Package ‘MoEClust’

March 28, 2022

Type Package
Date 2022-03-25
Title Gaussian Parsimonious Clustering Models with Covariates and a Noise Component
Version 1.5.0
Description Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced by Murphy and Murphy (2020) <doi:10.1007/s11634-019-00373-8>. This package fits finite Gaussian mixture models with a formula interface for supplying gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated. A greedy forward stepwise search algorithm is provided for identifying the optimal model in terms of the number of components, the GPCM covariance parameterisation, and the subsets of gating/expert network covariates.

Depends R (>= 4.0.0)
License GPL (>= 2)
Encoding UTF-8
URL https://cran.r-project.org/package=MoEClust
BugReports https://github.com/Keefe-Murphy/MoEClust
LazyData true
Imports lattice (>= 0.12), matrixStats (>= 0.53.1), mclust (>= 5.4), mvnfast, nnet (>= 7.3-0), vcd
Suggests cluster (>= 1.4.0), clustMD (>= 1.2.1), geometry (>= 0.4.0), knitr, rmarkdown, snow
RoxygenNote 7.1.2
VignetteBuilder knitr
NeedsCompilation no
Author Keefe Murphy [aut, cre] (<https://orcid.org/0000-0002-7709-3159>),
Thomas Brendan Murphy [ctb] (<https://orcid.org/0000-0002-5668-7046>)
Maintainer Keefe Murphy <keefe.murphy@mu.ie>
MoEClust-package
MoEClust: Gaussian Parsimonious Clustering Models with Covariates and a Noise Component

Repository CRAN
Date/Publication 2022-03-28 14:50:09 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoEClust-package</td>
<td>2</td>
</tr>
<tr>
<td>ais</td>
<td>5</td>
</tr>
<tr>
<td>aitken</td>
<td>6</td>
</tr>
<tr>
<td>as.Mclust</td>
<td>7</td>
</tr>
<tr>
<td>CO2data</td>
<td>10</td>
</tr>
<tr>
<td>drop_constants</td>
<td>10</td>
</tr>
<tr>
<td>drop_levels</td>
<td>12</td>
</tr>
<tr>
<td>expert_covar</td>
<td>13</td>
</tr>
<tr>
<td>force_posiDiag</td>
<td>14</td>
</tr>
<tr>
<td>MoE_clust</td>
<td>15</td>
</tr>
<tr>
<td>MoE_compare</td>
<td>22</td>
</tr>
<tr>
<td>MoE_control</td>
<td>26</td>
</tr>
<tr>
<td>MoE_crit</td>
<td>34</td>
</tr>
<tr>
<td>MoE_cstep</td>
<td>36</td>
</tr>
<tr>
<td>MoE_dens</td>
<td>38</td>
</tr>
<tr>
<td>MoE_entropy</td>
<td>40</td>
</tr>
<tr>
<td>MoE_estep</td>
<td>41</td>
</tr>
<tr>
<td>MoE_gpairs</td>
<td>43</td>
</tr>
<tr>
<td>MoE_mahala</td>
<td>51</td>
</tr>
<tr>
<td>MoE_news</td>
<td>52</td>
</tr>
<tr>
<td>MoE_plotCrit</td>
<td>53</td>
</tr>
<tr>
<td>MoE_plotGate</td>
<td>54</td>
</tr>
<tr>
<td>MoE_plotLogLik</td>
<td>55</td>
</tr>
<tr>
<td>MoE_stepwise</td>
<td>56</td>
</tr>
<tr>
<td>MoE_Uncertainty</td>
<td>62</td>
</tr>
<tr>
<td>noise_vol</td>
<td>64</td>
</tr>
<tr>
<td>plot.MoEClust</td>
<td>65</td>
</tr>
<tr>
<td>predict.MoEClust</td>
<td>67</td>
</tr>
<tr>
<td>predict.MoE_expert</td>
<td>71</td>
</tr>
<tr>
<td>predict.MoE_gating</td>
<td>73</td>
</tr>
<tr>
<td>quant_clust</td>
<td>75</td>
</tr>
</tbody>
</table>

Index 76
Description

Clustering via parsimonious Gaussian Mixtures of Experts using the *MoEClust* models introduced by Murphy and Murphy (2020) <doi: 10.1007/s11634019003738>. This package fits finite Gaussian mixture models with gating and/or expert network covariates using a range of parsimonious covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of the results of such models using generalised pairs plots and the inclusion of an additional noise component is also facilitated.

Usage

The most important function in the *MoEClust* package is: *MoE_clust*, for fitting the model via EM/CEM with gating and/or expert network covariates, supplied via formula interfaces. *MoE_compare* is provided for conducting model selection between different results from *MoE_clust* using different covariate combinations &/or initialisation strategies, etc. *MoE_stepwise* is provided for conducting a greedy forward stepwise search to identify the optimal model in terms of the number of components, GPCM covariance type, and the subsets of gating/expert network covariates. *MoE_control* allows supplying additional arguments to *MoE_clust* and *MoE_stepwise* which govern, among other things, controls on the inclusion of an additional noise component and controls on the initialisation of the allocations for the EM/CEM algorithm.

A dedicated plotting function (*plot.MoEClust*) exists for visualising the results using generalised pairs plots, for examining the gating network, and/or log-likelihood, and/or clustering uncertainties, and/or graphing model selection criteria values. The generalised pairs plots (*MoE_gpairs*) visualise all pairwise relationships between clustered response variables and associated continuous, categorical, and/or ordinal covariates in the gating &/or expert networks, coloured according to the MAP classification, and also give the marginal distributions of each variable (incl. the covariates) along the diagonal.

An *as.Mclust* method is provided to coerce the output of class "MoEClust" from *MoE_clust* to the "Mclust" class, to facilitate use of plotting and other functions for the "Mclust" class within the *mclust* package. As per *mclust*, *MoEClust* also facilitates modelling with an additional noise component (with or without the mixing proportion for the noise component depending on covariates).

Finally, a *predict* method is provided for predicting the fitted response and probability of cluster membership (and by extension the MAP classification) for new data, in the form of new covariates and new response data, or new covariates only.

Other functions also exist, e.g. *MoE_crit, MoE_dens, MoE_estep, MoE_compare*, and *aitken*, which are all used within *MoE_clust* but are nonetheless made available for standalone use.

The package also contains two data sets: ais and CO2data.

Details

- Type: Package
- Package: MoEClust
- Version: 1.5.0
- Date: 2022-03-25 (this version), 2017-11-28 (original release)
- Licence: GPL (>=2)
See Also

Further details and examples are given in the associated vignette document:

vignette("MoEClust", package = "MoEClust")

Author(s)

Keefe Murphy [aut, cre], Thomas Brendan Murphy [ctb]

Maintainer: Keefe Murphy - <<keefe.murphy@mu.ie>>

References

See Also

Useful links:

- https://cran.r-project.org/package=MoEClust
- Report bugs at https://github.com/Keefe-Murphy/MoEClust

Examples

data(ais)

Fit two sets of models
res1 <- MoE_clust(ais[,3:7], G=2, gating= ~ BMI, expert= ~ sex,
modelNames=c("VEE", "EVE", "VVE"), network.data=ais)
res2 <- MoE_clust(ais[,3:7], G=2, equalPro=TRUE, expert= ~ sex,
modelNames=c("VEE", "EVE", "VVE"), network.data=ais)

Compare the best model from each set of results
(comp <- MoE_compare(res1, res2, optimal.only=TRUE))

Produce a plot for the optimal model
plot(comp$optimal, what="gpairs")

Summarise its classification table, component parameters, and gating/expert networks
summary(comp$optimal, classification=TRUE, parameters=TRUE, networks=TRUE)

data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP

Fit a range of models
m1 <- MoE_clust(CO2, G=1:3)
m2 <- MoE_clust(CO2, G=2:3, gating= ~ GNP)
m3 <- MoE_clust(CO2, G=1:3, expert= ~ GNP)
m4 <- MoE_clust(CO2, G=2:3, gating= ~ GNP, expert= ~ GNP)
m5 <- MoE_clust(CO2, G=2:3, equalPro=TRUE)
m6 <- MoE_clust(CO2, G=2:3, expert= ~ GNP, equalPro=TRUE)

Extract the model with highest BIC
(comp <- MoE_compare(m1, m2, m3, m4, m5, m6, criterion="bic"))

See if a better model can be found using greedy forward stepwise selection
Conduct a stepwise search on the same data
(mod1 <- MoE_stepwise(CO2, CO2data[, "GNP", drop=FALSE]))

Conduct another stepwise search considering models with a noise component
(mod2 <- MoE_stepwise(CO2, CO2data[, "GNP", drop=FALSE], noise=TRUE))

Compare all sets of results to choose the optimal model
(best <- MoE_compare(mod1, mod2, comp, pick=1)$optimal)

ais

Australian Institute of Sport data

Description

Data on 102 male and 100 female athletes collected at the Australian Institute of Sport, courtesy of Richard Telford and Ross Cunningham.

Usage

data(ais)

Format

A data frame with 202 observations on the following 13 variables:

- [.,1] sex - categorical, levels = female,male
- [.,2] sport - categorical, levels = B_Ball,Field,Gym,Netball,Row,Swim,T_400m,Tennis,T_Sprnt,W_Polo
- [.,3] RCC - red cell count (numeric)
- [.,4] WCC - white cell count (numeric)
- [.,5] Hc - Hematocrit (numeric)
- [.,6] Hg - Hemoglobin (numeric)
- [.,7] Fe - plasma ferritin concentration (numeric)
- [.,8] BMI - body mass index: Wt/(Ht)^2 (numeric)
- [.,9] SSF - sum of skin folds (numeric)
- [.,10] Bfat - body fat percentage (numeric)
- [.,11] LBM - lean body mass (numeric)
- [.,12] Ht - height, cm (numeric)
- [.,13] Wt - weight, kg (numeric)
Details

The data have been made publicly available in connection with the book by Cook and Weisberg (1994).

References

Examples

data(ais, package="MoEClust")
pairs(ais[,c(3:7)], col=as.numeric(ais$sex), main = "AIS data")
apply(ais[,c(3:7)], 2, summary)

aitken

Aitken Acceleration

Description

Calculates the Aitken acceleration estimate of the final converged maximised log-likelihood under the EM/CEM framework.

Usage

`aitken(loglik)`

Arguments

- `loglik` A vector of three consecutive log-likelihood values. These three values should be in ascending order, though this is not checked.

Details

The final converged maximised log-likelihood can be used to determine convergence of the EM/CEM algorithm within `MoE_clust`, i.e. by checking whether the absolute difference between the previous log-likelihood estimate and the final converged maximised log-likelihood estimate is less than some tolerance.

Value

A list with the following named components:

- `ll` The most current estimate of the log-likelihood, i.e. `loglik[3]`.
- `linf` The most current estimate of the final converged maximised log-likelihood.
- `a` The Aitken acceleration value where typically $0 \leq a \leq 1$. When $a < 0$, a numerical issue or bug has occurred; when $a > 1$, the algorithm is accelerating and should not be stopped.
The difference between \(l_{\text{inf}} \) and the previous estimate of the log-likelihood, i.e. \(\log \text{lik}[2] \), in accordance with McNicholas et al. (2010).

When the "aitken" method is employed within \texttt{MoE_clust} (via \texttt{MoE_control}), \(l_{\text{diff}} \) at convergence gives the log-likelihood achieved by the estimated parameters, while \(l_{\text{inf}} \) at convergence estimates the log-likelihood that would be achieved after an infinite number of EM/CEM iterations.

\textbf{Note}

Within \texttt{MoE_clust}, as specified by the stopping argument of \texttt{MoE_control}, "aitken" is the default method used to assess convergence. The other option monitors the "relative" change in log-likelihood against some tolerance. See \texttt{MoE_control}.

