Package ‘MiscMetabar’

April 28, 2024

Type Package

Title Miscellaneous Functions for Metabarcoding Analysis

Version 0.9.1

Description Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. ‘MiscMetabar’ is mainly built on top of the ‘phyloseq’, ‘dada2’ and ‘targets’ R packages. It helps to build reproducible and robust bioinformatics pipelines in R. ‘MiscMetabar’ makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.

License AGPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0), phyloseq, ggplot2 (>= 3.5.0), dada2, dplyr, purrr

Suggests adespatial, ANCOMBC, BiocManager, Biostrings, circlize, ComplexUpset, DECIPHER, DESeq2, devtools, DT, edgeR, formattable, ggalluvial, ggfittext, gghalves, ggh4x, ggstatsplot, gggrides, ggVennDiagram, glmulti, gtsummary, grDevices, grid, gridExtra, here, httr, iNEXT, indicpecies, jsonlite, knitr, magrittr, metacoder, methods, mia, mixtools, multcompView, networkD3, pak, patchwork, permute, phangorn, phyloseqGraphTest, pbapply, plotly, plyr, reshape2, rmarkdown, roth, Rtsne, scales, seqinr, SRS, stringr, SummarizedExperiment, testthat (>= 3.0.0), tibble, tidyr, treemapify, vegan, venneuler, vctrs, viridis, withr

RoxygenNote 7.3.1

URL https://github.com/adrientaudiere/MiscMetabar,
https://adrientaudiere.github.io/MiscMetabar/

biocViews Sequencing, Microbiome, Metagenomics, Clustering, Classification, Visualization

BugReports https://github.com/adrientaudiere/MiscMetabar/issues
R topics documented:

Imports ape, lifecycle, rlang, stats
Config/testthat/edition 3
Config/testthat/parallel true
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Adrien Taudière [aut, cre, cph]
 (https://orcid.org/0000-0003-1088-1182)
Maintainer Adrien Taudière <adrien.taudiere@zaclys.net>
Repository CRAN
Date/Publication 2024-04-28 14:10:07 UTC

R topics documented:

MiscMetabar-package .. 5
accu_plot ... 5
accu_plot_balanced_modality 7
accu_samp_threshold ... 8
add_blast_info .. 9
add_dna_to_phyloseq ... 10
add_funguild_info .. 11
add_info_to_sam_data 12
add_new_taxonomy_pq 13
adonis_pq .. 14
adonis_rarperm_pq ... 15
all_object_size ... 17
ancombc_pq ... 17
are_modality_even_depth 18
asv2otu ... 19
as_binary_otu_table ... 22
biplot_pq .. 23
blast_pq ... 25
blast_to_derep ... 26
blast_to_phyloseq ... 28
build_phytree_pq ... 29
chimera_detection_vs 31
chimera_removal_vs ... 33
circle_pq ... 34
clean_pq ... 36
compare_pairs_pq ... 37
count_seq ... 38
cutadapt_remove_primers 39
data_fungi ... 41
data_fungi_mini .. 42
data_fungi_sp_known 43
R topics documented:

diff_fct_diff_class .. 43
distri_1_taxa ... 45
dist_bycol .. 46
dist_pos_control .. 47
fac2col .. 48
filter_asv_blast .. 48
filter_trim .. 50
formattable_pq .. 51
funguild_assign .. 55
funky_color ... 56
get_file_extension 57
gtfunguild_db ... 57
ggaluv_pq .. 58
ggbetween_pq .. 60
ggsccat_pq ... 61
ggvenn_pq .. 62
glmulti_pq .. 64
graph_test_pq ... 66
heat_tree_pq ... 67
hill_pq .. 68
hill_test_rarperm_pq 71
hill_tuckey_pq ... 73
iNEXT_pq .. 74
is_cutadapt_installed 75
is_falco_installed 76
is_krona_installed 76
is_mumu_installed 77
is_swarmed .. 78
is_vsearch_installed 78
krona ... 79
LCBD_pq ... 80
list_fastq_files ... 81
lulu ... 82
lulu_pq .. 84
merge_krona ... 86
merge_samples2 .. 87
merge_taxa_vec ... 88
MiscMetabar-deprecated 90
multipatt_pq .. 91
multiplot .. 92
multitax_bar_pq .. 93
multi_biplot_pq .. 94
mumu_pq ... 95
normalize_prop_pq 96
perc ... 97
phyloseq_to_edgeR 98
physeq_or_string_to_dna 98
plot_ancombe_pq ... 99
R topics documented:

- `plot_deseq2_pq` ... 101
- `plot_edgeR_pq` .. 103
- `plot_guild_pq` ... 104
- `plot_LCBD_pq` .. 106
- `plot_mt` .. 107
- `plot_SCBD_pq` ... 108
- `plot_tax_pq` ... 109
- `plot_tsne_pq` .. 111
- `plot_var_part_pq` ... 113
- `psmelt_samples_pq` ... 115
- `rarefy_sample_count_by_modality` 116
- `read_pq` .. 117
- `rename_samples` ... 118
- `rename_samples_otu_table` 119
- `reorder_taxa_pq` ... 119
- `ridges_pq` ... 120
- `rotl_pq` .. 121
- `sample_data_with_new_names` 122
- `sankey_pq` ... 123
- `save_pq` .. 125
- `search_exact_seq_pq` .. 126
- `select_one_sample` .. 126
- `select_taxa` ... 127
- `signif_ancombc` .. 128
- `simplify_taxo` ... 129
- `SRS_curve_pq` ... 130
- `subsample_fastq` .. 131
- `subset_samples_pq` .. 132
- `subset_taxa_pq` .. 132
- `subset_taxa_tax_control` 134
- `summary_plot_pq` ... 135
- `swarm_clustering` ... 136
- `taxa_as_columns` .. 138
- `taxa_as_rows` .. 138
- `taxa_only_in_one_level` 139
- `tax_bar_pq` .. 140
- `tax_datatable` ... 141
- `tbl_sum_samdata` ... 142
- `Tengeler2020_pq` .. 143
- `track_wkflow` .. 144
- `track_wkflow_samples` 145
- `transp` .. 146
- `treemap_pq` .. 147
- `tsne_pq` .. 148
- `unique_or_na` .. 149
- `upset_pq` ... 150
- `upset_test_pq` ... 153
- `var_par_pq` ... 154
Description

Functions to help analyze and visualize metabarcoding data. Mainly based on the phyloseq and dada2 packages.

accu_plot
Plot accumulation curves for phyloseq-class object

Description

[Maturing]

Usage

accu_plot(
 physeq,
 fact = NULL,
 add_nb_seq = TRUE,
 step = NULL,
 by.fact = FALSE,
 ci_col = NULL,
 col = NULL,
 lwd = 3,
 leg = TRUE,
 print_sam_names = FALSE,
 ci = 2,
 ...
)
Arguments

physeq (required): a `phyloseq-class` object obtained using the phyloseq package.

fact (required) Name of the factor in `physeq@sam_data` used to plot different lines

add_nb_seq (default: TRUE, logical) Either plot accumulation curves using sequences or using samples

step (Integer) distance among points calculated to plot lines. A low value give better plot but is more time consuming. Only used if `add_nb_seq` = TRUE.

by_fact (default: FALSE, logical) First merge the OTU table by factor to plot only one line by factor

ci_col Color vector for confidence interval. Only use if `add_nb_seq` = FALSE. If `add_nb_seq` = TRUE, you can use ggplot to modify the plot.

col Color vector for lines. Only use if `add_nb_seq` = FALSE. If `add_nb_seq` = TRUE, you can use ggplot to modify the plot.

lwd (default: 3) thickness for lines. Only use if `add_nb_seq` = FALSE.

leg (default: TRUE, logical) Plot legend or not. Only use if `add_nb_seq` = FALSE.

print_sam_names (default: FALSE, logical) Print samples names or not? Only use if `add_nb_seq` = TRUE.

ci (default: 2, integer) Confidence interval value used to multiply the standard error to plot confidence interval

... Additional arguments passed on to `ggplot` if `add_nb_seq` = TRUE or to `plot` if `add_nb_seq` = FALSE

Value

A `ggplot2` plot representing the richness accumulation plot if `add_nb_seq` = TRUE, else, if `add_nb_seq` = FALSE return a base plot.

Author(s)

Adrien Taudière

See Also

`specaccum` `accu_samp_threshold()`

Examples

data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
GP <- rarefy_even_depth(subset_samples_pq(GP, sample_sums(GP) > 3000))
p <- accu_plot(GP, "SampleType", add_nb_seq = TRUE, by.fact = TRUE, step = 10)
p <- accu_plot(GP, "SampleType", add_nb_seq = TRUE, step = 10)
p + theme(legend.position = "none")
Accumulation Curves with Balanced Modality and Depth Rarefaction

`p + xlim(c(0, 400))`

Description

[Experimental]
This function (i) rarefy (equalize) the number of samples per modality of a factor and (ii) rarefy the number of sequences per sample (depth). The seed is set to 1:nperm. Thus, with exactly the same parameter, including nperm values, results must be identical.

Usage

```r
accu_plot_balanced_modality(
  physeq,
  fact,
  nperm = 99,
  step = 2000,
  by.fact = TRUE,
  progress_bar = TRUE,
  quantile_prob = 0.975,
  rarefy_by_sample_before_merging = TRUE,
  sample.size = 1000,
  verbose = FALSE,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>physeq</td>
<td>(required): a <code>phyloseq-class</code> object obtained using the phyloseq package.</td>
</tr>
<tr>
<td>fact</td>
<td>(required) The variable to rarefy. Must be present in the <code>sam_data</code> slot of the physeq object.</td>
</tr>
<tr>
<td>nperm</td>
<td>(int) The number of permutations to perform.</td>
</tr>
<tr>
<td>step</td>
<td>(int) distance among points calculated to plot lines. A low value give better plot but is more time consuming.</td>
</tr>
<tr>
<td>by.fact</td>
<td>(logical, default TRUE) First merge the OTU table by factor to plot only one line by factor</td>
</tr>
<tr>
<td>progress_bar</td>
<td>(logical, default TRUE) Do we print progress during the calculation?</td>
</tr>
<tr>
<td>quantile_prob</td>
<td>(float, [0:1]) the value to compute the quantile. Minimum quantile is compute using 1-quantile_prob.</td>
</tr>
</tbody>
</table>

...
accu_samp_threshold

rarefy_by_sample_before_merging
 (logical, default TRUE): rarefy_by_sample_before_merging = FALSE is buggy for the moment. Please only use rarefy_by_sample_before_merging = TRUE
sample.size
 (int) A single integer value equal to the number of reads being simulated, also known as the depth. See phyloseq::rarefy_even_depth().
verbose
 (logical). If TRUE, print additional informations.
...
 Other params for be passed on to accu_plot() function

Value

A ggplot2 plot representing the richness accumulation plot

Author(s)

Adrien Taudière

See Also

accu_plot(), rarefy_sample_count_by_modality(), phyloseq::rarefy_even_depth()

Examples

data_fungi_woNA4Time <-
 subset_samples(data_fungi, !is.na(Time))
data_fungi_woNA4Time@sam_data$Time <- paste0("time-", data_fungi_woNA4Time@sam_data$Time)
accu_plot_balanced_modality(data_fungi_woNA4Time, "Time", nperm = 3)

data_fungi_woNA4Height <-
 subset_samples(data_fungi, !is.na(Height))
accu_plot_balanced_modality(data_fungi_woNA4Height, "Height", nperm = 3)

accu_samp_threshold Compute the number of sequence to obtain a given proportion of ASV in accumulation curves

Description

[Experimental]

Usage

accu_samp_threshold(res_accuplot, threshold = 0.95)

Arguments

res_accuplot the result of the function accu_plot()
threshold the proportion of ASV to obtain in each samples
Value

a value for each sample of the number of sequences needed to obtain threshold proportion of the ASV

Author(s)

Adrien Taudière

See Also

accu_plot()

Examples

```r
data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
GP <- rarefy_even_depth(subset_samples_pq(GP, sample_sums(GP) > 3000))
p <- accu_plot(GP, "SampleType", add_nb_seq = TRUE, by.fact = TRUE, step = 10)
val_threshold <- accu_samp_threshold(p)
summary(val_threshold)

# Plot the number of sequences needed to accumulate 0.95% of ASV in 50%, 75%
# and 100% of samples
p + geom_vline(xintercept = quantile(val_threshold, probs = c(0.50, 0.75, 1)))
```

Description

[Experimental]

Basically a wrapper of `blast_pq()` with option `unique_per_seq = TRUE` and `score_filter = FALSE`.

Add the information to the taxtable

Usage

`add_blast_info(physeq, fasta_for_db, silent = FALSE, ...)`
Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **fasta_for_db** path to a fasta file to make the blast database
- **silent** (logical) If true, no message are printing.
- ... Other arguments passed on to `blast_pq()` function.

Value

A new `phyloseq-class` object with more information in `tax_table` based on a blast on a given database

Author(s)

Adrien Taudière

add_dna_to_phyloseq

ADD DNA IN REFSEQ SLOT OF A PHYSEQ OBJECT USING TAXA NAMES AND RENAMES TAXA USING ASV_1, ASV_2, ...

Description

[Stable]

Usage

```r
add_dna_to_phyloseq(physeq)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.

Value

A new `phyloseq-class` object with refseq slot and new taxa names
add_funguild_info
Add information about Guild for FUNGI the FUNGuild database

Description

[Experimental]

Please cite Nguyen et al. 2016 ([doi:10.1016/j.funeco.2015.06.006](https://doi.org/10.1016/j.funeco.2015.06.006))

Usage

```r
add_funguild_info(
  physeq,
  taxLevels = c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
)
```

Arguments

- **physeq** *(required):* a `phyloseq-class` object obtained using the `phyloseq` package.
- **taxLevels** Name of the 7 columns in `tax_table` required by funguild

Details

This function is mainly a wrapper of the work of others. Please make a reference to FUNGuildR package and the associate publication if you use this function.

Value

A new object of class `physeq` with Guild information added to `tax_table` slot

Author(s)

Adrien Taudière

See Also

- `plot_guild_pq()`

Examples

```r
if (requireNamespace("httr")) {
  d_fung_mini <- add_funguild_info(data_fungi_mini,
    taxLevels = c(
        "Domain",
        "Phylum",
        "Class",
        "Order",
        "Family",
```
add_info_to_sam_data

"Genus",
"Species"
)
)
sort(table(d_fung_mini@tax_table[, "guild"]), decreasing = TRUE)
}

add_info_to_sam_data Add information to sample_data slot of a phyloseq-class object

Description

[Experimental]

Warning: The value nb_seq and nb_otu may be outdated if you transform your phyloseq object, e.g. using the subset_taxa_pq() function

Usage

add_info_to_sam_data(
 physeq,
 df_info = NULL,
 add_nb_seq = TRUE,
 add_nb_otu = TRUE
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
df_info : A dataframe with rownames matching for sample names of the phyloseq object
add_nb_seq (Logical, default TRUE) Does we add a column nb_seq collecting the number of sequences per sample?
add_nb_otu (Logical, default TRUE) Does we add a column nb_otu collecting the number of OTUs per sample?

Value

A phyloseq object with an updated sam_data slot

Author(s)

Adrien Taudière
Examples

```r
data_fungi <- add_info_to_sam_data(data_fungi)
boxplot(data_fungi@sam_data$nb_otu ~ data_fungi@sam_data$Time)

new_df <- data.frame(
  variable_1 = runif(n = nsamples(data_fungi), min = 1, max = 20),
  variable_2 = runif(n = nsamples(data_fungi), min = 1, max = 2)
)
rownames(new_df) <- sample_names(data_fungi)
data_fungi <- add_info_to_sam_data(data_fungi, new_df)
plot(data_fungi@sam_data$nb_otu ~ data_fungi@sam_data$variable_1)
```

add_new_taxonomy_pq
Add new taxonomic rank to a phyloseq object.

Description

[Experimental]

One of main use of this function is to add taxonomic assignment from a new database.

Usage

```r
add_new_taxonomy_pq(physeq, ref_fasta, suffix = NULL, ...)
```

Arguments

- `physeq` (required): a *phyloseq-class* object obtained using the phyloseq package.
- `ref_fasta` (required): A link to a database. Pass on to `dada2::assignTaxonomy`.
- `suffix` (character): The suffix to name the new columns. If set to NULL (the default), the basename of the file reFasta is used.
- `...`: Others arguments pass on to `dada2::assignTaxonomy`.

Value

A new *phyloseq-class* object with a larger slot `tax_table`.

Author(s)

Adrien Taudière
Description

[Experimental]

A wrapper for the `vegan::adonis2()` function in the case of phyloseq object.

Usage

```r
adonis_pq(
  physeq, 
  formula, 
  dist_method = "bray", 
  merge_sample_by = NULL, 
  na_remove = FALSE, 
  correction_for_sample_size = FALSE, 
  rarefy_nb_seqs = FALSE, 
  verbose = TRUE, 
  ...
)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **formula** (required) the right part of a formula for `vegan::adonis2()`. Variables must be present in the physeq@sam_data slot.
- **dist_method** (default "bray") the distance used. See `phyloseq::distance()` for all available distances or run `phyloseq::distanceMethodList()`. For aitchison and robust.aitchison distance, `vegan::vegdist()` function is directly used.
- **merge_sample_by** a vector to determine which samples to merge using the `merge_samples2()` function. Need to be in physeq@sam_data.
- **na_remove** (logical, default FALSE) If set to TRUE, remove samples with NA in the variables set in formula.
- **correction_for_sample_size** (logical, default FALSE) If set to TRUE, the sample size (number of sequences by samples) is add to formula in the form y~Library_Size + Biological_Effect following recommendation of Weiss et al. 2017. correction_for_sample_size overcome rarefy_nb_seqs if both are TRUE.
- **rarefy_nb_seqs** (logical, default FALSE) Rarefy each sample (before merging if merge_sample_by is set) using phyloseq::rarefy_even_depth(). if correction_for_sample_size is TRUE, rarefy_nb_seqs will have no effect.
- **verbose** (logical, default TRUE) If TRUE, prompt some messages.
- ... Other arguments passed on to `vegan::adonis2()` function.
Details

This function is mainly a wrapper of the work of others. Please make a reference to `vegan::adonis2()` if you use this function.

Value

The function returns an `anova.cca` result object with a new column for partial R^2. See help of `vegan::adonis2()` for more information.

Author(s)

Adrien Taudière

Examples

data(enterotype)

 adonis_pq(enterotype, "SeqTech*Enterotype", na_remove = TRUE)
 adonis_pq(enterotype, "SeqTech", dist_method = "jaccard")
 adonis_pq(enterotype, "SeqTech", dist_method = "robust.aitchison")

Usage

 adonis_rarperm_pq(
 physeq,
 formula,
 dist_method = "bray",
 merge_sample_by = NULL,
 na_remove = FALSE,
 rarefy_nb_seqs = FALSE,
 verbose = TRUE,
 nperm = 99,
 progress_bar = TRUE,
 quantile_prob = 0.975,
 sample.size = min(sample_sums(physeq)),
 ...
)
Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- **formula** (required) the right part of a formula for `vegan::adonis2()`. Variables must be present in the `physeq@sam_data` slot.
- **dist_method** (default "bray") the distance used. See `phyloseq::distance()` for all available distances or run `phyloseq::distanceMethodList()`. For aitchison and robust.aitchison distance, `vegan::vegdist()` function is directly used.
- **merge_sample_by** a vector to determine which samples to merge using the `merge_samples2()` function. Need to be in `physeq@sam_data`.
- **na_remove** (logical, default FALSE) If set to TRUE, remove samples with NA in the variables set in formula.
- **rarefy_nb_seq** (logical, default FALSE) Rarefy each sample (before merging if `merge_sample_by` is set) using `phyloseq::rarefy_even_depth()`. If `correction_for_sample_size` is TRUE, `rarefy_nb_seq` will have no effect.
- **verbose** (logical, default TRUE) If TRUE, prompt some messages.
- **nperm** (int) The number of permutations to perform.
- **progress_bar** (logical, default TRUE) Do we print progress during the calculation.
- **quantile_prob** (float, \([0:1]\)) the value to compute the quantile. Minimum quantile is compute using 1-quantile_prob.
- **sample.size** (int) A single integer value equal to the number of reads being simulated, also known as the depth. See `phyloseq::rarefy_even_depth()`.
- **...** Other params for be passed on to `adonis_pq()` function

Value

A list of three dataframe representing the mean, the minimum quantile and the maximum quantile value for adonis results. See `adonis_pq()`.

Author(s)

Adrien Taudière

See Also

- `adonis_pq()`

Examples

```r
if (requireNamespace("vegan")) {
  data_fungi_woNA <- subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
  adonis_rarperm_pq(data_fungi_woNA, "Time*Height", na_remove = TRUE, nperm = 3)
}
```
all_object_size List the size of all objects of the GlobalEnv.

Description

[Stable]

Usage

all_object_size()

Value

a list of size

ancombc_pq Run ANCOMBC2 on phyloseq object

Description

[Experimental]
A wrapper for the ANCOMBC::ancombc2() function

Usage

ancombc_pq(physeq, fact, levels_fact = NULL, tax_level = "Class", ...)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
fact (required) Name of the factor in physeq@sam_data used to plot different lines
levels_fact (default NULL) The order of the level in the factor. Used for reorder levels and select levels (filter out levels not present en levels_fact)
tax_level The taxonomic level passed on to ANCOMBC::ancombc2()
... Other arguments passed on to ANCOMBC::ancombc2() function.

Details

This function is mainly a wrapper of the work of others. Please make a reference to ANCOMBC::ancombc2() if you use this function.

Value

The result of ANCOMBC::ancombc2() function
Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("mia")) {
  data_fungi_mini@tax_table <- phyloseq::tax_table(cbind(
    data_fungi_mini@tax_table,
    "taxon" = taxa_names(data_fungi_mini)
  ))
  res_height <- ancombc_pq(
    data_fungi_mini,
    fact = "Height",
    levels_fact = c("Low", "High"),
    verbose = TRUE
  )

  ggplot(
    res_height$res,
    aes(
      y = reorder(taxon, lfc_HeightHigh),
      x = lfc_HeightHigh,
      color = diff_HeightHigh
    )
  ) +
  geom_vline(xintercept = 0) +
  geom_segment(aes(
    xend = 0, y = reorder(taxon, lfc_HeightHigh),
    yend = reorder(taxon, lfc_HeightHigh)
  ), color = "darkgrey") +
  geom_point()

  res_time <- ancombc_pq(
    data_fungi_mini,
    fact = "Time",
    levels_fact = c("0", "15"),
    tax_level = "Family",
    verbose = TRUE
  )
}
```

are_modality_even_depth

Test if the mean number of sequences by samples is link to the modality of a factor
Description

[Experimental]

The aim of this function is to provide a warning if samples depth significantly vary among the modalities of a factor present in the `sam_data` slot.

This function applies a Kruskal-Wallis rank sum test to the number of sequences per samples in function of the factor `fact`.

