Package ‘MixMatrix’

November 14, 2019

Type Package

Title Classification with Matrix Variate Normal and t Distributions

Version 0.2.4

Description Provides sampling and density functions for matrix variate normal, t, and inverted t distributions; ML estimation for matrix variate normal and t distributions using the EM algorithm, including some restrictions on the parameters; and classification by linear and quadratic discriminant analysis for matrix variate normal and t distributions described in Thompson et al. (2019) <arXiv:1907.09565>. Performs clustering with matrix variate normal and t mixture models.

Depends R (>= 3.5.0)
Imports stats, CholWishart, Rcpp
Suggests knitr, rmarkdown, testthat, covr, ggplot2, dplyr, magrittr, spelling
VignetteBuilder knitr
LazyData true

URL http://github.com/gzt/MixMatrix/, https://gzt.github.io/MixMatrix/

BugReports http://github.com/gzt/MixMatrix/issues

Language en-us

License GPL-3

RoxygenNote 6.1.1

Encoding UTF-8

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Geoffrey Thompson [aut, cre] (<https://orcid.org/0000-0003-2436-8822>), B. D. Ripley author of original lda and qda functions [ctb, cph], W. N. Venables author of original lda and qda functions [ctb, cph]

Maintainer Geoffrey Thompson <gzthompson@gmail.com>

Repository CRAN

Date/Publication 2019-11-14 22:30:03 UTC
\textbf{R topics documented:}

- \texttt{ARgenerate} .. 2
- \texttt{CSgenerate} .. 3
- \texttt{init_matrixmixture} 3
- \texttt{matrixlda} .. 5
- \texttt{matrixmixture} ... 6
- \texttt{matrixqda} .. 9
- \texttt{MixMatrix} .. 10
- \texttt{MLmatrixnorm} .. 11
- \texttt{MLmatrixt} .. 12
- \texttt{predict_matrixlda} 14
- \texttt{predict_matrixqda} 15
- \texttt{rmatrixinv_t} ... 16
- \texttt{rmatrixnorm} .. 18
- \texttt{rmatrixt} .. 19

\textbf{Index}

\texttt{ARgenerate} \hspace{1cm} \textit{Generate a unit AR(1) covariance matrix}

\textbf{Description}

generate AR(1) correlation matrices

\textbf{Usage}

\texttt{ARgenerate(n, rho)}

\textbf{Arguments}

- \texttt{n} \hspace{1cm} number of columns/rows
- \texttt{rho} \hspace{1cm} correlation parameter

\textbf{Value}

Toeplitz $n \times n$ matrix with 1 on the diagonal and ρ^k on the other diagonals, where k is distance from the main diagonal. Used internally but it is useful for generating your own random matrices.

\textbf{See Also}

- \texttt{toeplitz}

\textbf{Examples}

\texttt{ARgenerate(6,.9)}
CSgenerate

Generate a compound symmetric correlation matrix

Description

Generate a compound symmetric correlation matrix

Usage

CSgenerate(n, rho)

Arguments

- **n**
 - number of dimensions
- **rho**
 - off-diagonal element - a correlation between -1 and 1. Will warn if less than 0.

Value

returns an $n \times n$ matrix with 1 on the diagonal and rho on the off-diagonal.

Examples

```r
# generates a covariance matrix with 1 on the main diagonal
# and 0.5 on the off-diagonal elements.
CSgenerate(3,.5)
```

init_matrixmixture

Initializing settings for Matrix Mixture Models

Description

Providing this will generate a list suitable for use as the *init* argument in the matrixmixture function. Either provide data and it will select centers and variance matrices to initialize or provide initial values and it will format them as expected for the function.

Usage

init_matrixmixture(data, prior = NULL, K = length(prior),
 centers = NULL, U = NULL, V = NULL, centermethod = "kmeans",
 varmethod = "identity", model = "normal", init = NULL, ...)