\textbf{Author(s)}

Keefe Murphy - <<keefe.murphy@mu.ie>>

\textbf{References}

\textbf{See Also}

\texttt{MoE_control}

\textbf{Examples}

\begin{verbatim}
(a1 <- aitken(-c(449.61534, 442.84221, 436.58999)))
a1$ldiff < 1e-05 # FALSE
(a2 <- aitken(-c(442.84221, 436.58999, 436.58998)))
a2$ldiff < 1e-05 # FALSE
(a3 <- aitken(-c(436.58999, 436.58998, 436.58998)))
a3$ldiff < 1e-05 # TRUE
\end{verbatim}

\textbf{as.Mclust}

\begin{verbatim}
Convert MoEClust objects to the Mclust class
\end{verbatim}

\textbf{Description}

Converts an object of class "MoEClust" generated by \texttt{MoE_clust} and converts it to an object of class "Mclust" as generated by fitting \texttt{Mclust}, to facilitate use of plotting and other functions for the "Mclust" class within the \texttt{mclust} package. Some caution is advised when converting models with gating &/or expert covariates (see Note below).
Usage

```r
## S3 method for class 'MoEClust'
as.Mclust(x,
    expert.covar = TRUE,
    signif = 0L,
    ...)```

Arguments

- `x`: An object of class "MoEClust" generated by `MoE_clust` or an object of class "MoECompare" generated by `MoE_compare`. Models with a noise component are facilitated here too.
- `expert.covar`: Logical (defaults to TRUE) governing whether the extra variability in the component means is added to the MVN ellipses corresponding to the component covariance matrices in the presence of expert network covariates. See the function `expert_covar`.
- `signif`: Significance level for outlier removal. Must be a single number in the interval [0, 1). Corresponds to the percentage of data to be considered extreme and therefore removed (half of `signif` at each endpoint, on a column-wise basis). The default, 0, corresponds to no outlier removal. **Only** invoke this argument as an aid to visualisation via `plot.Mclust`.
- `...`: Further arguments to be passed to other methods.

Details

Of course, the user is always encouraged to use the dedicated `plot` function for objects of the "MoEClust" class instead, but calling `plot` after converting via `as.Mclust` can be particularly useful for univariate mixtures.

In the presence of expert network covariates, the component-specific covariance matrices are (by default, via the argument `expert.covar`) modified for plotting purposes via the function `expert_covar`, in order to account for the extra variability of the means, usually resulting in bigger shapes & sizes for the MVN ellipses.

The `signif` argument is intended only to aid visualisation via `plot.Mclust`, as plots therein can be sensitive to outliers, particularly with regard to axis limits.

Value

An object of class "Mclust". See `methods(class="Mclust")` for a (non-exhaustive) list of functions which can be applied to this class.

Note

Mixing proportions are averaged over observations in components in the presence of gating network covariates during the coercion.

Plots may be quite misleading in the presence of gating &/or (especially) expert network covariates when the `what` argument is "density" within `plot.Mclust`; users are strongly encouraged to use `MoE_gpairs` with `response.type="density"` instead.
Predictions (via \texttt{predict.Mclust}) will also be misleading in the presence of covariates of any kind when newdata is supplied; thus, users are \textbf{strongly} encouraged to use \texttt{predict.MoEClust} instead. The functions \texttt{clustCombi} and \texttt{clustCombiOptim} can be safely used (provided as.Mclust(x) is supplied as the object argument to \texttt{clustCombi}), as they only rely on x$z and x$G only. See the examples below.

Users may expect MoEClust models with no covariates of any kind to be identical to models fitted via \texttt{mclust}, but this is not necessarily true: see the \texttt{MoE_control} argument asMclust.

\textbf{Author(s)}

Keefe Murphy - \texttt{<keefe.murphy@mu.ie>}

\textbf{References}


\textbf{See Also}

\texttt{Mclust}, \texttt{plot.Mclust}, \texttt{MoE_clust}, \texttt{plot.MoEClust}, \texttt{expert_covar}, \texttt{MoE_control}

\textbf{Examples}

```r
library(mclust)

Fit a gating network mixture of experts model to the ais data
data(ais)
mod <- MoE_clust(ais[,3:7], G=1:9, gating=-BMI + sex, network.data=ais)

Convert to the "Mclust" class and examine the classification
mod2 <- as.Mclust(mod)
plot(mod2, what="classification")

Examine the uncertainty
plot(mod2, what="uncertainty")

Return the optimal number of clusters according to entropy
combi <- mclust::clustCombi(object=mod2)
optim <- mclust::clustCombiOptim(object=combi)
table(mod2$classification, ais$sex)
table(optim$cluster.combi, ais$sex)

While we could have just used plot.MoEClust above,
plot.Mclust is especially useful for univariate data
data(CO2data)
res <- MoE_clust(CO2data$CO2, G=3, equalPro=TRUE, expert=-GNP, network.data=CO2data)
plot(as.Mclust(res))
```
C02data  

**GNP and CO2 Data Set**

**Description**

This data set gives the gross national product (GNP) per capita in 1996 for various countries as well as their estimated carbon dioxide (CO2) emission per capita for the same year.

**Usage**

```r
data(C02data)
```

**Format**

This data frame consists of 28 countries and the following variables:

- **GNP** - The gross product per capita in 1996.
- **CO2** - The estimated carbon dioxide emission per capita in 1996.
- **country** - An abbreviation pertaining to the country measures (e.g. "GRC" = Greece and "CH" = Switzerland).

**References**


**Examples**

```r
data(C02data, package="MoEClust")
plot(C02data$GNP, C02data$CO2, type="n", ylab=expression('CO'[2]))
text(C02data$GNP, C02data$CO2, C02data$country)
```

---

**drop_constants**  

**Drop constant variables from a formula**

**Description**

Drops constant variables from the RHS of a formula taking the data set (dat), the formula (formula), and an optional subset vector (sub) as arguments.

**Usage**

```r
drop_constants(dat,
 formula,
 sub = NULL)
```
Arguments

**dat**  
A `data.frame` where rows correspond to observations and columns correspond to variables. Ideally column names should be present.

**formula**  
An object of class "formula": a symbolic description of the model to be fitted. Variables in the formula not present in the columns of `dat` will automatically be discarded. The formula may include interactions, transformations, or higher order terms: the latter **must** be specified explicitly using the `AsIs` operator (`I`).

**sub**  
An optional vector specifying a subset of observations to be used in the fitting process.

Value

The updated formula with constant variables removed.

Note

Formulas with and without intercepts are accommodated.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

See Also

`drop_levels`, `I`

Examples

```r
data(ais)
hema <- as.matrix(ais[,3:7])
sex <- ais$sex
BMI <- ais$BMI

Set up a no-intercept regression formula with constant column 'sex'
form1 <- as.formula(hema ~ sex + BMI + I(BMI^2) - 1)
sub <- ais$sex == "male"

Try fitting a linear model
mod1 <- try(lm(form1, data=ais, subset=sub), silent=TRUE)
inherits(mod1, "try-error") # TRUE

Remove redundant variables from formula & try again
form2 <- drop_constants(ais, form1, sub)
mod2 <- try(lm(form2, data=ais, subset=sub), silent=TRUE)
inherits(mod2, "try-error") # FALSE
```
drop_levels

Drop unused factor levels to predict from unseen data

Description

Drops unused factor levels in newdata for which predictions are required from a \texttt{lm} or \texttt{multinom} model fit.

Usage

\begin{verbatim}
drop_levels(fit, newdata)
\end{verbatim}

Arguments

- \texttt{fit} A fitted \texttt{lm} or \texttt{multinom} model.
- \texttt{newdata} A \texttt{data.frame} containing variables with which to predict.

Value

A \texttt{data.frame} like newdata with unseen factor levels replaced by \texttt{NA}.

Note

This function is so far untested for models other than \texttt{lm} or \texttt{multinom}, though it may still work for other classes.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

See Also

\texttt{drop_constants}

Examples

\begin{verbatim}
data(ais)
  hema <- as.matrix(ais[,3:7])
  BMI <- ais$BMI
  sport <- ais$sport
  sub <- ais$sport != "Row"

  # Fit a linear model
  mod <- lm(hema ~ BMI + sport, data=ais, subset=sub)

  # Make predictions
  pred1 <- try(predict(mod, newdata=ais), silent=TRUE)
  inherits(pred1, "try-error") #TRUE
\end{verbatim}
expert_covar

# Remove unused levels and try again
pred2 <- try(predict(mod, newdata=drop_levels(mod, ais)), silent=TRUE)
inherits(pred2, "try-error") #FALSE
anyNA(pred2) #TRUE

<table>
<thead>
<tr>
<th>expert_covar</th>
<th>Account for extra variability in covariance matrices with expert covariates</th>
</tr>
</thead>
</table>

Description

In the presence of expert network covariates, this helper function modifies the component-specific covariance matrices of a "MoEClust" object, in order to account for the extra variability due to the component means, usually resulting in bigger shapes & sizes for the MVN ellipses in MoE_gpairs plots. The function also works for univariate response data.

Usage

```r
expert_covar(x,
 weighted = TRUE,
 ...)```

Arguments

- `x`
 An object of class "MoEClust" generated by MoE_clust, or an object of class "MoECompare" generated by MoE_compare. Models with a noise component are facilitated here too.

- `weighted`
 A logical indicating whether the estimated cluster membership probabilities should be used to provide a weighted estimate of the variability due to the component means. Defaults to TRUE. The option weighted=FALSE is provided only so that previous behaviour under earlier versions of this package can be recovered but is otherwise not recommended.

- `...`
 Catches unused arguments.

Details

This function is used internally by MoE_gpairs.plot.MoEClust(x,what="gpairs"), and as.Mclust, for visualisation purposes.

Value

The variance component only from the parameters list from the output of a call to MoE_clust, modified accordingly.
force_posiDiag

Note

The `modelName` of the resulting variance object may not correspond to the model name of the "MoEClust" object, in particular scale, shape, &/or orientation may no longer be constrained across clusters, and `cholsigma`, if it was in the input, will be discarded from the output. Usually, the `modelName` of the transformed variance object will be "VVV". Furthermore, the output will drop certain row and column names from the output.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

See Also

`MoE_clust, MoE_gpairs, plot.MoEClust, as.Mclust`

Examples

```r
data(ais)
res <- MoE_clust(ais[,3:7], G=2, gating= ~ 1, expert= ~ sex, 
    network.data=ais, modelNames="EEE", equalPro=TRUE)

# Extract the variance object
res$parameters$variance

# Modify the variance object
expert_covar(res)
```

```
force_posiDiag
Force diagonal elements of a triangular matrix to be positive
```

Description

This function ensures that the triangular matrix in a QR (or other) decomposition has positive values along its diagonal.

Usage

`force_posiDiag(x)`

Arguments

`x` A matrix, which must be either upper-triangular or lower-triangular.
Value

An upper or lower triangular matrix with positive diagonal entries such that the matrix is still a valid decomposition of the matrix the input x is a decomposition of.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=3, modelNames="EEE")
sig <- res$parameters$variance
a <- force_posiDiag(sig$cholSigma)
b <- chol(sig$Sigma)
all.equal(a, b) #TRUE
all.equal(crossprod(a), sig$Sigma) #TRUE
all.equal(crossprod(b), sig$Sigma) #TRUE

MoE_clust MoEClust: Gaussian Parsimonious Clustering Models with Covariates and a Noise Component

Description

Fits MoEClust models: Gaussian Mixture of Experts models with GPCM/mclust-family covariance structures. In other words, performs model-based clustering via the EM/CEM algorithm where covariates are allowed to enter neither, either, or both the mixing proportions (gating network) and/or component densities (expert network) of a Gaussian Parsimonious Clustering Model, with or without an additional noise component. Additional arguments are available via the function MoE_control, including the specification of a noise component, controls on the initialisation of the algorithm, and more.

Usage

MoE_clust(data,
 G = 1:9,
 modelName = NULL,
 gating = ~1,
 expert = ~1,
 control = MoE_control(...),
 network.data = NULL,
 ...)

 ## S3 method for class 'MoEClust'
 print(x,
 digits = 3L,
...)

S3 method for class 'MoEClust'
summary(object,
 classification = TRUE,
 parameters = FALSE,
 networks = FALSE,
 ...
)

Arguments

- **data**: A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.

- **G**: An integer vector specifying the number(s) of mixture components (clusters) to fit. Defaults to \(G=1:9\). Must be a strictly positive integer, unless a noise component is included in the estimation, in which case \(G=0\) is allowed and also included by default. (see `MoE_control`).