Usage

```r
are_modality_even_depth(physeq, fact, boxplot = FALSE)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- `fact` (required): Name of the factor to cluster samples by modalities. Need to be in `physeq@sam_data`.
- `boxplot` (logical) Do you want to plot boxplot?

Value

The result of a Kruskal-Wallis rank sum test

Author(s)

Adrien Taudière

Examples

```r
are_modality_even_depth(data_fungi_mini, "Time")$p.value
are_modality_even_depth(rarefy_even_depth(data_fungi_mini), "Time")$p.value
are_modality_even_depth(data_fungi_mini, "Height", boxplot = TRUE)
```

`asv2otu`

Recluster sequences of an object of class `physeq` or a list of DNA sequences

Description

[Maturing]
Usage

asv2otu(
 physeq = NULL,
 dna_seq = NULL,
 nproc = 1,
 method = "clusterize",
 id = 0.97,
 vsearchpath = "vsearch",
 tax_adjust = 0,
 vsearch_cluster_method = "--cluster_size",
 vsearch_args = "--strand both",
 keep_temporary_files = FALSE,
 swarmpath = "swarm",
 d = 1,
 swarm_args = "--fastidious",
 method_clusterize = "overlap",
 ...
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
dna_seq You may directly use a character vector of DNA sequences in place of physeq
nproc (default: 1) Set to number of cpus/processors to use for the clustering
method (default: clusterize) Set the clustering method.

 • clusterize use the DECIPHER::Clusterize() fonction,
 • vsearch use the vsearch software (https://github.com/torognes/vsearch) with
 arguments --cluster_size by default (see args vsearch_cluster_method)
 and --strand both (see args vsearch_args)
 • swarm use the swarm

id (default: 0.97) level of identity to cluster
vsearchpath (default: vsearch) path to vsearch
tax_adjust (Default 0) See the man page of merge_taxa_vec() for more details. To con-
served the taxonomic rank of the most abundant ASV, set tax_adjust to 0 (de-
fault). For the moment only tax_adjust = 0 is robust
vsearch_cluster_method

 (default: "--cluster_size) See other possible methods in the vsearch manual (e.g.
 --cluster_size or --cluster_smallmem)

 • --cluster_fast : Clusterize the fasta sequences in filename, automati-
 cally sort by decreasing sequence length beforehand.
 • --cluster_size : Clusterize the fasta sequences in filename, automati-
 cally sort by decreasing sequence abundance beforehand.
 • --cluster_smallmem : Clusterize the fasta sequences in filename without
 automatically modifying their order beforehand. Sequence are expected to
be sorted by decreasing sequence length, unless `--usersort` is used. In that case you may set vsearch_args to `vsearch_args = "--strand both --usersort"

vsearch_args (default : "--strand both") a one length character element defining other parameters to passed on to vsearch.

keep_temporary_files
(logical, default: FALSE) Do we keep temporary files
• temp.fasta (refseq in fasta or dna_seq sequences)
• cluster.fasta (centroid if method = "vsearch")
• temp.uc (clusters if method = "vsearch")

swarmpath (default: swarm) path to swarm

d (default: 1) maximum number of differences allowed between two amplicons, meaning that two amplicons will be grouped if they have d (or less) differences

swarm_args (default : "--fastidious") a one length character element defining other parameters to passed on to swarm See other possible methods in the SWARM pdf manual

method_clusterize (default "overlap") the method for the DECIPHER::Clusterize() method

... Others arguments passed on to DECIPHER::Clusterize()

Details
This function use the merge_taxa_vec function to merge taxa into clusters. By default tax_adjust = 0. See the man page of merge_taxa_vec().

Value
A new object of class physeq or a list of cluster if dna_seq args was used.

Author(s)
Adrien Taudière

References

See Also
vsearch_clustering() and swarm_clustering()

Examples
if (requireNamespace("DECIPHER")) {
 asv2otu(data_fungi_mini)
}

if (requireNamespace("DECIPHER")) {

asv2otu(data_fungi_mini, method_clusterize = "longest")

if (MiscMetabar::is_swarm_installed()) {
 d_swarm <- asv2otu(data_fungi_mini, method = "swarm")
}
if (MiscMetabar::is_vsearch_installed()) {
 d_vs <- asv2otu(data_fungi_mini, method = "vsearch")
}
}

Description

Transform the otu_table of a phyloseq-class object into a phyloseq-class object with a binary otu_table.

Usage

as_binary_otu_table(physeq, min_number = 1)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
min_number (int) the minimum number of sequences to put a 1 in the OTU table.

Value

A physeq object with only 0/1 in the OTU table

Note

Useful to test if the results are not biased by sequences bias that appended during PCR or NGS pipeline.

Author(s)

Adrien Taudière

Examples

data(enterotype)
enterotype_bin <- as_binary_otu_table(enterotype)
biplot_pq

Visualization of two samples for comparison

Description

[Maturing]

Usage

biplot_pq(
 physeq,
 fact = NULL,
 merge_sample_by = NULL,
 rarefy_after_merging = FALSE,
 inverse_side = FALSE,
 left_name = NULL,
 left_name_col = "#4B3E1E",
 left_fill = "#4B3E1E",
 left_col = "#f3f2d9",
 right_name = NULL,
 right_name_col = "#1d2949",
 right_fill = "#1d2949",
 right_col = "#1d2949",
 log10trans = TRUE,
 nudge_y = c(0.3, 0.3),
 geom_label = FALSE,
 text_size = 3,
 size_names = 5,
 y_names = NA,
 ylim_modif = c(1, 1),
 nb_samples_info = TRUE,
 plotly_version = FALSE,
 ...
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (default: NULL) Name of the factor in physeq@sam_data. If left to NULL use the left_name and right_name parameter as modality.

merge_sample_by (default: NULL) if not NULL samples of physeq are merged using the vector set by merge_sample_by. This merging used the merge_samples2(). In the case of biplot_pq() this must be a factor with two levels only.

rarefy_after_merging
 Rarefy each sample after merging by the modalities merge_sample_by
inverse_side Inverse the side (put the right modality in the left side).
left_name Name of the left sample.
left_name_col Color for the left name.
left_fill Fill for the left sample.
left_col Color for the left sample.
right_name Name of the right sample.
right_name_col Color for the right name.
right_fill Fill for the right sample.
right_col Color for the right sample.
log10trans (logical) Does abundancy is log10 transformed?
nudge_y A parameter to control the y position of abundancy values. If a vector of two values are set, the first value is for the left side, and the second value for the right one. If one value is set, this value is used for both side.
geom_label (default: FALSE, logical) if TRUE use the `ggplot2::geom_label()` function instead of `ggplot2::geom_text()` to indicate the numbers of sequences.
text_size size for the number of sequences.
size_names size for the names of the 2 samples.
y_names y position for the names of the 2 samples. If NA (default), computed using the maximum abundances values.
ylim_modif vector of two values. Modificator (by a multiplication) of ylim. If one value is set, this value is used for both limits.

Value

A plot

Author(s)

Adrien Taudière

Examples

```r
data_fungi_2Height <- subset_samples(data_fungi_mini, Height %in% c("Low", "High"))
biplot_pq(data_fungi_2Height, "Height", merge_sample_by = "Height")
```
blast_pq
Blast all sequence of refseq slot of a phyloseq-class object against a custom database.

Description

Experimental

Usage

```r
blast_pq(  
  physeq,  
  fasta_for_db = NULL,  
  database = NULL,  
  blastpath = NULL,  
  id_cut = 90,  
  bit_score_cut = 50,  
  min_cover_cut = 50,  
  e_value_cut = 1e-30,  
  unique_per_seq = FALSE,  
  score_filter = TRUE,  
  nproc = 1,  
  args_makedb = NULL,  
  args_blastn = NULL,  
  keep_temporary_files = FALSE  
)
```

Arguments

- **physeq** (required): a phyloseq-class object obtained using the phyloseq package.
- **fasta_for_db** path to a fasta file to make the blast database
- **database** path to a blast database
- **blastpath** path to blast program
- **id_cut** (default: 90) cut of in identity percent to keep result
- **bit_score_cut** (default: 50) cut of in bit score to keep result The higher the bit-score, the better the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required database size (2bit-score).
- **min_cover_cut** (default: 50) cut of in query cover (%) to keep result
- **e_value_cut** (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the number of expected hits of similar quality (score) that could be found just by chance.
- **unique_per_seq** (logical, default FALSE) if TRUE only return the better match (higher bit score) for each sequence
score_filter (logical, default TRUE) does results are filter by score? If FALSE, id_cut, bit_score_cut, e_value_cut and min_cover_cut are ignored

nproc (default: 1) Set to number of cpus/processors to use for blast (args -num_threads for blastn command)

args_makedb Additional parameters parse to makeblastdb command

args_blastn Additional parameters parse to blastn command

keep_temporary_files (logical, default: FALSE) Do we keep temporary files
 • db.fasta (refseq transformed into a database)
 • dbase list of files (output of blastn)
 • blast_result.txt the summary result of blastn using -outfmt "6 qseqid qlen sseqid slen length pident evalue bitscore qcovs"

Value

a blast table

See Also

blast_to_phyloseq() to use refseq slot as a database

blast_to_derep blast some sequence against sequences from of a derep-class object.

Description

[Experimental]

Usage

blast_to_derep(
 derep,
 seq2search,
 blastpath = NULL,
 id_cut = 90,
 bit_score_cut = 50,
 min_cover_cut = 50,
 e_value_cut = 1e-30,
 unique_per_seq = FALSE,
 score_filter = FALSE,
 list_no_output_query = FALSE,
 min_length_seq = 200,
 args_makedb = NULL,
 args_blastn = NULL,
 nproc = 1,
 keep_temporary_files = FALSE
)
Arguments

derep The result of dada2::derepFastq(). A list of derep-class object.
seq2search (required) path to a fasta file defining the sequences you want to blast against the ASV sequences from the physeq object.
blastpath path to blast program
id_cut (default: 90) cut of in identity percent to keep result
bit_score_cut (default: 50) cut of in bit score to keep result The higher the bit-score, the better the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required database size (2(bit-score)).
min_cover_cut (default: 50) cut of in query cover (%) to keep result
e_value_cut (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the number of expected hits of similar quality (score) that could be found just by chance.
unique_per_seq (logical, default FALSE) if TRUE only return the better match (higher bit score) for each sequence
score_filter (logical, default TRUE) does results are filter by score? If FALSE, id_cut,bit_score_cut, e_value_cut and min_cover_cut are ignored
list_no_output_query (logical) does the result table include query sequences for which blastn does not find any correspondence?
min_length_seq (default: 200) Removed sequences with less than min_length_seq from derep before blast. Set to 0 to discard filtering sequences by length.
args_makedb Additional parameters parse to makeblastdb command
args_blastn Additional parameters parse to blastn command
nproc (default: 1) Set to number of cpus/processors to use for blast (args -num_threads for blastn command)
keep_temporary_files (logical, default: FALSE) Do we keep temporary files :
 • db.fasta (refseq transformed into a database)
 • dbase list of files (output of blastn)
 • blast_result.txt the summary result of blastn using -outfmt "6 qseqid qlen sseqid slen length pident evalue bitscore qcovs"

Value

A blast table

Author(s)

Adrien Taudière

See Also

blast_pq() to use refseq slot as query sequences against un custom database and blast_to_phyloseq() to use refseq slot as a database
blast_to_phyloseq

Blast some sequence against refseq slot of a phyloseq-class object.

Description

[Maturing]

Usage

```r
blast_to_phyloseq(
  physeq,  
  seq2search,  
  blastpath = NULL,  
  id_cut = 90,  
  bit_score_cut = 50,  
  min_cover_cut = 50,  
  e_value_cut = 1e-30,  
  unique_per_seq = FALSE,  
  score_filter = TRUE,  
  list_no_output_query = FALSE,  
  args_makedb = NULL,  
  args_blastn = NULL,  
  nproc = 1,  
  keep_temporary_files = FALSE
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the phyloseq package.
- `seq2search` (required) path to a fasta file defining the sequences you want to blast against the ASV sequences from the physeq object.
- `blastpath` path to blast program
- `id_cut` (default: 90) cut of in identity percent to keep result
- `bit_score_cut` (default: 50) cut of in bit score to keep result The higher the bit-score, the better the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required database size (2bit-score).
- `min_cover_cut` (default: 50) cut of in query cover (%) to keep result
- `e_value_cut` (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the number of expected hits of similar quality (score) that could be found just by chance.
- `unique_per_seq` (logical, default FALSE) if TRUE only return the better match (higher **bit score**) for each sequence
build_phytree_pq

(score_filter) (logical, default TRUE) does results are filter by score? If FALSE, id_cut, bit_score_cut, e_value_cut and min_cover_cut are ignored

(list_no_output_query) (logical) does the result table include query sequences for which blastn does not find any correspondence?

(args_makedb) Additional parameters parse to makeblastdb command

(args_blastn) Additional parameters parse to blastn command

(nproc) (default: 1) Set to number of cpus/processors to use for blast (args -num_threads for blastn command)

(keep_temporary_files) (logical, default: FALSE) Do we keep temporary files

- db.fasta (refseq transformed into a database)
- dbase list of files (output of blastn)
- blast_result.txt the summary result of blastn using -outfmt "6 qseqid qlen sseqid slen length pident evalue bitscore qcovs"

(See Also)

blast_pq() to use refseq slot as query sequences against un custom database.

(Examples)

```r
## Not run:

blastpath <- "...YOUR_PATH_TO_BLAST..."
bust_to_phyloseq(data_fungi,
    seq2search = system.file("extdata", "ex.fasta",
        package = "MiscMebtabar", mustWork = TRUE
    ),
    blastpath = blastpath
)

## End(Not run)
```

Build phylogenetic trees from refseq slot of a phyloseq object
Description

[Experimental]

This function build tree phylogenetic tree and if nb_bootstrap is set, it build also the 3 corresponding bootstrapped tree.

Default parameters are based on doi:10.12688/f1000research.8986.2 and phangorn vignette Estimating phylogenetic trees with phangorn. You should understand your data, especially the markers, before using this function.

Note that phylogenetic reconstruction with markers used for metabarcoding are not robust. You must verify the robustness of your phylogenetic tree using taxonomic classification (see vignette Tree visualization) and bootstrap or multi-tree visualization

Usage

```r
build_phytree_pq(
  physeq, # required: a phyloseq-class object obtained using the phyloseq package.
  nb_bootstrap = 0, # default 0: If a positive number is set, the function also build 3 bootstrapped trees using nb_bootstrap bootstrap samples
  model = "GTR", # allows to choose an amino acid models or nucleotide model, see phangorn::optim.pml() for more details
  optInv = TRUE, # Logical value indicating whether topology gets optimized (NNI). See phangorn::optim.pml() for more details
  optGamma = TRUE, # Logical value indicating whether gamma rate parameter gets optimized. See phangorn::optim.pml() for more details
  rearrangement = "NNI", # type of tree tree rearrangements to perform, one of "NNI", "stochastic" or "ratchet" see phangorn::optim.pml() for more details
  control = phangorn::pml.control(trace = 0), # A list of parameters for controlling the fitting process. see phangorn::optim.pml() for more details
  optNni = TRUE, # Logical value indicating whether topology gets optimized (NNI). see phangorn::optim.pml() for more details
  multicore = FALSE, # (logical) whether models should estimated in parallel. see phangorn::bootstrap.pml() for more details
  ... # Other params for be passed on to phangorn::optim.pml() function
)
```

Arguments

- **physeq** (required): a phyloseq-class object obtained using the phyloseq package.
- **nb_bootstrap** (default 0): If a positive number is set, the function also build 3 bootstrapped trees using nb_bootstrap bootstrap samples
- **model** allows to choose an amino acid models or nucleotide model, see phangorn::optim.pml() for more details
- **optInv** Logical value indicating whether topology gets optimized (NNI). See phangorn::optim.pml() for more details
- **optGamma** Logical value indicating whether gamma rate parameter gets optimized. See phangorn::optim.pml() for more details
- **rearrangement** type of tree tree rearrangements to perform, one of "NNI", "stochastic" or "ratchet" see phangorn::optim.pml() for more details
- **control** A list of parameters for controlling the fitting process. see phangorn::optim.pml() for more details
- **optNni** Logical value indicating whether topology gets optimized (NNI). see phangorn::optim.pml() for more details
- **multicore** (logical) whether models should estimated in parallel. see phangorn::bootstrap.pml() for more details
- **...** Other params for be passed on to phangorn::optim.pml() function
Details

This function is mainly a wrapper of the work of others. Please make a reference to phangorn package if you use this function.

Value

A list of phylogenetic tree

Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("phangorn")) {
  df <- subset_taxa_pq(data_fungi_mini, taxa_sums(data_fungi_mini) > 9000)
  df_tree <- build_phytree_pq(df, nb_bootstrap = 2)
  plot(df_tree$UPGMA)
  phangorn::plotBS(df_tree$UPGMA, df_tree$UPGMA_bs, main = "UPGMA")
  plot(df_tree$NJ, "unrooted")
  plot(df_tree$ML)
  phangorn::plotBS(df_tree$ML$tree, df_tree$ML.bs, p = 20, frame = "circle")
  phangorn::plotBS(
    df_tree$ML$tree,
    df_tree$ML.bs,
    p = 20,
    frame = "circle",
    method = "TBE"
  )
  plot(phangorn::consensusNet(df_tree$ML.bs))
  plot(phangorn::consensusNet(df_tree$NJ.bs))
  ps_tree <- merge_phyloseq(df, df_tree$ML$tree)
}
```

Description

[Experimental]
Usage

```r
chimera_detection_vs(
  seq2search,
  nb_seq,
  vsearchpath = "vsearch",
  abskew = 2,
  min_seq_length = 100,
  vsearch_args = "--fasta_width 0",
  keep_temporary_files = FALSE
)
```

Arguments

- `seq2search` (required) a list of DNA sequences coercible by function `Biostrings::DNAStringSet()`
- `nb_seq` (required) a numeric vector giving the number of sequences for each DNA sequences
- `vsearchpath` (default: vsearch) path to vsearch
- `abskew` (int, default 2) The abundance skew is used to distinguish in a three way alignment which sequence is the chimera and which are the parents. The assumption is that chimeras appear later in the PCR amplification process and are therefore less abundant than their parents. The default value is 2.0, which means that the parents should be at least 2 times more abundant than their chimera. Any positive value equal or greater than 1.0 can be used.
- `min_seq_length` (int, default 100)) Minimum length of sequences to be part of the analysis
- `vsearch_args` (default "--fasta_width 0") A list of other args for vsearch command
- `keep_temporary_files` (logical, default: FALSE) Do we keep temporary files ?
 - non_chimeras.fasta
 - chimeras.fasta
 - borderline.fasta

Details

This function is mainly a wrapper of the work of others. Please make `vsearch`.

Value

A list of 3 including non-chimera taxa ($non_chimera), chimera taxa ($chimera) and borderline taxa($borderline)

Author(s)

Adrien Taudière
chimera_removal_vs

Examples

chimera_detection_vs(
 seq2search = data_fungi@refseq,
 nb_seq = taxa_sums(data_fungi)
)

chimera_removal_vs Search for a list of sequence in an object to remove chimera taxa using

Rhrefhttps://github.com/torognes/vsearchvsearch

Description

[Experimental]

Usage

chimera_removal_vs(object, type = "Discard_only_chim", clean_pq = FALSE, ...)

Arguments

object (required) A phyloseq-class object or one of dada, derep, data.frame or list
coeccible to sequences table using the function dada2::makeSequenceTable()

type (default "Discard_only_chim"). The type define the type of filtering.

• "Discard_only_chim" will only discard taxa classify as chimera by vsearch
• "Select_only_non_chim" will only select taxa classify as non-chimera by
vsearch(after filtering taxa based on their sequence length by the parameter
min_seq_length from the chimera_detection_vs() function)
• "Select_only_chim" will only select taxa classify as chimera by vsearch (af-
after filtering taxa based on their sequence length by the parameter min_seq_length
from the chimera_detection_vs() function)

clean_pq (logical; default FALSE) If TRUE, return the phyloseq object after cleaning
using the default parameter of clean_pq() function.

... Others arguments passed on to chimera_detection_vs() function

Details

This function is mainly a wrapper of the work of others. Please make vsearch.

Value

• I/ a sequences tables if object is of class dada, derep, data.frame or list.
• II/ a phyloseq object without (or with if type = 'Select_only_chim') chimeric taxa
circle_pq

Plot OTU circle for phyloseq-class object

Description
[Maturing]

Usage
circle_pq(
 physeq = NULL,
 fact = NULL,
 taxa = "Order",
 nproc = 1,
 add_nb_seq = TRUE,
 rarefy = FALSE,
 min_prop_tax = 0.01,
 min_prop_mod = 0.1,
 gap_degree = NULL,
 start_degree = NULL,
 row_col = NULL,
 grid_col = NULL,
 log10trans = FALSE,
 ...
)
Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **fact** (required) Name of the factor to cluster samples by modalities. Need to be in `physeq@sam_data`.
- **taxa** (default: 'Order') Name of the taxonomic rank of interest
- **nproc** (default 1) Set to number of cpus/processors to use for parallelization
- **add_nb_seq** (default: TRUE) Represent the number of sequences or the number of OTUs (add_nb_seq = FALSE)
- **rarefy** (logical) Does each samples modalities need to be rarefy in order to compare them with the same amount of sequences?
- **min_prop_tax** (default: 0.01) The minimum proportion for taxon to be plotted
- **min_prop_mod** (default: 0.1) The minimum proportion for modalities to be plotted
- **gap_degree** Gap between two neighbour sectors. It can be a single value or a vector. If it is a vector, the first value corresponds to the gap after the first sector.
- **start_degree** The starting degree from which the circle begins to draw. Note this degree is measured in the standard polar coordinate which means it is always reverse-clockwise.
- **row_col** Color vector for row
- **grid_col** Grid colors which correspond to sectors. The length of the vector should be either 1 or the number of sectors. It’s preferred that grid_col is a named vector of which names correspond to sectors. If it is not a named vector, the order of grid_col corresponds to order of sectors.
- **log10trans** (logical) Should sequence be log10 transformed (more precisely by log10(1+x))? Additional arguments passed on to `chordDiagram` or `circos.par`

Value

A `chordDiagram` plot representing the distribution of OTUs or sequences in the different modalities of the factor `fact`

Author(s)

Adrien Taudière

See Also

- `chordDiagram`
- `circos.par`

Examples

```r
if (requireNamespace("pbapply")) {
  data("GlobalPatterns", package = "phyloseq")
  GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
}

clean_pq(GP, "SampleType")
clean_pq(GP, "SampleType", add_nb_seq = FALSE)
clean_pq(GP, "SampleType", taxa = "Class")

---

**clean_pq**  
*Clean phyloseq object by removing empty samples and taxa*

**Description**

[Experimental]

In addition, this function check for discrepancy (and rename) between (i) taxa names in refseq, taxonomy table and otu_table and between (ii) sample names in sam_data and otu_table.

**Usage**

```r
clean_pq(
 physeq,
 remove_empty_samples = TRUE,
 remove_empty_taxa = TRUE,
 clean_samples_names = TRUE,
 silent = FALSE,
 verbose = FALSE,
 force_taxa_as_columns = FALSE,
 force_taxa_as_rows = FALSE,
 reorder_asv = FALSE,
 rename_asv = FALSE,
 simplify_taxo = FALSE
)
```

**Arguments**

- `physeq` (required): a *phyloseq-class* object obtained using the phyloseq package.
- `remove_empty_samples`  
  (logical) Do you want to remove samples without sequences (this is done after removing empty taxa)
- `remove_empty_taxa`  
  (logical) Do you want to remove taxa without sequences (this is done before removing empty samples)
- `clean_samples_names`  
  (logical) Do you want to clean samples names?
- `silent`  
  (logical) If true, no message are printing.
- `verbose`  
  (logical) Additional informations in the message the verbose parameter overwrite the silent parameter.
compare_pairs_pq

force_taxa_as_columns
  (logical) If true, if the taxa are rows transpose the otu_table and set taxa_are_rows
to false

force_taxa_as_rows
  (logical) If true, if the taxa are columns transpose the otu_table and set taxa_are_rows
to true

reorder_asv
  (logical) if TRUE the otu_table is ordered by the number of sequences of ASV
  (descending order). Default to FALSE.

rename_asv
  (logical) if TRUE, ASV are renamed by their position in the OTU_table (asv_1,
  asv_2,...). Default to FALSE. If rename ASV is true, the ASV names in verbose
  information can be misleading.

simplify_taxo
  (logical) if TRUE, correct the taxonomy_table using the MiscMetaBar::simplify_taxo()
  function

Value

A new phyloseq-class object

compare_pairs_pq  Compare samples in pairs using diversity and number of ASV including shared ASV.

Description

[Experimental] # For the moment refseq slot need to be not Null.

Usage

compare_pairs_pq(
  physeq = NULL,
  bifactor = NULL,
  modality = NULL,
  merge_sample_by = NULL,
  nb_min_seq = 0,
  veg_index = "shannon",
  na_remove = TRUE
)

Arguments

physeq  (required): a phyloseq-class object obtained using the phyloseq package.

bifactor (required) a factor (present in the sam.data slot of the physeq object) presenting
  the pair names

modality the name of the column in the sam.data slot of the physeq object to split samples
  by pairs
merge_sample_by

  a vector to determine which samples to merge using the merge_samples2() function. Need to be in physeq@sam_data

nb_min_seq

  minimum number of sequences per sample to count the ASV/OTU

veg_index

  (default: "shannon") index for the vegan::diversity function

na_remove

  (logical, default TRUE) If set to TRUE, remove samples with NA in the variables set in bifactor, modality and merge_sample_by. NA in variables are well managed even if na_remove = FALSE, so na_remove may be useless.

Value

  A tibble with information about the number of shared ASV, shared number of sequences and diversity

Examples

  data_fungi_low_high <- subset_samples(data_fungi, Height %in% c("Low", "High"))
  compare_pairs_pq(data_fungi_low_high, bifactor = "Height", merge_sample_by = "Height")
  compare_pairs_pq(data_fungi_low_high,
                     bifactor = "Height",
                     merge_sample_by = "Height", modality = "Time"
  )

count_seq

  Count sequences in fasta or fastq file

Description

  [Experimental] Use grep to count the number of line with only one `+' (fastq, fastq.gz) or lines starting with a `>' (fasta) to count sequences.

Usage

  count_seq(file_path = NULL, folder_path = NULL, pattern = NULL)

Arguments

  file_path

    The path to a fasta, fastq or fastq.gz file

  folder_path

    The path to a folder with fasta, fastq or fastq.gz files

  pattern

    A pattern to filter files in a folder. E.g. R2

Value

  the number of sequences

Author(s)

  Adrien Taudière
cutadapt_remove_primers

Examples

count_seq(file_path = system.file(
  "extdata",
  "ex.fasta",
  package = "MiscMetabar",
  mustWork = TRUE
))
count_seq(
  folder_path = system.file("extdata", package = "MiscMetabar"),
  pattern = "*.fasta"
)

cutadapt_remove_primers

Remove primers using R [https://github.com/marcelm/cutadapt/cutadapt]

Description

[Experimental]
You need to install Cutadapt

Usage

cutadapt_remove_primers(
  path_to_fastq,
  primer_fw = NULL,
  primer_rev = NULL,
  folder_output = "wo_primers",
  nproc = 1,
  pattern = "fastq.gz",
  pattern_R1 = "_R1",
  pattern_R2 = "_R2",
  nb_files = Inf,
  cmd_is_run = TRUE,
  args_before_cutadapt =
    "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv && "
)

Arguments

path_to_fastq  (Required) A path to a folder with fastq files. See list_fastq_files() for help.
primer_fw  (Required, String) The forward primer DNA sequence.
primer_rev (String) The reverse primer DNA sequence.
folder_output The path to a folder for output files
nproc (default 1) Set to number of cpus/processors to use for the clustering
pattern a pattern to filter files (passed on to list.files function).
pattern_R1 a pattern to filter R1 files (default "R1")
pattern_R2 a pattern to filter R2 files (default "R2")
nb_files the number of fastq files to list (default FALSE)
cmd_is_run (logical, default TRUE) Do the cutadapt command is run. If set to FALSE, the only effect of the function is to return a list of command to manually run in a terminal.
args_before_cutadapt (String) A one line bash command to run before to run cutadapt. For examples, "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv &&" allow to bypass the conda init which asks to restart the shell

Details
This function is mainly a wrapper of the work of others. Please cite cutadapt (doi:10.14806/ej.17.1.200).