Arguments

- **data**: data, \(p \times q \times n \) array
- **prior**: prior probability. One of prior and \(K \) must be provided. They must be consistent if both provided.
- **K**: number of groups
- **centers** (optional) either a matrix or an array of \(p \times p \) matrices for use as the centers argument. If fewer than \(K \) are provided, the remainder are chosen by centermethod.
- **U** (optional) either a matrix or an array of \(q \times q \) matrices for use as the \(U \) argument. If a matrix is provided, it is duplicated to provide an array. If an array is provided, it should have \(K \) slices.
- **V** (optional) either a matrix or an array of matrices for use as the \(U \) argument. If a matrix is provided, it is duplicated to provide an array. If an array is provided, it should have \(K \) slices.
- **centermethod**: what method to use to generate initial centers. Currently support random start (random) or performing k-means (kmeans) on the vectorized version for a small number of iterations and then converting back. By default, if \(K \) centers are provided, nothing will be done.
- **varmethod**: what method to use to choose initial variance matrices. Currently only identity matrices are created. By default, if \(U \) and \(V \) matrices are provided, nothing will be done.
- **model**: whether to use a normal distribution or a t-distribution, not relevant for more initialization methods.
- **init** (optional) a (possibly partially-formed) list with some of the components centers, \(U \), and \(V \). The function will complete the list and fill out missing entries.
- ... Additional arguments to pass to kmeans() if that is centermethod.

Value

A list suitable to use as the init argument in matrixmixture:

- **centers**: the group means, a \(p \times q \times K \) array.
- **U**: the between-row covariance matrices, a \(p \times p \times K \) array
- **V**: the between-column covariance matrix, a \(q \times q \times K \) array

See Also

matrixmixture

Examples

```r
set.seed(20180221)
A <- rmatrixt(30, mean=matrix(0, nrow=3, ncol=4), df = 10)
# 3x4 matrices with mean 0
B <- rmatrixt(30, mean=matrix(2, nrow=3, ncol=4), df = 10)
# 3x4 matrices with mean 2
C <- array(c(A, B), dim=c(3,4,60)) # combine into one array
```
matrixlda

prior <- c(.5, .5) # equal probability prior
init = init_matrixmixture(C, prior = prior)
will find two centers using the "kmeans" method on the vectorized matrices

matrixlda (LDA for matrix variate distributions)

Description

Performs linear discriminant analysis on matrix variate data. This works slightly differently from the LDA function in MASS: it does not sphere the data or otherwise normalize it. It presumes equal variance matrices and probabilities are given as if the data are from a matrix variate normal distribution. The estimated variance matrices are weighted by the prior. However, if there are not enough members of a class to estimate a variance, this may be a problem. The function does not take the formula interface. If method = 't' is selected, this performs discrimination using the matrix variate t distribution, presuming equal covariances between classes.

Usage

matrixlda(x, grouping, prior, tol = 1e-04, method = "normal", nu = 10, ..., subset)

Arguments

x 3-D array of matrix data indexed by the third dimension

grouping vector

prior a vector of prior probabilities of the same length as the number of classes
tol by default, 1e-4. Tolerance parameter checks for 0 variance.

method whether to use the normal distribution (normal) or the t distribution (t). By default, normal.

nu If using the t-distribution, the degrees of freedom parameter. By default, 10.

... Arguments passed to or from other methods, such as additional parameters to pass to MLmatrixnorm (e.g., row.mean)

subset An index vector specifying the cases to be used in the training sample. (NOTE: If given, this argument must be named.)

Value

Returns a list of class matrixlda containing the following components:

prior the prior probabilities used.

counts the counts of group membership

means the group means.

scaling the scalar variance parameter
U the between-row covariance matrix
V the between-column covariance matrix
lev levels of the grouping factor
N The number of observations used.
method The method used.
nu The degrees of freedom parameter if the t distribution was used.
call The (matched) function call.

References

See Also

predict.matrixlda, lda, MLmatrixnorm and MLmatrixt matrixqda, and matrixmixture

Examples

set.seed(20180221)
construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D<-matrixlda(C, groups, prior) # fit model
logLik(D)
print(D)

matrixmixture Fit a matrix variate mixture model

Description

Clustering by fitting a mixture model using EM with K groups and unconstrained covariance matrices for a matrix variate normal or matrix variate t distribution (with specified degrees of freedom nu).
Usage

matrixmixture(x, init = NULL, prior = NULL, K = length(prior),
iter = 1000, model = "normal", method = NULL, row.mean = FALSE,
col.mean = FALSE, tolerance = 0.1, nu = NULL, ..., verbose = 0,
miniter = 5, convergence = TRUE)