- **modelName**: A vector of character strings indicating the models to be fitted in the EM/CEM phase of clustering. With \(n\) observations and \(d\) variables, the defaults are:
 - for univariate data: \(\text{c("E", "V")}\)
 - for multivariate data \(n > d\): \(\text{mclust.options("emModelNames")}\)
 - for high-dimensional multivariate data \(n \leq d\): \(\text{c("EII", "VII", "EEI", "EVI", "VEI", "VVI")}\)

 For single-component models these options reduce to:
 - for univariate data: \(\text{"E"}\)
 - for multivariate data \(n > d\): \(\text{c("EII", "EEI", "EEE")}\)
 - for high-dimensional multivariate data \(n \leq d\): \(\text{c("EII", "EEI")}\)

 For zero-component models with a noise component only the "E" and "EII" models will be fitted for univariate and multivariate data, respectively, although this is clearly for naming consistency only. The help file for `mclustModelNames` further describes the available models (though the "X" in the single-component models will be coerced to "E" if supplied that way). For single-component models, other model names equivalent to those above can be supplied, but will be coerced to those above.

- **gating**: A `formula` for determining the model matrix for the multinomial logistic regression in the gating network when fixed covariates enter the mixing proportions. Defaults to \(~1\), i.e. no covariates. This will be ignored where \(G=1\). Continuous, categorical, and/or ordinal covariates are allowed. Logical covariates will be coerced to factors. Interactions, transformations, and higher order terms are permitted: the latter **must** be specified explicitly using the `AsIs` operator (\(I\)). The specification of the LHS of the formula is ignored. Intercept terms are included by default.

- **expert**: A `formula` for determining the model matrix for the (multivariate) WLS in the expert network when fixed covariates are included in the component densities.
Defaults to \(\sim 1 \), i.e. no covariates. Continuous, categorical, and/or ordinal covariates are allowed. Logical covariates will be coerced to factors. Interactions, transformations, and higher order terms are permitted: the latter must be specified explicitly using the \texttt{AsIs} operator (I). The specification of the LHS of the formula is ignored. Intercept terms are included by default.

control

A list of control parameters for the EM/CEM and other aspects of the algorithm. The defaults are set by a call to \texttt{MoE_control}. In particular, arguments pertaining to the inclusion of an additional noise component are documented here.

network.data

An optional data frame (or a matrix with named columns) in which to look for the covariates in the gating &/or expert network formulas, if any. If not found in \texttt{network.data}, any supplied gating &/or expert covariates are taken from the environment from which \texttt{MoE_clust} is called. Try to ensure the names of variables in \texttt{network.data} do not match any of those in \texttt{data}.

... An alternative means of passing control parameters directly via the named arguments of \texttt{MoE_control}. Do not pass the output from a call to \texttt{MoE_control} here! This argument is only relevant for the \texttt{MoE_clust} function and will be ignored for the associated print and summary functions.

x, object, digits, classification, parameters, networks

Arguments required for the print and summary functions: \texttt{x} and \texttt{object} are objects of class "\texttt{MoEClust}" resulting from a call to \texttt{MoE_clust}, while \texttt{digits} gives the number of decimal places to round to for printing purposes (defaults to 3). \texttt{classification}, \texttt{parameters}, and \texttt{networks} are logicals which govern whether a table of the MAP classification of observations, the mixture component parameters, and the gating/expert network coefficients are printed, respectively.

Details

The function effectively allows 6 different types of Gaussian Mixture of Experts model (as well as the different models in the GPCM/\texttt{mclust} family, for each): i) the standard finite Gaussian mixture with no covariates, ii) fixed covariates only in the gating network, iii) fixed covariates only in the expert network, iv) the full Mixture of Experts model with fixed covariates entering both the mixing proportions and component densities. By constraining the mixing proportions to be equal (see \texttt{equalPro} in \texttt{MoE_control}) two extra special cases are facilitated when gating covariates are excluded.

Note that having the same covariates in both networks is allowed. So too are interactions, transformations, and higher order terms (see \texttt{formula}): the latter must be specified explicitly using the \texttt{AsIs} operator (I). Covariates can be continuous, categorical, logical, or ordinal, but the response must always be continuous.

While model selection in terms of choosing the optimal number of components and the GPCM/\texttt{mclust} model type is performed within \texttt{MoE_clust}, using one of the criterion options within \texttt{MoE_control}, choosing between multiple fits with different combinations of covariates or different initialisation settings can be done by supplying objects of class "\texttt{MoEClust}" to \texttt{MoE_compare}.

Value

A list (of class "\texttt{MoEClust}"), with the following named entries, mostly corresponding to the chosen optimal model (as determined by the criterion within \texttt{MoE_control}):
call
The matched call.

data
The input data, as a data.frame.

modelName
A character string denoting the GPCM/mclust model type at which the optimal criterion occurs.

n
The number of observations in the data.

d
The dimension of the data.

G
The optimal number of mixture components according to criterion.

BIC
A matrix of all BIC values with length(G) rows and length(modelNames) columns. May include missing entries: NA represents models which were not visited, -Inf represents models which were terminated due to error, for which a log-likelihood could not be estimated. Inherits the classes "MoECriterion" and "mclustBIC", for which dedicated print, summary, and plot methods exist, respectively.

ICL
A matrix of all ICL values with length(G) rows and length(modelNames) columns. May include missing entries: NA represents models which were not visited, -Inf represents models which were terminated due to error, for which a log-likelihood could not be estimated. Inherits the classes "MoECriterion" and "mclustICL", for which dedicated print, summary, and plot methods exist, respectively.

AIC
A matrix of all AIC values with length(G) rows and length(modelNames) columns. May include missing entries: NA represents models which were not visited, -Inf represents models which were terminated due to error, for which a log-likelihood could not be estimated. Inherits the classes "MoECriterion" and "mclustAIC", for which dedicated print, summary, and plot methods exist, respectively.

bic
The BIC value corresponding to the optimal model. May not necessarily be the optimal BIC.

icl
The ICL value corresponding to the optimal model. May not necessarily be the optimal ICL.

aic
The AIC value corresponding to the optimal model. May not necessarily be the optimal AIC.

gating
An object of class "MoE_gating" (for which dedicated print, summary, and predict methods exist) and either "multinom" or "glm" (only for single-component models or noise-only models) giving the multinom regression coefficients of the gating network. If gating covariates were NOT supplied (or the best model has just one component), this corresponds to a RHS of ~1, otherwise the supplied gating formula. As such, a fitted gating network is always returned even in the absence of supplied covariates or clusters. The number of parameters to penalise by for MoE_crit is given by length(coef(gating)), and the gating formula used is stored here as an attribute. If there is a noise component (and the option noise.gate=TRUE is invoked), its coefficients are those for the last component. Users are cautioned against making inferences about statistical significance from summaries of the coefficients in the gating network.
An object of class "MoE_expert" (for which dedicated print, summary, and predict methods exist) and "lm" giving the (multivariate) WLS regression coefficients of the expert network. If expert covariates were NOT supplied, this corresponds to a RHS of ~1, otherwise the supplied expert formula. As such, a fitted expert network is always returned even in the absence of supplied covariates. The number of parameters to penalise by for MoE_crit is given by $G \times \text{length(coef(expert[[1]]))}$, and the expert formula used is stored here as an attribute. Users are cautioned against making inferences about statistical significance from summaries of the coefficients in the expert network.

A matrix of all maximal log-likelihood values with $\text{length}(G)$ rows and $\text{length(modelNames)}$ columns. May include missing entries: NA represents models which were not visited, -Inf represents models which were terminated due to error, for which a log-likelihood could not be estimated. Inherits the classes "MoECriterion" and "mclustLoglik", for which dedicated print, summary, and plot methods exist, respectively.

The vector of increasing log-likelihood values for every EM/CEM iteration under the optimal model. The last element of this vector is the maximum log-likelihood achieved by the parameters returned at convergence.

An asymptotic estimate of the final converged maximised log-likelihood. Returned when stopping="aitken" and $G > 1$ (see MoE_control and aitken), otherwise the last element of loglik is returned instead.

The number of estimated parameters in the optimal model (i.e. the number of 'used' degrees of freedom). Subtract this number from n to get the degrees of freedom. The number of parameters due to the gating network, expert network, and covariance matrices are also stored here as attributes of df.

The total number of EM/CEM iterations for the optimal model.

The hypervolume parameter for the noise component if required, otherwise set to NA (see MoE_control).

A list with the following named components:

- **pro** The mixing proportions: either a vector of length G or, if gating covariates were supplied, a matrix with an entry for each observation (rows) and component (columns).

- **mean** The means of each component. If there is more than one component, this is a matrix whose k-th column is the mean of the k-th component of the mixture model.

 For models with expert network covariates, this is given by the posterior mean of the fitted values, otherwise the posterior mean of the response is reported. For models with expert network covariates, the observation-specific component means can be accessed by calling predict on the expert object above.

- **variance** A list of variance parameters of each component of the model. The components of this list depend on the model type specification. See the help file for mclustVariance for details. Also see expert_covar for an alternative approach to summarising the variance parameters in the presence of expert network covariates.
Vinv The inverse of the hypervolume parameter for the noise component if required, otherwise set to NULL (see MoE_control).

z The final responsibility matrix whose \([i,k]\)-th entry is the probability that observation \(i\) belongs to the \(k\)-th component. If there is a noise component, its values are found in the last column.

classification The vector of cluster labels for the chosen model corresponding to \(z\), i.e. \(\text{max.col}(z)\). Observations belonging to the noise component, if any, will belong to component 0.

uncertainty The uncertainty associated with the classification.

net.covs A data frame gathering the unique set of covariates used in the gating and expert networks, if any. Will contain zero columns in the absence of gating or expert network covariates. Supplied gating covariates will be excluded if the optimal model has only one component. May have fewer columns than covariates supplied via the network.data argument also, as only the included covariates are gathered here.

resid.data In the presence of expert network covariates, this is the augmented data actually used in the clustering at convergence, as a list of \(G\) matrices of WLS residuals of dimension \(n \times d\). Will contain zero columns in the absence of expert network covariates.

DF A matrix giving the numbers of estimated parameters (i.e. the number of 'used' degrees of freedom) for all visited models, with length(G) rows and length(modelNames) columns. Subtract these numbers from \(n\) to get the degrees of freedom. May include missing entries: NA represents models which were not visited, -Inf represents models which were terminated due to error, for which parameters could not be estimated. Inherits the classes "MoECriterion" and "mclustDF", for which dedicated print, summary, and plot methods exist, respectively.

ITERS A matrix giving the total number of EM/CEM iterations for all visited models, with length(G) rows and length(modelNames) columns. May include missing entries: NA represents models which were not visited, Inf represents models which were terminated due to singularity/error and thus would never have converged. Inherits the classes "MoECriterion" and "mclustITERS", for which dedicated print, summary, and plot methods exist, respectively.

Dedicated plot, predict, print, and summary functions exist for objects of class "MoEClust". The results can be coerced to the "Mclust" class to access other functions from the mclust package via as.Mclust.

Note

Where BIC, ICL, AIC, LOGLIK, DF and ITERS contain NA entries, this corresponds to a model which was not run; for instance a VVV model is never run for single-component models as it is equivalent to EEE. As such, one can consider the value as not really missing, but equivalent to the EEE value. BIC, ICL, AIC, LOGLIK, DF and ITERS all inherit the classes "MoECriterion" and "mclustBIC", "mclustICL", etc., for which dedicated print, summary, and plot methods exist, respectively.
MoE_clust

Author(s)
Keefe Murphy - <keefe.murphy@mu.ie>

References
Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. *Advances in Data Analysis and Classification*, 14(2): 293-325. <doi: 10.1007/s11634019003738>.

See Also
See MoE_stepwise for identifying the optimal model and its covariates via greedy forward stepwise selection.