Value
a list of command and

Author(s)
Adrien Taudière

Examples

```r
Not run:
cutadapt_remove_primers("inst/extdata", "TTC", "GAA",
 folder_output = tempdir()
)

cutadapt_remove_primers(
 system.file("extdata",
 package = "dada2"
),
 pattern_R1 = "F.fastq.gz",
 pattern_R2 = "R.fastq.gz",
 primer_fw = "TTC",
 primer_rev = "GAA",
 folder_output = tempdir()
)

cutadapt_remove_primers(
)```
data_fungi

Fungal OTU in phyloseq format

Description

Fungal OTU in phyloseq format

Usage

```r
data(data_fungi)
```

Format

A physeq object containing 1420 taxa with references sequences described by 14 taxonomic ranks and 185 samples described by 7 sample variables:

- **X**: the name of the fastq-file
- **Sample_names**: the names of ... the samples
- **Treename**: the name of an tree
- **Sample_id**: identifier for each sample
- **Height**: height of the sample in the tree
- **Diameter**: diameter of the trunk
- **Time**: time since the dead of the tree
data_fungi_mini

Fungal OTU in phyloseq format

Description

It is a subset of the data_fungi dataset including only Basidiomycota with more than 5000 sequences.

Usage

```r
data(data_fungi_mini)
data(data_fungi_mini)
```

Format

A physeq object containing 45 taxa with references sequences described by 14 taxonomic ranks and 137 samples described by 7 sample variables:

- **X**: the name of the fastq-file
- **Sample_names**: the names of ... the samples
- **Treename**: the name of an tree
- **Sample_id**: identifier for each sample
- **Height**: height of the sample in the tree
- **Diameter**: diameter of the trunk
- **Time**: time since the dead of the tree

A physeq object containing 45 taxa with references sequences described by 14 taxonomic ranks and 137 samples described by 7 sample variables:

- **X**: the name of the fastq-file
- **Sample_names**: the names of ... the samples
- **Treename**: the name of an tree
- **Sample_id**: identifier for each sample
- **Height**: height of the sample in the tree
- **Diameter**: diameter of the trunk
- **Time**: time since the dead of the tree

Details

Obtain using `data_fungi_mini <- subset_taxa(data_fungi, Phylum == "Basidiomycota")` and then `data_fungi_mini <- subset_taxa_pq(data_fungi_mini, colSums(data_fungi_mini@otu_table) > 5000)`
data_fungi_sp_known
Fungal OTU in phyloseq format

Description
It is a subset of the data_fungi dataset including only taxa with information at the species level.

Usage
```
data(data_fungi_sp_known)
```

Format
A physeq object containing 651 taxa with references sequences described by 14 taxonomic ranks and 185 samples described by 7 sample variables:
- **X**: the name of the fastq-file
- **Sample_names**: the names of ... the samples
- **Treename**: the name of an tree
- **Sample_id**: identifier for each sample
- **Height**: height of the sample in the tree
- **Diameter**: diameter of the trunk
- **Time**: time since the dead of the tree

Details
Obtain using `data_fungi_sp_known <- subset_taxa(data_fungi, !is.na(data_fungi@tax_table[, "Species"]))`

diff_fct_diff_class
Compute different functions for different class of vector.

Description

[Experimental] Mainly an internal function useful in "sapply(...., tapply)" methods.

Usage
```
diff_fct_diff_class(
  x,
  numeric_function = mean,
  logical_method = "TRUE_if_one",
  character_method = "unique_or_na",
  ...
)
```
Arguments

- x : a vector
- numeric_fonction : a function for numeric vector. For ex. sum or mean
- logical_method : A method for logical vector. One of :
 - TRUE_if_one (default)
 - NA_if_not_all_TRUE
 - FALSE_if_not_all_TRUE
- character_method : A method for character vector (and factor). One of :
 - unique_or_na (default)
 - more_frequent
 - more_frequent_without_equality
- ... Other arguments passed on to the numeric function (ex. na.rm=TRUE)

Value

a single value

Author(s)

Adrien Taudière

Examples

diff_fct_diff_class(
 data_fungi@sam_data$Sample_id,
 numeric_fonction = sum,
 na.rm = TRUE
)
diff_fct_diff_class(
 data_fungi@sam_data$Time,
 numeric_fonction = mean,
 na.rm = TRUE
)
diff_fct_diff_class(
 data_fungi@sam_data$Height == "Low",
 logical_method = "TRUE_if_one"
)
diff_fct_diff_class(
 data_fungi@sam_data$Height == "Low",
 logical_method = "NA_if_not_all_TRUE"
)
diff_fct_diff_class(
 data_fungi@sam_data$Height == "Low",
 logical_method = "FALSE_if_not_all_TRUE"
)
diff_fct_diff_class(
distri_1_taxa

data_fungi@sam_data$Height,
character_method = "unique_or_na"
)
diff_fct_diff_class(
 c("IE", "IE"),
 character_method = "unique_or_na"
)
diff_fct_diff_class(
 c("IE", "IE", "TE", "TE"),
 character_method = "more_frequent"
)
diff_fct_diff_class(
 c("IE", "IE", "TE", "TE"),
 character_method = "more_frequent_without_equality"
)

distri_1_taxa
Distribution of sequences across a factor for one taxon

Description

Experimental

Usage

```r
distri_1_taxa(physeq, fact, taxa_name, digits = 2)
```

Arguments

- **physeq** *(required)*: a `phyloseq-class` object obtained using the `phyloseq` package.
- **fact** *(required)*: Name of the factor in `physeq@sam_data` used to plot different lines
- **taxa_name** *(required)*: the name of the taxa
- **digits** *(default = 2)*: integer indicating the number of decimal places to be used (see `?round` for more information)

Value

A dataframe with levels as rows and information as column:

- the number of sequences of the taxa (nb_seq)
- the number of samples of the taxa (nb_samp)
- the mean (mean_nb_seq) and standard deviation (sd_nb_seq) of the nb_seq
- the mean (mean_nb_seq_when_present) nb_seq excluding samples with zero
- the total number of samples (nb_total_samp)
- the proportion of samples with the taxa
dist_bycol

Author(s)
Adrien Taudière

Examples

```r
distri_l_taxa(data_fungi, "Height", "ASV2")
distri_l_taxa(data_fungi, "Time", "ASV81", digits = 1)
```

Description

[Experimental]

Usage

```r
dist_bycol(x, y, method = "bray", nperm = 99, ...)
```

Arguments

- `x` (required) A first matrix.
- `y` (required) A second matrix.
- `method` (default: 'bray') the method to use internally in the vegdist function.
- `nperm` (int) The number of permutations to perform.
- `...` Others argument for vegan::vegdist function

Value

A list of length two : (i) a vector of observed distance (obs) and (ii) a matrix of the distance after randomization ($null$)

Note

the first column of the first matrix is compare to the first column of the second matrix, the second column of the first matrix is compare to the second column of the second matrix and so on.

Author(s)
Adrien Taudière

See Also

vegdist
dist_pos_control

Calculate ecological distance among positive controls vs distance for all samples

Description

[Experimental]

Compute distance among positive controls, i.e. samples which are duplicated to test for variation, for example in (i) a step in the sampling, (ii) a step in the extraction, (iii) a step in the sequencing.

Usage

dist_pos_control(physeq, samples_names, method = "bray")

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
samples_names (required) a vector of names for samples with positives controls of the same samples having the same name
method (default: "bray") a method to calculate the distance, parsed to vegan::vegdist(). See ?vegdist for a list of possible values.

Value

A list of two data-frames with (i) the distance among positive controls and (ii) the distance among all samples

Author(s)

Adrien Taudière

Examples

data("enterotype")
sam_name_factice <- gsub("TS1_V2", "TS10_V2", sample_names(enterotype))
res_dist_cont <- dist_pos_control(enterotype, sam_name_factice)
hist(unlist(res_dist_cont$distAllSamples))
abline(
 v = mean(unlist(res_dist_cont$dist_controlontrolSamples), na.rm = TRUE),
 col = "red", lwd = 3
)
fac2col
Translates a factor into colors.

Description

Translates a factor into colors.

Usage

```r
fac2col(x, col.pal = funky_color, na.col = "grey", seed = NULL)
```

Arguments

- `x`: a numeric vector (for num2col) or a vector converted to a factor (for fac2col).
- `col.pal`: (default funky_color) a function generating colors according to a given palette.
- `na.col`: (default grey) the color to be used for missing values (NAs)
- `seed`: (default NULL) a seed for R’s random number generated, used to fix the random permutation of colors in the palette used; if NULL, no randomization is used and the colors are taken from the palette according to the ordering of the levels

Value

a color vector

Author(s)

Thibaut Jombart in adegenet package

See Also

The R package RColorBrewer, proposing a nice selection of color palettes. The viridis package, with many excellent palettes

filter_asv_blast
Filter undesirable taxa using blast against a custom database.

Description

[Experimental]
Usage

```r
filter_asv_blast(
    physeq,
    fasta_for_db = NULL,
    database = NULL,
    clean_pq = TRUE,
    add_info_to_taxtable = TRUE,
    id_filter = 90,
    bit_score_filter = 50,
    min_cover_filter = 50,
    e_value_filter = 1e-30,
    ...
)
```

Arguments

- **physeq**: (required) a `phyloseq-class` object obtained using the phyloseq package.
- **fasta_for_db**: path to a fasta file to make the blast database
- **database**: path to a blast database
- **clean_pq**: (logical) If set to TRUE, empty samples and empty ASV are discarded after filtering.
- **add_info_to_taxtable**: (logical, default TRUE) Does the blast information are added to the taxtable ?
- **id_filter**: (default: 90) cut of in identity percent to keep result
- **bit_score_filter**: (default: 50) cut of in bit score to keep result The higher the bit-score, the better the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required database size (2bit-score).
- **min_cover_filter**: (default: 50) cut of in query cover (%) to keep result
- **e_value_filter**: (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the number of expected hits of similar quality (score) that could be found just by chance.
- **...**: Others options for the `blast_pq()` function. See `?blast_pq`. Note that params `unique_per_seq` must be lft to TRUE and `score_filter` must be left to FALSE.

Value

A new `phyloseq-class` object.
filter_trim

A wrapper of the function `dada2::filterAndTrim()` to use in R

Description

[Maturing]

This function filter and trim (with parameters passed on to `dada2::filterAndTrim()` function) forward sequences or paired end sequence if 'rev' parameter is set. It return the list of files to subsequent analysis in a targets pipeline.

Usage

```r
filter_trim(
  fw = NULL,
  rev = NULL,
  output_fw = paste(getwd(), "/output/filterAndTrim_fwd", sep = ""),
  output_rev = paste(getwd(), "/output/filterAndTrim_rev", sep = ""),
  ...
)
```

Arguments

- `fw` (required) a list of forward fastq files
- `rev` a list of reverse fastq files for paired end trimming
- `output_fw` Path to output folder for forward files. By default, this function will create a folder "output/filterAndTrim_fwd" in the current working directory.
- `output_rev` Path to output folder for reverse files. By default, this function will create a folder "output/filterAndTrim_fwd" in the current working directory.
- `...` Other parameters passed on to `dada2::filterAndTrim()` function.

Value

A list of files. If rev is set, will return a list of two lists. The first list is a list of forward files, and the second one is a list of reverse files.

Author(s)

Adrien Taudière

See Also

`dada2::filterAndTrim()`
Examples

```r
testFastqs_fw <- c(  
  system.file("extdata", "sam1F.fastq.gz", package = "dada2"),  
  system.file("extdata", "sam2F.fastq.gz", package = "dada2")  
)
testFastqs_rev <- c(  
  system.file("extdata", "sam1R.fastq.gz", package = "dada2"),  
  system.file("extdata", "sam2R.fastq.gz", package = "dada2")  
)

filt_fastq_fw <- filter_trim(testFastqs_fw, output_fw = tempdir())
derep_fw <- derepFastq(filt_fastq_fw[1])
derep_fw

filt_fastq_pe <- filter_trim(testFastqs_fw, testFastqs_rev,  
  output_fw = tempdir("fw"),  
  output_rev = tempdir("rev")
)
derep_fw_pe <- derepFastq(filt_fastq_pe[[1]])
derep_rv_pe <- derepFastq(filt_fastq_pe[[2]])
derep_fw_pe
derep_rv_pe
```

formattable_pq

Create a visualization table to describe taxa distribution across a modality

Description

[Maturing]

Usage

```r
formattable_pq(  
  physeq,  
  modality,  
  taxonomic_levels = c("Phylum", "Order", "Family", "Genus"),  
  min_nb_seq_taxa = 1000,  
  log10trans = FALSE,  
  void_style = FALSE,  
  lev_col_taxa = "Phylum",  
  arrange_by = "nb_seq",  
  descending_order = TRUE,  
  na_remove = TRUE,  
  formattable_args = NULL
)
```
Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

modality (required) The name of a column present in the @sam_data slot of the physeq object. Must be a character vector or a factor.

taxonomic_levels (default = c("Phylum", "Order", "Family", "Genus")) The taxonomic levels (must be present in the @sam_data slot) you want to see and/or used (for example to compute a color) in the table.

min_nb_seq_taxa (default = 1000) filter out taxa with less than min_nb_seq_taxa sequences

log10trans (logical, default TRUE) Do sequences count is log10 transformed (using log10(x + 1) to allow 0)

void_style (logical, default FALSE) Do the default style is discard ?

lev_col_taxa Taxonomic level used to plot the background color of taxa names

arrange_by The column used to sort the table. Can take the values NULL, "proportion_samp", "nb_seq" (default), , "nb_sam" "OTU", or a column names from the levels of modality or from taxonomic levels

descending_order (logical, default TRUE) Do we use descending order when sort the table (if arrange_by is not NULL) ?

na_remove (logical, default TRUE) if TRUE remove all the samples with NA in the split_by variable of the physeq@sam_data slot

formattable_args Other args to the formattable function. See examples and formattable::formattable()

Details

This function is mainly a wrapper of the work of others. Please make a reference to formattable::formattable() if you use this function.

Value

A datatable

Author(s)

Adrien Taudière

See Also

formattable::formattable()
Examples

if (requireNamespace("formattable")) {
 ## Distribution of the nb of sequences per OTU across Height modality
 ## Only OTU with more than 10000 sequences are taking into account
 ## The Phylum column is discarded
 formattable_pq(
 data_fungi,
 "Height",
 min_nb_seq_taxa = 10000,
 formattable_args = list("Phylum" = FALSE),
 log10trans = TRUE
)

 ## Distribution of the nb of samples per OTU across Height modality
 ## Only OTU present in more than 50 samples are taking into account
 formattable_pq(
 as_binary_otu_table(data_fungi),
 "Height",
 min_nb_seq_taxa = 50,
 formattable_args = list("nb_seq" = FALSE),
)

 ## Distribution of the nb of sequences per OTU across Time modality
 ## arranged by Family Name in ascending order.
 ## Only OTU with more than 10000 sequences are taking into account
 ## The Phylum column is discarded
 formattable_pq(
 data_fungi,
 "Time",
 min_nb_seq_taxa = 10000,
 taxonomic_levels = c("Order", "Family", "Genus", "Species"),
 formattable_args = list(
 Order = FALSE,
 Species = formattable::formatter(
 "span",
 style = x ~ formattable::style(
 "font-style" = "italic",
 "color" = ifelse(is.na(x), "white", "grey")
)
),
 arrange_by = "Family",
 descending_order = FALSE
)
)
}

if (requireNamespace("formattable")) {
 ## Distribution of the nb of sequences per OTU across Height modality
 ## (nb of sequences are log-transformed).
 ## OTU name background is light gray for Basidiomycota
 ## and dark grey otherwise (Ascomycota)
A different color is defined for each modality level

```r
# Define a different color for each modality level
formattable_pq(
data_fungi,
"Height",
taxonomic_levels = c("Phylum", "Family", "Genus"),
void_style = TRUE,
formattable_args = list(
    OTU = formattable::formatter("span",
        style = ~ formattable::style(
            "display" = "block",
            "border-radius" = "5px",
            "background-color" = ifelse(Phylum == "Basidiomycota", transp("gray"), "gray")
        ),
        "padding-right" = "2px"
    ),
    High = formattable::formatter("span",
        style = x ~ formattable::style(
            "font-size" = "80%",
            "display" = "inline-block",
            direction = "rtl",
            "border-radius" = "0px",
            "padding-right" = "2px",
            "background-color" = formattable::csscolor(formattable::gradient(
                as.numeric(x), transp("#1a91ff"), "#1a91ff"
            )),
            width = formattable::percent(formattable::proportion(as.numeric(x), na.rm = TRUE))
        ),
    ),
    Low = formattable::formatter("span",
        style = x ~ formattable::style(
            "font-size" = "80%",
            "display" = "inline-block",
            direction = "rtl",
            "border-radius" = "0px",
            "padding-right" = "2px",
            "background-color" = formattable::csscolor(formattable::gradient(
                as.numeric(x),
                transp("green"), "green"
            )),
            width = formattable::percent(formattable::proportion(as.numeric(x), na.rm = TRUE))
        ),
    ),
    Middle = formattable::formatter("span",
        style = x ~ formattable::style(
            "font-size" = "80%",
            "display" = "inline-block",
            direction = "rtl",
            "border-radius" = "0px",
            "padding-right" = "2px",
```
funguild_assign

Assign Guilds to Organisms Based on Taxonomic Classification

Description

[Stable]

The original function and documentation was written by Brendan Furneaux in the FUNGuildR package.

These functions have identical behavior if supplied with a database; however they download the database corresponding to their name by default.

Taxa present in the database are matched to the taxa present in the supplied `otu_table` by exact name. In the case of multiple matches, the lowest (most specific) rank is chosen. No attempt is made to check or correct the classification in `otu_table$Taxonomy`.

Usage

funguild_assign(
 otu_table,
 db_funguild = get_funguild_db(),
 tax_col = "Taxonomy"
)

Arguments

otu_table A data.frame with a character column named "Taxonomy" (or another name as specified in `tax_col`), as well as any other columns. Each entry in `otu_table$Taxonomy` should be a comma-, colon-, underscore-, or semicolon-delimited classification of an organism. Rank indicators as given by Sintax ("k:", "p:"...) or Unite ("k__", "p__", ...) are also allowed. A character vector, representing only the taxonomic classification, is also accepted.

db_funguild A data.frame representing the FUNGuild as returned by `get_funguild_db()` If not supplied, the default database will be downloaded.

tax_col A character string, optionally giving an alternate column name in `otu_table` to use instead of `otu_table$Taxonomy`.
Value
A \texttt{tibble} containing all columns of \texttt{otu_table}, plus relevant columns of information from the FUNGuild.

Author(s)
Brendan Furneaux (orcid: \texttt{0000-0003-3522-7363}), modified by Adrien Taudière.

References

\begin{tabular}{ll}
\texttt{funky_color} & \textit{Funky palette color} \\
\end{tabular}

Description
Funky palette color.

Usage
\texttt{funky_color(n)}

Arguments
\begin{itemize}
\item \texttt{n} a number of colors
\end{itemize}

Value
a color palette

Author(s)
Thibaut Jombart in \texttt{adeegenet} package.

See Also
The R package \texttt{RColorBrewer}, proposing a nice selection of color palettes. \texttt{The viridis package}, with many excellent palettes.
get_file_extension

Description

[Maturing]

Usage

get_file_extension(file_path)

Arguments

file_path (required): path to a file

Value

A phyloseq-class object with simplified taxonomy

Author(s)

Adrien Taudière

get_funguild_db

Retrieve the FUNGuild database

Description

[Stable] The original function and documentation was written by Brendan Furneaux in the FUN-GuildR package.

Please cite this publication.

Usage

get_funguild_db(db_url = "http://www.stbates.org/funguild_db_2.php")

Arguments

db_url a length 1 character string giving the URL to retrieve the database from

Value

a tibble::tibble containing the database, which can be passed to the db argument of funguild_assign()

Author(s)

Brendan Furneaux (orcid: 0000-0003-3522-7363), modified by Adrien Taudière
References

ggaluv_pq

Alluvial plot for taxonomy and samples factor visualisation

Description

[Experimental]

Basically a wrapper of *ggalluvial* package

Usage

```r
ggaluv_pq(
  physeq,
  taxa_ranks = c("Phylum", "Class", "Order", "Family"),
  wrap_factor = NULL,
  by_sample = FALSE,
  rarefy_by_sample = FALSE,
  fact = NULL,
  type = "nb_seq",
  width = 1.2,
  min.size = 3,
  na_remove = FALSE,
  use_ggfittext = FALSE,
  use_geom_label = FALSE,
  size_lab = 2,
  ...
)
```

Arguments

- **physeq** (required): a *phyloseq-class* object obtained using the phyloseq package.
- **taxa_ranks** A vector of taxonomic ranks. For examples c("Family","Genus"). If taxa ranks is not set (default value = c("Phylum", "Class", "Order", "Family")).
- **wrap_factor** A name to determine which samples to merge using `merge_samples2()` function. Need to be in physeq@sam_data. Need to be use when you want to wrap by factor the final plot with the number of taxa (type="nb_asv")
- **by_sample** (logical) If FALSE (default), sample information is not taking into account, so the taxonomy is studied globally. If fact is not NULL, by_sample is automatically set to TRUE.
- **rarefy_by_sample** (logical, default FALSE) If TRUE, rarefy samples using `phyloseq::rarefy_even_depth()` function.
ggaluv_pq

fact (required) Name of the factor in physeq@sam_data used to plot the last column

type If "nb_seq" (default), the number of sequences is used in plot. If "nb_asv", the
number of ASV is plotted.

width (passed on to ggalluvial::geom_flow()) the width of each stratum, as a pro-
portion of the distance between axes. Defaults to 1/3.

min.size (passed on to ggfittext::geom_fit_text()) Minimum font size, in points.
Text that would need to be shrunk below this size to fit the box will be hidden.
Defaults to 4 pt.

na_remove (logical, default FALSE) If set to TRUE, remove samples with NA in the vari-
ables set in formula.

use_ggfittext (logical, default FALSE) Do we use ggfittext to plot labels?

use_geom_label (logical, default FALSE) Do we use geom_label to plot labels?

size_lab Size for label if use_ggfittext is FALSE

... Other arguments passed on to ggalluvial::geom_flow() function.

Details
This function is mainly a wrapper of the work of others. Please make a reference to ggalluvial
package if you use this function.

Value
A ggplot object

Author(s)
Adrien Taudière

See Also
sankey_pq()

Examples
if (requireNamespace("ggalluvial")) {
 ggaluv_pq(data_fungi_mini)
}

if (requireNamespace("ggalluvial")) {
 ggaluv_pq(data_fungi_mini, type = "nb_asv")
 ggaluv_pq(data_fungi_mini, wrap_factor = "Height", by_sample = TRUE, type = "nb_asv") +
 facet_wrap("Height")
 ggaluv_pq(data_fungi_mini,
 width = 0.9, min.size = 10,
 type = "nb_asv", taxa_ranks = c("Phylum", "Class", "Order", "Family", "Genus")
) +


```r
ggbetween_pq = ggplot2::coord_flip() + ggstatsplot::scale_x_discrete(limits = rev)
```

ggbetween_pq
Box/Violin plots for between-subjects comparisons of Hill Number

Description

[Experimental]

Note that contrary to `hill_pq()`, this function does not take into account for difference in the number of sequences per samples/modalities. You may use `rarefy_by_sample = TRUE` if the mean number of sequences per samples differs among modalities.

Basically a wrapper of function `ggstatsplot::ggbetweenstats()` for object of class `phyloseq`

Usage

```r
ggbetween_pq(physeq, fact, one_plot = FALSE, rarefy_by_sample = FALSE, ...)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- **fact** (required): The variable to test. Must be present in the `sam_data` slot of the `physeq` object.
- **one_plot** (logical, default `FALSE`): If `TRUE`, return a unique plot with the three plot inside using the `patchwork` package.
- **rarefy_by_sample** (logical, default `FALSE`): If `TRUE`, rarefy samples using `phyloseq::rarefy_even_depth()` function
- **...** Other arguments passed on to `ggstatsplot::ggbetweenstats()` function.

Details

This function is mainly a wrapper of the work of others. Please make a reference to `ggstatsplot::ggbetweenstats()` if you use this function.

Value

Either an unique `ggplot2` object (if `one_plot` is `TRUE`) or a list of 3 `ggplot2` plot:

- `plot_Hill_0`: the `ggbetweenstats` of Hill number 0 (= species richness) against the variable fact
- `plot_Hill_1`: the `ggbetweenstats` of Hill number 1 (= Shannon index) against the variable fact
- `plot_Hill_2`: the `ggbetweenstats` of Hill number 2 (= Simpson index) against the variable fact
ggscatt_pq

Author(s)
Adrien Taudière

Examples

```r
if (requireNamespace("ggstatsplot")) {
  p <- ggbetween_pq(data_fungi, fact = "Time", p.adjust.method = "BH")
  p[[1]]
  ggbetween_pq(data_fungi, fact = "Height", one_plot = TRUE)
  ggbetween_pq(data_fungi, fact = "Height", one_plot = TRUE, rarefy_by_sample = TRUE)
}
```

ggscatt_pq
Scatterplot with marginal distributions and statistical results against Hill diversity of phyloseq object

Description

[Experimental]

Basically a wrapper of function `ggstatsplot::ggscatterstats()` for object of class phyloseq and Hill number.

Usage

```r
ggscatt_pq(
  physeq,
  num_modality,
  hill_scales = c(0, 1, 2),
  rarefy_by_sample = FALSE,
  one_plot = TRUE,
  ...
)
```

Arguments

- **physeq** *(required)*: a `phyloseq-class` object obtained using the phyloseq package.
- **num_modality** *(required)*: Name of the numeric column in physeq@sam_data to plot and test against hill number.
- **hill_scales** *(a vector of integer)*: The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index).
- **rarefy_by_sample** *(logical, default FALSE)*: If TRUE, rarefy samples using `phyloseq::rarefy_even_depth()` function.
One plot (logical, default FALSE) If TRUE, return a unique plot with the three plot inside using the patchwork package. Other arguments passed on to `ggstatsplot::ggscatterstats()` function.

Details

This function is mainly a wrapper of the work of others. Please make a reference to `ggstatsplot::ggscatterstats()` if you use this function.

Value

Either an unique ggplot2 object (if one_plot is TRUE) or a list of ggplot2 plot for each hill_scales.

Author(s)

Adrien Taudière

See Also

ggbetween_pq()

Examples

```r
if (requireNamespace("ggstatsplot")) {
  ggscatt_pq(data_fungi_mini, "Time", type = "non-parametric")
  ggscatt_pq(data_fungi_mini, "Time", hill_scales = 1:4, type = "parametric")
  ggscatt_pq(data_fungi_mini, "Sample_id",
             hill_scales = c(0, 0.5),
             one_plot = FALSE)
}
```

Description

Venn diagram of phylpseq-class object using ggVennDiagram::ggVennDiagram function

[Maturing]

Note that you can use ggplot2 function to customize the plot for ex. + scale_fill_distiller(palette = "BuPu", direction = 1) and + scale_x_continuous(expand = expansion(mult = 0.5)). See examples.
Usage

`ggvenn_pq`

```r
ggvenn_pq(
  physeq = NULL,
  fact = NULL,
  min_nb_seq = 0,
  taxonomic_rank = NULL,
  split_by = NULL,
  add_nb_samples = TRUE,
  add_nb_seq = FALSE,
  rarefy_before_merging = FALSE,
  rarefy_after_merging = FALSE,
  ...
)
```

Arguments

- **physeq**: (required) a phyloseq-class object obtained using the phyloseq package.
- **fact**: (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.
- **min_nb_seq**: minimum number of sequences by OTUs by samples to take into count this OTUs in this sample. For example, if min_nb_seq=2, each value of 2 or less in the OTU table will not count in the venn diagram.
- **taxonomic_rank**: Name (or number) of a taxonomic rank to count. If set to Null (the default) the number of OTUs is counted.
- **split_by**: Split into multiple plot using variable split_by. The name of a variable must be present in sam_data slot of the physeq object.
- **add_nb_samples**: (logical, default TRUE) Add the number of samples to levels names.
- **add_nb_seq**: (logical, default FALSE) Add the number of sequences to levels names.
- **rarefy_before_merging**: Rarefy each sample before merging by the modalities of args fact. Use phyloseq::rarefy_even_depth function.
- **rarefy_after_merging**: Rarefy each sample after merging by the modalities of args fact.
- **...**: Other arguments for the ggVennDiagram::ggVennDiagram function for ex. category.names.

Value

A ggplot2 plot representing Venn diagram of modalities of the argument factor or if split_by is set a list of plots.