Arguments

x data, p × q × n array
init a list containing an array of K of p × q means labeled centers, and optionally
p × p and q × q positive definite variance matrices labeled U and V. By default,
those are presumed to be identity if not provided. If init is missing, it will be
provided using the prior or K by init_matrixmix.
prior prior for the K classes, a vector that adds to unity
K number of classes - provide either this or the prior. If this is provided, the prior
will be of uniform distribution among the classes.
iter maximum number of iterations.
model whether to use the normal or t distribution.
method what method to use to fit the distribution. Currently no options.
row.mean By default, FALSE. If TRUE, will fit a common mean within each row. If both this
and col.mean are TRUE, there will be a common mean for the entire matrix.
col.mean By default, FALSE. If TRUE, will fit a common mean within each row. If both this
and row.mean are TRUE, there will be a common mean for the entire matrix.
tolerance convergence criterion, using Aitken acceleration of the log-likelihood by default.
nu degrees of freedom parameter. Can be a vector of length K.
... pass additional arguments to MLmatrixnorm or MLmatrixt
verbose whether to print diagnostic output, by default 0. Higher numbers output more
results.
miniter minimum number of iterations
convergence By default, TRUE. Whether to use Aitken acceleration to determine convergence.
If false, it instead checks if the change in log-likelihood is less than tolerance.
Aitken acceleration may prematurely end in the first few steps, so you may wish
to set miniter or select FALSE if this is an issue.

Value

A list of class MixMatrixModel containing the following components:

prior the prior probabilities used.
init the initialization used.
K the number of groups
N the number of observations
centers the group means.
U the between-row covariance matrices
V the between-column covariance matrix
posterior the posterior probabilities for each observation
pi the final proportions
nu The degrees of freedom parameter if the t distribution was used.
convergence whether the model converged
logLik a vector of the log-likelihoods of each iteration ending in the final log-likelihood of the model
model the model used
method the method used
call The (matched) function call.

References

See Also

init_matrixmixture

Examples

set.seed(20180221)
A <- rmatrixt(20, mean=matrix(0,nrow=3,ncol=4), df = 5)
3x4 matrices with mean 0
B <- rmatrixt(20, mean=matrix(1,nrow=3,ncol=4), df = 5)
3x4 matrices with mean 1
C <- array(c(A,B), dim=c(3,4,40)) # combine into one array
prior <- c(.5,.5) # equal probability prior
create an initialization object, starts at the true parameters
init = list(centers = array(c(rep(0,12),rep(1,12)), dim = c(3,4,2)),
 U = array(c(diag(3), diag(3)), dim = c(3,3,2))%*%20,
 V = array(c(diag(4), diag(4)), dim = c(4,4,2))
)
fit model
res<-matrixmixture(C, init = init, prior = prior, nu = 5,
 model = "t", tolerance = 1e-3, convergence = FALSE)
print(res$centers) # the final centers
print(res$pi) # the final mixing proportion
plot(res) # the log likelihood by iteration
logLik(res) # log likelihood of final result
BIC(res) # BIC of final result
predict(res, newdata = C[,c(1,21)]) # predicted class membership

matrixqda

Quadratic Discriminant Analysis for Matrix Variate Observations

Description

See matrixlda: quadratic discriminant analysis for matrix variate observations.

Usage

matrixqda(x, grouping, prior, tol = 1e-04, method = "normal",
 nu = 10, ..., subset)

Arguments

x 3-D array of matrix data indexed by the third dimension
grouping vector
prior a vector of prior probabilities of the same length as the number of classes
tol by default, 1e-4. Tolerance parameter checks for 0 variance.
method whether to use the normal distribution (normal) or the t distribution (t). By
default, normal.
nu If using the t-distribution, the degrees of freedom parameter. By default, 10.
... Arguments passed to or from other methods, such as additional parameters to
 pass to MLmatrixnorm (e.g., row.mean)
subset An index vector specifying the cases to be used in the training sample. (NOTE:
 If given, this argument must be named.)

Details

This uses MLmatrixnorm or MLmatrixt to find the means and variances for the case when different
groups have different variances.

Value

Returns a list of class matrixqda containing the following components:

prior the prior probabilities used.
counts the counts of group membership
means the group means.
U the between-row covariance matrices
V the between-column covariance matrices
lev levels of the grouping factor
N The number of observations used.
method The method used.
nu The degrees of freedom parameter if the t-distribution was used.
call The (matched) function call.