Examples
data(ais)
hema <- ais[,3:7]
sex <- ais$sex
BMI <- ais$BMI

Fit a standard finite mixture model
m1 <- MoE_clust(hema, G=2:3)

Allow covariates to enter the mixing proportions
m2 <- MoE_clust(hema, G=2:3, gating=~sex + BMI)

Allow covariates to enter the component densities
m3 <- MoE_clust(hema, G=2:3, expert=~sex)

Allow covariates to enter both the gating & expert network
m4 <- MoE_clust(hema, G=2:3, gating=~BMI, expert=~sex)

Fit an equal mixing proportion model with an expert network covariate
m5 <- MoE_clust(hema, G=2:3, expert=~sex + BMI, equalPro=TRUE)

Fit models with gating covariates & an additional noise component
m6 <- MoE_clust(hema, G=2:3, tau0=0.1, gating=~BMI, network.data=ais)

Extract the model with highest BIC
(comp <- MoE_compare(m1, m2, m3, m4, m5, m6, criterion="bic"))

See if a better model can be found using greedy forward stepwise selection
(step <- MoE_stepwise(ais[,3:7], ais))
MoE_compare

Choose the best MoEClust model

Description

Takes one or more sets of MoEClust models fitted by MoE_clust (or MoE_stepwise) and ranks them according to the BIC, ICL, or AIC. It's possible to respect the internal ranking within each set of models, or to discard models within each set which were already deemed sub-optimal. This function can help with model selection via exhaustive or stepwise searches.

Usage

MoE_compare(...,
 criterion = c("bic", "icl", "aic"),
 pick = 10L,
 optimal.only = FALSE)

S3 method for class 'MoECompare'
print(x,
 index = seq_len(x$pick),
 posidens = TRUE,
 rerank = FALSE,
 digits = 3L,
 details = TRUE,
 maxi = length(index),
 ...)

```r
(comp <- MoE_compare(comp, step, optimal.only=TRUE))
(best <- comp$optimal)
(summ <- summary(best, classification=TRUE, parameters=TRUE, networks=TRUE))

# Examine the expert network in greater detail
# (but refrain from inferring statistical significance!)
summary(best$expert)

# Visualise the results, incl. the gating network and log-likelihood
plot(best, what="gpairs")
plot(best, what="gating") # equal mixing proportions!
plot(best, what="loglik")

# Visualise the results using the 'lattice' library
require("lattice")
z <- factor(best$classification, labels=paste0("Cluster", seq_len(best$G)))
splom(~ hema | sex, groups=z)
splom(~ hema | z, groups=sex)
```
MoE_compare

Arguments

... One or more objects of class "MoEClust" outputted by MoE_clust. All models must have been fit to the same data set. A single named list of such objects can also be supplied. Additionally, objects of class "MoECompare" outputted by this very function can also be supplied here. This argument is only relevant for the MoE_compare function and will be ignored for the associated print function.

criterion The criterion used to determine the ranking. Defaults to "bic".

pick The (integer) number of models to be ranked and compared. Defaults to 10L. Will be constrained by the number of models within the "MoEClust" objects supplied via ... if optimal.only is FALSE, otherwise constrained simply by the number of "MoEClust" objects supplied. Setting pick=Inf is a valid way to select all models.

optimal.only Logical indicating whether to only rank models already deemed optimal within each "MoEClust" object (TRUE), or to allow models which were deemed suboptimal enter the final ranking (FALSE, the default). See details.

x, index, posidens, rerank, digits, details, maxi Arguments required for the associated print function:

x An object of class "MoECompare" resulting from a call to MoE_compare.

index A logical or numeric vector giving the indices of the rows of the table of ranked models to print. This defaults to the full set of ranked models. It can be useful when the table of ranked models is large to examine a subset via this index argument, for display purposes. See rerank.

posidens A logical indicating whether models which have been flagged for having positive log-densities should be included in the comparison (defaults to TRUE). Such models may correspond to spurious solutions and can be discarded by specifying posidens=FALSE. Only relevant if any of the "MoEClust" objects being compared were themselves run with posidens=TRUE.

rerank A logical indicating whether the ranks should be recomputed when subsetting using index. Defaults to FALSE. Only relevant when details=TRUE.

digits The number of decimal places to round model selection criteria to (defaults to 3).

details Logical indicating whether some additional details should be printed, defaults to TRUE. Exists to facilitate MoE_stepwise printing.

maxi A number specifying the maximum number of rows/models to print. Defaults to length(index).

Details

The purpose of this function is to conduct model selection on "MoEClust" objects, fit to the same data set, with different combinations of gating/expert network covariates or different initialisation settings.

Model selection will have already been performed in terms of choosing the optimal number of components and GPCM/mclust model type within each supplied set of results, but MoE_compare will respect the internal ranking of models when producing the final ranking if optimal.only is
FALSE: otherwise only those models already deemed optimal within each "MoEClust" object will be ranked.

As such if two sets of results are supplied when optimal.only is FALSE, the 1st, 2nd and 3rd best models could all belong to the first set of results, meaning a model deemed suboptimal according to one set of covariates could be superior to one deemed optimal under another set of covariates.

Value

A list of class "MoECompare", for which a dedicated print function exists, containing the following elements (each of length pick, and ranked according to criterion, where appropriate):

data
optimal
pick
MoENames
modelNames
G
df
iters
bic
icl
aic
loglik
gating
expert
algo
equalPro
hypvol
noise
noise.gate
equalNoise

The name of the data set to which the models were fitted.
The single optimal model (an object of class "MoEClust") among those supplied, according to the chosen criterion.
The final number of ranked models. May be different (i.e. less than) the supplied pick value.
The names of the supplied "MoEClust" objects.
The mclustModelNames.
The optimal numbers of components.
The numbers of estimated parameters.
The numbers of EM/CEM iterations.
BIC values, ranked according to criterion.
ICL values, ranked according to criterion.
AIC values, ranked according to criterion.
Maximal log-likelihood values, ranked according to criterion.
The gating formulas.
The expert formulas.
The algorithm used for fitting the model - either "EM", "CEM", "cemEM".
Logical indicating whether mixing proportions were constrained to be equal across components.
Hypervolume parameters for the noise component if relevant, otherwise set to NA (see MoE_control).
The type of noise component fitted (if any). Only displayed if at least one of the compared models has a noise component.
Logical indicating whether gating covariates were allowed to influence the noise component's mixing proportion. Only printed for models with a noise component, when at least one of the compared models has gating covariates.
Logical indicating whether the mixing proportion of the noise component for equalPro models is also equal (TRUE) or estimated (FALSE).
Note

The criterion argument here need not comply with the criterion used for model selection within each "MoEClust" object, but be aware that a mismatch in terms of criterion may require the optimal model to be re-fit in order to be extracted, thereby slowing down `MoE_compare`.

If random starts had been used via `init.z="random"` the optimal model may not necessarily correspond to the highest-ranking model in the presence of a criterion mismatch, due to the randomness of the initialisation.

A dedicated print function exists for objects of class "MoECompare".

`plot.MoEClust` and `as.Mclust` can both also be called on objects of class "MoECompare".

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. *Advances in Data Analysis and Classification*, 14(2): 293-325. <doi: 10.1007/s11634019003738>.

See Also

See `MoE_stepwise` for identifying the optimal model and its covariates via greedy forward stepwise selection.

`MoE_clust, mclustModelNames, plot.MoEClust, as.Mclust`

Examples

data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP

Fit a range of models
m1 <- MoE_clust(CO2, G=1:3)
m2 <- MoE_clust(CO2, G=2:3, gating= ~ GNP)
m3 <- MoE_clust(CO2, G=1:3, expert= ~ GNP)
m4 <- MoE_clust(CO2, G=2:3, gating= ~ GNP, expert= ~ GNP)
m5 <- MoE_clust(CO2, G=2:3, equalPro=TRUE)
m6 <- MoE_clust(CO2, G=2:3, expert= ~ GNP, equalPro=TRUE)
m7 <- MoE_clust(CO2, G=2:3, expert= ~ GNP, tau0=0.1)

Rank only the optimal models and examine the best model
(comp <- MoE_compare(m1, m2, m3, m4, m5, m6, m7, optimal.only=TRUE))
(best <- comp$optimal)
(summ <- summary(best, classification=TRUE, parameters=TRUE, networks=TRUE))

Examine all models visited, including those already deemed suboptimal
Only print models with expert covariates & more than one component
comp2 <- MoE_compare(m1, m2, m3, m4, m5, m6, m7, pick=Inf)
print(comp2, index=comp2$expert != "None" & comp2$G > 1)

Conduct a stepwise search on the same data
(mod1 <- MoE_stepwise(CO2, GNP))

Conduct another stepwise search considering models with a noise component
(mod2 <- MoE_stepwise(CO2, GNP, noise=TRUE))

Compare both sets of results to choose the optimal model
(best <- MoE_compare(mod1, mod2, optimal.only=TRUE)$optimal)

MoE_control

Set control values for use with MoEClust

Description

Supplies a list of arguments (with defaults) for use with MoE_clust.

Usage

MoE_control(init.z = c("hc", "quantile", "kmeans", "mclust", "random", "list"),
noise.args = list(...),
asMclust = FALSE,
equalPro = FALSE,
exp.init = list(...),
algo = c("EM", "CEM", "cemEM"),
criterion = c("bic", "icl", "aic"),
stopping = c("aitken", "relative"),
z.list = NULL,
nstarts = 1L,
eps = .Machine$double.eps,
tol = c(1e-05, sqrt(.Machine$double.eps), 1e-08),
itmax = c(.Machine$integer.max, .Machine$integer.max, 1000L),
hc.args = list(...),
km.args = list(...),
posidens = TRUE,
init.crit = c("bic", "icl"),
warn.it = 0L,
MaxNWts = 1000L,
verbose = interactive(),
...)

Arguments

- **init.z**: The method used to initialise the cluster labels for the non-noise components. Defaults to "hc", i.e. model-based agglomerative hierarchical clustering tree as per hc, for multivariate data (see hc.args), or "quantile"-based clustering
as per `quant_clust` for univariate data (unless there are expert network covariates incorporated via `exp.init$joint` &/or `exp.init$clustMD`, in which case the default is again "hc"). The "quantile" option is thus only available for univariate data when expert network covariates are not incorporated via `exp.init$joint` &/or `exp.init$clustMD`, or when expert network covariates are not supplied.

Other options include "kmeans" (see `km.args`), "random" initialisation (see `nstarts` below), a user-supplied "list", and a full run of `Mclust` (itself initialised via a model-based agglomerative hierarchical clustering tree, again see `hc.args`), although this last option "mclust" will be coerced to "hc" if there are no gating &/or expert covariates within `MoE_clust` (in order to better reproduce `Mclust` output).

When `init.z="list"`, `exp.init$clustMD` is forced to `FALSE`; otherwise, when `isTRUE(exp.init$clustMD)` and the `clustMD` library is loaded, the `init.z` argument instead governs the method by which a call to `clustMD` is initialised. In this instance, "quantile" will instead default to "hc", and the arguments to `hc.args` and `km.args` will be ignored (unless all `clustMD` model types fail for a given number of components).

When `init.z="mclust"` or `clustMD` is successfully invoked (via `exp.init$clustMD`), the argument `init.crit` (see below) specifies the model-selection criterion ("bic" or "icl") by which the optimal `Mclust` or `clustMD` model type to initialise with is determined, and `criterion` remains unaffected.

Finally, when the model includes expert network covariates and `isTRUE(exp.init$mahalanobis)`, the argument `exp.init$idstart` (see below) can be used to modify the behaviour of `init.z="random"` when `nstarts > 1`, toggling between a full run of the EM algorithm for each random initialisation (i.e. `exp.init$idstart=FALSE`, the default), or a single run of the EM algorithm starting from the best initial partition obtained among the random starts according to the iterative reallocation initialisation routine (i.e. `exp.init$idstart=TRUE`).

noise.args

A list supplying select named parameters to control inclusion of a noise component in the estimation of the mixture. If either or both of the arguments `tau0` &/or `noise.init` are supplied, a noise component is added to the model in the estimation.

- **tau0** Prior mixing proportion for the noise component. If supplied, a noise component will be added to the model in the estimation, with `tau0` giving the prior probability of belonging to the noise component for all observations. Typically supplied as a scalar in the interval (0, 1), e.g. 0.1. Can be supplied as a vector when gating covariates are present and `noise.args$noise.gate` is `TRUE`. This argument can be supplied instead of or in conjunction with the argument `noise.init` below.

- **noise.init** A logical or numeric vector indicating an initial guess as to which observations are noise in the data. If numeric, the entries should correspond to row indices of the data. If supplied, a noise component will be added to the model in the estimation. This argument can be used in conjunction with `tau0` above, or can be replaced by that argument also.

- **noise.gate** A logical indicating whether gating network covariates influence the mixing proportion for the noise component, if any. Defaults to `TRUE`, but
leads to greater parsimony if \texttt{FALSE}. Only relevant in the presence of a noise component; only affects estimation in the presence of gating covariates.