Author(s)

Adrien Taudière

See Also

`upset_pq()`
Examples

```r
if (requireNamespace("ggVennDiagram")) {
  ggvenn_pq(data_fungi, fact = "Height")
}

if (requireNamespace("ggVennDiagram")) {
  ggvenn_pq(data_fungi, fact = "Height") +
  ggplot2::scale_fill_distiller(palette = "BuPu", direction = 1)
pl <- ggvenn_pq(data_fungi, fact = "Height", split_by = "Time")
for (i in 1:length(pl)) {
  p <- pl[[i]] +
  scale_fill_distiller(palette = "BuPu", direction = 1) +
  theme(plot.title = element_text(hjust = 0.5, size = 22))
  print(p)
}

data_fungi2 <- subset_samples(data_fungi, data_fungi@sam_data$Tree_name == "A10-005" |
data_fungi@sam_data$Height %in% c("Low", "High"))
ggvenn_pq(data_fungi2, fact = "Height")

ggvenn_pq(data_fungi, fact = "Height", add_nb_seq = TRUE, set_size = 4)
ggvenn_pq(data_fungi, fact = "Height", rarefy_before_merging = TRUE)
ggvenn_pq(data_fungi, fact = "Height", rarefy_after_merging = TRUE) +
  scale_x_continuous(expand = expansion(mult = 0.5))
}
```

glmutli_pq

Automated model selection and multimodel inference with (G)LMs for phylloseq

Description

[Experimental]

Usage

```r
glmutli_pq(
  physeq,
  formula,
  fitfunction = "lm",
  hill_scales = c(0, 1, 2),
  aic_step = 2,
  confsetsize = 100,
  plotty = FALSE,
  level = 1,
  method = "h",
  crit = "aicc",
  ...
)
```
Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

formula (required) a formula for glmulti::glmulti() Variables must be present in the physeq@sam_data slot or be one of hill number defined in hill_scales or the variable Abundance which refer to the number of sequences per sample.

fitfunction (default "lm")

hill_scales (a vector of integer) The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index).

aic_step The value between AIC scores to cut for.

confsetsize The number of models to be looked for, i.e. the size of the returned confidence set.

plotty (logical) Whether to plot the progress of the IC profile when running.

level If 1, only main effects (terms of order 1) are used to build the candidate set. If 2, pairwise interactions are also used (higher order interactions are currently ignored)

method The method to be used to explore the candidate set of models. If "h" (default) an exhaustive screening is undertaken. If "g" the genetic algorithm is employed (recommended for large candidate sets). If "l", a very fast exhaustive branch-and-bound algorithm is used. Package leaps must then be loaded, and this can only be applied to linear models with covariates and no interactions. If "d", a simple summary of the candidate set is printed, including the number of candidate models.

crit The Information Criterion to be used. Default is the small-sample corrected AIC (aicc). This should be a function that accepts a fitted model as first argument. Other provided functions are the classic AIC, the Bayes IC (bic), and QAIC/QAICc (qaic and qaicc).

... Others arguments passed on to glmulti::glmulti() function

Details

This function is mainly a wrapper of the work of others. Please make a reference to glmulti::glmulti() if you use this function.

Value

A data.frame summarizing the glmulti results with columns
-estimates -unconditional_interval -nb_model" -importance -alpha

See Also

glmulti::glmulti()
Examples

```r
if (requireNamespace("glmulti")) {
    res_glmulti <-
        glmulti_pq(data_fungi, "Hill_0 ~ Hill_1 + Abundance + Time + Height", level = 1)
    res_glmulti
    res_glmulti_interaction <-
        glmulti_pq(data_fungi, "Hill_0 ~ Abundance + Time + Height", level = 2)
    res_glmulti
}
```

graph_test_pq
Performs graph-based permutation tests on phyloseq object

Description

[Maturing]

A wrapper of `phyloseqGraphTest::graph_perm_test()` for quick plot with important statistics

Usage

```r
graph_test_pq(
    physeq,
    fact,
    merge_sample_by = NULL,
    nperm = 999,
    return_plot = TRUE,
    title = "Graph Test",
    na_remove = FALSE,
    ...
)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **fact** (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. This should be a factor with two or more levels.
- **merge_sample_by** a vector to determine which samples to merge using `merge_samples2()` function. Need to be in physeq@sam_data.
- **nperm** (int) The number of permutations to perform.
- **return_plot** (logical) Do we return only the result of the test or do we plot the result?
- **title** The title of the Graph.
- **na_remove** (logical, default FALSE) If set to TRUE, remove samples with NA in the variables set in formula.
... Other params for be passed on to phyloseqGraphTest::graph_perm_test() function

Details

This function is mainly a wrapper of the work of others. Please cite phyloseqGraphTest package.

Value

A ggplot2 plot with a subtitle indicating the pvalue and the number of permutations

Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("phyloseqGraphTest")) {
  data(enterotype)
  graph_test_pq(enterotype, fact = "SeqTech")
  graph_test_pq(enterotype, fact = "Enterotype", na_remove = TRUE)
}
```

Description

[Maturing]

Note that the number of ASV is store under the name `n_obs` and the number of sequences under the name `nb_sequences`

Usage

`heat_tree_pq(physeq, taxonomic_level = NULL, ...)`

Arguments

- `physeq` (required): a phyloseq-class object obtained using the phyloseq package.
- `taxonomic_level` (default: NULL): a vector of selected taxonomic level using their column numbers (e.g. `taxonomic_level = 1:7`)
- ... Arguments passed on to `heat_tree`

Value

A plot
Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("metacoder")) {
  library("metacoder")
  data("GlobalPatterns", package = "phyloseq")

  GPsubset <- subset_taxa(
    GlobalPatterns,
    GlobalPatterns@tax_table[, 1] == "Bacteria"
  )

  GPsubset <- subset_taxa(
    GPsubset,
    rowSums(GPsubset@otu_table) > 5000
  )

  GPsubset <- subset_taxa(
    GPsubset,
    rowSums(is.na(GPsubset@tax_table)) == 0
  )

  heat_tree_pq(GPsubset,
    node_size = n_obs,
    node_color = n_obs,
    node_label = taxon_names,
    tree_label = taxon_names,
    node_size_trans = "log10 area"
  )

  heat_tree_pq(GPsubset,
    node_size = nb_sequences,
    node_color = n_obs,
    node_label = taxon_names,
    tree_label = taxon_names,
    node_size_trans = "log10 area"
  )
}
```

hill_pq

Graphical representation of hill number 0, 1 and 2 across a factor

Description

Experimental Hill numbers are the number of equiprobable species giving the same diversity value as the observed distribution. The Hill number 0 correspond to Species richness, the Hill
number 1 to the exponential of Shannon Index and the Hill number 2 to the inverse of Simpson Index.

Note that (if correction_for_sample_size is TRUE, default behavior) this function uses a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth. This correction is only done before tuckey HSD plot and do not change the hill number computed.

Usage

```r
hill_pq(
physeq, 
fact = NULL,
variable = NULL,
hill_scales = c(0, 1, 2),
color_fac = NA,
letters = FALSE,
add_points = FALSE,
add_info = TRUE,
one_plot = FALSE,
plot_with_tuckey = TRUE,
correction_for_sample_size = TRUE,
na_remove = TRUE
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- `fact` (required): The variable to test. Must be present in the `sam_data` slot of the `physeq` object.
- `variable` : Alias for factor. Kept only for backward compatibility.
- `hill_scales` (a vector of integer) The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index).
- `color_fac` (optional): The variable to color the barplot. For ex. same as fact. Not very useful because ggplot2 plot colors can be change using `scale_color_XXX()` function.
- `letters` (optional, default=FALSE): If set to TRUE, the plot show letters based on p-values for comparison. Use the `multcompLetters` function from the package `multcompLetters`. BROKEN for the moment. Note that na values in The variable param need to be removed (see examples) to use letters.
- `add_points` (logical): add jitter point on boxplot
- `add_info` (logical, default TRUE) Do we add a subtitle with information about the number of samples per modality ?
- `one_plot` (logical, default FALSE) If TRUE, return a unique plot with the four plot inside using the patchwork package. Note that if letters and one_plot are both TRUE, tuckey HSD results are discarded from the unique plot. In that case, use one_plot = FALSE to see the tuckey HSD results in the fourth plot of the resulting list.
plot_with_tuckey (logical, default TRUE). If one_plot is set to TRUE and letters to FALSE, allow to discard the tuckey plot part with plot_with_tuckey = FALSE

correction_for_sample_size (logical, default TRUE) This function use a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth in the Tuckey TEST. This params do not change value of Hill number but only the test associated values (including the pvalues). To rarefy samples, you may use the function phyloseq::rarefy_even_depth().

na_remove (logical, default TRUE) Do we remove samples with NA in the factor fact ? Note that na_remove is always TRUE when using letters = TRUE

Value

Either an unique ggplot2 object (if one_plot is TRUE) or a list of 4 ggplot2 plot:

- plot_Hill_0 : the boxplot of Hill number 0 (= species richness) against the variable
- plot_Hill_1 : the boxplot of Hill number 1 (= Shannon index) against the variable
- plot_Hill_2 : the boxplot of Hill number 2 (= Simpson index) against the variable
- plot_tuckey : plot the result of the Tuckey HSD test

Author(s)

Adrien Taudière

See Also

psmelt_samples_pq() and ggbetween_pq()

Examples

```r
p <- hill_pq(data_fungi_mini, "Height", hill_scales = 1:2)
p_h1 <- p[[1]] + theme(legend.position = "none")
p_h2 <- p[[2]] + theme(legend.position = "none")
multiplot(plotlist = list(p_h1, p_h2, p[[3]]), cols = 4)
if (requireNamespace("multcompView")) {
p2 <- hill_pq(data_fungi, "Time",
  correction_for_sample_size = FALSE,
  letters = TRUE, add_points = TRUE, plot_with_tuckey = FALSE
}
if (requireNamespace("patchwork")) {
p2 <- hill_pq(data_fungi, "Time",
  correction_for_sample_size = FALSE,
  letters = TRUE, add_points = TRUE, plot_with_tuckey = FALSE
}
if (requireNamespace("patchwork")) {
  patchwork::wrap_plots(p2, guides = "collect")
}
# Artificially modify data_fungi to force alpha-diversity effect
data_fungi_modif <- clean_pq(subset_samples_pq(data_fungi, !is.na(data_fungi@sam_data$Height)))
data_fungi_modif@otu_table[data_fungi_modif@sam_data$Height == "High", ] <-
data_fungi_modif@otu_table[data_fungi_modif@sam_data$Height == "High", ] +
sample(c(rep(0, ntaxa(data_fungi_modif) / 2), rep(100, ntaxa(data_fungi_modif) / 2)))
```
```r
p3 <- hill_pq(data_fungi_modif, "Height", letters = TRUE)
p3[[1]]
```

hill_test_rarperm_pq
Test multiple times effect of factor on Hill diversity with different rarification even depth

Description

[Experimental]

Usage

```r
hill_test_rarperm_pq(
  physeq,  
  fact,  
  hill_scales = c(0, 1, 2),  
  nperm = 99,  
  sample.size = min(sample_sums(physeq)),  
  verbose = FALSE,  
  progress_bar = TRUE,  
  p_val_signif = 0.05,  
  type = "non-parametrique",  
  ...
)
```

Arguments

- **physeq**: (required): a **phyloseq-class** object obtained using the phyloseq package.
- **fact**: (required) Name of the factor in physeq@sam_data used to plot different lines
- **hill_scales**: (a vector of integer) The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index).
- **nperm**: (int) The number of permutations to perform.
- **sample.size**: (int) A single integer value equal to the number of reads being simulated, also known as the depth. See phyloseq::rarefy_even_depth().
- **verbose**: (logical). If TRUE, print additional informations.
- **progress_bar**: (logical, default TRUE) Do we print progress during the calculation?
- **p_val_signif**: (float, [0:1]) The mimimum value of p-value to count a test as significant int the prop_signif result.
- **type**: A character specifying the type of statistical approach (See ggstatsplot::ggbetweenstats() for more details):
• "parametric"
• "nonparametric"
• "robust"
• "bayes"

... Others arguments passed on to \texttt{ggstatsplot::ggbetweenstats()} function

\textbf{Value}

A list of 6 components:

• method
• expressions
• plots
• pvals
• prop_signif
• statistics

\textbf{Author(s)}

Adrien Taudière

\textbf{See Also}

\texttt{ggstatsplot::ggbetweenstats()}. \texttt{hill_pq()}

\textbf{Examples}

```r
if (requireNamespace("ggstatsplot")) {
  hill_test_rarperm_pq(data_fungi, "Time", nperm = 2)
  res <- hill_test_rarperm_pq(data_fungi, "Height", nperm = 9, p.val = 0.9)
  patchwork::wrap_plots(res$plots[[1]])
  res$plots[[1]][[1]] + res$plots[[2]][[1]] + res$plots[[3]][[1]]
  res$prop_signif
  res_para <- hill_test_rarperm_pq(data_fungi, "Height", nperm = 9, type = "parametrique")
  res_para$plots[[1]][[1]] + res_para$plots[[2]][[1]] + res_para$plots[[3]][[1]]
  res_para$pvals
  res_para$method
  res_para$expressions[[1]]
}
```
hill_tuckey_pq

Calculate hill number and compute Tuckey post-hoc test

Description

[Maturing] Note that, by default, this function use a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth.

Usage

hill_tuckey_pq(
 physeq,
 modality,
 hill_scales = c(0, 1, 2),
 silent = TRUE,
 correction_for_sample_size = TRUE
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
modality (required) the variable to test
hill_scales (a vector of integer) The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index).
silent (logical) If TRUE, no message are printing.
correction_for_sample_size (logical, default TRUE) This function use a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth.

Value

A ggplot2 object

Author(s)

Adrien Taudière

Examples

data("GlobalPatterns", package = "phyloseq")
GlobalPatterns@sam_data[, "Soil_logical"] <-
 ifelse(GlobalPatterns@sam_data[, "SampleType"] == "Soil", "Soil", "Not Soil")
hill_tuckey_pq(GlobalPatterns, "Soil_logical")
hill_tuckey_pq(GlobalPatterns, "Soil_logical", hill_scales = 1:2)
iNEXT_pq

Interpolation and EXTrapolation of Hill numbers (with iNEXT)

Description

[Experimental]

Usage

iNEXT_pq(physeq, merge_sample_by = NULL, ...)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
merge_sample_by (default: NULL) if not NULL samples of physeq are merged using the vector set by merge_sample_by. This merging used the merge_samples2(). In the case of biplot_pq() this must be a factor with two levels only.
...

Other arguments for the iNEXT::iNEXT() function

Value

see iNEXT::iNEXT() documentation

Author(s)

Adrien Taudière This function is mainly a wrapper of the work of others. Please make a reference to iNEXT::iNEXT() if you use this function.

Examples

if (requireNamespace("iNEXT")) {
 data("GlobalPatterns", package = "phyloseq")
 GPsubset <- subset_taxa(
 GlobalPatterns,
 GlobalPatterns@tax_table[, 1] == "Bacteria"
)
 GPsubset <- subset_taxa(
 GPsubset,
 rowSums(GPsubset@otu_table) > 20000
)
 GPsubset <- subset_taxa(
 GPsubset,
 rowSums(is.na(GPsubset@tax_table)) == 0
)
 GPsubset@sam_data$human <- GPsubset@sam_data$SampleType %in%
 c("Skin", "Feces", "Tong")
}
is_cutadapt_installed Test if cutadapt is installed.

Description

[Maturing]
Useful for testthat and examples compilation for R CMD CHECK and test coverage.

Usage

is_cutadapt_installed(
 args_before_cutadapt =
 "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv &&"
)

Arguments

args_before_cutadapt
 : (String) A one line bash command to run before to run cutadapt. For examples, "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv &&" allow to bypass the conda init which asks to restart the shell

Value

A logical that say if cutadapt is install in

Author(s)

Adrien Taudière

Examples

MiscMetabar::is_cutadapt_installed()
is_falco_installed Test if falco is installed.

Description

[Maturing]
Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

is_falco_installed(path = "falco")

Arguments

path (default: falco) Path to falco

Value

A logical that say if falco is install in

Author(s)

Adrien Taudière

Examples

MiscMetabar::is_falco_installed()

is_krona_installed Test if krona is installed.

Description

[Maturing]
Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

is_krona_installed(path = "ktImportKrona")

Arguments

path (default: krona) Path to krona
is_mumu_installed

Value

A logical that say if krona is install in

Author(s)

Adrien Taudière

Examples

MiscMetabar::is_krona_installed()

is_mumu_installed
Test if mumu is installed.

Description

[Maturing]

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```r
is_mumu_installed(path = "mumu")
```

Arguments

- `path`
 (default: mumu) Path to mumu

Value

A logical that say if mumu is install in

Author(s)

Adrien Taudière

Examples

MiscMetabar::is_mumu_installed()
is_swarm_installed Test if swarm is installed.

Description

[Maturing]
Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

is_swarm_installed(path = "swarm")

Arguments

path (default: swarm) Path to falco

Value

A logical that say if swarm is install in

Author(s)

Adrien Taudière

Examples

MiscMetabar::is_swarm_installed()

is_vsearch_installed Test if vsearch is installed.

Description

[Maturing]
Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

is_vsearch_installed(path = "vsearch")

Arguments

path (default: vsearch) Path to vsearch
krona

Value
A logical that say if vsearch is install in

Author(s)
Adrien Taudière

Examples
MiscMetabar::is_vsearch_installed()

krona

Description

[Maturing]

Need the installation of kronatools on the computer (installation instruction).

Usage

```r
krona(
physeq,
file = "krona.html",
nb_seq = TRUE,
ranks = "All",
add_unassigned_rank = 0,
name = NULL
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the phyloseq package.
- `file` (required) the location of the html file to save
- `nb_seq` (logical) If true, Krona set the distribution of sequences in the taxonomy. If False, Krona set the distribution of ASVs in the taxonomy.
- `ranks` Number of the taxonomic ranks to plot (num of the column in `tax_table` slot of your `physeq` object). Default setting plot all the ranks (argument ’All’).
- `add_unassigned_rank` (int) Add unassigned for rank inferior to ’add_unassigned_rank’ when necessary.
- `name` A name for intermediary files, Useful to name your krona result files before merging using `merge_krona()`
Details

This function is mainly a wrapper of the work of others. Please cite Krona if you use this function.

Value

A html file

Author(s)

Adrien Taudière

See Also

merge_krona

Examples

data("GlobalPatterns", package = "phyloseq")
GA <- subset_taxa(GlobalPatterns, Phylum == "Acidobacteria")
Not run:
krona(GA, "Number.of.sequences.html")
krona(GA, "Number.of.ASVs.html", nb_seq = FALSE)
merge_krona(c("Number.of.sequences.html", "Number.of.ASVs.html"))
End(Not run)

LCBD_pq

| Compute and test local contributions to beta diversity (LCBD) of samples |

Description

[Experimental]
A wrapper for the adespatial::beta.div() function in the case of physeq object.

Usage

LCBD_pq(physeq, p_adjust_method = "BH", ...)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

p_adjust_method
(chr, default "BH"): the method used to adjust p-value

... Others arguments passed on to adespatial::beta.div() function
Value

An object of class `beta.div` see `adespatial::beta.div()` function for more information

Author(s)

Adrien Taudière This function is mainly a wrapper of the work of others. Please make a reference to `adespatial::beta.div()` if you use this function.

See Also

`plot_LCBD_pq`, `adespatial::beta.div()`

Examples

```r
if (requireNamespace("adespatial")) {
  res <- LCBD_pq(data_fungi_sp_known, nperm = 5)
  str(res)
  length(res$LCBD)
  length(res$SCBD)
}

if (requireNamespace("adespatial")) {
  LCBD_pq(data_fungi_sp_known, nperm = 5, method = "jaccard")
}
```

list_fastq_files

List fastq files

Description

[Maturing]

Usage

```r
list_fastq_files(
  path,
  paired_end = TRUE,
  pattern = "fastq",
  pattern_R1 = "_R1_",
  pattern_R2 = "_R2_",
  nb_files = Inf
)
```
Arguments

- **path**
 path to files (required)

- **paired_end**
 do you have paired_end files? (default TRUE)

- **pattern**
 a pattern to filter files (passed on to list.files function).

- **pattern_R1**
 a pattern to filter R1 files (default "R1")

- **pattern_R2**
 a pattern to filter R2 files (default "R2")

- **nb_files**
 the number of fastq files to list (default FALSE)

Value

A list of one (single end) or two (paired end) list of files files are sorted by names (default behavior of list.files())

Author(s)

Adrien Taudière

Examples

```r
list_fastq_files("extdata")
list_fastq_files("extdata", paired_end = FALSE, pattern_R1 = ")
```

Description

[Stable]

The original function and documentation was written by Tobias Guldborg Frøslev in the lulu package.

This algorithm lulu consumes an OTU table and a matchlist, and evaluates cooccurrence of 'daughters' (potential analytical artefacts) and their 'parents' (= real biological species/OTUs). The algorithm requires an OTU table (species/site matrix), and a match list. The OTU table can be made with various r-packages (e.g. DADA2) or external pipelines (VSEARCH, USEARCH, QIIME, etc.), and the match-list can be made with external bioinformatic tools like VSEARCH, USEARCH, BLASTN or another algorithm for pair-wise sequence matching.
Usage

lulu(
 otu_table,
 matchlist,
 minimum_ratio_type = "min",
 minimum_ratio = 1,
 minimum_match = 84,
 minimum_relative_cooccurence = 0.95,
 progress_bar = TRUE,
 log_conserved = FALSE
)

Arguments

otu_table a data.frame with with an OTU table that has sites/samples as columns and OTUs (unique OTU id's) as rows, and observations as read counts.

matchlist a data.frame containing three columns: (1) OTU id of potential child, (2) OTU id of potential parent, (3) match - % identity between the sequences of the potential parent and potential child OTUs. NB: The matchlist is the product of a mapping of OTU sequences against each other. This is currently carried out by an external script in e.g. Blastn or VSEARCH, prior to running lulu!

minimum_ratio_type sets whether a potential error must have lower abundance than the parent in all samples min (default), or if an error just needs to have lower abundance on average avg. Choosing lower abundance on average over globally lower abundance will greatly increase the number of designated errors. This option was introduced to make it possible to account for non-sufficiently clustered intraspecific variation, but is not generally recommended, as it will also increase the potential of cluster well-separated, but co-occurring, sequence similar species.

minimum_ratio sets the minimum abundance ratio between a potential error and a potential parent to be identified as an error. If the minimum_ratio_type is set to min (default), the minimum_ratio applies to the lowest observed ration across the samples. If the minimum_ratio_type is set to avg (default), the minimum_ratio applies to the mean of observed ration across the samples.avg. (default is 1).

minimum_match minimum threshold of sequence similarity for considering any OTU as an error of another can be set (default 84%).

minimum_relative_cooccurence minimum co-occurrence rate, i.e. the lower rate of occurrence of the potential error explained by co-occurrence with the potential parent for considering error state.

progress_bar (Logical, default TRUE) print progress during the calculation or not.

log_conserved (Logical, default FALSE) conserved log files wrote in the disk

Details

Please cite the lulu original paper: https://www.nature.com/articles/s41467-017-01312-x
Value

Function lulu returns a list of results based on the input OTU table and match list.

- **curated_table** - a curated OTU table with daughters merged with their matching parents.
- **curated_count** - number of curated (parent) OTUs.
- **curated_otus** - ids of the OTUs that were accepted as valid OTUs.
- **discarded_count** - number of discarded (merged with parent) OTUs.
- **discarded_otus** - ids of the OTUs that were identified as errors (daughters) and merged with respective parents.
- **runtime** - time used by the script.
- **minimum_match** - the id threshold (minimum match \ by user).
- **minimum_relative_cooccurrence** - minimum ratio of daughter-occurrences explained by co-occurrence with parent (set by user).
- **otu_map** - information of which daughters were mapped to which parents.
- **original_table** - original OTU table.