References

See Also

predict.matrixqda, qda, MLmatrixnorm, MLmatrixt, matrixlda, and matrixmixture

Examples

set.seed(20180221)
construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D <- matrixqda(C, groups, prior)
logLik(D)
print(D)
MLmatrixnorm

Maximum likelihood estimation for matrix normal distributions

Description

Maximum likelihood estimates exist for $N > \max(p/q, q/p) + 1$ and are unique for $N > \max(p, q)$. This finds the estimate for the mean and then alternates between estimates for the U and V matrices until convergence. An AR(1), compound symmetry, correlation matrix, or independence restriction can be proposed for either or both variance matrices. However, if they are inappropriate for the data, they may fail with a warning.

Usage

MLmatrixnorm(data, row.mean = FALSE, col.mean = FALSE, row.variance = "none", col.variance = "none", tol = 10 * .Machine$double.eps^0.5, max.iter = 100, U, V, ...)

Arguments

data
Either a list of matrices or a 3-D array with matrices in dimensions 1 and 2, indexed by dimension 3.

row.mean
By default, FALSE. If TRUE, will fit a common mean within each row. If both this and col.mean are TRUE, there will be a common mean for the entire matrix.

col.mean
By default, FALSE. If TRUE, will fit a common mean within each row. If both this and row.mean are TRUE, there will be a common mean for the entire matrix.

row.variance
Imposes a variance structure on the rows. Either 'none', 'AR(1)', 'CS' for 'compound symmetry', 'Correlation' for a correlation matrix, or 'Independence' for independent and identical variance across the rows. Only positive correlations are allowed for AR(1) and CS covariances. Note that while maximum likelihood estimators are available (and used) for the unconstrained variance matrices, optim is used for any constraints so it may be considerably slower.

col.variance
Imposes a variance structure on the columns. Either 'none', 'AR(1)', 'CS', 'Correlation', or 'Independence'. Only positive correlations are allowed for AR(1) and CS.

tol
Convergence criterion. Measured against square deviation between iterations of the two variance-covariance matrices.

max.iter
Maximum possible iterations of the algorithm.

U
(optional) Can provide a starting point for the U matrix. By default, an identity matrix.

V
(optional) Can provide a starting point for the V matrix. By default, an identity matrix.

...(optional) additional arguments can be passed to optim if using restrictions on the variance.
Value

Returns a list with the following elements:

- **mean**: the mean matrix
- **scaling**: the scalar variance parameter (the first entry of the covariances are restricted to unity)
- **U**: the between-row covariance matrix
- **V**: the between-column covariance matrix
- **iter**: the number of iterations
- **tol**: the squared difference between iterations of the variance matrices at the time of stopping
- **logLik**: vector of log likelihoods at each iteration.
- **convergence**: a convergence flag, TRUE if converged.
- **call**: The (matched) function call.

References

See Also

- `rmatrixnorm` and `MLmatrixt`

Examples

```r
set.seed(20180202)
# simulating from a given density
A <- rmatrixnorm(n=100, mean=matrix(c(100,0,-100,0,25,-1000), nrow=2),
                 L=matrix(c(2,1,0,.1), nrow=2), list=TRUE)
# finding the parameters by ML estimation
results=MLmatrixnorm(A, tol = 1e-5)
print(results)
```

Description

For the matrix variate normal distribution, maximum likelihood estimates exist for $N > \max(p/q, q/p) + 1$ and are unique for $N > \max(p, q)$. The number necessary for the matrix variate t has not been worked out but this is a lower bound. This implements an ECME algorithm to estimate the mean, covariance, and degrees of freedom parameters. An AR(1), compound symmetry, or independence restriction can be proposed for either or both variance matrices. However, if they are inappropriate for the data, they may fail with a warning.
Usage

MLmatrixt(data, row.mean = FALSE, col.mean = FALSE, row.variance = "none", col.variance = "none", df = 10, fixed = TRUE, tol = .Machine$double.eps^0.5, max.iter = 5000, U, V, ...)