\texttt{noise.meth} The method used to estimate the volume when a noise component is invoked. Defaults to \texttt{hypvol}. For univariate data, this argument is ignored and the range of the data is used instead (unless \texttt{noise.vol} below is specified). The options "convexhull" and "ellipsoidhull" require loading the geometry and cluster libraries, respectively. This argument is only relevant if \texttt{noise.vol} below is not supplied.

\texttt{noise.vol} This argument can be used to override the argument \texttt{noise.meth} by specifying the (hyper)volume directly, i.e. specifying an improper uniform density. This will override the use of the range of the response data for univariate data if supplied. Note that the (hyper)volume, rather than its inverse, is supplied here. This can affect prediction and the location of the MVN ellipses for \texttt{MoE_gpairs} plots (see \texttt{noise_vol}).

\texttt{equalNoise} Logical which is \texttt{only} invoked when \texttt{isTRUE(equalPro)} and gating covariates are not supplied. Under the default setting (\texttt{FALSE}), the mixing proportion for the noise component is estimated, and remaining mixing proportions are equal; when \texttt{TRUE} all components, including the noise component, have equal mixing proportions.

\texttt{discard.noise} A logical governing how the means are summarised in \texttt{parameters$mean} and by extension the location of the MVN ellipses in \texttt{MoE_gpairs} plots for models with both expert network covariates and a noise component (otherwise this argument is irrelevant). The means for models with expert network covariates are summarised by the posterior mean of the fitted values. By default (\texttt{FALSE}), the mean of the noise component is accounted for in the posterior mean. Otherwise, or when the mean of the noise component is unavailable (due to having been manually supplied via \texttt{noise.args$noise.vol}), the z matrix is renormalised after discarding the column corresponding to the noise component prior to computation of the posterior mean. The renormalisation approach can be forced by specifying \texttt{noise.args$discard.noise=TRUE}, even when the mean of the noise component is available. For models with a noise component fitted with algo="CEM", a small extra E-step is conducted for observations assigned to the non-noise components in this case.

In particular, the argument \texttt{noise.meth} will be ignored for high-dimensional \(n \leq d\) data, in which case the argument \texttt{noise.vol} \textit{must be} specified. Note that this forces \texttt{noise.args$discard.noise} to \texttt{TRUE}. See \texttt{noise_vol} for more details.

The arguments \texttt{tau0} and \texttt{noise.init} can be used separately, to provide alternative means to invoke a noise component. However, they can also be supplied together, in which case observations corresponding to \texttt{noise.init} have probability \texttt{tau0} (rather than 1) of belonging to the noise component.

\texttt{asMclust} The default values of \texttt{stopping} and \texttt{hcUse} (see below) are such that results for models with \textit{no covariates in either network} are liable to differ from results for equivalent models obtained via \texttt{Mclust}. \texttt{MoEClust} uses \texttt{stopping="aitken"} and \texttt{hcUse="VARS"} by default, while \texttt{mclust} always implicitly uses \texttt{stopping="relative"} and defaults to \texttt{hcUse="SVD"}.
asMclust is a logical variable (FALSE, by default) which functions as a simple convenience tool for overriding these two arguments (even if explicitly supplied!) such that they behave like the function Mclust. Other user-specified arguments which differ from mclust are not affected by asMclust, as their defaults already correspond to mclust. Results may still differ slightly as MoEClust calculates log-likelihood values with greater precision. Finally, note that asMclust=TRUE is invoked even for models with covariates which are not accommodated by mclust.

equalPro
Logical variable indicating whether or not the mixing proportions are to be constrained to be equal in the model. Default: equalPro = FALSE. Only relevant when gating covariates are not supplied within MoE_clust, otherwise ignored. In the presence of a noise component (see noise.args), only the mixing proportions for the non-noise components are constrained to be equal (by default, see equalNoise), after accounting for the noise component.

exp.init
A list supplying select named parameters to control the initialisation routine in the presence of expert network covariates (otherwise ignored):

- **joint** A logical indicating whether the initial partition is obtained on the joint distribution of the response and expert network covariates (defaults to TRUE) or just the response variables (FALSE). By default, only continuous expert network covariates are considered (see exp.init$clustMD below). Only relevant when init.z is not "random" (unless isTRUE(exp.init$clustMD), in which case init.z specifies the initialisation routine for a call to clustMD). This will render the "quantile" option to init.z for univariate data unusable if continuous expert network covariates are supplied &/or categorical/ordinal expert network covariates are supplied when isTRUE(exp.init$clustMD) and the clustMD library is loaded.

- **mahalanobis** A logical indicating whether to iteratively reallocate observations during the initialisation phase to the component corresponding to the expert network regression to which it’s closest to the fitted values of in terms of Mahalanobis distance (defaults to TRUE). This will ensure that each component can be well modelled by a single expert prior to running the EM/CEM algorithm.

- **estart** A logical governing the behaviour of init.z="random" when nstarts > 1 in the presence of expert network covariates. Only relevant when isTRUE(exp.init$mahalanobis). Defaults to FALSE; i.e. all random starts are put through full runs of the EM algorithm. When TRUE, all random starts are put through the initial iterative reallocation routine prior to a full run of EM for only the single best random initial partition obtained. See the last set of Examples below.

clustMD
A logical indicating whether categorical/ordinal covariates should be incorporated when using the joint distribution of the response and expert network covariates for initialisation (defaults to FALSE). Only relevant when isTRUE(exp.init$joint). Requires the use of the clustMD library. Note that initialising in this manner involves fitting all clustMD model types in parallel for all numbers of components considered, and may fail (especially) in the presence of nominal expert network covariates. Unless init.z="list", supplying this argument as TRUE when the clustMD library is loaded has the effect of superseding the init.z argument: this
argument now governs instead how the call to `clustMD` is initialised (unless all `clustMD` model types fail for a given number of components, in which case `init.z` is invoked instead to initialise for G values for which all `clustMD` model types failed). Similarly, the arguments `hc.args` and `km.args` will be ignored (again, unless all `clustMD` model types fail for a given number of components).

`max.init` The maximum number of iterations for the Mahalanobis distance-based reallocation procedure when `exp.init$mahalanobis` is TRUE. Defaults to `.Machine$integer.max`.

`identity` A logical indicating whether the identity matrix (corresponding to the use of the Euclidean distance) is used in place of the covariance matrix of the residuals (corresponding to the use of the Mahalanobis distance). Defaults to FALSE for multivariate response data but defaults to TRUE for univariate response data. Setting `identity=FALSE` with multivariate data may be advisable when the dimensions of the data are such that the covariance matrix cannot be inverted (otherwise, the pseudo-inverse is used when TRUE).

`drop.break` When isTRUE(`exp.init$mahalanobis`) observations will be completely in or out of a component during the initialisation phase. As such, it may occur that constant columns will be present when building a given component's expert regression (particularly for categorical covariates). It may also occur, due to this partitioning, that "unseen" data, when calculating the residuals, will have new factor levels. When isTRUE(`exp.init$drop.break`), the Mahalanobis distance based initialisation phase will explicitly fail in either of these scenarios. Otherwise, `drop_constants` and `drop_levels` will be invoked when `exp.init$drop.break` is FALSE (the default) to try to remedy the situation. In any case, only a warning that the initialisation step failed will be printed, regardless of the value of `exp.init$drop.break`.

`algo` Switch controlling whether models are fit using the "EM" (the default) or "CEM" algorithm. The option "cemEM" allows running the EM algorithm starting from convergence of the CEM algorithm.

`criterion` When either G or `modelName` is a vector, `criterion` determines whether the "bic" (Bayesian Information Criterion), "icl" (Integrated Complete Likelihood), "aic" (Akaike Information Criterion) is used to determine the 'best' model when gathering output. Note that all criteria will be returned in any case.

`stopping` The criterion used to assess convergence of the EM/CEM algorithm. The default ("aitken") uses Aitken's acceleration method via `aitken`, otherwise the "relative" change in log-likelihood is monitored (which may be less strict). The "relative" option corresponds to the stopping criterion used by `Mclust` see `asMclust` above.

Both stopping rules are ultimately governed by `tol1`. When the "aitken" method is employed, the asymptotic estimate of the final converged maximised log-likelihood is also returned as `linf` for models with 2 or more components, though the largest element of the returned vector `loglik` still gives the log-likelihood value achieved by the parameters returned at convergence, under both stopping methods (see `MoE_clust`).
A user supplied list of initial cluster allocation matrices, with number of rows given by the number of observations, and numbers of columns given by the range of component numbers being considered. In particular, \texttt{z.list} must only include columns corresponding to non-noise components when using this method to initialise in the presence of a noise component. Only relevant if \texttt{init.z} = "\texttt{z.list}". These matrices are allowed to correspond to both soft or hard clusterings, and will be internally normalised so that the rows sum to 1. See \texttt{noise.init} and \texttt{tau0} above for details on initialisation in the presence of a noise component.

The number of random initialisations to use when \texttt{init.z="random"}. Defaults to 1. When there are no expert covariates (or when \texttt{exp.init$mahalanobis=FALSE} or \texttt{exp.init$estart=FALSE}), the results will be based on the random start yielding the highest estimated log-likelihood after each initial partition is subjected to a full run of the EM algorithm. Note, in this case, that all \texttt{nstarts} random initialisations are affected by \texttt{exp.init$mahalanobis}, if invoked in the presence of expert network covariates, which may remove some of the randomness.

Conversely, if \texttt{exp.init$mahalanobis=TRUE} and \texttt{exp.init$estart=TRUE}, all \texttt{nstarts} random starts are put through the initial iterative reallocation routine and only the single best initial partition uncovered is put through the full run of the EM algorithm. See \texttt{init.z} and \texttt{exp.init$estart} above for more details, though note that \texttt{exp.init$mahalanobis=TRUE} and \texttt{exp.init$estart=FALSE}, by default.

A scalar tolerance associated with deciding when to terminate computations due to computational singularity in covariances. Smaller values of \texttt{eps} allow computations to proceed nearer to singularity. The default is the relative machine precision \texttt{.Machine$double.eps}, which is approximately 2e-16 on IEEE-compliant machines.

A vector of length three giving relative convergence tolerances for 1) the log-likelihood of the EM/CEM algorithm, 2) parameter convergence in the inner loop for models with iterative M-step ("\texttt{VEI}", "\texttt{VEE}", "\texttt{EVE}", "\texttt{VVE}", "\texttt{VEV}"), and 3) optimisation in the multinomial logistic regression in the gating network, respectively. The default is \texttt{c(1e-05,sqrt(.Machine$double.eps),1e-08)}. If only one number is supplied, it is used as the tolerance for all three cases given.

A vector of length three giving integer limits on the number of iterations for 1) the EM/CEM algorithm, 2) the inner loop for models with iterative M-step ("\texttt{VEI}", "\texttt{VEE}", "\texttt{EVE}", "\texttt{VVE}", "\texttt{VEV}"), and 3) the multinomial logistic regression in the gating network, respectively.

The default is \texttt{c(.Machine$integer.max,.Machine$integer.max,1000L)}, allowing termination to be completely governed by \texttt{tol[1]} & \texttt{tol[2]} for the inner and outer loops of the EM/CEM algorithm. If only one number is supplied, it is used as the iteration limit for the outer loop only and the other elements of \texttt{itmax} retain their usual defaults.

If, for any model with gating covariates, the multinomial logistic regression in the gating network fails to converge in \texttt{itmax[3]} iterations at any stage of the EM/CEM algorithm, an appropriate warning will be printed, prompting the user to modify this argument.
MoE_control

A list supplying select named parameters to control the initialisation of the cluster allocations when `init.z`="hc" (or when `init.z`="mclust", which itself relies on `hc`), unless isTRUE(exp.init$clustMD), the `clustMD` library is loaded, and none of the `clustMD` model types fail (otherwise irrelevant):

MoE_control

```
MoE_control
```

- **hc.args**
 - A string specifying the type of input variables to be used. This defaults to "VAR5" here, unlike `mclust` which defaults to "SVD". Other allowable values are documented in `mclust.options`. See `asMclust` above.

- **hcUse**
 - A character string indicating the model to be used when hierarchical clustering (see `hc`) is employed for initialisation (either when `init.z`="hc" or `init.z`="mclust"). Defaults to "EII" for high-dimensional data, or "VVV" otherwise.