The matchlist is the product of a mapping of OTU sequences against each other. This is currently carried out by an external script in e.g. BLASTN or VSEARCH, prior to running lulu! Producing the match list requires a file with all the OTU sequences (centroids) - e.g. OTUcentroids.fasta. The matchlist can be produced by mapping all OTUs against each other with an external algorithm like VSEARCH or BLASTN. In VSEARCH a matchlist can be produced e.g. with the following command: vsearch --usearch_global OTUcentroids.fasta --db OTUcentroids.fasta --strand plus --self --id .80 --iddef 1 --userout matchlist.txt --userfields query+target+id --maxaccepts 0 --query_cov .9 --maxhits 10. In BLASTN a matchlist can be produces e.g. with the following commands. First we produce a blast-database from the fasta file: makeblastdb -in OTUcentroids.fasta -parse_seqids -dbtype nucl, then we match the centroids against that database: blastn -db OTUcentroids.fasta -num_threads 10 -outfmt '6 qseqid sseqid pident' -out matchlist.txt -qcov_hsp_perc .90 -perc_identity .84 -query OTUcentroids.fasta

Author(s)

Tobias Guldberg Frøslev (orcid: 0000-0002-3530-013X), modified by Adrien Taudière

lulu_pq

Lulu reclustering of class physeq

Description

[Experimental]

See https://www.nature.com/articles/s41467-017-01312-x for more information on the method.
Usage

```r
lulu_pq(
  physeq,
  nproc = 1,
  id = 0.84,
  vsearchpath = "vsearch",
  verbose = FALSE,
  clean_pq = FALSE,
  keep_temporary_files = FALSE,
  ...
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- `nproc` (default 1) Set to number of cpus/processors to use for the clustering
- `id` (default: 0.84) id for `--usearch_global`
- `vsearchpath` (default: vsearch) path to vsearch.
- `verbose` (logical) if true, print some additional messages.
- `clean_pq` (logical) if true, empty samples and empty ASV are discarded before clustering.
- `keep_temporary_files` (logical, default: FALSE) Do we keep temporary files
- `...` Others args for function `lulu()`

Details

The version of LULU is a fork of Adrien Taudière (https://github.com/adrientaudiere/lulu) from https://github.com/tobiasgf/lulu

Value

a list of for object

- "new_physeq": The new phyloseq object (class physeq)
- "discrepancy_vector": A vector of discrepancy showing for each taxonomic level the proportion of identic value before and after lulu reclustering. A value of 0.6 stands for 60% of ASV before re-clustering have identical value after re-clustering. In other word, 40% of ASV are assigned to a different taxonomic value. NA value are not counted as discrepancy.
- "res_lulu": A list of the result from the lulu function
- "merged_ASV": the data.frame used to merged ASV

Author(s)

Tobias Guldberg Frøslev <tobiasgf@snm.ku.dk> & Adrien Taudière <adrien.taudiere@zaclys.net>
References

- VSEARCH can be downloaded from https://github.com/torognes/vsearch.

Examples

```r
lulu_pq(data_fungi_sp_known)
```

merge_krona

Merge Krona files using [Krona](https://github.com/marbl/Krona/wikiKronaTools).

Description

[Maturing]

Need the installation of kronatools on the computer ([installation instruction](https://github.com/marbl/Krona/wikiKronaTools)). Function `merge_krona` allows merging multiple html files in one interactive krona file.

Note that you need to use the name `args` in `krona()` function before `merge_krona()` in order to give good name to each krona pie in the output.

Usage

```r
merge_krona(files = NULL, output = "mergeKrona.html")
```

Arguments

- `files` *(required)* path to html files to merged
- `output` path to the output file

Details

This function is mainly a wrapper of the work of others. Please cite [Krona](https://github.com/marbl/Krona/wikiKronaTools) if you use this function.

Value

A html file

Author(s)

Adrien Taudière
merge_samples2

See Also

krona

Examples

```r
## Not run:
data("GlobalPatterns", package = "phyloseq")
GA <- subset_taxa(GlobalPatterns, Phylum == "Acidobacteria")
krona(GA, "Number.of.sequences.html", name = "Nb_seq_GP_acidobacteria")
krona(GA, "Number.of.ASVs.html", nb_seq = FALSE, name = "Nb_asv_GP_acidobacteria")
merge_krona(c("Number.of.sequences.html", "Number.of.ASVs.html"), "mergeKrona.html")
unlink(c("Number.of.sequences.html", "Number.of.ASVs.html", "mergeKrona.html"))
## End(Not run)
```

merge_samples2 Merge samples by a sample variable or factor

Description

[Stable]

Firstly release in the speedyseq R package by Michael R. McLaren.

This function provides an alternative to phyloseq::merge_samples() that better handles sample variables of different types, especially categorical sample variables. It combines the samples in `x` defined by the sample variable or factor group by summing the abundances in `otu_table(x)` and combines sample variables by the summary functions in `funs`. The default summary function, `unique_or_na()`, collapses the values within a group to a single unique value if it exists and otherwise returns NA. The new (merged) samples are named by the values in `group`.

Usage

```r
merge_samples2(x, group, fun_otu = sum, funs = list(), reorder = FALSE)
```

```r
## S4 method for signature 'phyloseq'
merge_samples2(x, group, fun_otu = sum, funs = list(), reorder = FALSE)

## S4 method for signature 'otu_table'
merge_samples2(x, group, fun_otu = sum, reorder = FALSE)

## S4 method for signature 'sample_data'
merge_samples2(x, group, funs = list(), reorder = FALSE)
```
Arguments

x A phyloseq, otu_table, or sample_data object
group A sample variable or a vector of length nsamples(x) defining the sample grouping. A vector must be supplied if x is an otu_table
fun.otu Function for combining abundances in the otu_table; default is sum. Can be a formula to be converted to a function by purrr::as_mapper()
funs Named list of merge functions for sample variables; default is unique_or_na
reorder Logical specifying whether to reorder the new (merged) samples by name

Value

A new phyloseq-class, otu_table or sam_data object depending on the class of the x param

Author(s)

Michael R. McLaren (orcid: 0000-0003-1575-473X) modified by Adrien Taudiere

Examples

data(enterotype)

Merge samples with the same project and clinical status
ps <- enterotype
sample_data(ps) <- sample_data(ps) %>%
 transform(Project.ClinicalStatus = Project:ClinicalStatus)
sample_data(ps) %>% head()
ps0 <- merge_samples2(ps, "Project.ClinicalStatus",
 fun.otu = mean,
 funs = list(Age = mean)
)
sample_data(ps0) %>% head()

merge_taxa_vec Merge taxa in groups (vectorized version)

Description

[Stable]
Firstly release in the speedyseq R package by Michael R. McLaren.

Merge taxa in x into a smaller set of taxa defined by the vector group. Taxa whose value in group is NA will be dropped. New taxa will be named according to the most abundant taxon in each group (phyloseq and otu_table objects) or the first taxon in each group (all other phyloseq component objects).

If x is a phyloseq object with a phylogenetic tree, then the new taxa will be ordered as they are in the tree. Otherwise, the taxa order can be controlled by the reorder argument, which behaves like the reorder argument in base::rowsum(). reorder = FALSE will keep taxa in the original order
merge_taxa_vec

determined by when the member of each group first appears in taxa_names(x); reorder = TRUE will order new taxa according to their corresponding value in group.

The tax_adjust argument controls the handling of taxonomic disagreements within groups. Setting tax_adjust == 0 causes no adjustment; the taxonomy of the new group is set to the archetype taxon (see below). Otherwise, disagreements within a group at a given rank cause the values at lower ranks to be set to NA. If tax_adjust == 1 (the default), then a rank where all taxa in the group are already NA is not counted as a disagreement, and lower ranks may be kept if the taxa agree. This corresponds to the original phyloseq behavior. If tax_adjust == 2, then these NAs are treated as a disagreement; all ranks are set to NA after the first disagreement or NA.

Usage

```r
merge_taxa_vec(x, group, reorder = FALSE, tax_adjust = 1L)
## S4 method for signature 'phyloseq'
merge_taxa_vec(x, group, reorder = FALSE, tax_adjust = 1L)
## S4 method for signature 'otu_table'
merge_taxa_vec(x, group, reorder = FALSE)
## S4 method for signature 'taxonomyTable'
merge_taxa_vec(x, group, reorder = FALSE, tax_adjust = 1L)
## S4 method for signature 'phylo'
merge_taxa_vec(x, group)
## S4 method for signature 'XStringSet'
merge_taxa_vec(x, group, reorder = FALSE)
```

Arguments

- `x`: A phyloseq object or component object
- `group`: A vector with one element for each taxon in physeq that defines the new groups. See `base::rowsum()`.
- `reorder`: Logical specifying whether to reorder the taxa by their group values. Ignored if x has (or is) a phylogenetic tree.
- `tax_adjust`: 0: no adjustment; 1: phyloseq-compatible adjustment; 2: conservative adjustment

Value

A new phyloseq-class, otu_table, tax_table, XStringset or sam_data object depending on the class of the x param

Author(s)

Michael R. McLaren (orcid: 0000-0003-1575-473X) modified by Adrien Taudiere
See Also

Function in MiscMetabar that use this function:

- `asv2otu()`
- `base::rowsum()`
- `phyloseq::merge_taxa()`

MiscMetabar-deprecated

Deprecated function(s) in the MiscMetabar package

Description

These functions are provided for compatibility with older version of the MiscMetabar package. They may eventually be completely removed.

Usage

`physeq_graph_test(...)`

Arguments

... Parameters to be passed on to the modern version of the function

Value

Depend on the functions.

Details

- `graph_test_pq` now a synonym for `physeq_graph_test`
- `adonis_pq` now a synonym for `adonis_phyloseq`
- `clean_pq` now a synonym for `clean_phyloseq`
- `lulu_pq` now a synonym for `lulu_phyloseq`
- `circle_pq` now a synonym for `otu_circle`
- `biplot_pq` now a synonym for `biplot_phyloseq`
- `read_pq` now a synonym for `read_phyloseq`
- `write_pq` now a synonym for `write_phyloseq`
- `sankey_pq` now a synonym for `sankey_phyloseq`
- `summary_plot_pq` now a synonym for `summary_plot_phyloseq`
- `plot_edgeR_pq` now a synonym for `plot_edgeR Phyloseq`
- `plot_deseq2_pq` now a synonym for `plot_deseq2_phyloseq`
- `venn_pq` now a synonym for `venn_phyloseq`
- `ggvenn_pq` now a synonym for `ggVenn_phyloseq`
- `hill_tuckey_pq` now a synonym for `hill_tuckey_phyloseq`
- `hill_pq` now a synonym for `hill_phyloseq`
- `heat_tree_pq` now a synonym for `physeq_heat_tree`
- `compare_pairs_pq` now a synonym for `multiple_share_bisamples`
multipatt_pq

Test and plot multipatt result

Description

[Experimental]
A wrapper for the `indicspecies::multipatt()` function in the case of physeq object.

Usage

```r
multipatt_pq(
  physeq,
  fact,
  p_adjust_method = "BH",
  pval = 0.05,
  control = permute::how(nperm = 999),
  ...
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the phyloseq package.
- `fact` (required) Name of the factor in physeq@sam_data used to plot different lines
- `p_adjust_method` (chr, default "BH"): the method used to adjust p-value
- `pval` (int, default 0.05): the value to determine the significance of LCBD
- `control` see `?indicspecies::multipatt()`
- `...` Others arguments passed on to `indicspecies::multipatt()` function

Details

This function is mainly a wrapper of the work of others. Please make a reference to `indicspecies::multipatt()` if you use this function.

Value

A ggplot2 object

Author(s)

Adrien Taudière
Examples

if (requireNamespace("indicspecies")) {
 data(data_fungi)
 data_fungi_ab <- subset_taxa_pq(data_fungi, taxa_sums(data_fungi) > 10000)
 multipatt_pq(subset_samples(data_fungi_ab, !is.na(Time)), fact = "Time")
}

if (requireNamespace("indicspecies")) {
 multipatt_pq(subset_samples(data_fungi_ab, !is.na(Time)),
 fact = "Time",
 max.order = 1, control = permute::how(nperm = 99)
)
}

multiplot

Multiple plot function

Description

[Stable]

Usage

multiplot(..., plotlist = NULL, cols = 1, layout = NULL)

Arguments

... list of ggplot objects
plotlist list of ggplot objects
cols number of columns
layout A matrix specifying the layout. If present, 'cols' is ignored.

Value

Nothing. Print the list of ggplot objects
multitax_bar_pq

Plot taxonomic distribution across 3 taxonomic levels and optionally one sample factor

Description

[Experimental]

Note that lvl3 need to be nested in lvl2 which need to be nested in lvl1

Usage

```
multitax_bar_pq(
  physeq,
  lvl1,
  lvl2,
  lvl3,
  fact = NULL,
  nb_seq = TRUE,
  log10trans = TRUE
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>physeq</td>
<td>(required): a phyloseq-class object obtained using the phyloseq package.</td>
</tr>
<tr>
<td>lvl1</td>
<td>(required) Name of the first (higher) taxonomic rank of interest</td>
</tr>
<tr>
<td>lvl2</td>
<td>(required) Name of the second (middle) taxonomic rank of interest</td>
</tr>
<tr>
<td>lvl3</td>
<td>(required) Name of the first (lower) taxonomic rank of interest</td>
</tr>
<tr>
<td>fact</td>
<td>Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. If not set, the taxonomic distribution is plot for all samples together.</td>
</tr>
<tr>
<td>nb_seq</td>
<td>(logical; default TRUE) If set to FALSE, only the number of ASV is count. Concretely, physeq otu_table is transformed in a binary otu_table (each value different from zero is set to one)</td>
</tr>
<tr>
<td>log10trans</td>
<td>(logical, default TRUE) If TRUE, the number of sequences (or ASV if nb_seq = FALSE) is log10 transformed.</td>
</tr>
</tbody>
</table>

Value

A ggplot2 graphic

Author(s)

Adrien Taudière
Examples

```r
if (requireNamespace("ggh4x")) {
  multitax_bar_pq(data_fungi_sp_known, "Phylum", "Class", "Order", "Time")
  multitax_bar_pq(data_fungi_sp_known, "Phylum", "Class", "Order")
  multitax_bar_pq(data_fungi_sp_known, "Phylum", "Class", "Order",
      nb_seq = FALSE, log10trans = FALSE
  )
}
```

multi_biplot_pq

Visualization of a collection of couples of samples for comparison

Description

[Experimental]

This allow to plot all the possible `biplot_pq()` combination using one factor.

Usage

```r
multi_biplot_pq(physeq, split_by = NULL, pairs = NULL, na_remove = TRUE, ...)
```

Arguments

- **physeq** *(required)*: a phyloseq-class object obtained using the phyloseq package.
- **split_by** *(required if pairs is NULL)*: the name of the factor to make all combination of couples of values.
- **pairs** *(required if pairs is NULL)*: the name of the factor in physeq@sam_data slot to make plot by pairs of samples. Each level must be present only two times. Note that if you set pairs, you also must set fact arguments to pass on to `biplot_pq()`.
- **na_remove** *(logical, default TRUE)*: if TRUE remove all the samples with NA in the split_by variable of the physeq@sam_data slot.
- **...**: Other parameters passed on to `biplot_pq()`

Value

a list of ggplot object

Author(s)

Adrien Taudière
Examples

```r
data_fungi_abun <- subset_taxa_pq(data_fungi, taxa_sums(data_fungi) > 10000)
p <- multi_biplot_pq(data_fungi_abun, "Height")
lapply(p, print)
```

Description

[Experimental]

See https://www.nature.com/articles/s41467-017-01312-x for more information on the original method LULU. This is a wrapper of `mumu` a C++ re-implementation of LULU by Frédéric Mahé

Usage

```r
mumu_pq(
  physeq,
  nproc = 1,
  id = 0.84,
  vsearchpath = "vsearch",
  mumupath = "mumu",
  verbose = FALSE,
  clean_pq = TRUE,
  keep_temporary_files = FALSE
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- `nproc` (default 1) Set to number of cpus/processors to use for the clustering
- `id` (default: 0.84) id for `usearch_global`.
- `vsearchpath` (default: vsearch) path to vsearch.
- `mumupath` path to mumu. See `mumu` for installation instruction
- `verbose` (logical) if true, print some additional messages.
- `clean_pq` (logical) if true, empty samples and empty ASV are discarded before clustering.
- `keep_temporary_files` (logical, default: FALSE) Do we keep temporary files

Details

This function is mainly a wrapper of the work of others. Please cite `mumu` and `lulu` if you use this function for your work.
Value

A list of for object

- "new_physeq": The new phyloseq object (class physeq)
- "mumu_results": The log file of the mumu software. Run man mumu into bash to obtain details about columns' signification.

Author(s)

Frédéric Mahé & Adrien Taudière <adrien.taudiere@zaclys.net>

References

- MUMU: https://github.com/frederic-mahe/mumu
- VSEARCH can be downloaded from https://github.com/torognes/vsearch.

Examples

```r
## Not run:
mumu_pq(data_fungi_sp_known)
## End(Not run)
```

normalize_prop_pq Normalize OTU table using samples depth

Description

[Experimental]

This function implements the method proposed by McKnight et al. 2018 (doi:10.5061/dryad.m8qs35)

Usage

`normalize_prop_pq(physeq, base_log = 2, constante = 10000, digits = 4)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>physeq</td>
<td>(required): a <code>phyloseq-class</code> object obtained using the phyloseq package.</td>
</tr>
<tr>
<td>base_log</td>
<td>(integer, default 2) the base for log-transformation. If set to NULL or NA, no log-transformation is compute after normalization.</td>
</tr>
<tr>
<td>constante</td>
<td>a constante to multiply the otu_table values</td>
</tr>
<tr>
<td>digits</td>
<td>(default = 2) integer indicating the number of decimal places to be used (see ?round for more information)</td>
</tr>
</tbody>
</table>
Value

A new **phyloseq-class** object with otu_table count normalize and log transformed (if base_log is an integer)

Author(s)

Adrien Taudière

Examples

taxa_sums(data_fungi_mini)
data_f_norm <- normalize_prop_pq(data_fungi_mini)
taxa_sums(data_f_norm)
ggplot(data.frame(
 "norm" = scale(taxa_sums(data_f_norm)),
 "raw" = scale(taxa_sums(data_fungi_mini)),
 "name_otu" = taxa_names(data_f_norm)
)) +
 geom_point(aes(x = raw, y = norm))

data_f_norm <- normalize_prop_pq(data_fungi_mini, base_log = NULL)

perc

Convert a value (or a fraction x/y) in percentage

Description

[Maturing]

Usage

perc(x, y = NULL, accuracy = 0, add_symbol = FALSE)

Arguments

- **x**: (required): value
- **y**: if y is set, compute the division of x by y
- **accuracy**: number of digits (number of digits after zero)
- **add_symbol**: if set to TRUE add the % symbol to the value

Value

The percentage value (number or character if add_symbol is set to TRUE)

Author(s)

Adrien Taudière
phyloseq_to_edgeR

Convert phyloseq OTU count data into DGEList for edgeR package

Description

Convert phyloseq OTU count data into DGEList for edgeR package

Usage

```r
phyloseq_to_edgeR(physeq, group, method = "RLE", ...)
```

Arguments

- **physeq** *(required): a phyloseq-class object obtained using the phyloseq package.*
- **group** *(required): A character vector or factor giving the experimental group/condition for each sample/library. Alternatively, you may provide the name of a sample variable. This name should be among the output of sample_variables(physeq), in which case get_variable(physeq, group) would return either a character vector or factor. This is passed on to DGEList, and you may find further details or examples in its documentation.*
- **method** *(required): The label of the edgeR-implemented normalization to use. See calcNormFactors for supported options and details. The default option is "RLE", which is a scaling factor method proposed by Anders and Huber (2010). At time of writing, the edgeR package supported the following options to the method argument: c("TMM", "RLE", "upperquartile", "none").*
- **...** *(required): Additional arguments passed on to DGEList.*

Value

A DGEList object. See edgeR::estimateTagwiseDisp() for more details.

physeq_or_string_to_dna

Return a DNASTringSet object from either a character vector of DNA sequences or the refseq slot of a phyloseq-class object

Description

[Stable]

Internally used in vsearch_clustering(), swarm_clustering() and asv2otu().

Usage

```r
physeq_or_string_to_dna(physeq = NULL, dna_seq = NULL)
```
Arguments

physeq (required): a phyloseq-class object obtained using the phylloseq package.
dna_seq You may directly use a character vector of DNA sequences in place of physeq args. When physeq is set, dna sequences take the value of physeq@refseq

Value

An object of class DNAStringSet (see the Biostrings::DNAStringSet() function)

Author(s)

Adrien Taudière

See Also

Biostrings::DNAStringSet()

Examples

dna <- physeq_or_string_to_dna(data_fungi)
dna

sequences_ex <- c("TACCTATGTTGGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG", "TACCTATGTTGGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG", "TACCTATGTTGGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG", "TACCTATGTTGGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG")
dna2 <- physeq_or_string_to_dna(dna_seq = sequences_ex)
dna2

plot_ancombc_pq Plot ANCOMBC2 result for phyloseq object

Description

[Experimental]
plot_ancombc_pq

Usage

plot_ancombc_pq(
 physeq,
 ancombc_res,
 filter_passed = TRUE,
 filter_diff = TRUE,
 min_abs_lfc = 0,
 tax_col = "Genus",
 tax_label = "Species",
 add_marginal_viol = TRUE,
 add_label = TRUE,
 add_hline_cut_lfc = NULL
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
ancombc_res (required) the result of the ancombc_pq function For the moment only bimodal factors are possible.
filter_passed (logical, default TRUE) Do we filter using the column passed_ss? The passed_ss value is TRUE if the taxon passed the sensitivity analysis, i.e., adding different pseudo-counts to 0s would not change the results.
filter_diff (logical, default TRUE) Do we filter using the column diff? The diff value is TRUE if the taxon is significant (has q less than alpha)
min_abs_lfc (integer, default 0) Minimum absolute value to filter results based on Log Fold Change. For ex. a value of 1 filter out taxa for which the abundance in a given level of the modality is not at least the double of the abundance in the other level.
tax_col The taxonomic level (must be present in tax_table slot) to color the points
tax_label The taxonomic level (must be present in tax_table slot) to add label
add_marginal_viol (logical, default TRUE) Do we add a marginal vioplot representing all the taxa lfc from ancombc_res.
add_label (logical, default TRUE) Do we add a label?
add_hline_cut_lfc (logical, default NULL) Do we add two horizontal lines when min_abs_lfc is set (different from zero)?

Details

This function is mainly a wrapper of the work of others. Please make a reference to ANCOMBC::ancombc2() if you use this function.

Value

A ggplot2 object. If add_marginal_viol is TRUE, this is a patchworks of plot made using patchwork::plot_layout().
Author(s)
Adrien Taudière

Examples

```r
if (requireNamespace("mia")) {
  data_fungi_mini@tax_table <- phyloseq::tax_table(cbind(
    data_fungi_mini@tax_table,
    "taxon" = taxa_names(data_fungi_mini)
  ))

  res_time <- ancombc_pq(
    data_fungi_mini,
    fact = "Time",
    levels_fact = c("0", "15"),
    tax_level = "taxon",
    verbose = TRUE
  )

  plot_ancombc_pq(data_fungi_mini, res_time,
                  filter_passed = FALSE,
                  tax_label = "Genus", tax_col = "Order"
  )
  plot_ancombc_pq(data_fungi_mini, res_time, tax_col = "Genus")
  plot_ancombc_pq(data_fungi_mini, res_time,
                  filter_passed = FALSE,
                  filter_diff = FALSE, tax_col = "Family", add_label = FALSE
  )
}
```

plot_deseq2_pq
Plot DESeq2 results for a phyloseq or a DESeq2 object.

Description

[Experimental]

Usage

```r
plot_deseq2_pq(
  data,
  contrast = NULL,
  tax_table = NULL,
  pval = 0.05,
  taxolev = "Genus",
  select_taxa = NULL,
  color_tax = "Phylum",
)```
Arguments

data (required) a phyloseq-class or a DESeqDataSet-class object.
contrast (required) contrast specifies what comparison to extract from the object to build a results table. See results man page for more details.
tax_table Required if data is a DESeqDataSet-class object. The taxonomic table used to find the taxa and color_taxa arguments. If data is a phyloseq-class object, data@tax_table is used.
pval (default: 0.05) the significance cutoff used for optimizing the independent filtering. If the adjusted p-value cutoff (FDR) will be a value other than 0.05, pval should be set to that value.
taxolev taxonomic level of interest
select_taxa Either the name of the taxa (in the form of DESeq2::results()) or a logical vector (length of the results from DESeq2::results()) to select taxa to plot.
color_tax taxonomic level used for color or a color vector.
tax_depth Taxonomic depth to test for differential distribution among contrast. If Null the analysis is done at the OTU (i.e. Species) level. If not Null, data need to be a column name in the tax_table slot of the phyloseq-class object.
verbose whether the function print some information during the computation
jitter_width width for the jitter positioning
...

Details

Please cite DESeq2 package if you use this function.

Value

A ggplot2 plot representing DESeq2 results

Author(s)

Adrien Taudière

See Also

DESeq
results
plot_edgeR_pq
Examples

data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
GP <- subset_samples(GP, SampleType %in% c("Soil", "Skin"))
if (requireNamespace("DESeq2")) {
  res <- DESeq2::DESeq(phyloseq_to_deseq2(GP, ~SampleType),
    test = "Wald", fitType = "local"
  )
  plot_deseq2_pq(res, c("SampleType", "Soil", "Skin"),
    tax_table = GP@tax_table, color_tax = "Kingdom"
  )
  plot_deseq2_pq(res, c("SampleType", "Soil", "Skin"),
    tax_table = GP@tax_table, color_tax = "Kingdom",
    pval = 0.7
  )
  plot_deseq2_pq(res, c("SampleType", "Soil", "Skin"),
    tax_table = GP@tax_table, color_tax = "Class",
    select_taxa = c("522457", "271582")
  )
}

Description

[Maturing]

Usage

plot_edgeR_pq(
  physeq, contrast = NULL, pval = 0.05, taxolev = "Genus", color_tax = "Phylum", verbose = TRUE,
  ...
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
contrast (required): This argument specifies what comparison to extract from the object to build a results table. See results man page for more details.
pval (default: 0.05): the significance cutoff used for optimizing the independent filtering. If the adjusted p-value cutoff (FDR) will be a value other than 0.05, pval should be set to that value.

taxolev taxonomic level of interest
color_tax taxonomic level used for color assignation
verbose (logical): whether the function print some information during the computation
...
Additional arguments passed on to exactTest or ggplot

Value
A ggplot2 plot representing edgeR results

Author(s)
Adrien Taudière

See Also
exactTest
plot_deseq2_pq

Examples

data("GlobalPatterns", package = "phyloseq")
GP_archae <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")

if (requireNamespace("edgeR")) {
  plot_edgeR_pq(GP_archae, c("SampleType", "Soil", "Feces"),
               color_tax = "Kingdom"
  )

  plot_edgeR_pq(GP_archae, c("SampleType", "Soil", "Feces"),
               taxolev = "Class", color_tax = "Kingdom"
  )
}

plot_guild_pq

Plot information about Guild from tax_table slot previously created with add_funguild_info()

Description
[Experimental]
**plot_guild_pq**

**Usage**

`plot_guild_pq(physeq, levels_order = NULL, clean_pq = TRUE, ...)`

**Arguments**

- `physeq` (required): a *phyloseq-class* object obtained using the `phyloseq` package.
- `levels_order` (Default NULL) A character vector to reorder the levels of guild. See examples.
- `clean_pq` (logical, default TRUE): Does the phyloseq object is cleaned using the `clean_pq()` function?
- `...` Other params for be passed on to `clean_pq()` function

**Value**

A ggplot2 object

**Author(s)**

Adrien Taudière

**See Also**

`add_funguild_info()`

**Examples**

```r
if (requireNamespace("httr")) {
 d_fungini <- add_funguild_info(data_fungi_mini,
 taxLevels = c(
 "Domain",
 "Phylum",
 "Class",
 "Order",
 "Family",
 "Genus",
 "Species"
)
)
 sort(table(d_fungini@tax_table[, "guild"]), decreasing = TRUE)
}

p <- plot_guild_pq(d_fungini)
if (requireNamespace("patchwork")) {
 (plot_guild_pq(subset_samples(d_fungini, Height == "Low"),
 levels_order = p$data$Guild[order(p$data$nb_seq)]
) + theme(legend.position = "none") +
 (plot_guild_pq(subset_samples(d_fungini, Height == "High"),
 levels_order = p$data$Guild[order(p$data$nb_seq)]
) + ylab("") + theme(axis.text.y = element_blank()))
}
```
Plot and test local contributions to beta diversity (LCBD) of samples

Description

[Experimental]
A wrapper for the adespatial::beta.div() function in the case of physeq object.

Usage

plot_LCBD_pq(
  physeq,
  p_adjust_method = "BH",
  pval = 0.05,
  sam_variables = NULL,
  only_plot_significant = TRUE,
  ...
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

p_adjust_method (chr, default "BH"): the method used to adjust p-value

pval (int, default 0.05): the value to determine the significance of LCBD

sam_variables A vector of variables names present in the sam_data slot to plot alongside the LCBD value

only_plot_significant (logical, default TRUE) Do we plot all LCBD values or only the significant ones

... Others arguments passed on to adespatial::beta.div() function

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::beta.div() if you use this function.

Value

A ggplot2 object build with the package patchwork

Author(s)

Adrien Taudière

See Also

LCBD_pq, adespatial::beta.div()
Examples