Arguments

- **data**: Either a list of matrices or a 3-D array with matrices in dimensions 1 and 2, indexed by dimension 3.
- **row.mean**: By default, FALSE. If TRUE, will fit a common mean within each row. If both this and **col.mean** are TRUE, there will be a common mean for the entire matrix.
- **col.mean**: By default, FALSE. If TRUE, will fit a common mean within each row. If both this and **row.mean** are TRUE, there will be a common mean for the entire matrix.
- **row.variance**: Imposes a variance structure on the rows. Either 'none', 'AR(1)', 'CS' for 'compound symmetry', 'Correlation' for a correlation matrix, or 'Independence' for independent and identical variance across the rows. Only positive correlations are allowed for AR(1) and CS. Note that while maximum likelihood estimators are available (and used) for the unconstrained variance matrices, optim is used for any constraints so it may be considerably slower.
- **col.variance**: Imposes a variance structure on the columns. Either 'none', 'AR(1)', 'CS', 'Correlation', or 'Independence'. Only positive correlations are allowed for AR(1) and CS.
- **df**: Starting value for the degrees of freedom. If **fixed** = TRUE, then this is required and not updated. By default, set to 10.
- **fixed**: Whether df is estimated or fixed. By default, TRUE.
- **tol**: Convergence criterion. Measured against square deviation between iterations of the two variance-covariance matrices.
- **max.iter**: Maximum possible iterations of the algorithm.
- **U**: (optional) Can provide a starting point for the U matrix. By default, an identity matrix.
- **V**: (optional) Can provide a starting point for the V matrix. By default, an identity matrix.
- **...**: (optional) additional arguments can be passed to optim if using restrictions on the variance.

Value

Returns a list with the following elements:

- **mean**: the mean matrix
- **U**: the between-row covariance matrix
- **V**: the between-column covariance matrix
- **var**: the scalar variance parameter (the first entry of the covariances are restricted to unity)
nu the degrees of freedom parameter
iter the number of iterations
tol the squared difference between iterations of the variance matrices at the time of stopping
logLik log likelihood of result.
convergence a convergence flag, TRUE if converged.
call The (matched) function call.

References

Thompson, G Z. R Maitra, W Q Meeker, A Bastawros (2019), "Classification with the matrix-

Dickey, James M. 1967. “Matricariate Generalizations of the Multivariate t Distribution and the
1177698967

Meng, Xiao-Li, and Donald B. Rubin. 1993. “Maximum Likelihood Estimation via the ECM

See Also

rmatrixnorm, rmatrixt, MLmatrixnorm

Examples

set.seed(20180202)
drawing from a distribution with specified mean and covariance
A <- rmatrixt(n=100,mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
L=matrix(c(2,1,0,.1),nrow=2),list=TRUE, df = 5)
fitting maximum likelihood estimates
results=MLmatrixt(A, tol = 1e-5, df = 5)
print(results)

predict.matrixlda Classify Matrix Variate Observations by Linear Discrimination

Description

Classify matrix variate observations in conjunction with matrixlda.

Usage

S3 method for class 'matrixlda'
predict(object, newdata, prior = object$prior, ...)

predict.matrixqda

Arguments

object
object of class matrixlda

newdata
array or list of new observations to be classified. If newdata is missing, an attempt will be made to retrieve the data used to fit the matrixlda object.

prior
The prior probabilities of the classes, by default the proportions in the training set or what was set in the call to matrixlda.

...
arguments based from or to other methods

Details

This function is a method for the generic function predict() for class "matrixlda". It can be invoked by calling predict(x) for an object x of the appropriate class.

Value

Returns a list containing the following components:

class The MAP classification (a factor)

posterior posterior probabilities for the classes

See Also

matrixlda, matrixqda, and matrixmixture

Examples

set.seed(20180221)
construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30, mean=matrix(0, nrow=3, ncol=4))
B <- rmatrixnorm(30, mean=matrix(1, nrow=3, ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) # combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D <- matrixlda(C, groups, prior)
predict(D)$posterior[1:10,]

predict.matrixqda

Classify Matrix Variate Observations by Quadratic Discrimination

Description

Classify matrix variate observations in conjunction with matrixqda.

Usage

S3 method for class 'matrixqda'
predict(object, newdata, prior = object$prior, ...)
Arguments

object
object of class matrixqda

newdata
array or list of new observations to be classified. If newdata is missing, an attempt will be made to retrieve the data used to fit the matrixqda object.

prior
The prior probabilities of the classes, by default the proportions in the training set or what was set in the call to matrixqda.

...
arguments based from or to other methods

Details

This function is a method for the generic function predict() for class "matrixqda". It can be invoked by calling predict(x) for an object x of the appropriate class.