- **km.args**
 - A list supplying select named parameters to control the initialisation of the cluster allocations when `init.z`="kmeans", unless isTRUE(exp.init$clustMD), the `clustMD` library is loaded, and none of the `clustMD` model types fail (otherwise irrelevant):
 - **kstarts**
 - The number of random initialisations to use. Defaults to 10.
 - **kiters**
 - The maximum number of K-Means iterations allowed. Defaults to 10.
 - **posidens**
 - A logical governing whether to continue running the algorithm even in the presence of positive log-densities. Defaults to TRUE, but setting `posidens=FALSE` can help to safeguard against spurious solutions, which will be instantly terminated if positive log-densities are encountered. Note that versions of this package prior to and including version 1.3.1 always implicitly assumed `posidens=FALSE`.
 - **init.crit**
 - The criterion to be used to determine the optimal model type to initialise with, when `init.z`="mclust" or when isTRUE(exp.init$clustMD) and the `clustMD` library is loaded (one of "bic" or "icl"). Defaults to "icl" when criterion="icl", otherwise defaults to "bic". The criterion argument remains unaffected.
 - **warn.it**
 - A single number giving the iteration count at which a warning will be printed if the EM/CEM algorithm has failed to converge. Defaults to 0, i.e. no warning (which is true for any `warn.it` value less than 3), otherwise the message is printed regardless of the value of `verbose`. If non-zero, `warn.it` should be moderately large, but obviously less than `itmax[1]`. A warning will always be printed if one of more models fail to converge in `itmax[1]` iterations.
 - **MaxNWts**
 - The maximum allowable number of weights in the call to `multinom` for the multinomial logistic regression in the gating network. There is no intrinsic limit in the code, but increasing `MaxNWts` will probably allow fits that are very slow and time-consuming. It may be necessary to increase `MaxNWts` when categorical concomitant variables with many levels are included or the number of components is high.
 - **verbose**
 - Logical indicating whether to print messages pertaining to progress to the screen during fitting. By default is TRUE if the session is interactive, and FALSE otherwise. If FALSE, warnings and error messages will still be printed to the screen, but everything else will be suppressed.

```
>>> ...
```

Details

`MoE_control` is provided for assigning values and defaults within `MoE_clust` and `MoE_stepwise`.
While the `criterion` argument controls the choice of the optimal number of components and GPCM/mclust model type, `MoE_compare` is provided for choosing between fits with different combinations of covariates or different initialisation settings.

Value

A named list in which the names are the names of the arguments and the values are the values supplied to the arguments.

Note

Note that successfully invoking `exp.init$clustMD` (though it defaults to `FALSE`) affects the role of the arguments `init.z`, `hc.args`, and `km.args`. Please read the documentation above carefully in this instance.

The initial allocation matrices before and after the invocation of the `exp.init` related arguments are both stored as attributes in the object returned by `MoE_clust` (named "Z.init" and "Exp.init", respectively). If `init.z="random"` and `nstarts > 1`, the allocations corresponding to the best random start are stored (regardless of whether `exp.init$estart` is invoked or not). This can be useful for supplying `z.list` for future fits.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

`MoE_clust`, `MoE_stepwise`, `aitken`, `Mclust`, `hc`, `mclust.options`, `quant_clust`, `clustMD`, `noise_vol`, `hypvol`, `convhulln`, `ellipsoidhull`, `MoE_compare`, `multinom`

Examples

```r
ctrl1 <- MoE_control(criterion="icl", itmax=100, warn.it=15, init.z="random", nstarts=5)

data(CO2data)
GNP <- CO2data$GNP
res <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, control=ctrl1)

# Alternatively, specify control arguments directly
res2 <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, stopping="relative")

# Supplying ctrl1 without naming it as 'control' can throw an error
## Not run:
res3 <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, ctrl1)
## End(Not run)

# Similarly, supplying control arguments via a mix of the ... construct
# and the named argument 'control' also throws an error
## Not run:
res4 <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, control=ctrl1, init.z="kmeans")
## End(Not run)
```
Initialise via the mixed-type joint distribution of response & covariates
Let the ICL criterion determine the optimal clustMD model type
Constrain the mixing proportions to be equal
ctrl2 <- MoE_control(exp.init=list(clustMD=TRUE), init.crit="icl", equalPro=TRUE)
data(ais)
library(clustMD)
res4 <- MoE_clust(ais[,3:7], G=2, modelNames="EVE", expert= ~ sex,
 network.data=ais, control=ctrl2)

Include a noise component by specifying its prior mixing proportion
res5 <- MoE_clust(ais[,3:7], G=2, modelNames="EVE", expert= ~ sex,
 network.data=ais, tau0=0.1)

Investigate the use of random starts
sex <- ais$sex
resA uses deterministic starting values (by default) for each G value
system.time(resA <- MoE_clust(ais[,3:7], G=2, expert=~sex, equalPro=TRUE))
resB passes each random start through the entire EM algorithm for each G value
system.time(resB <- MoE_clust(ais[,3:7], G=2, expert=~sex, equalPro=TRUE,
 init.z="random", nstarts=10))
resC passes only the "best" random start through the EM algorithm for each G value
system.time(resC <- MoE_clust(ais[,3:7], G=2, expert=~sex, equalPro=TRUE,
 init.z="random", nstarts=10, estart=TRUE))
Here, all three settings (listed here in order of speed) converge to the same model
MoE_compare(resA, resC, resB)

MoE_crit

MoEClust BIC, ICL, and AIC Model-Selection Criteria

Description

Computes the BIC (Bayesian Information Criterion), ICL (Integrated Complete Likelihood), and AIC (Akaike Information Criterion) for parsimonious mixture of experts models given the log-likelihood, the dimension of the data, the number of mixture components in the model, the numbers of parameters in the gating and expert networks respectively, and, for the ICL, the numbers of observations in each component.

Usage

```r
MoE_crit(modelName, 
    loglik, 
    n, 
    d, 
    G, 
    gating.pen = G - 1L, 
    expert.pen = G * d, 
    z = NULL, 
    df = NULL)
```
Arguments

modelName A character string indicating the model. The help file for `mclustModelNames` describes the available models. Not necessary if df is supplied.

loglik The log-likelihood for a data set with respect to the Gaussian mixture model specified in the modelName argument.

n, d, G The number of observations in the data, dimension of the data, and number of components in the Gaussian mixture model, respectively, used to compute loglik. d & G are not necessary if df is supplied.

gating.pen The number of parameters of the gating network of the MoEClust model. Defaults to G - 1, which corresponds to no gating covariates. If covariates are included, this should be the number of regression coefficients in the fitted gating object. If there are no covariates and mixing proportions are further assumed to be present in equal proportion, gating.pen should be 0. The number of parameters used in the estimation of the noise component, if any, should also be included. Not necessary if df is supplied.

expert.pen The number of parameters of the expert network of the MoEClust model. Defaults to G * d, which corresponds to no expert covariates. If covariates are included, this should be the number of regression coefficients in the fitted expert object. Not necessary if df is supplied.

z The n times G responsibility matrix whose [i, k]-th entry is the probability that observation i belongs to the k-th component. If supplied the ICL is also computed and returned, otherwise only the BIC and AIC.

df An alternative way to specify the number of estimated parameters (or 'used' degrees of freedom) exactly. If supplied, the arguments modelName, d, G, gating.pen, and expert.pen, which are used to calculate the number of parameters, will be ignored. The number of parameters used in the estimation of the noise component, if any, should also be included.

Details

The function is vectorised with respect to the arguments modelName and loglik.

If model is an object of class "MoEClust" with G components, the number of parameters for the gating.pen and expert.pen are `length(coef(model$gating))` and `G * length(coef(model$expert[[1]]))`, respectively.

Models with a noise component are facilitated here too, provided the extra number of parameters are accounted for by the user.

Value

A simplified array containing the BIC, AIC, number of estimated parameters (df) and, if z is supplied, also the ICL, for each of the given input arguments.

Note

In order to speed up repeated calls to the function inside `MoE_clust`, no checks take place.
MoE_cstep

C-step for MoEClust Models

Description

Function to compute the assignment matrix z and the conditional log-likelihood for MoEClust models, with the aid of MoE_dens.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

See Also

MoE_clust, nVarParams, mclustModelNames

Examples

MoE_crit(modelName=c("VVI", "VVE", "VVV"), n=120, d=8, G=3, loglik=c(-4036.99, -3987.12, -3992.45))

data(CO2data)
GNP <- CO2data$GNP
model <- MoE_clust(CO2data$CO2, G=1:2, expert= ~ GNP)
G <- model$G
name <- model$modelName
ll <- max(model$loglik)
n <- length(CO2data$CO2)
z <- model$z

Compare BIC from MoE_crit to the BIC of the model
(bic2 <- MoE_crit(modelName=name, loglik=ll, n=n, d=1, G=G, z=z,
 expert.pen=G * length(coef(model$expert[[1]])))["bic",])
identical(unname(bic2), model$bic) #TRUE

Make the same comparison with the known number of estimated parameters
(bic3 <- MoE_crit(loglik=ll, n=n, df=model$df, z=z)["bic",])
identical(unname(bic3), bic2) #TRUE
Usage

```r
MoE_cstep(data,
          mus,
          sigs,
          log.tau = 0L,
          Vinv = NULL,
          Dens = NULL)
```

Arguments

data
If there are no expert network covariates, `data` should be a numeric matrix or data frame, wherein rows correspond to observations (n) and columns correspond to variables (d). If there are expert network covariates, this should be a list of length G containing matrices/data.frames of (multivariate) WLS residuals for each component.

mus
The mean for each of G components. If there is more than one component, this is a matrix whose k-th column is the mean of the k-th component of the mixture model. For the univariate models, this is a G-vector of means. In the presence of expert network covariates, all values should be equal to 0.

sigs
The variance component in the parameters list from the output to e.g. `MoE_clust`. The components of this list depend on the specification of `modelName` (see `mclustVariance` for details). The number of components G, the number of variables d, and the `modelName` are inferred from `sigs`.

log.tau
If covariates enter the gating network, an n times G matrix of mixing proportions, otherwise a G-vector of mixing proportions for the components of the mixture. **Must** be on the log-scale in both cases. The default of 0 effectively means densities (or log-densities) aren’t scaled by the mixing proportions.

Vinv
An estimate of the reciprocal hypervolume of the data region. See the function `noise_vol`. Used only if an initial guess as to which observations are noise is supplied. Mixing proportion(s) must be included for the noise component also.

Dens
(Optional) A numeric matrix whose [i,k]-th entry is the log-density of observation i in component k, scaled by the mixing proportions, to which the function is to be applied, typically obtained by `MoE_dens` but this is not necessary. If this is supplied, all other arguments are ignored, otherwise `MoE_dens` is called according to the other supplied arguments.

Value

A list containing two elements:

z
A matrix with n rows and G columns containing 1 where the observation belongs to the cluster indicated by the column number, and 0 otherwise.

loglik
The estimated conditional log-likelihood.
Note

This function is intended for joint use with `MoE_dens`, using the log-densities. Caution is advised using this function without explicitly naming the arguments. Models with a noise component are facilitated here too.

The C-step can be replaced by an E-step, see `MoE_estep` and the algo argument to `MoE_control`.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

`MoE_dens`, `MoE_clust`, `MoE_estep`, `MoE_control`, `mclustVariance`

Examples

```r
# MoE_cstep can be invoked for fitting MoEClust models via the CEM algorithm
# via the 'algo' argument to MoE_control:
data(ais)
hema <- ais[,3:7]
model <- MoE_clust(hema, G=3, gating= ~ BMI + sex, modelNames="EEE", network.data=ais, algo="CEM")
Dens <- MoE_dens(data=hema, mus=model$parameters$mean,
sigs=model$parameters$variance, log.tau=log(model$parameters$pro))

# Construct the z matrix and compute the conditional log-likelihood
Cstep <- MoE_cstep(Dens=Dens)
(ll <- Cstep$loglik)

# Check that the z matrix & classification are the same as those from the model
identical(max.col(Cstep$z), as.integer(unname(model$classification)))  #TRUE
identical(Cstep$z, model$z)                                          #TRUE

# Call MoE_cstep directly
Cstep2 <- MoE_cstep(data=hema, sigs=model$parameters$variance,
mus=model$parameters$mean, log.tau=log(model$parameters$pro))
identical(Cstep2$loglik, ll)                                        #TRUE
```

MoE_dens

Density for MoEClust Mixture Models

Description

Computes densities (or log-densities) of observations in MoEClust mixture models.
MoE_dens

Usage

```r
MoE_dens(data, mus, sigs, log.tau = 0L, Vinv = NULL, logarithm = TRUE)
```

Arguments

- `data` If there are no expert network covariates, `data` should be a numeric matrix or data frame, wherein rows correspond to observations (n) and columns correspond to variables (d). If there are expert network covariates, this should be a list of length G containing matrices/data.frames of (multivariate) WLS residuals for each component.

