalysis, 38
 - summarizeFilterResults, 39
* **optimize**
 - backwardSearch, 3
 - forwardSearch, 13
* **utilities**
 - checkDataObject, 7
 - getMostRecentFilter, 16
 - summarizeFilterResults, 39

backwardSearch, 3, 14

calcMetaPower, 4
calculateROC, 5, 37
calculateScore, 6, 34, 37
checkDataObject, 7, 12, 38
classFunction, 9
cleanUpPheno, 9
coonutMetaIntegrator, 10
dgeneSymbolCorrection, 15
ggetGOData, 16
ggetMostRecentFilter, 16
ggetSampleLevelGeneData, 17
gggForestPlot, 18
heatmapPlot, 19
immunoStatesDecov, 20
immunoStatesGenePropCorr, 20
immunoStatesMatrix, 21
immunoStatesMeta, 21
imputeSex, 22
lincsBaitCorr, 23
lincsCorrelate, 24
lincsTools, 26
manhattanPlot, 27
MetaIntegrator, 28
multiplePRCPlot, 29, 34
multipleROCPlot, 30, 31
pooledROCPPlot, 31
prcPlot, 30, 33
predvalPlot, 35
regressionPlot, 36
rocPlot, 6, 34, 37
runMetaAnalysis, 13, 19, 38, 44
subsetOriginalData, 39
summarizeFilterResults, 39
summaryROCCalc, 40
summaryROCPlot, 33, 41
tinyMetaObject, 42
ucsc_genbank_table, 42
ucsc_refseq_table, 42
violinPlot, 13, 19, 43