Value

Returns a list containing the following components:

class The MAP classification (a factor)

posterior posterior probabilities for the classes

See Also

matrixlda, matrixqda, and matrixmixture

Examples

set.seed(20180221)
construct two populations of 3x4 random matrices with different means
A <- rmatrixnorm(30,mean=matrix(0,nrow=3,ncol=4))
B <- rmatrixnorm(30,mean=matrix(1,nrow=3,ncol=4))
C <- array(c(A,B), dim=c(3,4,60)) #combine together
groups <- c(rep(1,30),rep(2,30)) # define groups
prior <- c(.5,.5) # set prior
D <- matrixqda(C, groups, prior) # fit model
predict(D)$posterior[1:10,] # predict, show results of first 10

rmatrixinvt Distribution functions for matrix variate inverted t distributions

Description

Generate random samples from the inverted matrix variate t distribution or compute densities.
rmatrixinv

Usage

rmatrixinv(n, df, mean, L = diag(dim(as.matrix(mean))[1]),
 R = diag(dim(as.matrix(mean))[2]), U = L %*% t(L), V = t(R) %*% R,
 list = FALSE, array = NULL)

dmatrixinv(x, df, mean = matrix(0, p, n), L = diag(p), R = diag(n),
 U = L %*% t(L), V = t(R) %*% R, log = FALSE)

Arguments

n
number of observations for generation

df
degrees of freedom (> 0, may be non-integer), df = 0, Inf is allowed and will
return a normal distribution.

mean
p × q This is really a ‘shift’ rather than a mean, though the expected value
will be equal to this if df > 2

L
p × p matrix specifying relations among the rows. By default, an identity matrix.

R
q × q matrix specifying relations among the columns. By default, an identity
matrix.

U
LLT - p × p positive definite matrix for rows, computed from L if not specified.

V
RT R - q × q positive definite matrix for columns, computed from R if not
specified.

list
Defaults to FALSE . If this is TRUE , then the output will be a list of matrices.

array
If n = 1 and this is not specified and list is FALSE , the function will return a
matrix containing the one observation. If n > 1 , should be the opposite of list .
If list is TRUE , this will be ignored.

x
quantile for density

log
logical; in dmatrixt, if TRUE, probabilities p are given as log(p).

Value

rmatrixinv returns either a list of n p × q matrices or a p × q × n array.

dmatrixinv returns the density at x.

References

ISBN:978-1584880462

Dickey, James M. 1967. “Matricivariate Generalizations of the Multivariate t Distribution and the

See Also

rmatrixnorm, rmatrixt, and Distributions.
Examples

an example of drawing from the distribution and computing the density.
A<-rmatrixinv(n = 2, df = 10, diag(4))
dmatrixinv(A[,,1], df = 10, mean = diag(4))

rmatrixnorm
Matrix variate Normal distribution functions

Description
Density and random generation for the matrix variate normal distribution

Usage
rmatrixnorm(n, mean, L = diag(dim(as.matrix(mean))[1]),
R = diag(dim(as.matrix(mean))[2]), U = L %% t(L), V = t(R) %% R,
list = FALSE, array = NULL, force = FALSE)
dmatrixnorm(x, mean = matrix(0, p, n), L = diag(p), R = diag(n),
U = L %% t(L), V = t(R) %% R, log = FALSE)

Arguments
n
number of observations to generate - must be a positive integer.
mean
p × q matrix of means
L
p × p matrix specifying relations among the rows. By default, an identity matrix.
R
q × q matrix specifying relations among the columns. By default, an identity matrix.
U
LLT - p × p positive definite variance-covariance matrix for rows, computed from L if not specified.
V
RTR - q × q positive definite variance-covariance matrix for columns, computed from R if not specified.
list
Defaults to FALSE. If this is TRUE, then the output will be a list of matrices.
array
If n = 1 and this is not specified and list is FALSE, the function will return a matrix containing the one observation. If n > 1, should be the opposite of list. If list is TRUE, this will be ignored.
force
If TRUE, will take the input of L and/or R directly - otherwise computes U and V and uses Cholesky decompositions. Useful for generating degenerate normal distributions. Will also override concerns about potentially singular matrices unless they are not, in fact, invertible.
x
quantile for density
log
logical; if TRUE, probabilities p are given as log(p).
Value

rmatrixnorm returns either a list of \(p \times q \) matrices or a \(p \times q \times n \) array.

dmatrixnorm returns the density at \(x \).