- `mus` The mean for each of G components. If there is more than one component, this is a matrix whose k-th column is the mean of the k-th component of the mixture model. For the univariate models, this is a G-vector of means. In the presence of expert network covariates, all values should be equal to 0.

- `sigs` The variance component in the parameters list from the output to e.g. `MoE_clust`. The components of this list depend on the specification of `modelName` (see `mclustVariance` for details). The number of components G, the number of variables d, and the `modelName` are inferred from `sigs`.

- `log.tau` If covariates enter the gating network, an n times G matrix of mixing proportions, otherwise a G-vector of mixing proportions for the components of the mixture. **Must** be on the log-scale in both cases. The default of 0 effectively means densities (or log-densities) aren’t scaled by the mixing proportions.

- `Vinv` An estimate of the reciprocal hypervolume of the data region. See the function `noise_vol`. Used only if an initial guess as to which observations are noise is supplied. Mixing proportion(s) must be included for the noise component also.

- `logarithm` A logical value indicating whether or not the logarithm of the component densities should be returned. This defaults to TRUE, otherwise component densities are returned, obtained from the component log-densities by exponentiation. The log-densities can be passed to `MoE_estep` or `MoE_cstep`.

Value

A numeric matrix whose [i,k]-th entry is the density or log-density of observation i in component k, scaled by the mixing proportions. These densities are unnormalised.

Note

This function is intended for joint use with `MoE_estep` or `MoE_cstep`, using the log-densities. Note that models with a noise component are facilitated here too.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
See Also

MoE_estep, MoE_cstep, MoE_clust, mclustVariance

Examples

data(ais)
hema <- ais[3:7]
model <- MoE_clust(hema, G=3, gating= ~ BMI + sex, modelNames="EEE", network.data=ais)
Dens <- MoE_dens(data=hema, mus=model$parameters$mean,
 sigs=model$parameters$variance, log.tau=log(model$parameters$pro))

Construct the z matrix and compute the log-likelihood
Estep <- MoE_estep(Dens=Dens)
(ll <- Estep$loglik)

Check that the z matrix & classification are the same as those from the model
identical(max.col(Estep$z), as.integer(unname(model$classification))) #TRUE
identical(Estep$z, model$z) #TRUE

The same can be done for models with expert covariates &/or a noise component
Note for models with expert covariates that the mean has to be supplied as 0,
and the data has to be supplied as "resid.data"
m2 <- MoE_clust(hema, G=2, expert= ~ sex, modelNames="EVE", network.data=ais, tau0=0.1)
Dens2 <- MoE_dens(data=m2$resid.data, sigs=m2$parameters$variance, mus=0,
 log.tau=log(m2$parameters$pro), Vinv=m2$parameters$Vinv)

MoE_entropy

Entropy of a fitted MoEClust model

Description

Calculates the normalised entropy of a fitted MoEClust model.

Usage

MoE_entropy(x)

Arguments

x An object of class "MoEClust" generated by MoE_clust, or an object of class "MoECompare" generated by MoE_compare. Models with gating and/or expert covariates and/or a noise component are facilitated here too.

Details

This function calculates the normalised entropy via

\[H = - \frac{1}{n \log(G)} \sum_{i=1}^{n} \sum_{g=1}^{G} \hat{z}_{ig} \log(\hat{z}_{ig}), \]
where \(n \) and \(G \) are the sample size and number of components, respectively, and \(\hat{z}_{ig} \) is the estimated posterior probability at convergence that observation \(i \) belongs to component \(g \).

Value

A single number, given by \(1 - H \), in the range \([0,1]\), such that larger values indicate clearer separation of the clusters.

Note

This function will always return a normalised entropy of 1 for models fitted using the "CEM" algorithm (see \texttt{MoE_control}), or models with only one component.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. \textit{Advances in Data Analysis and Classification}, 14(2): 293-325. <doi: 10.1007/s11634019003738>.

See Also

\texttt{MoE_clust,MoE_control}

Examples

```r
 data(ais)
 res <- MoE_clust(ais[,3:7], G=3, gating= ~ BMI + sex,
 modelNames="EEE", network.data=ais)

 # Calculate the normalised entropy
 MoE_entropy(res)
```

\textbf{MoE_estep} \hspace{1cm} \textit{E-step for MoEClust Models}

Description

Softmax function to compute the responsibility matrix \(z \) and the log-likelihood for MoEClust models, with the aid of \texttt{MoE_dens}.
Usage

MoE_estep(data,
mus,
sigs,
log.tau = 0L,
Vinv = NULL,
Dens = NULL)

Arguments

data
If there are no expert network covariates, data should be a numeric matrix or data frame, wherein rows correspond to observations (n) and columns correspond to variables (d). If there are expert network covariates, this should be a list of length G containing matrices/data.frames of (multivariate) WLS residuals for each component.

mus
The mean for each of G components. If there is more than one component, this is a matrix whose k-th column is the mean of the k-th component of the mixture model. For the univariate models, this is a G-vector of means. In the presence of expert network covariates, all values should be equal to 0.

sigs
The variance component in the parameters list from the output to e.g. MoE_clust. The components of this list depend on the specification of modelName (see mclustVariance for details). The number of components G, the number of variables d, and the modelName are inferred from sigs.

log.tau
If covariates enter the gating network, an n times G matrix of mixing proportions, otherwise a G-vector of mixing proportions for the components of the mixture. Must be on the log-scale in both cases. The default of 0 effectively means densities (or log-densities) aren’t scaled by the mixing proportions.

Vinv
An estimate of the reciprocal hypervolume of the data region. See the function noise_vol. Used only if an initial guess as to which observations are noise is supplied. Mixing proportion(s) must be included for the noise component also.

Dens
(Optional) A numeric matrix whose [i,k]-th entry is the log-density of observation i in component k, scaled by the mixing proportions, to which the softmax function is to be applied, typically obtained by MoE_dens but this is not necessary. If this is supplied, all other arguments are ignored, otherwise MoE_dens is called according to the other supplied arguments.

Value

A list containing two elements:

z
A matrix with n rows and G columns containing the probability of cluster membership for each of n observations and G clusters.

loglik
The estimated log-likelihood, computed efficiently via rowLogSumExps.
MoE_gpairs

Note

This softmax function is intended for joint use with `MoE_dens`, using the log-densities. Caution is advised using this function without explicitly naming the arguments. Models with a noise component are facilitated here too.

The E-step can be replaced by a C-step, see `MoE_cstep` and the algo argument to `MoE_control`.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

`MoE_dens`, `MoE_clust`, `MoE_cstep`, `MoE_control`, `mclustVariance`, `rowLogSumExps`

Examples

```r
data(ais)

hema <- ais[,3:7]
model <- MoE_clust(hema, G=3, gating= ~ BMI + sex, modelNames="EEE", network.data=ais)
Dens <- MoE_dens(data=hema, mus=model$parameters$mean,
                 sigs=model$parameters$variance, log.tau=log(model$parameters$pro))

# Construct the z matrix and compute the log-likelihood
Estep <- MoE_estep(Dens=Dens)
ll <- Estep$loglik

# Check that the z matrix & classification are the same as those from the model
identical(max.col(Estep$z), as.integer(unname(model$classification)))  #TRUE
identical(Estep$z, model$z)                                              #TRUE

# Call MoE_estep directly
Estep2 <- MoE_estep(data=hema, sigs=model$parameters$variance,
                      mus=model$parameters$mean, log.tau=log(model$parameters$pro))
identical(Estep2$loglik, ll)                                            #TRUE

# The same can be done for models with expert covariates &/or a noise component
# Note for models with expert covariates that the mean has to be supplied as 0,
# and the data has to be supplied as "resid.data"

m2 <- MoE_clust(hema, G=2, expert= ~ sex, modelNames="EVE", network.data=ais, tau0=0.1)
Estep3 <- MoE_estep(data=m2$resid.data, sigs=m2$parameters$variance, mus=0,
                    log.tau=log(m2$parameters$pro), Vinv=m2$parameters$Vinv)
```

MoE_gpairs

Generalised Pairs Plots for MoEClust Mixture Models

Description

Produces a matrix of plots showing pairwise relationships between continuous response variables and continuous/categorical/logical/ordinal associated covariates, as well as the clustering achieved, according to fitted MoEClust mixture models.
Usage

MoE_gpairs(res,
 response.type = c("points", "uncertainty", "density"),
 subset = list(...),
 scatter.type = c("lm", "points"),
 conditional = c("stripplot", "boxplot"),
 addEllipses = c("outer", "yes", "no", "inner", "both"),
 expert.covar = TRUE,
 border.col = c("purple", "black", "brown", "brown", "navy"),
 bg.col = c("cornsilk", "white", "palegoldenrod", "palegoldenrod", "cornsilk"),
 outer.margins = list(bottom = grid::unit(2, "lines"),
 left = grid::unit(2, "lines"),
 top = grid::unit(2, "lines"),
 right = grid::unit(2, "lines")),
 outer.labels = NULL,
 outer.rot = c(0, 90),
 gap = 0.05,
 buffer = 0.025,
 uncert.cov = FALSE,
 scatter.pars = list(...),
 density.pars = list(...),
 stripplot.pars = list(...),
 boxplot.pars = list(...),
 barcode.pars = list(...),
 mosaic.pars = list(...),
 axis.pars = list(...),
 diag.pars = list(...),
 ...
)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class "MoECompare" generated by MoE_compare. Models with a noise component are facilitated here too.

response.type The type of plot desired for the scatterplots comparing continuous response variables. Defaults to "points". See scatter.pars below. Points can also be sized according to their associated clustering uncertainty with the option "uncertainty". In doing so, the transparency of the points will also be proportional to their clustering uncertainty, provided the device supports transparency. See also MoE_Uncertainty for an alternative means of visualising observation-specific cluster uncertainties (especially for univariate data). See scatter.pars below, and note that models fitted via the "CEM" algorithm will have no associated clustering uncertainty.

Alternatively, the bivariate "density" contours can be displayed (see density.pars), provided there is at least one Gaussian component in the model. Caution is advised when producing density plots for models with covariates in the expert network; the required number of evaluations of the (multivariate) Gaussian density for each panel (res$G * prod(density.pars$grid.size)) increases by a
factor of res$n, thus plotting may be slow (particularly for large data sets). See density.pars below.

subset A list giving named arguments for producing only a subset of panels:

show.map Logical indicating whether to show panels involving the MAP classification (defaults to TRUE, unless there is only one component, in which case the MAP classification is never plotted.).

data.ind For subsetting response variables: a vector of column indices corresponding to the variables in the columns of res$data which should be shown. Defaults to all. Can be \emptyset, in order to suppress plotting the response variables.

cov.ind For subsetting covariates: a vector of column indices corresponding to the covariates in the columns res$net.covs which should be shown. Defaults to all. Can be \emptyset, in order to suppress plotting the covariates.

The result of the subsetting must include at least two variables, whether they be the MAP classification, a response variable, or a covariate, in order to be valid for plotting purposes. The arguments data.ind and cov.ind can also be used to simply reorder the panels, without actually subsetting.

scatter.type A vector of length 2 (or 1) giving the plot type for the upper and lower triangular portions of the plot, respectively, pertaining to the associated covariates. Defaults to "lm" for covariate vs. response panels and "points" otherwise. Only relevant for models with continuous covariates in the gating &/or expert network. "ci" and "lm" type plots are only produced for plots pairing covariates with response, and never response vs. response or covariate vs. covariate. Note that lines &/or confidence intervals will only be drawn for continuous covariates included in the expert network; to include covariates included only in the gating network also, the options "lm2" or "ci2" can be used but this is not generally advisable. See scatter.pars below.

conditional A vector of length 2 (or 1) giving the plot type for the upper and lower triangular portions of the plot, respectively, for plots involving a mix of categorical and continuous variables. Defaults to "stripplot" in the upper triangle and "boxplot" in the lower triangle (see panel.stripplot and panel.bwplot). "violin" and "barcode" plots can also be produced. Only relevant for models with categorical covariates in the gating &/or expert network, unless show.MAP is TRUE. Comparisons of two categorical variables (which can only ever be covariates or the MAP classification) are always displayed via mosaic plots (see strucplot).

