Package ‘MethodCompare’

October 12, 2022

Type Package
Title Bias and Precision Plots
Version 0.1.2
Date 2021-12-30
Author Mingkai Peng, Patrick Taffé, Tyler Williamson
Maintainer Patrick Taffé <patrick.taffe@unisante.ch>

Depends R (>= 2.10), nlme
Imports graphics, stats
Repository CRAN
License GPL-3
Encoding UTF-8
LazyData TRUE
NeedsCompilation no
Date/Publication 2022-01-05 08:30:02 UTC

R topics documented:

bias_plot ... 2
bland_altman_plot .. 2
compare_plot .. 3
data1 ... 4
data2 ... 5
data3 ... 6
measure_compare ... 7
MethodCompare .. 8
precision_plot ... 9

Index 10
bias_plot

Bias plot

Description

This function draws the "bias plot", which is used to visually assess the bias of the new method relative to the reference method. It is obtained by graphing a scatter plot of y1 (new method) and y2 (reference method) versus the BLUP of y2 along with the two regression lines, and adds a second scale on the right axis showing the relationship between the estimated amount of bias and BLUP of y2.

Usage

```
bias_plot(object)
```

Arguments

- `object` an object returned by a call to `measure_compare`

Author(s)

Mingkai Peng & Patrick Taffé

Examples

```r
### load the data
data(data1)
### analysis
measure_model <- measure_compare(data1)
### Bias plot
bias_plot(measure_model)
```

bland_altman_plot

Extended Bland-Altman limits of agreement (LoA) plot

Description

This function produces the extended Bland-Altman Limits of Agreement (LoA) plot when there are repeated measurements with possibly heteroscedastic variance of measurement errors.

Usage

```
bland_altman_plot(data, new = "y1", Ref = "y2", ID = "id", fill = TRUE)
```
Compare_plot

Arguments
- `data`: a dataframe contains the object identification number (id), the measurement values from the new measurement method (y1) and those from the reference standard (y2)
- `new`: specify the variable name or location for the new measurement method
- `Ref`: specify the variable name or location for the reference measurement method
- `ID`: specify the variable name for location for the subject identification number (id)
- `fill`: logical. if TRUE use the average value for new methods to fill out the missing value (only useful for drawing a plot with all the measurements by the reference standard)

Details
This function computes the limits of agreement (LoA) when there are repeated measurements and possibly heteroscedastic variance of measurement errors

Author(s)
Mingkai Peng & Patrick Taffé

Examples
```r
### Load the data
data(data1)
### Bland and Altman's plot
bland_altman_plot(data1)
```

Description
This function allows the visualization of the bias-corrected values (i.e. recalibrated values, variable y1_corr) of the new measurement method.

Usage
`compare_plot(object)`

Arguments
- `object`: an object returned by a call to `measure_compare`

Author(s)
Mingkai Peng & Patrick Taffé
Examples
```r
# load the data
data(data1)
# analysis
measure_model <- measure_compare(data1)
# compare plot
compare_plot(measure_model)
```

data1
Simulated dataset 1

Description

In the simulated dataset 1, each subject has 1 measurement value from the new method and 10 to 15 measurement values from the reference method. Compared to the reference method, the new method has differential bias of -4 and proportional bias of 1.2. Variance of the new method is smaller than that for the reference method.

Usage

```r
data1
data1
```

Format

An object of class `data.frame` with 1255 rows and 3 columns.

Details

A data frame with three variables:

- `id` identification number for subjects
- `y1` values from the new measurement method
- `y2` values from the reference measurement method

Dataset 1 was created based on the following equations:

\[
y_{1i} = -4 + 1.2x_i + \varepsilon_{1i}, \varepsilon_{1i} \mid x_i \sim N(0, (1 + 0.1x_i)^2) \\
y_{2ij} = x_i + \varepsilon_{2ij}, \varepsilon_{2ij} \mid x_i \sim N(0, (2 + 0.2x_i)^2) \\
x_i \sim Uniform[10 - 40]
\]

for \(i = 1, 2, \ldots, 100, j = 1, 2, \ldots, n_{2i}\) and the number of repeated measurements for each subject \(i\) from the reference standard was \(n_{2i} \sim Uniform[10 - 15]\).
Simulated dataset 2

Description

In the simulated dataset 2, each subject has 1 to 5 measurement values from the new method and 10 to 15 measurement values from the reference method. Compared to the reference method, the new method has differential bias of -4 and proportional bias of 1.2. Variance of the new method is smaller than that for the reference method.

Usage

```r
data2
```

Format

An object of class `data.frame` with 1239 rows and 3 columns.

