Package ‘MetaLonDA’

October 12, 2022

Type Package

Title Metagenomics Longitudinal Differential Abundance Method

Version 1.1.8

Date 2019-12-17

Author Ahmed A. Metwally, Yang Dai, Patricia W. Finn, David L. Perkins

Maintainer Ahmed A. Metwally <ametwall@stanford.edu>

URL https://github.com/aametwall/MetaLonDA

BugReports https://github.com/aametwall/MetaLonDA/issues

License MIT + file LICENSE

Depends R(>= 3.5.0)

Imports gss, plyr, zoo, pracma, ggplot2, parallel, doParallel,
metagenomeSeq, DESeq2, edgeR

Suggests knitr, rmarkdown

biocViews

Repository CRAN

NeedsCompilation no

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr

Date/Publication 2019-12-18 02:10:26 UTC
areaPermutation

Description

Calculate Area Ratio (AR) of each feature’s time interval for all permutations

Usage

areaPermutation(perm)

Arguments

perm list has all the permutated models

Value

returns a list of all permutation area ratio

References

Ahmed Metwally (ametwall@stanford.edu)
Examples

```r
data(metalonda_test_data)
n.sample = 5  # sample size;
n.timepoints = 10  # time point;
n.perm = 3
n.group = 2  # number of group;
Group = factor(c(rep(0, n.sample*n.timepoints), rep(1, n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
points = seq(1, 10, length.out = 10)
aggretage.df = data.frame(Count = metalonda_test_data[1,], Time = Time, Group = Group, ID = ID)
perm = permutation(aggretage.df, n.perm = 3, method = "nbinomial", points)
areaPermutation(perm)
```

curveFitting

Fit longitudinal data

Description

Fits longitudinal samples from the same group using negative binomial smoothing splines or LOWESS

Usage

```r
curveFitting(df, method = "nbinomial", points)
```

Arguments

- `df` dataframe has the Count, Group, ID, Time
- `method` fitting method (nbinomial, lowess)
- `points` points at which the prediction should happen

Value

returns the fitted model

References

Ahmed Metwally (ametwall@stanford.edu)

Examples

```r
data(metalonda_test_data)
n.sample = 5
n.timepoints = 10
n.group = 2
Group = factor(c(rep(0, n.sample*n.timepoints), rep(1, n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
```
findSigInterval

Description

Identify significant time intervals

Usage

findSigInterval(adjusted.pvalue, threshold = 0.05, sign)

Arguments

adjusted.pvalue
vector of the adjusted p-value

threshold
p-value cut off

sign
vector hold area sign of each time interval

Value

returns a list of the start and end points of all significant time intervals

References

Ahmed Metwally (ametwall@stanford.edu)

Examples

p = c(0.04, 0.01, 0.02, 0.04, 0.06, 0.2, 0.06, 0.04)
sign = c(1, 1, 1, -1, -1, 1, 1)
findSigInterval(p, threshold = 0.05, sign)
intervalArea

Calculate Area Ratio (AR) of each feature’s time interval

Description

Calculate Area Ratio (AR) of each feature’s time interval.

Usage

```
intervalArea(curve.fit.df)
```

Arguments

- `curve.fit.df`: gss data object of the fitted spline

Value

returns the area ratio for all time intervals.

References

Ahmed Metwally (ametwall@stanford.edu)

Examples

```r
data(metalonda_test_data)
n.sample = 5
n.timepoints = 10
n.group= 2
Group = factor(c(rep(0,n.sample*n.timepoints), rep(1,n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
points = seq(1, 10, length.out = 10)
aggregate.df = data.frame(Count = metalonda_test_data[1,], Time = Time, Group = Group, ID = ID)
model = curveFitting(df = aggregate.df, method= "nbinomial", points)
intervalArea(model)
```

metalonda

Metagenomic Longitudinal Differential Abundance Analysis for one feature

Description

Find significant time intervals of the one feature.
Usage

```r
metalonda(
  Count,
  Time,
  Group,
  ID,
  n.perm = 500,
  fit.method = "nbinomial",
  points,
  text = 0,
  parall = FALSE,
  pvalue.threshold = 0.05,
  adjust.method = "BH",
  time.unit = "days",
  ylabel = "Normalized Count",
  col = c("blue", "firebrick"),
  prefix = "Test"
)
```

Arguments

- **Count**: matrix has the number of reads that mapped to each feature in each sample.
- **Time**: vector of the time label of each sample.
- **Group**: vector of the group label of each sample.
- **ID**: vector of the subject ID label of each sample.
- **n.perm**: number of permutations.
- **fit.method**: fitting method (nbinomial, lowess).
- **points**: points at which the prediction should happen.
- **text**: Feature’s name.
- **parall**: boolean to indicate whether to use multicore.
- **pvalue.threshold**: p-value threshold cutoff for identifying significant time intervals.
- **adjust.method**: multiple testing correction method.
- **time.unit**: time unit used in the Time vector (hours, days, weeks, months, etc.)
- **ylabel**: text to be shown on the y-axis of all generated figures (default: "Normalized Count")
- **col**: two color to be used for the two groups (eg., c("red", "blue")).
- **prefix**: prefix to be used to create directory for the analysis results