```r
data(data_fungi)
if (requireNamespace("adespatial")) {
 plot_LCBD_pq(data_fungi_mini,
 nperm = 100, only_plot_significant = FALSE,
 pval = 0.2
)
}

if (requireNamespace("adespatial")) {
 plot_LCBD_pq(data_fungi_mini,
 nperm = 100, only_plot_significant = TRUE,
 pval = 0.2
)
 if (requireNamespace("patchwork")) {
 plot_LCBD_pq(data_fungi_mini,
 nperm = 100, only_plot_significant = FALSE,
 sam_variables = c("Time", "Height")
)
 plot_LCBD_pq(data_fungi_mini,
 nperm = 100, only_plot_significant = TRUE, pval = 0.2,
 sam_variables = c("Time", "Height", "Tree_name")
) &
 theme(
 legend.key.size = unit(0.4, "cm"),
 legend.text = element_text(size = 10),
 axis.title.x = element_text(size = 6)
)
 }
}
```

---

**plot_mt**

*Plot the result of a mt test* `phyloseq::mt()`

---

**Description**

**[Maturing]**

**Usage**

```r
plot_mt(mt = NULL, alpha = 0.05, color_tax = "Class", taxa = "Species")
```

**Arguments**

- **mt** (required) Result of a mt test from the function `phyloseq::mt()`.
- **alpha** (default: 0.05) Choose the cut off p-value to plot taxa.
- **color_tax** (default: "Class") A taxonomic level to color the points.
- **taxa** (default: "Species") The taxonomic level you choose for x-positioning.
Value

- A `ggplot2` plot of the result of an mt test.

Author(s)

Adrien Taudière

See Also

phyloseq::mt()

Examples

```r
Filter samples that don't have Time
data_fungi_mini2 <- subset_samples(data_fungi_mini, !is.na(Time))
res <- mt(data_fungi_mini2, "Time", method = "fdr", test = "f", B = 300)
plot_mt(res)
plot_mt(res, taxa = "Genus", color_tax = "Order")
```

Description

[Experimental]

A wrapper for the `adespatial::beta.div()` function in the case of physeq object.

Usage

```r
plot_SCBD_pq(
physeq,
tax_level = "ASV",
tax_col = "Order",
min_SCBD = 0.01,
...
)
```

Arguments

- `physeq` (required): A `phyloseq-class` object obtained using the phyloseq package.
- `tax_level` Taxonomic level to used in y axis
- `tax_col` Taxonomic level to colored points
- `min_SCBD` (default 0.01) the minimum SCBD value to plot the taxa
- `...` Others arguments passed on to `adespatial::beta.div()` function
Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::beta.div() if you use this function.

Value

A ggplot2 object build with the package patchwork

Author(s)

Adrien Taudière

See Also

LCBD_pq, adespatial::beta.div()

Examples

data(data_fungi)
if (requireNamespace("adespatial")) {
plot_SCBD_pq(data_fungi) +
  geom_text(aes(label = paste(Genus, Species)), hjust = 1, vjust = 2) +
  xlim(c(0, NA))
}

if (requireNamespace("adespatial")) {
plot_SCBD_pq(data_fungi, tax_level = "Class", tax_col = "Phylum", min_SCBD = 0) +
  geom_jitter()
}

Description

[Experimental]
An alternative to phyloseq::plot_bar() function.

Usage

plot_tax_pq(
  physeq,
  fact = NULL,
  merge_sample_by = NULL,
  type = "nb_seq",
)
```
taxa_fill = "Order",
print_values = TRUE,
color_border = "lightgrey",
linewidth = 0.1,
prop_print_value = 0.01,
nb_print_value = NULL,
add_info = TRUE,
na_remove = TRUE,
clean_pq = TRUE
```

**Arguments**

- `physeq` (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- `fact` (required): Name of the factor to cluster samples by modalities. Need to be in `physeq@sam_data`
- `merge_sample_by`: a vector to determine which samples to merge using the `merge_samples2()` function. Need to be in `physeq@sam_data`
- `type`: If "nb_seq" (default), the number of sequences is used in plot. If "nb_asv", the number of ASV is plotted. If both, return a list of two plots, one for nbSeq and one for ASV.
- `taxa_fill` (default: 'Order'): Name of the taxonomic rank of interest
- `print_values` (logical, default TRUE): Do we print some values on plot?
- `color_border`: color for the border
- `linewidth`: The line width of `geom_bar`
- `prop_print_value`: minimal proportion to print value (default 0.01)
- `nb_print_value`: number of higher values to print (replace `prop_print_value` if both are set).
- `add_info` (logical, default TRUE) Do we add title and subtitle with information about the total number of sequences and the number of samples per modality.
- `na_remove` (logical, default TRUE) if TRUE remove all the samples with NA in the `split_by` variable of the `physeq@sam_data` slot
- `clean_pq` (logical) If set to TRUE, empty samples are discarded after subsetting ASV

**Value**

A ggplot2 graphic

**Author(s)**

Adrien Taudière

**See Also**

`tax_bar_pq()` and `multitax_bar_pq()`
plot_tsne_pq

Examples

data(data_fungi_sp_known)
plot_tax_pq(data_fungi_sp_known, "Time",
  merge_sample_by = "Time",
  taxa_fill = "Class"
)

plot_tax_pq(data_fungi_sp_known, "Height",
  merge_sample_by = "Height",
  taxa_fill = "Class",
  na_remove = TRUE,
  color_border = rgb(0, 0, 0, 0)
)

plot_tax_pq(data_fungi_sp_known, "Height",
  merge_sample_by = "Height",
  taxa_fill = "Class",
  na_remove = FALSE,
  clean_pq = FALSE
)

plot_tsne_pq

Plot a tsne low dimensional representation of a phyloseq object

Description

[Experimental]

Usage

plot_tsne_pq(
  physeq,
  method = "bray",
  dims = 2,
  theta = 0,
  perplexity = 30,
  fact = NA,
  ellipse_level = 0.95,
  plot_dims = c(1, 2),
  na_remove = TRUE,
  force_factor = TRUE,
  ...
)
Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

method A method to calculate distance using vegan::vegdist() function (default: "bray")

dims (Int) Output dimensionality (default: 2)

theta (Numeric) Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.0 see details in the man page of Rtsne::Rtsne).

perplexity (Numeric) Perplexity parameter (should not be bigger than 3 * perplexity < nrow(X) - 1, see details in the man page of Rtsne::Rtsne)

fact Name of the column in physeq@sam_data used to color points and compute ellipses.

ellipse_level The level used in stat_ellipse. Set to NULL to discard ellipse (default = 0.95)

plot_dims A vector of 2 values defining the rank of dimension to plot (default: c(1,2))

na_remove (logical, default TRUE) Does the samples with NA values in fact are removed? (default: true)

force_factor (logical, default TRUE) Force the fact column to be a factor.

... Other arguments passed on to Rtsne::Rtsne()

Details

Partially inspired by phylosmith::tsne_phyloseq() function developed by Schuyler D. Smith.

Value

A ggplot object

Author(s)

Adrien Taudière

Examples

data(data_fungi)
if (requireNamespace("Rtsne")) {
  plot_tsne_pq(data_fungi, fact = "Height", perplexity = 15)
}

if (requireNamespace("Rtsne")) {
  plot_tsne_pq(data_fungi, fact = "Time") + geom_label(aes(label = Sample_id, fill = Time))
  plot_tsne_pq(data_fungi, fact = "Time", na_remove = FALSE, force_factor = FALSE)
}
Description

[Experimental]

Usage

```r
plot_var_part_pq(
 res_varpart,
 cutoff = 0,
 digits = 1,
 digits_quantile = 2,
 fill_bg = c(“seagreen3”, “mediumpurple”, “blue”, “orange”),
 show_quantiles = FALSE,
 filter_quantile_zero = TRUE,
 show_dbrda_signif = FALSE,
 show_dbrda_signif_pval = 0.05,
 alpha = 63,
 id.size = 1.2,
 min_prop_pval_signif_dbrda = 0.95
)
```

Arguments

- `res_varpart` (required) the result of the functions `var_par_pq()` or `var_par_rarperm_pq()`
- `cutoff` The values below cutoff will not be displayed.
- `digits` The number of significant digits.
- `digits_quantile` The number of significant digits for quantile.
- `fill_bg` Fill colours of ellipses.
- `show_quantiles` Do quantiles are printed ?
- `filter_quantile_zero` Do we filter out value with quantile encompassing the zero value?
- `show_dbrda_signif` Do dbrda significance for each component is printed using *?
- `show_dbrda_signif_pval` (float, [0:1]) The value under which the dbrda is considered significant.
- `alpha` (int, [0:255]) Transparency of the fill colour.
- `id.size` A numerical value giving the character expansion factor for the names of circles or ellipses.
- `min_prop_pval_signif_dbrda` (float, [0:1]) Only used if using the result of `var_par_rarperm_pq()` function. The * for dbrda_signif is only add if at least min_prop_pval_signif_dbrda of permutations show significance.
Details
This function is mainly a wrapper of the work of others. Please make a reference to `vegan::varpart()` if you use this function.

Value
A plot

Author(s)
Adrien Taudière

See Also
`var_par_rarperm_pq()`, `var_par_pq()`

Examples
```r
if (requireNamespace("vegan")) {
 data_fungi_woNA <- subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
 res_var_9 <- var_par_rarperm_pq(
 data_fungi_woNA,
 list_component = list(
 "Time" = c("Time"),
 "Size" = c("Height", "Diameter")
),
 nperm = 9,
 dbrda_computation = TRUE
)
 res_var_2 <- var_par_rarperm_pq(
 data_fungi_woNA,
 list_component = list(
 "Time" = c("Time"),
 "Size" = c("Height", "Diameter")
),
 nperm = 2,
 dbrda_computation = TRUE
)
 res_var0 <- var_par_pq(data_fungi_woNA,
 list_component = list(
 "Time" = c("Time"),
 "Size" = c("Height", "Diameter")
),
 dbrda_computation = TRUE
)
 plot_var_part_pq(res_var0, digits_quantile = 2, show_dbrda_signif = TRUE)
 plot_var_part_pq(res_var_9,
 digits_quantile = 2, show_quantiles = TRUE,
 show_dbrda_signif = TRUE
)
 plot_var_part_pq(
```

plot_var_part_pq
psmelt_samples_pq

```r
res_var_2,
digits = 5,
digits_quantile = 2,
cutoff = 0,
show_quantiles = TRUE
)
}
```

---

**psmelt_samples_pq**  
*Build a sample information tibble from physeq object*

---

### Description

*Experimental*

Hill numbers are the number of equiprobable species giving the same diversity value as the observed distribution.

Note that contrary to `hill_pq()`, this function does not take into account for difference in the number of sequences per samples/modalities. You may use `rarefy_by_sample = TRUE` if the mean number of sequences per samples differs among modalities.

### Usage

```r
psmelt_samples_pq(
 physeq,
 hill_scales = c(0, 1, 2),
 filter_zero = TRUE,
 rarefy_by_sample = FALSE,
 taxa_ranks = NULL
)
```

### Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **hill_scales** (a vector of integer) The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index).
- **filter_zero** (logical, default TRUE) Do we filter non present OTU from samples? For the moment, this has no effect on the result because the dataframe is grouped by samples with abundance summed across OTU.
- **rarefy_by_sample** (logical, default FALSE) If TRUE, rarefy samples using `phyloseq::rarefy_even_depth()` function.
- **taxa_ranks** A vector of taxonomic ranks. For examples c("Family","Genus"). If taxa ranks is not set (default value = NULL), taxonomic information are not present in the resulting tibble.
rarefy_sample_count_by_modality

Value

A tibble with a row for each sample. Columns provide information from `sam_data` slot as well as hill numbers, Abundance (nb of sequences), and Abundance_log10 ($\log_{10}(1+\text{Abundance})$).

Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("ggstatsplot")) {
 psm_tib <- psmelt_samples_pq(data_fungi_mini, hill_scales = c(0, 2, 7))
 ggstatsplot::ggbetweenstats(psm_tib, Height, Hill_0)
 ggstatsplot::ggbetweenstats(psm_tib, Height, Hill_7)

 psm_tib_tax <- psmelt_samples_pq(data_fungi_mini, taxa_ranks = c("Class", "Family"))
 ggplot(filter(psm_tib_tax, Abundance > 2000), aes(y = Family, x = Abundance, fill = Time)) +
 geom_bar(stat = "identity") +
 facet_wrap(~Height)
}
```

rarefy_sample_count_by_modality

*Rarefy (equalize) the number of samples per modality of a factor*

Description

[Experimental]

Usage

```r
rarefy_sample_count_by_modality(physeq, fact, rngseed = FALSE, verbose = TRUE)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **fact** (required): The variable to rarefy. Must be present in the `sam_data` slot of the physeq object.
- **rngseed** (Optional). A single integer value passed to `set.seed`, which is used to fix a seed for reproducibly random number generation (in this case, reproducibly random subsampling). If set to FALSE, then no iddling with the RNG seed is performed, and it is up to the user to appropriately call.
- **verbose** (logical). If TRUE, print additional informations.

Value

A new `phyloseq-class` object.
read_pq

Author(s)
Adrien Taudière

See Also
accu_plot_balanced_modality()

Examples

```r
table(data_fungi_mini@sam_data$Height)
data_fungi_mini2 <- rarefy_sample_count_by_modality(data_fungi_mini, "Height")
if (requireNamespace("patchwork")) {
 ggvenn_pq(data_fungi_mini, "Height") + ggvenn_pq(data_fungi_mini2, "Height")
}
```

Description

[Maturing]

Usage

```r
read_pq(path = NULL, taxa_are_rows = FALSE, sam_names = NULL, sep_csv = "\t", ...)
```

Arguments

- `path` (required) a path to the folder to read the phyloseq object
- `taxa_are_rows` (default to FALSE) see `?phyloseq` for details
- `sam_names` The name of the variable (column) in sam_data.csv to rename samples. Note that if you use `write_phyloseq()` function to save your physeq object, you may use `sam_names = "X"` to rename the samples names as before.
- `sep_csv` (default tabulation) separator for column
- `...` Other arguments passed on to `utils::write.table()` function.

Value

One to four csv tables (refseq.csv, otu_table.csv, tax_table.csv, sam_data.csv) and if present a phy_tree in Newick format. At least the otu_table.csv need to be present.
rename_samples

Examples

write_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"))
read_pq(path = paste0(tempdir(), "/phyloseq"))
unlink(paste0(tempdir(), "/phyloseq"), recursive = TRUE)

rename_samples

Rename the samples of a phyloseq slot

Description

[Maturing]

Usage

rename_samples(phyloseq_component, names_of_samples, taxa_are_rows = FALSE)

Arguments

phyloseq_component
(required) one of otu_table or sam_data slot of a phyloseq-class object
names_of_samples
(required) A vector of samples names
taxa_are_rows
(default to FALSE) see ?phyloseq for details

Value

The otu_table or the sam_data slot with new samples names

Author(s)

Adrien Taudière

Examples

otutab <- rename_samples(
data_fungi@otu_table,
paste0("data_f", sample_names(data_fungi))
)

otutab2 <- rename_samples(
clean_pq(data_fungi,
force_taxa_as_rows = TRUE)
)@otu_table,
paste0("data_f", sample_names(data_fungi))
)
samda <- rename_samples(
data_fungi@sam_data,
paste0("data_f", sample_names(data_fungi))
)
rename_samples_otu_table

Rename samples of an otu_table

Description

[Experimental]

Usage

rename_samples_otu_table(physeq, names_of_samples)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
names_of_samples (required) The new names of the samples

Value

the matrix with new colnames (or rownames if taxa_are_rows is true)

Author(s)

Adrien Taudière

Examples

rename_samples_otu_table(data_fungi, as.character(seq_along(sample_names(data_fungi))))

reorder_taxa_pq

Reorder taxa in otu_table/tax_table/refseq slot of a phyloseq object

Description

[Experimental]

Note that the taxa order in a physeq object with a tree is locked by the order of leaf in the phylogenetic tree.

Usage

reorder_taxa_pq(physeq, names_ordered, remove_phy_tree = FALSE)
**Arguments**

- **physeq** (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- **names_ordered** (required): Names of the taxa (must be the same as taxa in `taxa_names(physeq)`) in a given order.
- **remove_phy_tree** (logical, default FALSE) If TRUE, the phylogenetic tree is removed. It is

**Value**

A phyloseq object

**Author(s)**

Adrien Taudière

**Examples**

```r
data_fungi_ordered_by_genus <- reorder_taxa_pq(
 data_fungi,
 taxa_names(data_fungi)[order(as.vector(data_fungi@tax_table[, "Genus")))]
)

data_fungi_mini_asc_ordered_by_abundance <- reorder_taxa_pq(
 data_fungi_mini,
 taxa_names(data_fungi_mini)[order(taxa_sums(data_fungi_mini))]
)
```

---

**ridges_pq**  
*Ridge plot of a phyloseq object*

---

**Description**

[Experimental]

**Usage**

```
ridges_pq(physeq, fact, nb_seq = TRUE, log10trans = TRUE, ...)
```

**Arguments**

- **physeq** (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- **fact** (required) Name of the factor in `physeq@sam_data` used to plot different lines.
- **nb_seq** (logical; default TRUE) If set to FALSE, only the number of ASV is count. Concretely, `physeq otu_table` is transformed in a binary `otu_table` (each value different from zero is set to one).
- **log10trans** (logical, default TRUE) If TRUE, the number of sequences (or ASV if `nb_seq = FALSE`) is log10 transformed.
- **...** Other params passed on to `ggridges::geom_density_ridges()`
Value

A `ggplot2` plot with bar representing the number of sequence en each taxonomic groups

Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("ggridges")) {
 ridges_pq(data_fungi_mini, "Time", alpha = 0.5, log10trans = FALSE) + xlim(c(0, 1000))
}
if (requireNamespace("ggridges")) {
 ridges_pq(data_fungi_mini, "Time", alpha = 0.5, scale = 0.9)
 ridges_pq(data_fungi_mini, "Sample_names", log10trans = TRUE)

 ridges_pq(data_fungi_mini, "Time”,
 jittered_points = TRUE,
 position = ggridges::position_points_jitter(width = 0.05, height = 0),
 point_shape = "|
 point_size = 3, point_alpha = 1, alpha = 0.7,
 scale = 0.8
)
}
```

rotl_pq

`rotl` wrapper for phyloseq data

Description

[Experimental] Make a phylogenetic tree using the ASV names of a physeq object and the Open Tree of Life tree.

Usage

```r
rotl_pq(physeq, species_colnames = "Genus_species", context_name = "All life")
```

Arguments

- **physeq** *(required): a `phyloseq-class` object obtained using the phyloseq package.*
- **species_colnames** *(default: "Genus_species"): the name of the column where the species binomial name is stored in @tax_table slot. Can also be a vector of two columns names e.g. c("Genus", "Species")*
- **context_name** : can be used to select only a part of the Open Tree of Life. See ?rotl::tnrs_contexts() for available values
sample_data_with_new_names

Description

[Maturing]

Usage

sample_data_with_new_names(
  file_path,
  names_of_samples,
  samples_order = NULL,
  ...
)
Arguments

- `file_path` (required) a path to the sample data file
- `names_of_samples` (required) a vector of sample names
- `samples_order` Optional numeric vector to sort sample names
- `...` Other arguments passed on to `utils::read.delim()` function.

Value

A data.frame from file_path and new names

Author(s)

Adrien Taudière

See Also

`rename_samples()`

Examples

```r
sam_file <- system.file("extdata", "sam_data.csv", package = "MiscMetabar")
sample_data_with_new_names(sam_file, paste0("Samples_", seq(1, 185)))
```

---

**Sankey plot of phylseq-class object**

Description

[Maturing]

Usage

```r
sankey_pq(
 physeq = NULL,
 fact = NULL,
 taxa = 1:4,
 add_nb_seq = FALSE,
 min_prop_tax = 0,
 tax2remove = NULL,
 units = NULL,
 symbol2sub = c("\".\", "-"),
 ...
)
```
Arguments

physeq (required): a `phyloseq-class` object obtained using the phyloseq package.
fact Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.
taxa a vector of taxonomic rank to plot
add_nb_seq Represent the number of sequences or the number of OTUs (add_nb_seq = FALSE). Note that plotting the number of sequences is slower.
min_prop_tax (default: 0) The minimum proportion for taxon to be plotted. EXPERIMENTAL. For the moment each links below the min.prop. tax is discard from the sankey network resulting in sometimes weird plot.
tax2remove a vector of taxonomic groups to remove from the analysis (e.g. c('Incertae
cedis', 'unidentified'))
units character string describing physical units (if any) for Value
symbol2sub (default: c('.', '-')) vector of symbol to delete in the taxonomy
... Additional arguments passed on to `sankeyNetwork`

Value

A `sankeyNetwork` plot representing the taxonomic distribution of OTUs or sequences. If fact is set, represent the distribution of the last taxonomic level in the modalities of fact

Author(s)

Adrien Taudière

See Also

`sankeyNetwork`, `ggaluv_pq()`

Examples

data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
if (requireNamespace("networkD3")) {
  sankey_pq(GP, fact = "SampleType")
}

if (requireNamespace("networkD3")) {
  sankey_pq(GP, taxa = 1:4, min_prop_tax = 0.01)
  sankey_pq(GP, taxa = 1:4, min_prop_tax = 0.01, add_nb_seq = TRUE)
}
save_pq  

A wrapper of write_pq to save in all three possible formats

Description
A wrapper of write_pq to save in all three possible formats

Usage
save_pq(physeq, path = NULL, ...)

Arguments
physeq (required): a phyloseq-class object obtained using the phyloseq package.
path a path to the folder to save the phyloseq object
... Other arguments passed on to write_pq() or utils::write.table() function.

Details
[Maturing]
Write:
• 4 separate tables
• 1 table version
• 1 RData file

Value
Build a folder (in path) with four csv tables (refseq.csv, otu_table.csv, tax_table.csv, sam_data.csv)
+ one table with all tables together + a rdata file (physeq.RData) that can be loaded using base::load() function + if present a phylogenetic tree in Newick format (phy_tree.txt)

Author(s)
Adrien Taudière

See Also
write_pq()

Examples
save_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"))
unlink(paste0(tempdir(), "/phyloseq"), recursive = TRUE)
**search_exact_seq_pq**  
Search for exact matching of sequences using complement, reverse and reverse-complement

---

**Description**

[Experimental]

**Usage**

```r
search_exact_seq_pq(physeq, seq2search)
```

**Arguments**

- `physeq` (required): a *phyloseq-class* object obtained using the phyloseq package.
- `seq2search`: A DNAStringSet object of sequences to search for.

**Value**

A list of data-frames for each input sequences with the name, the sequences and the number of occurrences of the original sequence, the complement sequence, the reverse sequence and the reverse-complement sequence.

**Author(s)**

Adrien Taudière

**Examples**

```r
data("data_fungi")
search_primers <- search_exact_seq_pq(data_fungi, seq2search = Biostrings::DNAStringSet(c("TTGAACGCACATTGCGCC", "ATCCCTACCTGATCCGAG")))
```

---

**select_one_sample**  
Select one sample from a physeq object

---

**Description**

[Experimental]

Mostly for internal use, for example in function `track_wkflow_samples()`.

**Usage**

```r
select_one_sample(physeq, sam_name, silent = FALSE)
```
select_taxa

Arguments

physeq (required): a *phyloseq-class* object obtained using the phyloseq package.
sam_name (required) The sample name to select
silent (logical) If true, no message are printing.

Value

A new *phyloseq-class* object with one sample

Author(s)

Adrien Taudière

Examples

```r
A8_005 <- select_one_sample(data_fungi, "A8-005_S4_MERGED.fastq.gz")
A8_005
```

Description

Select (a subset of) taxa; if x allows taxa to be reordered, then taxa are given in the specified order.

Usage

```r
select_taxa(x, taxa, reorder = TRUE)
```
Arguments

- **x**: A phyloseq object or phyloseq component object
- **taxa**: Character vector of taxa to select, in requested order
- **reorder**: Logical specifying whether to use the order in taxa (TRUE) or keep the order in taxa_names(x) (FALSE)

Details

This is a simple selector function that is like prune_taxa(taxa, x) when taxa is a character vector but always gives the taxa in the order taxa if possible (that is, except for phy_tree’s and phyloseq objects that contain phy_tree’s).

Author(s)

Michael R. McLaren (orcid: 0000-0003-1575-473X)

Description

[Experimental]

Usage

```r
signif_ancombc(
 ancombc_res,
 filter_passed = TRUE,
 filter_diff = TRUE,
 min_abs_lfc = 0
)
```

Arguments

- **ancombc_res** (required) the result of the ancombc_pq function For the moment only bimodal factors are possible.
- **filter_passed** (logical, default TRUE) Do we filter using the column passed_ss? The passed_ss value is TRUE if the taxon passed the sensitivity analysis, i.e., adding different pseudo-counts to 0s would not change the results.
- **filter_diff** (logical, default TRUE) Do we filter using the column diff? The diff value is TRUE if the taxon is significant (has q less than alpha)
- **min_abs_lfc** (integer, default 0) Minimum absolute value to filter results based on Log Fold Change. For ex. a value of 1 filter out taxa for which the abundance in a given level of the modality is not at least the double of the abundance in the other level.
Details

This function is mainly a wrapper of the work of others. Please make a reference to ANCOMBC::ancombc2() if you use this function.

Value

A data.frame with the same number of columns than the ancombc_res param but with less (or equal) numbers of rows

See Also

ancombc_pq(), plot_ancombc_pq()

Examples

```r
if (requireNamespace("mia")) {
 data_fungi_mini@tax_table <- phyloseq::tax_table(cbind(
 data_fungi_mini@tax_table,
 "taxon" = taxa_names(data_fungi_mini)
))

 res_time <- ancombc_pq(
 data_fungi_mini,
 fact = "Time",
 levels_fact = c("0", "15"),
 tax_level = "taxon",
 verbose = TRUE
)

 signif_ancombc(res_time)
}
```

simplify_taxo

Simplify taxonomy by removing some unused characters such as "k__"

Description

[Maturing]

Usage

`simplify_taxo(physeq, remove_space = TRUE)`

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the phyloseq package.
- `remove_space` (logical; default TRUE): do we remove space?
Value

A phyloseq-class object with simplified taxonomy

Author(s)

Adrien Taudière

---

**SRS_curve_pq**

*Scaling with ranked subsampling (SRS) curve of phyloseq object*

Description

[Experimental]

Usage

\[
\text{SRS\_curve\_pq}(\text{physeq}, \text{clean\_pq} = \text{FALSE}, ...) \]

Arguments

- **physeq** (required): a phyloseq-class object obtained using the phyloseq package.
- **clean\_pq** (logical): Does the phyloseq object is cleaned using the clean\_pq() function?
- **...** Other arguments passed on to SRS::SRScurve()

Value

A plot

Examples

```r
if (requireNamespace("SRS")) {
 SRS_curve_pq(data_fungi_mini,
 max.sample.size = 200,
 rarefy.comparison = TRUE, rarefy.repeats = 3)
 SRS_curve_pq(data_fungi_mini, max.sample.size = 500, metric = "shannon")
}
```
subsample_fastq

Subsample a fastq file copying the n_seq first sequences in a given folder

Description

[Experimental]

Usage

subsample_fastq(fastq_files, folder_output = "subsample", nb_seq = 1000)

Arguments

fastq_files The path to one fastq file or a list of fastq files (see examples)
folder_output The path to a folder for output files
nb_seq (int; default 1000) : Number of sequences kept (every sequence spread across 4 lines)

Value

Nothing, create subsampled fastq files in a folder

Author(s)

Adrien Taudière

Examples

ex_file <- system.file("extdata", "ex_R1_001.fastq.gz",
    package = "MiscMetabar",
    mustWork = TRUE
)
subsample_fastq(ex_file, paste0(tempdir(), "/output_fastq"))
subsample_fastq(list_fastq_files("extdata"), paste0(tempdir(), "/output_fastq"), n = 10)
unlink(paste0(tempdir(), "/output_fastq"), recursive = TRUE)
subset_samples_pq  Subset samples using a conditional boolean vector.