Details

@format A data frame with three variables:

- **id** identification number for subjects
- **y1** values from the new measurement method
- **y2** values from the reference measurement method

Dataset 2 was created based on the following equations:

\[
y_{1ij} = -4 + 1.2x_i + \varepsilon_{1ij}, \varepsilon_{1ij} \mid x_i \sim N(0, (1 + 0.1x_i)^2)
\]

\[
y_{2ij} = x_i + \varepsilon_{2ij}, \varepsilon_{2ij} \mid x_i \sim N(0, (2 + 0.2x_i)^2)
\]

\[
x_i \sim Uniform[10 - 40]
\]

for \(i = 1, 2, \ldots, 100, j = 1, 2, \ldots, n_{1i}/n_{2i}\) and the number of repeated measurements for each subject \(i\) from the new and reference method was \(n_{1i} \sim Uniform[1 - 5]\) and \(n_{2i} \sim Uniform[10 - 15]\) respectively.
In the simulated dataset 3, each subject has 1 to 5 measurement values from the new method and 10 to 15 measurement values from the reference method. Compared to the reference method, the new method has differential bias of 3 and proportional bias of 0.9. Variance of the new method is larger than that for the reference method.

Usage
data3

Format
An object of class data.frame with 1250 rows and 3 columns.

Details
@format A data frame with three variables:

 id identification number for subjects
 y1 values from the new measurement method
 y2 values from the reference measurement method

Dataset 3 was created based on the following equations:

\[
y_{1ij} = 3 + 0.9x_i + \varepsilon_{1ij}, \varepsilon_{1ij} \mid x_i \sim N(0, (2 + 0.06x_i)^2)
\]

\[
y_{2ij} = x_i + \varepsilon_{2ij}, \varepsilon_{2ij} \mid x_i \sim N(0, (1 + 0.01x_i)^2)
\]

\[
x_i \sim Uniform[10 - 40]
\]

for \(i = 1, 2, \ldots, 100 \), \(j = 1, 2, \ldots, n_{1i}/n_{2i} \) and the number of repeated measurements for each subject \(i \) from the new and reference method was \(n_{1i} \sim Uniform[1 - 5] \) and \(n_{2i} \sim Uniform[10 - 15] \) respectively.
Description

Usage

```r
measure_compare(data, new = "y1", Ref = "y2", ID = "id")
```

Arguments

- `data`: a dataframe containing the identification number of the subject (id), the measurement values from the new measurement method (y1) and those from the reference method.
- `new`: specify the variable name or location of the new measurement method
- `Ref`: specify the variable name or location of the reference standard
- `ID`: specify the variable name for location of the subject identification number

Details

This function implements the new estimation procedure to assess bias and precision of a new measurement method with respect to a reference standard, as well as Bland & Altman’s limits of agreement extended to the setting of possibly heteroscedastic variance of the measurement errors.

Value

The function returns a list with the following items:

- **Bias**: differential and proportional bias for new method and the associated 95 percent confidence intervals
- **Models**: list of models fitted in estimation procedure
MethodCompare

- Ref: a data frame containing the various variables used to compute the bias and precision plots, as well as the smooth standard errors estimates of the reference standard
- New: a data frame containing the various variables used to compute the bias and precision plots, as well as the smooth standard errors estimates of the new measurement method

Author(s)

Mingkai Peng & Patrick Taffé

Examples

```r
### Load the data
data(data1)
### Analysis
measure_model <- measure_compare(data1)
```

Description

The package "MethodCompare" allows one to assess bias and precision of a new measurement method with respect to a reference method (also called "reference standard"). It requires repeated measurements by at least one of the two measurement methods.

In this implementation, it is assumed by default that the reference method has repeated measurements and the new method may have as few as only one measurement per individual (The methodology can be adapted if you have more repeated measurements by the new method than by the reference method, see ref. below).

A manuscript with details concerning the methodology and its application can be found:
<doi:10.1177/0962280218759693>

It implements the methodology developped in:

NB: Further methodological developpements have been made and will be implemented in a future version of the package:

For other relevant references:
Taffé P. When can the Bland-Altman limits of agreement method be used and when it should not be used. J Clin Epidemiol 2021; 137:176-181.
Description

This plot allows the visual comparison of the precision (i.e. standard deviation) of the new measurement method with that of the reference standard, by creating a scatter plot of the estimated standard deviations against the best linear prediction (BLUP) of the true latent trait \(x \).

Usage

```r
precision_plot(object)
```

Arguments

- `object` an object returned by a call to `measure_compare`

Examples

```r
### load the data
data(data1)
### analysis
measure_model <- measure_compare(data1)
### Precision plot
precision_plot(measure_model)
```
Index

* datasets
 - data1, 4
 - data2, 5
 - data3, 6

bias_plot, 2
bland_altman_plot, 2

compare_plot, 3

data1, 4
data2, 5
data3, 6

measure_compare, 2, 3, 7, 9
MethodCompare, 8

precision_plot, 9