Value

returns a list of the significant time intervals for the tested feature.
metalondaAll

References
Ahmed Metwally (ametwall@stanford.edu)

Examples

data(metalonda_test_data)
n.sample = 5
n.timepoints = 10
n.group = 2
Group = factor(c(rep(0, n.sample*n.timepoints), rep(1,n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
points = seq(1, 10, length.out = 10)
Not run:
output.nbinomial = metalonda(Count = metalonda_test_data[,1], Time = Time, Group = Group,
ID = ID, fit.method = "nbinomial", n.perm = 10, points = points,
text = rownames(metalonda_test_data)[1], parall = FALSE, pvalue.threshold = 0.05,
adjust.method = "BH", time.unit = "hours", ylabel = "Normalized Count", col = c("black", "green"))
End(Not run)

metalondaAll Metagenomic Longitudinal Differential Abundance Analysis for all Features

Description
Identify significant features and their significant time interval

Usage
metalondaAll(
 Count,
 Time,
 Group,
 ID,
 n.perm = 500,
 fit.method = "nbinomial",
 num.intervals = 100,
 parall = FALSE,
 pvalue.threshold = 0.05,
 adjust.method = "BH",
 time.unit = "days",
 norm.method = "none",
 prefix = "Output",
 ylabel = "Normalized Count",
 col = c("blue", "firebrick")
)
)
Arguments

- **Count**: Count matrix of all features
- **Time**: Time label of all samples
- **Group**: Group label of all samples
- **ID**: Individual ID label for samples
- **n.perm**: Number of permutations
- **fit.method**: The fitting method (nbinomial, lowess)
- **num.intervals**: The number of time intervals at which metalonda test differential abundance
- **parall**: Logic to indicate whether to use multicore
- **pvalue.threshold**: P-value threshold cut-off
- **adjust.method**: Multiple testing correction methods
- **time.unit**: Time unit used in the Time vector (hours, days, weeks, months, etc.)
- **norm.method**: Normalization method to be used to normalize count matrix (css, tmm, ra, log10, median_ratio)
- **prefix**: Prefix for the output figure
- **ylabel**: Text to be shown on the y-axis of all generated figures (default: "Normalized Count")
- **col**: Two color to be used for the two groups (e.g., c("red", "blue").

Value

Returns a list of the significant features along with their significant time intervals

References

Ahmed Metwally (ametwall@stanford.edu)

Examples

```r
## Not run:
data(metalonda_test_data)
n.sample = 5
n.timepoints = 10
n.group = 2
Group = factor(c(rep(0, n.sample*n.timepoints), rep(1,n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
points = seq(1, 10, length.out = 10)
output.nbinomial = metalondaAll(Count = metalonda_test_data, Time = Time, Group = Group, ID = ID, n.perm = 10, fit.method = "nbinomial", num.intervals = 100, parall = FALSE, pvalue.threshold = 0.05, adjust.method = "BH", time.unit = "hours", norm.method = "none", prefix = "Test", time.unit = "hours", ylabel = "Normalized Count", col = c("black", "green"))
## End(Not run)
```
metalonda_test_data

Simulated data of OTU abundance for 2 phenotypes each has 5 subjects at 10 time-points

Description

The dataset is used for testing the MetaLonDA

Usage

metalonda_test_data

Format

A data frame with 2 OTUs patterns

normalize

Normalize count matrix

Description

Normalize count matrix

Usage

normalize(count, method = "css")

Arguments

count count matrix

method normalization method

References

Ahmed Metwally (ametwall@stanford.edu)
permutation
Permute group labels

Description
Permutates the group label of the samples in order to construct the AR empirical distribution.

Usage
permutation(
 perm.dat,
 n.perm = 500,
 method = "nbinomial",
 points,
 lev,
 parall = FALSE
)

Arguments
perm.dat
dataframe has the Count, Group, ID, Time
n.perm
number of permutations
method
The fitting method (negative binomial, LOWESS)
points
The points at which the prediction should happen
lev
the two level's name
parall
boolean to indicate whether to use multicore.