References

ISBN:978-1584880462

See Also

rmatrixt, rmatrixinvt, rnorm and Distributions

Examples

```
set.seed(20180202)
# a draw from a matrix variate normal with a certain mean
# and row-wise covariance
rmatrixnorm(n=1, mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
           L=matrix(c(2,1,0,.1),nrow=2),list=FALSE)
set.seed(20180202)
# another way of specifying this - note the output is equivalent
A <- rmatrixnorm(n=10, mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
                 L=matrix(c(2,1,0,.1),nrow=2),list=TRUE)
A[[1]]
# demonstrating the dmatrixnorm function
dmatrixnorm(A[[1]], mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
           L=matrix(c(2,1,0,.1),nrow=2),log=TRUE )
```

rmatrixt

Distribution functions for the matrix variate t distribution.

Description

Density and random generation for the matrix variate t distribution.

Usage

```
rmatrixt(n, df, mean, L = diag(dim(as.matrix(mean))[1]),
         R = diag(dim(as.matrix(mean))[2]), U = L %*% t(L), V = t(R) %*% R,
         list = FALSE, array = NULL, force = FALSE)

dmatrixt(x, df, mean = matrix(0, p, n), L = diag(p), R = diag(n),
         U = L %*% t(L), V = t(R) %*% R, log = FALSE)
```
Arguments

n number of observations for generation

df degrees of freedom (> 0, may be non-integer), df = 0, Inf is allowed and will return a normal distribution.

mean $p \times q$ This is really a ‘shift’ rather than a mean, though the expected value will be equal to this if $df > 2$

L $p \times p$ matrix specifying relations among the rows. By default, an identity matrix.

R $q \times q$ matrix specifying relations among the columns. By default, an identity matrix.

U $LL^T - p \times p$ positive definite matrix for rows, computed from L if not specified.

V $R^TR - q \times q$ positive definite matrix for columns, computed from R if not specified.

list Defaults to FALSE. If this is TRUE, then the output will be a list of matrices.

array If $n = 1$ and this is not specified and list is FALSE, the function will return a matrix containing the one observation. If $n > 1$, should be the opposite of list. If list is TRUE, this will be ignored.

force In rmatrix: if TRUE, will take the input of R directly - otherwise uses V and uses Cholesky decompositions. Useful for generating degenerate t-distributions. Will also override concerns about potentially singular matrices unless they are not, in fact, invertible.

x quantile for density

log logical; in dmatrixt, if TRUE, probabilities p are given as $\log(p)$.

Details

The matrix t-distribution is parameterized slightly differently from the univariate and multivariate t-distributions - the variance is scaled by a factor of $1/df$. In this parameterization, the variance for a 1×1 matrix variate t-distributed random variable with identity variance matrices is $1/(df - 2)$ instead of $df / (df - 2)$. A Central Limit Theorem for the matrix variate T is then that as df goes to infinity, $MV T(0, df, Ip, df * Iq)$ converges to $MV N(0, Ip, Iq)$.

Value

rmatrixt returns either a list of $n \times p \times q$ matrices or a $p \times q \times n$ array.

dmatrixt returns the density at x.

References

See Also

rmatrixnorm, rmatrixinvt, rt and Distributions.

Examples

```r
set.seed(20180202)
# random matrix with df = 10 and the given mean and L matrix
rmatrixt(n=1, df=10, mean=matrix(c(100,0,-100,0,25,-1000),nrow=2),
       L=matrix(c(2,1,0,.1),nrow=2), list=FALSE)
# comparing 1-D distribution of t to matrix
summary(rt(n=100, df=10))
summary(rmatrixt(n=100, df=10, matrix(0)))
# demonstrating equivalence of 1x1 matrix t to usual t
set.seed(20180204)
x = rmatrixt(n=1, mean=matrix(0), df=1)
dt(x,1)
dmatrixt(x, df=1)
```
Index

ARgenerate, 2
CSgenerate, 3
Distributions, 17, 19, 21
dmatrixinvt (rmatrixinvt), 16
dmatrixnorm (rmatrixnorm), 18
dmatrixt (rmatrixt), 19
init_matrixmixture, 3, 8
lda, 6
matrixlda, 5, 10, 15, 16
matrixmixture, 4, 6, 6, 10, 15, 16
matrixqda, 6, 9, 15, 16
MixMatrix, 10
MixMatrix-package (MixMatrix), 10
MLmatrixnorm, 6, 10, 11, 14
MLmatrixt, 6, 10, 12, 12
predict.matrixlda, 6, 14
predict.matrixqda, 10, 15
qda, 10
rmatrixinvt, 16, 19, 21
rmatrixnorm, 12, 14, 17, 18, 21
rmatrixt, 14, 17, 19, 19
rnorm, 19
rt, 21
toeplitz, 2