Description

[Experimental]

The main objective of this function is to complete the `phyloseq::subset_samples()` function by propose a more easy (but more prone to error) way of subset_samples. It replace the subsetting expression which used the name of the variable in the sam_data by a boolean vector.

Warnings: you must verify the result of this function as the boolean condition must match the order of samples in the sam_data slot.

This function is robust when you use the sam_data slot of the phyloseq object used in physeq (see examples)

Usage

`subset_samples_pq(physeq, condition)`

Arguments

physeq             (required): a `phyloseq-class` object obtained using the phyloseq package.
condition          A boolean vector to subset samples. Length must fit the number of samples

Value

a new phyloseq object

Examples

```r
cond_samp <- grepl("A1", data_fungi@sam_data[["Sample_names"]])
subset_samples_pq(data_fungi, cond_samp)
subset_samples_pq(data_fungi, data_fungi@sam_data[["Height"]]
```

subset_taxa_pq  Subset taxa using a conditional named boolean vector.

Description

[Experimental]

The main objective of this function is to complete the `phyloseq::subset_taxa()` function by propose a more easy way of subset_taxa using a named boolean vector. Names must match taxa_names.
subset_taxa_pq

Usage

subset_taxa_pq(
    physeq,
    condition,
    verbose = TRUE,
    clean_pq = TRUE,
    taxa_names_from_physeq = FALSE
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

condition A named boolean vector to subset taxa. Length must fit the number of taxa
            and names must match taxa_names. Can also be a condition using a column
            of the tax_table slot (see examples). If the order of condition is the same as
            taxa_names(physeq), you can use the parameter taxa_names_from_physeq =
            TRUE.

verbose (logical) Informations are printed

clean_pq (logical) If set to TRUE, empty samples are discarded after subsetting ASV

taxa_names_from_physeq (logical) If set to TRUE, rename the condition vector using taxa_names(physeq).
            Carefully check the result of this function if you use this parameter. No effect if
            the condition is of class tax_table.

Value

a new phyloseq object

Examples

subset_taxa_pq(data_fungi, data_fungi@tax_table[, "Phylum"] == "Ascomycota")

cond_taxa <- grepl("Endophyte", data_fungi@tax_table[, "Guild"])
names(cond_taxa) <- taxa_names(data_fungi)
subset_taxa_pq(data_fungi, cond_taxa)

subset_taxa_pq(data_fungi, grepl("mycor", data_fungi@tax_table[, "Guild"]),
    taxa_names_from_physeq = TRUE
)
subset_taxa_tax_control

Subset taxa using a taxa control (e.g. truffle root tips) through 3 methods.

Description

[Experimental]

Usage

subset_taxa_tax_control(
  physeq,
  taxa_distri,
  method = "mean",
  min_diff_for_cutoff = NULL
)

Arguments

physeq  (required): a phyloseq-class object obtained using the phyloseq package.
taxa_distri (required) a vector of length equal to the number of samples with the number of sequences per samples for the taxa control
method (default: "mean") a method to calculate the cut-off value. There is 6 available methods:
  1. cutoff_seq: discard taxa with less than the number of sequence than taxa control,
  2. cutoff_mixt: using mixture models,
  3. cutoff_diff: using a minimum difference threshold (need the argument min_diff_for_cutoff)
  4. min: the minimum of the three firsts methods
  5. max: the maximum of the three firsts methods
  6. mean: the mean of the three firsts methods
min_diff_for_cutoff
  (int) argument for method cutoff_diff. Required if method is cutoff_diff, min, max or mean

Value

A new phyloseq-class object.

Author(s)

Adrien Taudière
**summary_plot_pq**

Examples

```r
subset_taxa_tax_control(data_fungi,
 as.numeric(data_fungi@otu_table[, 300]),
 min_diff_for_cutoff = 2
)
```

---

**summary_plot_pq**  
*Summarize a phyloseq-class object using a plot.*

Description

[Maturing]

Usage

```r
summary_plot_pq(
 physeq,
 add_info = TRUE,
 min_seq_samples = 500,
 clean_pq = TRUE
)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **add_info**  
  Does the bottom down corner contain extra informations?
- **min_seq_samples**  
  (int): Used only when add_info is set to true to print the number of samples with less sequences than this number.
- **clean_pq** (logical): Does the phyloseq object is cleaned using the `clean_pq()` function?

Value

A ggplot2 object

Examples

```r
summary_plot_pq(data_fungi)
summary_plot_pq(data_fungi, add_info = FALSE) + scale_fill_viridis_d()
```
swarm_clustering

Re-cluster sequences of an object of class physeq or cluster a list of DNA sequences using SWARM

Description

[Maturing]

Usage

```r
swarm_clustering(
 physeq = NULL,
 dna_seq = NULL,
 d = 1,
 swarmpath = "swarm",
 vsearch_path = "vsearch",
 nproc = 1,
 swarm_args = "--fastidious",
 tax_adjust = 0,
 keep_temporary_files = FALSE
)
```

Arguments

- **physeq** (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- **dna_seq** (NOT WORKING FOR THE MOMENT) You may directly use a character vector of DNA sequences in place of physeq args. When physeq is set, dna sequences take the value of physeq@refseq.
- **d** (default: 1) maximum number of differences allowed between two amplicons, meaning that two amplicons will be grouped if they have d (or less) differences.
- **swarmpath** (default: swarm) path to swarm.
- **vsearch_path** (default: vsearch) path to vsearch, used only if physeq is NULL and dna_seq is provided.
- **nproc** (default: 1) Set to number of cpus/processors to use for the clustering.
- **swarm_args** (default: "--fastidious") a one length character element defining other parameters to passed on to swarm See other possible methods in the SWARM pdf manual.
- **tax_adjust** (Default 0) See the man page of `merge_taxa_vec()` for more details. To conserved the taxonomic rank of the most abundant ASV.
- **keep_temporary_files** (logical, default: FALSE) Do we keep temporary files?
  - temp.fasta (refseq in fasta or dna_seq sequences)
  - temp_output (classical output of SWARM)
  - temp_uclust (clusters output of SWARM)
swarm_clustering

Details

This function uses the `merge_taxa_vec` function to merge taxa into clusters. By default, `tax_adjust = 0`. See the man page of `merge_taxa_vec()`.

This function is mainly a wrapper of the work of others. Please cite SWARM.

Value

A new object of class `physeq` or a list of clusters if `dna_seq` args was used.

References

SWARM can be downloaded from https://github.com/torognes/swarm/.


See Also

`asv2otu()`, `vsearch_clustering()`

Examples

```r
summary_plot_pq(data_fungi)
system2("swarm", "-h")

data_fungi_swarm <- swarm_clustering(data_fungi)
summary_plot_pq(data_fungi_swarm)

sequences_ex <- c(
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTAATAACGAATTCATTGAATCA",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACCTGGTAAGGCCCACTT",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACCTGGTAGAGGTG",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACCTGG",
 "CGGGCTAAACCTACCCGGGATTTGATGGGCGAATTACCTGGTATTTTAGCCCACTTACCCGGTACCATGAGGTG",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACCTGG",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACAAAG",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACAAAG",
 "TACCTATGTTGGCGCTAAACCTACCCGGGATTTGATGGGCGAATTACAAAG"
)

sequences_ex_swarm <- swarm_clustering(
 dna_seq = sequences_ex
)
```

taxa_as_columns

Force taxa to be in columns in the `otu_table` of a `physeq` object

Description

[Maturing]

Usage

taxa_as_columns(physeq)

Arguments

physeq (required): a `phyloseq-class` object obtained using the `phyloseq` package.

Value

A new `phyloseq-class` object

Author(s)

Adrien Taudière

taxa_as_rows

Force taxa to be in columns in the `otu_table` of a `physeq` object

Description

[Maturing]

Usage

taxa_as_rows(physeq)

Arguments

physeq (required): a `phyloseq-class` object obtained using the `phyloseq` package.

Value

A new `phyloseq-class` object

Author(s)

Adrien Taudière
taxa_only_in_one_level

Show taxa which are present in only one given level of a modality

Description
[Experimental]
[Experimental]

Usage

taxa_only_in_one_level(
  physeq,
  modality,
  level,
  min_nb_seq_taxa = 0,
  min_nb_samples_taxa = 0
)
taxa_only_in_one_level(
  physeq,
  modality,
  level,
  min_nb_seq_taxa = 0,
  min_nb_samples_taxa = 0
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
modality (required) The name of a column present in the @sam_data slot of the physeq object. Must be a character vector or a factor.
level (required) The level (must be present in modality) of interest
min_nb_seq_taxa (default 0 = no filter) The minimum number of sequences per taxa
min_nb_samples_taxa (default 0 = no filter) The minimum number of samples per taxa

Value

A vector of taxa names
A vector of taxa names

Author(s)

Adrien Taudière
See Also

`ggvenn_pq()` and `upset_pq()`

Examples

data_fungi_mini_woNA4height <- subset_samples(
  data_fungi_mini,
  !is.na(data_fungi_mini@sam_data$Height)
)
taxa_only_in_one_level(data_fungi_mini_woNA4height, "Height", "High")
# Taxa present only in low height samples
suppressMessages(suppressWarnings(taxa_only_in_one_level(data_fungi, "Height", "Low")))
# Number of taxa present only in sample of time equal to 15
suppressMessages(suppressWarnings(length(taxa_only_in_one_level(data_fungi, "Time", "15"))))

---

tax_bar_pq  

Plot the distribution of sequences or ASV in one taxonomic levels

Description

[Experimental]

Usage

```r
tax_bar_pq(
 physeq,
 fact = "Sample",
 taxa = "Order",
 percent_bar = FALSE,
 nb_seq = TRUE
)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the `phyloseq` package.
- `fact`: Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.
- `taxa` (default: 'Order') Name of the taxonomic rank of interest
- `percent_bar` (default FALSE) If TRUE, the stacked bar fill all the space between 0 and 1. It just set position = "fill" in the `ggplot2::geom_bar()` function
- `nb_seq` (logical; default TRUE) If set to FALSE, only the number of ASV is count. Concretely, physeq otu_table is transformed in a binary otu_table (each value different from zero is set to one)

Value

A `ggplot2` plot with bar representing the number of sequence en each taxonomic groups
**tax_datatable**

**Author(s)**

Adrien Taudière

**See Also**

`plot_tax_pq()` and `multitax_bar_pq()`

**Examples**

```r
data_fungi_ab <- subset_taxa_pq(data_fungi, taxa_sums(data_fungi) > 10000)
tax_bar_pq(data_fungi_ab) + theme(legend.position = "none")
tax_bar_pq(data_fungi_ab, taxa = "Class")
tax_bar_pq(data_fungi_ab, taxa = "Class", percent_bar = TRUE)
tax_bar_pq(data_fungi_ab, taxa = "Class", fact = "Time")
```

---

**tax_datatable**  
Make a datatable with the taxonomy of a phyloseq-class object

**Description**

[Maturing]

**Usage**

```r
tax_datatable(
 physeq,
 abundance = TRUE,
 taxonomic_level = NULL,
 modality = NULL,
 ...
)
```

**Arguments**

- `physeq`  
  (required): a `phyloseq-class` object obtained using the phyloseq package.

- `abundance`  
  (default: TRUE) Does the number of sequences is print

- `taxonomic_level`  
  (default: NULL) a vector of selected taxonomic level using their column numbers (e.g. taxonomic_level = 1:7)

- `modality`  
  (default: NULL) A sample modality to split OTU abundancy by level of the modality

- `...`  
  Other argument for the datatable function
Value

A datatable

Author(s)

Adrien Taudière

Examples

```r
data("GlobalPatterns", package = "phyloseq")
if (requireNamespace("DT")) {
 tax_datatable(subset_taxa(
 GlobalPatterns,
 rowSums(GlobalPatterns@otu_table) > 10000
))
}
Using modality
tax_datatable(GlobalPatterns,
 modality = GlobalPatterns@sam_data$SampleType
)
```

---

tbl_sum_samdata  
*Summarize information from sample data in a table*

Description

[Experimental]

A wrapper for the `gtsummary::tbl_summary()` function in the case of physeq object.

Usage

```r
tbl_sum_samdata(physeq, remove_col_unique_value = TRUE, ...)
```

Arguments

- `physeq` (required): a `phyloseq-class` object obtained using the phyloseq package.
- `remove_col_unique_value` (logical, default TRUE) Do we remove informative columns (categorical column with one value per samples), e.g. samples names?
- `...` Others arguments pass on to `gtsummary::tbl_summary()`.

Details

This function is mainly a wrapper of the work of others. Please make a reference to `gtsummary::tbl_summary()` if you use this function.
Value

A new phyloseq-class object with a larger slot tax_table

Author(s)

Adrien Taudière

Examples

```r
if (requireNamespace("gtsummary")) {
 tbl_sum_samdata(data_fungi) %>%
 gtsummary::as_kable()

 summary_samdata <- tbl_sum_samdata(data_fungi,
 include = c("Time", "Height"),
 type = list(Time ~ "continuous2", Height ~ "categorical"),
 statistic = list(Time ~ c("{median} ({p25}, {p75})", "{min}, {max}"))
)
}

data(enterotype)
if (requireNamespace("gtsummary")) {
 summary_samdata <- tbl_sum_samdata(enterotype)
 summary_samdata <- tbl_sum_samdata(enterotype, include = !contains("SampleId"))
}
```

Description

This tutorial explores the dataset from Tengeler et al. (2020) available in the mia package. Obtained using `mia::makePhyloseqFromTreeSE(Tengeler2020)`

Usage

```r
data(Tengeler2020_pq)
```

Format

A phyloseq object
Details

Tengeler2020 includes gut microbiota profiles of 27 persons with ADHD. A standard bioinformatic and statistical analysis done to demonstrate that altered microbial composition could be a driver of altered brain structure and function and concomitant changes in the animals behavior. This was investigated by colonizing young, male, germ-free C57BL/6JOlHaHsd mice with microbiota from individuals with and without ADHD.


---

track_wkflow

Track the number of reads (= sequences), samples and cluster (e.g. ASV) from various objects including dada-class and derep-class.

Description

[Maturing]

- List of fastq and fastg.gz files -> nb of reads and samples
- List of dada-class -> nb of reads, clusters (ASV) and samples
- List of derep-class -> nb of reads, clusters (unique sequences) and samples
- Matrix of samples x clusters (e.g. otu_table) -> nb of reads, clusters and samples
- Phyloseq-class -> nb of reads, clusters and samples

Usage

track_wkflow(
  list_of_objects,
  obj_names = NULL,
  clean_pq = FALSE,
  taxonomy_rank = NULL,
  ...
)

Arguments

list_of_objects (required) a list of objects
obj_names A list of names corresponding to the list of objects
clean_pq (logical) If set to TRUE, empty samples and empty ASV are discarded before clustering.
taxonomy_rank A vector of int. Define the column number of taxonomic rank in physeq@tax_table to compute the number of unique value. Default is NULL and do not compute values for any taxonomic rank
...

Other arguments passed on to clean_pq() function.
Value

The number of sequences, clusters (e.g. OTUs, ASVs) and samples for each object.

See Also

track_wkflow_samples()

Examples

data(enterotype)
if (requireNamespace("pbapply")) {
  track_wkflow(list(data_fungi, enterotype), taxonomy_rank = c(3, 5))
}

---

track_wkflow_samples  Track the number of reads (= sequences), samples and cluster (e.g. ASV) for each sample

Description

[Experimental]

Contrary to track_wkflow(), only phyloseq object are possible. More information are available in the manual of the function track_wkflow()

Usage

track_wkflow_samples(list_pq_obj, ...)

Arguments

list_pq_obj  (required): a list of object passed on to track_wkflow() Only phyloseq object will return value because information of sample is needed
...

Other args passed on to track_wkflow()

Value

A list of dataframe. cf track_wkflow() for more information

Author(s)

Adrien Taudière
Examples

tree_A10_005 <- subset_samples(data_fungi, Tree_name == "A10-005")
if (requireNamespace("pbapply")) {
  track_workflow_samples(tree_A10_005)
}

transp

---

transp | Adds transparency to a vector of colors

Description

Adds transparency to a vector of colors

Usage

transp(col, alpha = 0.5)

Arguments

col | a vector of colors

alpha | (default 0.5) a numeric value between 0 and 1 representing the alpha coefficient; 0: total transparency; 1: no transparency.

Value

a color vector

Author(s)

Thibaut Jombart in adegenet package

See Also

The R package RColorBrewer, proposing a nice selection of color palettes. The viridis package, with many excellent palettes
Function: `treemap_pq`

**Plot treemap of 2 taxonomic levels**

**Description**

[Experimental]

Note that lvl2 need to be nested in lvl1

**Usage**

```r
treemap_pq(
 physeq,
 lvl1,
 lvl2,
 nb_seq = TRUE,
 log10trans = TRUE,
 plot_legend = FALSE,
 ...
)
```

**Arguments**

- **physeq** (required): a `phyloseq-class` object obtained using the phyloseq package.
- **lvl1** (required): Name of the first (higher) taxonomic rank of interest.
- **lvl2** (required): Name of the second (lower) taxonomic rank of interest.
- **nb_seq** (logical; default TRUE): If set to FALSE, only the number of ASV is count. Concretely, physeq otu_table is transformed in a binary otu_table (each value different from zero is set to one).
- **log10trans** (logical, default TRUE): If TRUE, the number of sequences (or ASV if nb_seq = FALSE) is log10 transformed.
- **plot_legend** (logical, default FALSE): If TRUE, plot the legend of color for lvl 1.
- ... Other arguments passed on to `treemapify::geom_treemap()` function.

**Value**

A ggplot2 graphic

**Author(s)**

Adrien Taudière
Examples

data(data_fungi_sp_known)
if (requireNamespace("treemapify")) {
  treemap_pq(
    clean_pq(subset_taxa(
      data_fungi_sp_known, Phylum == "Basidiomycota")),
    "Order", "Class",
    plot_legend = TRUE
  )
}
if (requireNamespace("treemapify")) {
  treemap_pq(
    clean_pq(subset_taxa(
      data_fungi_sp_known, Phylum == "Basidiomycota")),
    "Order", "Class",
    log10trans = FALSE
  )
  treemap_pq(
    clean_pq(subset_taxa(
      data_fungi_sp_known, Phylum == "Basidiomycota")),
    "Order", "Class",
    nb_seq = FALSE, log10trans = FALSE
  )
}

---

**tsne_pq**

*Compute tSNE position of samples from a phyloseq object*

**Description**

Compute tSNE position of samples from a phyloseq object

**Usage**

```
lsne_pq(physeq, method = "bray", dims = 2, theta = 0, perplexity = 30, ...)
```

**Arguments**

- **physeq** *(required): a phyloseq-class object obtained using the phyloseq package.*
- **method** *A method to calculate distance using vegan::vegdist() function*
- **dims** *(Int) Output dimensionality (default: 2)*
unique_or_na

theta (Numeric) Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.0 see details in the man page of Rtsne::Rtsne).

perplexity (Numeric) Perplexity parameter (should not be bigger than 3 * perplexity < nrow(X) - 1, see details in the man page of Rtsne::Rtsne)

... Other arguments passed on to Rtsne::Rtsne()

Value

A list of element including the matrix Y containing the new representations for the objects. See ?Rtsne::Rtsne() for more information

Examples

```r
if (requireNamespace("Rtsne")) {
 res_tsne <- tsne_pq(data_fungi)
}
```

### Description

If unique(x) is a single value, return it; otherwise, return an NA of the same type as x. If x is a factor, then the levels and ordered status will be kept in either case. If x is a non-atomic vector (i.e. a list), then the logical NA will be used.

### Usage

`unique_or_na(x)`

### Arguments

- `x` A vector

### Value

Either a single value (if unique(x) return a single value) or a NA

### Author(s)

Michael R. McLaren (orcid: 0000-0003-1575-473X)
Examples

```r
f <- factor(c("a", "a", "b", "c"), ordered = TRUE)
unique_or_na(f)
unique_or_na(f[1:2])

x <- c("a", "b", "a")
unique_or_na(x[c(1, 3)])
unique_or_na(x)
unique_or_na(x) %>% typeof()
```

**upset_pq**  
*Make upset plot for phyloseq object.*

Description

[Experimental]
Alternate to venn plot.

Usage

```r
upset_pq(
 physeq,
 fact,
 taxa_fill = NULL,
 min_nb_seq = 0,
 na_remove = TRUE,
 numeric_fonction = sum,
 rarefy_after_merging = FALSE,
 ...
)
```

Arguments

- **physeq** (required): a **phyloseq-class** object obtained using the phyloseq package.
- **fact** (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.
- **taxa_fill** (default NULL) fill the ASV upset using a column in tax_table slot.
- **min_nb_seq** minimum number of sequences by OTUs by samples to take into count this OTUs in this sample. For example, if min_nb_seq=2,each value of 2 or less in the OTU table will not count in the venn diagram.
- **na_remove** : if TRUE (the default), NA values in fact are removed if FALSE, NA values are set to "NA"
- **numeric_fonction** (default : sum) the function for numeric vector useful only for complex plot (see examples)
- **rarefy_after_merging** Rarefy each sample after merging by the modalities of fact parameter
- ... Other arguments passed on to the ComplexUpset::upset()
upset_pq

Value
A ggplot2 plot

Author(s)
Adrien Taudière

See Also
ggvenn_pq()

Examples
if (requireNamespace("ComplexUpset")) {
  upset_pq(data_fungi_mini,
            fact = "Height", width_ratio = 0.2,
            taxa_fill = "Class"
  )
}

if (requireNamespace("ComplexUpset")) {
  upset_pq(data_fungi_mini, fact = "Height", min_nb_seq = 1000)
  upset_pq(data_fungi_mini, fact = "Height", na_remove = FALSE)

  upset_pq(data_fungi_mini, fact = "Time", width_ratio = 0.2, rarefy_after_merging = TRUE)

  upset_pq(
    data_fungi_mini,
    fact = "Time",
    width_ratio = 0.2,
    annotations = list(
      "Sequences per ASV \n (log10)" = (ggplot(mapping = aes(y = log10(Abundance)))
        + geom_jitter(aes(color = Abundance), na.rm = TRUE)
        + geom_violin(alpha = 0.5, na.rm = TRUE) +
        theme(legend.key.size = unit(0.2, "cm")) +
        theme(axis.text = element_text(size = 12))
      ),
      "ASV per phylum" = (ggplot(mapping = aes(fill = Phylum))
        + geom_bar() +
        ylab("ASV per phylum") +
        theme(legend.key.size = unit(0.2, "cm")) +
        theme(axis.text = element_text(size = 12))
      )
    )
  )
}
```r
upset_pq(
 data_fungi_mini,
 fact = "Time",
 width_ratio = 0.2,
 numeric_function = mean,
 annotations = list(
 "Sequences per ASV \n (log10)" = (
 ggplot(mapping = aes(y = log10(Abundance)))
 +
 geom_jitter(aes(
 color =
 Abundance
), na.rm = TRUE)
 +
 geom_violin(alpha = 0.5, na.rm = TRUE) +
 theme(legend.key.size = unit(0.2, "cm")) +
 theme(axis.text = element_text(size = 12))
),
 "ASV per phylum" = (
 ggplot(mapping = aes(fill = Phylum))
 +
 geom_bar() +
 ylab("ASV per phylum") +
 theme(legend.key.size = unit(0.2, "cm")) +
 theme(axis.text = element_text(size = 12))
)
),
 subset_taxa(data_fungi_mini, Phylum == "Basidiomycota"),
 fact = "Time",
 width_ratio = 0.2,
 base_annotations = list(),
 annotations = list(
 "Sequences per ASV \n (log10)" = (
 ggplot(mapping = aes(y = log10(Abundance)))
 +
 geom_jitter(aes(
 color =
 Abundance
), na.rm = TRUE)
 +
 geom_violin(alpha = 0.5, na.rm = TRUE) +
 theme(legend.key.size = unit(0.2, "cm")) +
 theme(axis.text = element_text(size = 12))
),
 "ASV per phylum" = (
 ggplot(mapping = aes(fill = Class))
)
)
)
```
upset_test_pq  

+  
  geom_bar() +  
  ylab("ASV per Class") +  
  theme(legend.key.size = unit(0.2, "cm")) +  
  theme(axis.text = element_text(size = 12))  
)  
)  
)  
)

data_fungi2 <- data_fungi_mini  
data_fungi2@sam_data["Time_0"] <- data_fungi2@sam_data$Time == 0  
data_fungi2@sam_data["Height__Time_0"] <-  
  paste0(data_fungi2@sam_data["Height"], ",", data_fungi2@sam_data["Time_0"]])  
data_fungi2@sam_data["Height__Time_0"] [grepl("NA", data_fungi2@sam_data["Height__Time_0"])] <-  
  NA  
upset_pq(data_fungi2, fact = "Height__Time_0", width_ratio = 0.2, min_size = 2)  
)

upset_test_pq  

Test for differences between intersections

Description

[Experimental]

Usage

upset_test_pq(     physeq,     fact,     var_to_test = "OTU",     min_nb_seq = 0,     na_remove = TRUE,     numeric_fonction = sum,     ...  
)

Arguments

physeq  (required): a phyloseq-class object obtained using the phyloseq package.

fact  (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.

var_to_test  (default c("OTU")) : a vector of column present in the tax_table slot from the physeq object

min_nb_seq  minimum number of sequences by OTUs by samples to take into count this OTUs in this sample. For example, if min_nb_seq=2, each value of 2 or less in the OTU table will not count in the venn diagram
Partition the Variation of a phyloseq object by 2, 3, or 4 Explanatory Matrices

Description

[Experimental] The function partitions the variation in otu_table using distance (Bray per default) with respect to two, three, or four explanatory tables, using adjusted $R^2$ in redundancy analysis ordination (RDA) or distance-based redundancy analysis. If response is a single vector, partitioning is by partial regression. Collinear variables in the explanatory tables do NOT have to be removed prior to partitioning. See `vegan::varpart()` for more information.