Value
returns the fitted model for all the permutations

References
Ahmed Metwally (ametwall@stanford.edu)

Examples
data(metalonda_test_data)
n.sample = 5
n.timepoints = 10
n.perm = 3
n.group = 2
Group = factor(c(rep(0, n.sample*n.timepoints), rep(1, n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
points = seq(1, 10, length.out = 10)
aggregate.df = data.frame(Count = metalonda_test_data[,1], Time = Time, Group = Group, ID = ID)
prm = permutation(aggregate.df, n.perm = 3, method = "nbinomial", points)
visualizeArea

Visualize significant time interval

Description
Visualize significant time interval

Usage
visualizeArea(
 aggregate.df,
 model.ss,
 method,
 start,
 end,
 text,
 group.levels,
 unit = "days",
 ylabel = "Normalized Count",
 col = c("blue", "firebrick"),
 prefix = "Test"
)

Arguments
- **aggregate.df**: Dataframe has the Count, Group, ID, Time
- **model.ss**: The fitted model
- **method**: Fitting method (negative binomial or LOWESS)
- **start**: Vector of the start points of the time intervals
- **end**: Vector of the end points of the time intervals
- **text**: Feature name
- **group.levels**: Level’s name
- **unit**: time unit used in the Time vector (hours, days, weeks, months, etc.)
- **ylabel**: Text to be shown on the y-axis of all generated figures (default: "Normalized Count")
- **col**: Two color to be used for the two groups (eg., c("red", "blue").
- **prefix**: Prefix to be used to create directory for the analysis results

References
Ahmed Metwally (ametwall@stanford.edu)
visualizeARHistogram Visualize Area Ratio (AR) empirical distribution

Description
Visualize Area Ratio (AR) empirical distribution for each time interval

Usage
visualizeARHistogram(permuted, text, method, prefix = "Test")

Arguments
- permuted: Permutation of the permuted data
- text: Feature name
- method: fitting method
- prefix: prefix to be used to create directory for the analysis results

References
Ahmed Metwally (ametwall@stanford.edu)

visualizeFeature Visualize Longitudinal Feature

Description
Visualize Longitudinal Feature

Usage
visualizeFeature(
 df,
 text,
 group.levels,
 unit = "days",
 ylabel = "Normalized Count",
 col = c("blue", "firebrick"),
 prefix = "Test"
)
visualizeFeatureSpline

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>dataframe has the Count, Group, ID, Time</td>
</tr>
<tr>
<td>text</td>
<td>feature name</td>
</tr>
<tr>
<td>group.levels</td>
<td>The two level’s name</td>
</tr>
<tr>
<td>unit</td>
<td>time interval unit</td>
</tr>
<tr>
<td>ylabel</td>
<td>text to be shown on the y-axis of all generated figures (default: "Normalized Count")</td>
</tr>
<tr>
<td>col</td>
<td>two color to be used for the two groups (eg., c("red", "blue")).</td>
</tr>
<tr>
<td>prefix</td>
<td>prefix to be used to create directory for the analysis results</td>
</tr>
</tbody>
</table>

References

Ahmed Metwally (ametwall@stanford.edu)

Examples

data(metalonda_test_data)
px = tempfile()
dir.create(file.path(px))
n.sample = 5
n.timepoints = 10
n.group = 2
Group = factor(c(rep(0, n.sample*n.timepoints), rep(1, n.sample*n.timepoints)))
Time = rep(rep(1:n.timepoints, times = n.sample), 2)
ID = factor(rep(1:(2*n.sample), each = n.timepoints))
points = seq(1, 10, length.out = 10)
aggregate.df = data.frame(Count = metalonda_test_data[,1], Time = Time, Group = Group, ID = ID)
visualizeFeature(df = aggregate.df, text = rownames(metalonda_test_data)[1],
group.levels = Group, prefix = px)

visualizeFeatureSpline

Visualize the feature trajectory with the fitted Splines

Description

Plot the longitudinal features along with the fitted splines

Usage

visualizeFeatureSpline(
 df,
 model,
 method,
 text,
 group.levels,
visualizeTimeIntervals

Arguments

df dataframe has the Count, Group, ID, Time
model the fitted model
method The fitting method (negative binomial, LOWESS)
text feature name
group.levels The two level’s name
unit time unit used in the Time vector (hours, days, weeks, months, etc.)
ylabel text to be shown on the y-axis of all generated figures (default: ”Normalized Count”)
col two color to be used for the two groups (eg., c("red","blue").)

prefix prefix to be used to create directory for the analysis results

References

Ahmed Metwally (ametwall@stanford.edu)

visualizeTimeIntervals

Visualize all significant time intervals for all tested features

Description

Visualize all significant time intervals for all tested features

Usage

visualizeTimeIntervals(
 interval.details,
 prefix = "Test",
 unit = "days",
 col = c("blue", "firebrick")
)
Arguments

interval.details
 Dataframe has information about significant interval (feature name, start, end, dominant, p-value)

prefix
 prefix for the output figure

unit
 time unit used in the Time vector (hours, days, weeks, months, etc.)

col
 two color to be used for the two groups (eg., c("red", "blue").)

References

Ahmed Metwally (ametwall@stanford.edu)
Index

* datasets
 metalonda_test_data, 9
areaPermutation, 2
curveFitting, 3
findSigInterval, 4
intervalArea, 5
metalonda, 5
metalonda_test_data, 9
metalondaAll, 7
normalize, 9
permutation, 10
visualizeArea, 11
visualizeARHistogram, 12
visualizeFeature, 12
visualizeFeatureSpline, 13
visualizeTimeIntervals, 14
visualizeVolcanoPlot, 15