Usage

```r
var_par_pq(
 physeq,
 list_component,
 dist_method = "bray",
 dbrrda_computation = TRUE
)
```
Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

list_component (required) A named list of 2, 3 or four vectors with names from the @sam_data slot.

dist_method (default "bray") the distance used. See phyloseq::distance() for all available distances or run phyloseq::distanceMethodList(). For "aitchison" and "robust.aitchison" distance, vegan::vegdist() function is directly used.

dbrda_computation (logical) Do dbrda computations are runned for each individual component (each name of the list component)?

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::varpart() if you use this function.

Value

an object of class "varpart", see vegan::varpart()

Author(s)

Adrien Taudière

See Also

var_par_rarperm_pq(), vegan::varpart(), plot_var_part_pq()

Examples

```r
if (requireNamespace("vegan")) {
 data_fungi_woNA <-
 subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
 res_var <- var_par_pq(data_fungi_woNA,
 list_component = list(
 "Time" = c("Time"),
 "Size" = c("Height", "Diameter")
),
 dbrda_computation = TRUE
)
}
```
**Description**

[Experimental]
This is an extension of the function `var_par_pq()`. The main addition is the computation of \(n_{perm}\) permutations with rarefaction even depth by sample. The return object

**Usage**

```r
var_par_rarperm_pq(
 physeq,
 list_component,
 dist_method = "bray",
 nperm = 99,
 quantile_prob = 0.975,
 dbrda_computation = FALSE,
 dbrda_signif_pval = 0.05,
 sample.size = min(sample_sums(physeq)),
 verbose = FALSE,
 progress_bar = TRUE
)
```

**Arguments**

- `physeq` (required): a `phyloseq-class` object obtained using the phyloseq package.
- `list_component` (required): A named list of 2, 3 or four vectors with names from the `@sam_data` slot.
- `dist_method` (default "bray") the distance used. See `phyloseq::distance()` for all available distances or run `phyloseq::distanceMethodList()`. For aitchison and robust.aitchison distance, `vegan::vegdist()` function is directly used. #’@param fill_bg
- `nperm` (int) The number of permutations to perform.
- `quantile_prob` (float, \([0:1]\)) the value to compute the quantile. Minimum quantile is compute using 1-quantile_prob.
- `dbrda_computation` (logical) Do dbrda computations are runned for each individual component (each name of the list component) ?
- `dbrda_signif_pval` (float, \([0:1]\)) The value under which the dbrda is considered significant.
- `sample.size` (int) A single integer value equal to the number of reads being simulated, also known as the depth. See `phyloseq::rarefy_even_depth()`.
- `verbose` (logical). If TRUE, print additional informations.
- `progress_bar` (logical, default TRUE) Do we print progress during the calculation?
Details

This function is mainly a wrapper of the work of others. Please make a reference to `vegan::varpart()` if you use this function.

Value

A list of class `varpart` with additional information in the `$part$indfract` part. Adj.R.square is the mean across permutation. Adj.R.squared_quantil_min and Adj.R.squared_quantil_max represent the quantile values of adjuste R squared

Author(s)

Adrien Taudière

See Also

`var_par_pq()`, `vegan::varpart()`, `plot_var_part_pq()`

Examples

```r
if (requireNamespace("vegan")) {
 data_fungi_woNA <- subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
 res_var_9 <- var_par_rarperm_pq(
 data_fungi_woNA,
 list_component = list(
 "Time" = c("Time"),
 "Size" = c("Height", "Diameter")
),
 nperm = 9,
 dbrda_computation = TRUE
)
 res_var_2 <- var_par_rarperm_pq(
 data_fungi_woNA,
 list_component = list(
 "Time" = c("Time"),
 "Size" = c("Height", "Diameter")
),
 nperm = 2,
 dbrda_computation = TRUE
)
}
```
Description

[Maturing]

Usage

venn_pq(physeq, fact, min_nb_seq = 0, print_values = TRUE)

Arguments

physeq  (required): a phyloseq-class object obtained using the phyloseq package.

fact  (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.

min_nb_seq  (default: 0)): minimum number of sequences by OTUs by samples to take into count this OTUs in this sample. For example, if min_nb_seq=2,each value of 2 or less in the OTU table will be change into 0 for the analysis

print_values  (logical) Print (or not) the table of number of OTUs for each combination. If print_values is TRUE the object is not a ggplot object. Please use print_values = FALSE if you want to add ggplot function (cf example).

Value

A ggplot2 plot representing Venn diagram of modalities of the argument factor

Author(s)

Adrien Taudière

See Also

venneuler

Examples

if (requireNamespace("venneuler")) {
  data("enterotype")
  venn_pq(enterotype, fact = "SeqTech")
}

if (requireNamespace("venneuler")) {
  venn_pq(enterotype, fact = "ClinicalStatus")
  venn_pq(enterotype, fact = "Nationality", print_values = FALSE)
  venn_pq(enterotype, fact = "ClinicalStatus", print_values = FALSE) +
  scale_fill_hue()
verify_pq

Verify the validity of a phyloseq object

Description

[Maturing]

Mostly for internal use in MiscMetabar functions.

Usage

verify_pq(
  physeq,
  verbose = FALSE,
  min_nb_seq_sample = 500,
  min_nb_seq_taxa = 1
)

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.
verbose (logical, default FALSE) If TRUE, prompt some warnings.
min_nb_seq_sample (numeric) Only used if verbose = TRUE. Minimum number of sequences per samples to not show warning.
min_nb_seq_taxa (numeric) Only used if verbose = TRUE. Minimum number of sequences per taxa to not show warning.

Value

Nothing if the phyloseq object is valid. An error in the other case. Warnings if verbose = TRUE
Recluster sequences of an object of class physeq or cluster a list of DNA sequences using vsearch software

Description

[Maturing]

Usage

vsearch_clustering(
  physeq = NULL,
  dna_seq = NULL,
  nproc = 1,
  id = 0.97,
  vsearchpath = "vsearch",
  tax_adjust = 0,
  vsearch_cluster_method = "--cluster_size",
  vsearch_args = "--strand both",
  keep_temporary_files = FALSE
)

Arguments

physeq  (required): a phyloseq-class object obtained using the phyloseq package.
dna_seq You may directly use a character vector of DNA sequences in place of physeq
  args. When physeq is set, dna sequences take the value of physeq@refseq
nproc  (default: 1) Set to number of cpus/processors to use for the clustering
id  (default: 0.97) level of identity to cluster
vsearchpath  (default: vsearch) path to vsearch
tax_adjust  (Default 0) See the man page of merge_taxa_vec() for more details. To con-
  served the taxonomic rank of the most abundant ASV, set tax_adjust to 0 (de-
  fault). For the moment only tax_adjust = 0 is robust
vsearch_cluster_method  (default: "--cluster_size") See other possible methods in the vsearch manual (e.g.
  --cluster_size or --cluster_smallmem)
  • --cluster_fast: Clusterize the fasta sequences in filename, automatically sort by decreasing sequence length beforehand.
  • --cluster_size: Clusterize the fasta sequences in filename, automatically sort by decreasing sequence abundance beforehand.
  • --cluster_smallmem: Clusterize the fasta sequences in filename without automatically modifying their order beforehand. Sequence are expected to be sorted by decreasing sequence length, unless --usersort is used. In that case you may set vsearch_args to vsearch_args = "--strand both --usersort"
vsearch_clustering

vsearch_args (default: "--strand both") a one length character element defining other parameters to passed on to vsearch.

keep_temporary_files
  (logical, default: FALSE) Do we keep temporary files?

• temp.fasta (refseq in fasta or dna_seq sequences)
• cluster.fasta (centroid if method = "vsearch")
• temp.uc (clusters if method = "vsearch")

Details

This function use the merge_taxa_vec() function to merge taxa into clusters. By default tax_adjust = 0. See the man page of merge_taxa_vec().

This function is mainly a wrapper of the work of others. Please cite vsearch.

Value

A new object of class physeq or a list of cluster if dna_seq args was used.

Author(s)

Adrien Taudière

References


See Also

asv2otu(), swarm_clustering()

Examples

summary_plot_pq(data_fungi)
d_vs <- vsearch_clustering(data_fungi)
summary_plot_pq(d_vs)
vs_search_global

Search for a list of sequence in a fasta file against physeq reference sequences using \texttt{R} \url{https://github.com/torognes/vsearch}

Description

[Maturing]

Usage

\begin{verbatim}
vs_search_global(
  physeq,
  seq2search = NULL,
  path_to_fasta = NULL,
  vsearchpath = "vsearch",
  id = 0.8,
  iddef = 0,
  keep_temporary_files = FALSE
)
\end{verbatim}

Arguments

\begin{itemize}
  \item \textbf{physeq} \textit{(required): a phyloseq-class object obtained using the phyloseq package.}
  \item \textbf{seq2search} \textit{(required if path_to_fasta is NULL)} Either (i) a DNAStringSet object or (ii) a character vector that will be convert to DNAStringSet using \texttt{Biostrings::DNAStringSet()}
  \item \textbf{path_to_fasta} \textit{(required if seq2search is NULL)} a path to fasta file if seq2search is est to NULL.
  \item \textbf{vsearchpath} \textit{(default: vsearch) path to vsearch}
  \item \textbf{id} \textit{(default: 0.8) id for the option \texttt{--usearch_global} of the vsearch software}
  \item \textbf{iddef} \textit{(default: 0) iddef for the option \texttt{--usearch_global} of the vsearch software}
  \item \textbf{keep_temporary_files} \textit{(logical, default: FALSE) Do we keep temporary files}
    \begin{itemize}
      \item temp.fasta (refseq in fasta)
      \item cluster.fasta (centroid)
      \item temp.uc (clusters)
    \end{itemize}
\end{itemize}

Details

This function is mainly a wrapper of the work of others. Please cite vsearch.

Value

A dataframe with uc results (invisible)

Author(s)

Adrien Taudière
Examples

```r
if (requireNamespace("seqinr")) {
 file_dna <- tempfile("dna.fa")
 seqinr::write.fasta("GCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTTCAACC",
 file = file_dna, names = "seq1"
)

 res <- vs_search_global(data_fungi, path_to_fasta = file_dna)
 unlink(file_dna)

 res[res$identity != "*",]

 clean_pq(subset_taxa(data_fungi, res$identity != "*"))
}
```

---

**write_pq**  
*Save phyloseq object in the form of multiple csv tables.*

### Description

[Maturing]

### Usage

```r
write_pq(
 physeq,
 path = NULL,
 rdata = FALSE,
 one_file = FALSE,
 write_sam_data = TRUE,
 sam_data_first = FALSE,
 clean_pq = TRUE,
 reorder_asv = FALSE,
 rename_asv = FALSE,
 remove_empty_samples = TRUE,
 remove_empty_taxa = TRUE,
 clean_samples_names = TRUE,
 silent = FALSE,
 verbose = FALSE,
 quote = FALSE,
 sep_csv = "\t",
 ...
)
```
Arguments

physeq (required): a *phyloseq-class* object obtained using the phyloseq package.

path a path to the folder to save the phyloseq object

rdata (logical) does the phyloseq object is also saved in Rdata format?

one_file (logical) if TRUE, combine all data in one file only

write_sam_data (logical) does the samples data are add to the file. Only used if one_file is TRUE. Note that these option result in a lot of NA values.

sam_data_first (logical) if TRUE, put the sample data at the top of the table Only used if one_file and write_sam_data are both TRUE.

clean_pq (logical) If set to TRUE, empty samples are discarded after subsetting ASV

reorder_asv (logical) if TRUE the otu_table is ordered by the number of sequences of ASV (descending order). Default to TRUE. Only possible if clean_pq is set to TRUE.

rename_asv reorder_asv (logical) if TRUE, ASV are renamed by their position in the OTU_table (asv_1, asv_2, ...). Default to FALSE. Only possible if clean_pq is set to TRUE.

remove_empty_samples (logical) Do you want to remove samples without sequences (this is done after removing empty taxa)

remove_empty_taxa (logical) Do you want to remove taxa without sequences (this is done before removing empty samples)

clean_samples_names (logical) Do you want to clean samples names?

silent (logical) If true, no message are printing.

verbose (logical) Additional informations in the message the verbose parameter over-write the silent parameter.

quote a logical value (default FALSE) or a numeric vector. If TRUE, any character or factor columns will be surrounded by double quotes. If a numeric vector, its elements are taken as the indices of columns to quote. In both cases, row and column names are quoted if they are written. If FALSE nothing is quoted.

sep_csv (default tabulation) separator for column

... Other arguments passed on to *utils::write.table()* function.

Value

Build a folder (path) containing one to four csv tables (refseq.csv, otu_table.csv, tax_table.csv, sam_data.csv) and if present a phy_tree in Newick format

Author(s)

Adrien Taudière

See Also

`save_pq()`
**Examples**

write_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"))
write_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"), one_file = TRUE)
unlink(paste0(tempdir(), "/phyloseq"), recursive = TRUE)
# Index

* datasets
  - data_fungi, 41
  - data_fungi_mini, 42
  - data_fungi_sp_known, 43
  - Tengeler2020_pq, 143

accu_plot, 5
accu_plot(), 8, 9
accu_plot_balanced_modality, 7
accu_plot_balanced_modality(), 117
accu_samp_threshold, 8
accu_samp_threshold(), 6
add_blast_info, 9
add_dna_to_phyloseq, 10
add_funguild_info, 11
add_funguild_info(), 104, 105
add_info_to_sam_data, 12
add_new_taxonomy_pq, 13
adespatial::beta.div(), 80, 81, 106, 108, 109
adonis_phyloseq
  - (MiscMetaBar-deprecated), 90
adonis_pq, 14, 90
adonis_pq(), 16
adonis_rarperm_pq, 15
all_object_size, 17
ANCOMBC::ancombc2(), 17
ancombc_pq, 17
ancombc_pq(), 129
are_modality_even_depth, 18
as_binary_otu_table, 22
asv2otu, 19
asv2otu(), 90, 98, 137, 161

base::load(), 125
base::rowsum(), 88, 90
Biostrings::DNAStringSet, 32, 99, 162
biplot_phyloseq (MiscMetaBar-deprecated), 90
biplot_pq, 23, 90

biplot_pq(), 23, 74, 94
blast_pq, 25
blast_pq(), 9, 10, 27, 29
blast_to_derep, 26
blast_to_phyloseq, 28
blast_to_phyloseq(), 26, 27
build_phytree_pq, 29
calcNormFactors, 98
chimera_detection_vs, 31
chimera_detection_vs(), 33, 34
chimera_removal_vs, 33
chordDiagram, 35
circle_pq, 34, 90
circos.par, 35
clean_physeq (MiscMetaBar-deprecated), 90
clean_pq, 36, 90
clean_pq(), 33, 105, 130, 135, 144
calculate_pairs_pq, 37, 90
ComplexUpset::upset(), 150
ComplexUpset::upset_test(), 154
count_seq, 38
cutadapt_remove_primers, 39
dada2::filterAndTrim(), 50
dada2::makeSequenceTable(), 33
data_fungi, 41
data_fungi_mini, 42
data_fungi_sp_known, 43
DECIPHER::Clusterize(), 20, 21
derep-class, 26
DESeq, 102
DESeq2::results(), 102
DGEList, 98
diff_fct_diff_class, 43
dist_bycol, 46
dist_pos_control, 47
distri_1_taxa, 45
INDEX

edgeR, 98
edgeR::estimateTagwiseDisp(), 98
exactTest, 104

fac2col, 48
filter_asv_blast, 48
filter_trim, 50
formattable_pq, 51
funguild_assign, 55
funguild_assign(), 57
funky_color, 56
get_file_extension, 57
get_funguild_db, 57
get_funguild_db(), 55
ggalluvial::geom_flow(), 59
ggaluv_pq, 58
ggaluv_pq(), 124
ggbetween_pq, 60
ggbetween_pq(), 62, 70
ggfittext::geom_fit_text(), 59
ggplot, 6, 63, 67, 102, 104, 108, 121, 140, 151, 154, 158
ggplot2::geom_label(), 24
ggplot2::geom_text(), 24
ggridges::geom_density_ridges(), 120
ggstatsplot::ggbetweenstats(), 60, 71, 72
ggstatsplot::ggscatterstats(), 61, 62
ggVenn_phyloseq
(MiscMetabar-deprecated), 90
ggvenn_pq, 62, 90
ggvenn_pq(), 140, 151
glmulti::glmulti(), 65
glmulti_pq, 64
graph_test_pq, 66, 90
gtsummary::tbl_summary(), 142

heat_tree, 67
heat_tree_pq, 67, 90
hill_phyloseq(MiscMetabar-deprecated), 90
hill_pq, 68, 90
hill_pq(), 60, 72, 115
hill_test_rarperm_pq, 71
hill_tuckey_phyloseq
(MiscMetabar-deprecated), 90
hill_tuckey_pq, 73, 90

indicspecies::multipatt(), 91
iNEXT::iNEXT(), 74
iNEXT_pq, 74
is_cutadapt_installed, 75
is_falco_installed, 76
is_krona_installed, 76
is_mumu_installed, 77
is_swarm_installed, 78
is_vsearch_installed, 78

krona, 79, 87
LCBD_pq, 80, 106, 109
list_fastq_files, 81
list_fastq_files(), 39
lulu, 82
lulu(), 85
lulu_phyloseq(MiscMetabar-deprecated), 90
lulu_pq, 84, 90

merge_krona, 80, 86
merge_krona(), 79
merge_samples2, 87
merge_samples2(), 14, 16, 23, 38, 58, 66, 74, 110
merge_samples2,otu_table-method
(merge_samples2), 87
merge_samples2,phyloseq-method
(merge_samples2), 87
merge_samples2,sample_data-method
(merge_samples2), 87
merge_taxa_vec, 88
merge_taxa_vec(), 20, 21, 136, 137, 160, 161
merge_taxa_vec,otu_table-method
(merge_taxa_vec), 88
merge_taxa_vec,phylolSeq-method
(merge_taxa_vec), 88
merge_taxa_vec,taxonomyTable-method
(merge_taxa_vec), 88
merge_taxa_vec,XStringSet-method
(merge_taxa_vec), 88
MiscMetabar-deprecated, 90
MiscMetabar-package, 5
multcompLetters, 69
multi_biplot_pq, 94
multipatt_pq, 91
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplot</td>
<td>92</td>
</tr>
<tr>
<td>multitax_bar_pq()</td>
<td>93</td>
</tr>
<tr>
<td>multiplot()</td>
<td>92, 141</td>
</tr>
<tr>
<td>mumu_pq()</td>
<td>95</td>
</tr>
<tr>
<td>normalize_prop_pq()</td>
<td>96</td>
</tr>
<tr>
<td>otu_circle (MiscMetabar-deprecated)</td>
<td>90</td>
</tr>
<tr>
<td>perc</td>
<td>97</td>
</tr>
<tr>
<td>phangorn::bootstrap.pml()</td>
<td>30</td>
</tr>
<tr>
<td>phangorn::optim.pml()</td>
<td>30</td>
</tr>
<tr>
<td>phyloseq-class</td>
<td>5, 22, 25, 28, 34, 62, 123, 135, 141, 158</td>
</tr>
<tr>
<td>phyloseq::distance()</td>
<td>14, 16, 155, 156</td>
</tr>
<tr>
<td>phyloseq::distanceMethodList()</td>
<td>14, 16, 155, 156</td>
</tr>
<tr>
<td>phyloseq::merge_taxa()</td>
<td>90</td>
</tr>
<tr>
<td>phyloseq::mt()</td>
<td>107, 108</td>
</tr>
<tr>
<td>phyloseq::rarefy_even_depth()</td>
<td>8, 16, 58, 60, 61, 70, 71, 115, 156</td>
</tr>
<tr>
<td>phyloseq::subset_samples()</td>
<td>132</td>
</tr>
<tr>
<td>phyloseq::subset_taxa()</td>
<td>132</td>
</tr>
<tr>
<td>phyloseq::to_edgeR</td>
<td>98</td>
</tr>
<tr>
<td>phyloseqGraphTest::graph_perm_test()</td>
<td>66, 67</td>
</tr>
<tr>
<td>physeq_graph_test (MiscMetabar-deprecated)</td>
<td>90</td>
</tr>
<tr>
<td>physeq_heat_tree (MiscMetabar-deprecated)</td>
<td>90</td>
</tr>
<tr>
<td>physeq_or_string_to_dna</td>
<td>98</td>
</tr>
<tr>
<td>plot</td>
<td>6</td>
</tr>
<tr>
<td>plot_ancombc_pq()</td>
<td>99</td>
</tr>
<tr>
<td>plot_ancombc_pq()</td>
<td>129</td>
</tr>
<tr>
<td>plot_deseq2_phyloseq</td>
<td>90, 101, 104</td>
</tr>
<tr>
<td>plot_deseq2_pq()</td>
<td>90, 101, 104</td>
</tr>
<tr>
<td>plot_edgeR_phyloseq</td>
<td>90, 102, 103</td>
</tr>
<tr>
<td>plot_edgeR_pq()</td>
<td>90, 102, 103</td>
</tr>
<tr>
<td>plot_guild_pq()</td>
<td>104</td>
</tr>
<tr>
<td>plot_guild_pq()</td>
<td>11</td>
</tr>
<tr>
<td>plot_LCBD_pq()</td>
<td>81, 106</td>
</tr>
<tr>
<td>plot_mt</td>
<td>107</td>
</tr>
<tr>
<td>plot_SCBD_pq()</td>
<td>108</td>
</tr>
<tr>
<td>plot_tax_pq()</td>
<td>109</td>
</tr>
<tr>
<td>plot_tax_pq()</td>
<td>141</td>
</tr>
<tr>
<td>plot_tsnepq</td>
<td>111</td>
</tr>
<tr>
<td>plot_var_part_pq()</td>
<td>155, 157</td>
</tr>
<tr>
<td>plotly::ggplotly()</td>
<td>24</td>
</tr>
<tr>
<td>psmelt_samples_pq()</td>
<td>115</td>
</tr>
<tr>
<td>psmelt_samples_pq()</td>
<td>70</td>
</tr>
<tr>
<td>purrr::as_mapper()</td>
<td>88</td>
</tr>
<tr>
<td>rarefy_sample_count_by_modality()</td>
<td>116</td>
</tr>
<tr>
<td>rarefy_sample_count_by_modality()</td>
<td>8</td>
</tr>
<tr>
<td>read_phyloseq (MiscMetabar-deprecated)</td>
<td>90</td>
</tr>
<tr>
<td>read_pq</td>
<td>90, 117</td>
</tr>
<tr>
<td>rename_samples()</td>
<td>118</td>
</tr>
<tr>
<td>rename_samples()</td>
<td>123</td>
</tr>
<tr>
<td>rename_samples_otu_table</td>
<td>119</td>
</tr>
<tr>
<td>reorder_taxa_pq()</td>
<td>119</td>
</tr>
<tr>
<td>results</td>
<td>102, 103</td>
</tr>
<tr>
<td>ridges_pq</td>
<td>120</td>
</tr>
<tr>
<td>rotl_pq</td>
<td>121</td>
</tr>
<tr>
<td>sample_data_with_new_names</td>
<td>122</td>
</tr>
<tr>
<td>sankey_phyloseq (MiscMetabar-deprecated)</td>
<td>90</td>
</tr>
<tr>
<td>sankey_pq</td>
<td>90, 123</td>
</tr>
<tr>
<td>sankey_pq()</td>
<td>59</td>
</tr>
<tr>
<td>sankeyNetwork</td>
<td>124</td>
</tr>
<tr>
<td>save_pq</td>
<td>125</td>
</tr>
<tr>
<td>save_pq()</td>
<td>164</td>
</tr>
<tr>
<td>search_exact_seq_pq</td>
<td>126</td>
</tr>
<tr>
<td>select_one_sample</td>
<td>126</td>
</tr>
<tr>
<td>select_taxa</td>
<td>127</td>
</tr>
<tr>
<td>select_taxa,otu_table,character-method</td>
<td>127</td>
</tr>
<tr>
<td>select_taxa,phylo,character-method</td>
<td>127</td>
</tr>
<tr>
<td>select_taxa,phyloseq,character-method</td>
<td>127</td>
</tr>
<tr>
<td>select_taxa,sample_data,character-method</td>
<td>127</td>
</tr>
<tr>
<td>select_taxa,taxonomyTable,character-method</td>
<td>127</td>
</tr>
<tr>
<td>select_taxa,XStringSet,character-method</td>
<td>127</td>
</tr>
<tr>
<td>signif_ancombc</td>
<td>128</td>
</tr>
<tr>
<td>simplify_taxo</td>
<td>129</td>
</tr>
<tr>
<td>specaccum</td>
<td>6</td>
</tr>
<tr>
<td>SRS_curve_pq</td>
<td>130</td>
</tr>
<tr>
<td>subsample_fastq</td>
<td>131</td>
</tr>
<tr>
<td>subset_samples_pq</td>
<td>132</td>
</tr>
<tr>
<td>subset_taxa</td>
<td>132</td>
</tr>
</tbody>
</table>
INDEX

subset_taxa_pq(), 12
subset_taxa_tax_control, 134
summary_plot_phyloseq
  (MiscMetabar-deprecated), 90
summary_plot_pq, 90, 135
swarm_clustering, 136
swarm_clustering(), 21, 98, 161
tax_bar_pq, 140
tax_bar_pq(), 110
tax_datatable, 141
taxa_as_columns, 138
taxa_as_rows, 138
taxa_only_in_one_level, 139
tbl_sum_samdata, 142
Tengeler2020_pq, 143
tibble::tibble, 56, 57
track_wkflow, 144
track_wkflow(), 145
track_wkflow_samples, 145
track_wkflow_samples(), 126, 145
transp, 146
treemap_pq, 147
treemapify::geom_treemap(), 147
tsne_pq, 148
unique_or_na, 149
upset_pq, 150
upset_pq(), 63, 140, 154
upset_test_pq, 153
utils::read.delim(), 123
utils::write.table(), 117, 125, 164
var_par_pq, 154
var_par_pq(), 113, 114, 156, 157
var_par_rarperm_pq, 156
var_par_rarperm_pq(), 113, 114, 155
vegan::adonis2(), 14–16
vegan::varpart(), 154, 155, 157
vegan::vegdist(), 14, 16, 47, 155, 156
vegdist, 46
venn_phyloseq (MiscMetabar-deprecated), 90
venn_pq, 90, 158
venneuler, 158
verify_pq, 159
vs_search_global, 162
vsearch_clustering, 160
vsearch_clustering(), 21, 98, 137