All conditional panel types can be customised further; see stripplot.pars, boxplot.pars (for both "boxplot" and "violin" plots), barcode.pars, and mosaic.pars below. Note that when conditional is of length 1, that plot type will be used in both the upper and lower triangular portions of the plot, where relevant.

addEllipses Controls whether to add MVN ellipses with axes corresponding to the within-cluster covariances for the response data. The options "inner" and "outer" (the default) will colour the axes or the perimeter of those ellipses, respectively, according to the cluster they represent (according to scatter.pars$eci.col). The option "both" will obviously colour both the axes and the perimeter. The
"yes" or "no" options merely govern whether the ellipses are drawn, i.e. "yes"
draws ellipses without any colouring. Ellipses are only ever drawn for multi-
variate data, and only when response.type is "points" or "uncertainty".
Ellipses are centered on the posterior mean of the fitted values when there are
expert network covariates, otherwise on the posterior mean of the response
variables. In the presence of expert network covariates, the component-specific co-
variance matrices are also (by default, via the argument expert.covar below)
modified for plotting purposes via the function expert_covar, in order to ac-
count for the extra variability of the means, usually resulting in bigger shapes &
sizes for the MVN ellipses.

expert.covar Logical (defaults to TRUE) governing whether the extra variability in the com-
ponent means is added to the MVN ellipses corresponding to the component co-
variance matrices in the presence of expert network covariates when addEllipses
is invoked accordingly. See the function expert_covar. Only relevant when
response.type is "points" or "uncertainty" and only relevant for models
with expert network covariates.

border.col A vector of length 5 (or 1) containing border colours for plots against the MAP
classification, response vs. response, covariate vs. response, response vs. co-
variate, and covariate vs. covariate panels, respectively.
Defaults to c("purple", "black", "brown", "brown", "navy").

bg.col A vector of length 5 (or 1) containing background colours for plots against the
MAP classification, response vs. response, covariate vs. response, response vs.
covariate, and covariate vs. covariate panels, respectively.
Defaults to c("cornsilk", "white", "palegoldenrod", "palegoldenrod", "cornsilk").

outer.margins A list of length 4 with units as components named bottom, left, top, and right,
giving the outer margins; the defaults uses two lines of text. A vector of length 4
with units (ordered properly) will work, as will a vector of length 4 with numeric
variables (interpreted as lines).

outer.labels The default is NULL, for alternating labels around the perimeter. If "all", all
labels are printed, and if "none", no labels are printed.

outer.rot A 2-vector (x, y) rotating the top/bottom outer labels x degrees and the left/right
outer labels y degrees. Only works for categorical labels of boxplot and mosaic
panels. Defaults to c(0, 90).

gap The gap between the tiles; defaulting to 0.05 of the width of a tile.

buffer The fraction by which to expand the range of quantitative variables to provide
plots that will not truncate plotting symbols. Defaults to 0.025, i.e. 2.5 percent
of the range. Particularly useful when ellipses are drawn (see addEllipses)
to ensure ellipses are visible in full.

uncert.cov A logical indicating whether the expansion factor for points on plots invol-
v ing covariates should also be modified when response.type="uncertainty".
Defaults to FALSE, and only relevant for scatterplot and strip plot panels. When
TRUE, scatter.pars$uncert.pch is invoked as the plotting symbols for covariate-
related scatterplot and strip plot panels, otherwise scatter.pars$scat.pch
and stripplot.pars$strip.pch is invoked for such panels.

scatter.pars A list supplying select parameters for the continuous vs. continuous scatterplots.
NULL is equivalent to:
where `scat.pch`, `scat.col`, and `scat.size` give the plotting symbols, colours, and sizes of the points in scatterplot panels, respectively. Note that `eci.col` gives both a) the colour of the fitted lines &/or confidence intervals for expert-related panels when `scatter.type` is one of "ci" or "lm" and b) the colour of the ellipses (if any) when `addEllipses` is one of "outer", "inner", or "both" and the response data is multivariate. Note that `eci.col` will inherit a suitable default from `scat.col` instead if the latter is supplied but the former is not. Note also that `scat.size` will be modified on an observation-by-observation level when `response.type` is "uncertainty". Furthermore, note that the behaviour for plotting symbols when `response.type="uncertainty"` changes compared to `response.type="points"` depending on the value of the `uncert.cov` argument above. `uncert.pch` gives the plotting symbol used for all scatterplot (and strip plot) panels when `response.type="uncertainty"` and `uncert.cov` is TRUE. However, when `uncert.cov` is FALSE, `scat.pch` is invoked for scatterplots involving covariates and `uncert.pch` is used for panels involving only response variables. Finally, `noise.size` can be used to modify `scat.size` for observations assigned to the noise component (if any), but only when `response.type="points"`.

density.pars
A list supplying select parameters for visualising the bivariate density contours, only when `response.type` is "density". NULL is equivalent to:

```r
list(grid.size=c(100, 100), dcol="grey50", nlevels=11, show.labels=TRUE, label.style="mixed"),
```

where `grid.size` is a vector of length two giving the number of points in the x & y direction of the grid over which the density is evaluated, respectively (though `density.pars$grid.size` can also be supplied as a scalar, which will be automatically recycled to a vector of length 2), and `dcol` is either a single colour or a vector of length `nlevels` colours (although note that `dcol`, when not specified, will be adjusted for transparency). Finally, `label.style` can take the values "mixed", "flat", or "align".

stripplot.pars
A list supplying select parameters for continuous vs. categorical panels when one or both of the entries of `conditional` is "stripplot". NULL is equivalent to:

```r
list(strip.pch=res$classification, strip.size=unit(0.5, "char"), strip.col=res$classification, jitter=TRUE, size.noise=unit(0.4, "char")),
```

where `strip.size` and `size.noise` retain the definitions for the similar arguments under `scatter.pars` above. However, `stripplot.pars$size.noise` is invoked regardless of the `response.type` (in contrast to `scatter.pars$noise.size`). Notably, `strip.col` will inherit a suitable default from `scatter.pars$scat.col` if the latter is supplied but the former is not. Note also that the `strip.pch` default is modified to `scatter.pars$uncert.pch` if `uncert.cov` is TRUE.

boxplot.pars
A list supplying select parameters for continuous vs. categorical panels when one or both of the entries of `conditional` is "boxplot" or "violin". NULL is equivalent to:
All of the above are relevant for "boxplot" panels, are passed to `panel.bwplot` when producing boxplots, and retain the same definitions as the similarly named arguments therein. However, only `box.col`, `varwidth`, and `box.fill` are relevant for "violin" panels, and in both cases `box.fill` is only invoked for panels where the categorical variable is the MAP classification (i.e. when `isTRUE(subset$show.map)`).

See `diag.pars$hist.color` for controlling the colours of non-MAP-related boxplot/violin panels. Notably, `box.fill` will inherit a suitable default from `scatter.pars$scat.col` if the latter is supplied but the former is not.

barcode.pars

A list supplying select parameters for continuous vs. categorical panels when one or both of the entries of conditional is "barcode". See the help file for `barcode::barcode`.

NULL is equivalent to:

```r
list(bar.col=res$G;1, nint=0, ptsize=unit(0.25, "char"),
     ptpch=1, bcspace=NULL, use.points=FALSE),
```

where `bar.col` is only invoked for panels where the categorical variable is the MAP classification (i.e. when `isTRUE(subset$show.map)`) if it is of length greater than 1, otherwise it is used for all relevant panels. See `diag.pars$hist.color` for controlling the colours of non-MAP-related barcode panels. Notably, `bar.col` will inherit a suitable default from `scatter.pars$scat.col` if the latter is supplied but the former is not.

mosaic.pars

A list supplying select parameters for categorical vs. categorical panels (if any).

NULL is equivalent to:

```r
list(shade=NULL, gp_labels=grid::gpar(fontsize=9),
     gp_args=list(), gp=list(), mfill=TRUE, mcol=1:res$G).
```

The current default arguments and values thereof are passed through to `strucplot` for producing mosaic tiles. When `shade` is not `FALSE`, `mfill` is a logical which governs the colouring scheme for panels (if any) involving the MAP classification. When `mfill` is `TRUE` (the default), `gp` is invoked here in such a way that tiles will inherit appropriate interior colours via `gp$fill` from `mcol` and a "black" outer colour via `gp$col`. When `mfill` is `FALSE`, or the panel involves two categorical covariates, the outer colours are inherited from `mcol` and the interior fill colour is inherited from `bg.col`. See `diag.pars$hist.color` for controlling the interior fill colour of non-MAP-related mosaic panels. Notably, `mcol` will inherit a suitable default from `scatter.pars$scat.col` if the latter is supplied but the former is not.

axis.pars

A list supplying select parameters for controlling the axes.

NULL is equivalent to:

```r
list(n.ticks=5, axis.fontsize=9).
```

The argument `n.ticks` will be overwritten for categorical variables with fewer than 5 levels.

diag.pars

A list supplying select parameters for panels along the diagonal.

NULL is equivalent to:
MoE_gpairs

```r
list(diag.fontsize=9, show.hist=TRUE, diagonal=TRUE,
    hist.color=hist.color, show.counts=TRUE),
```

where `hist.color` is a vector of length 4, giving the colours for the response variables, gating covariates, expert covariates, and covariates entering both networks, respectively. `hist.color` also governs the outer colour for mosaic panels and the fill colour for boxplot, violin, and barcode panels (except for those involving the MAP classification). By default, response variables are "black" and covariates of any kind are "dimgrey". However, in the case of response vs. (categorical) covariates boxplots and violin plots, the fill colour is always "white". The MAP classification is always coloured by cluster membership, by default. `show.counts` is only relevant for categorical variables.

When `diagonal=TRUE` (the default), the diagonal from the top left to the bottom right is used for displaying the marginal distributions of variables. Specifying `diagonal=FALSE` will place the diagonal running from the top right down to the bottom left.

... Catches unused arguments. Alternatively, named arguments can be passed directly here to any/all of `scatter.pars`, `stripplot.pars`, `boxplot.pars`, `barcode.pars`, `mosaic.pars`, `axis.pars`, and `diag.pars`.

Value

A generalised pairs plot showing all pairwise relationships between clustered response variables and associated gating &/or expert network continuous &/or categorical variables, coloured according to the MAP classification, with the marginal distributions of each variable along the diagonal.

Note

For `MoEClust` models with more than one expert network covariate, fitted lines produced in continuous covariate vs. continuous response scatterplots via `scatter.type="lm"` or `scatter.type="ci"` will NOT correspond to the coefficients in the expert network (`res$expert`).

`plot.MoEClust` is a wrapper to `MoE_gpairs` which accepts the default arguments, and also produces other types of plots. Caution is advised producing generalised pairs plots when the dimension of the data is large.

Finally, note that all colour-related defaults in `scatter.pars`, `stripplot.pars`, `barcode.pars`, and `mosaic.pars` above assume a specific colour-palette (see `mclust.options("classPlotColors")`). Thus, for instance, specifying `scatter.pars$scat.col=res$classification` will produce different results compared to leaving this argument unspecified. This is especially true for models with a noise component, for which the default is handled quite differently (for one thing, `res$G` is the number of non-noise components). Similarly, all `pch`-related defaults in `scatter.pars` and `stripplot.pars` above assume a specific set of plotting symbols also (see `mclust.options("classPlotSymbols")`). Generally, all colour and symbol related arguments are strongly recommended to be left at their default values, unless being supplied as a single character string, e.g. "black" for colours. To help in this regard, colour-related arguments sensibly inherit their default from `scatter.pars$scat.col` if that is supplied and the argument in question is not.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
References

See Also

MoE_clust, MoE_stepwise.plot, MoEClust, MoE_Uncertainty, expert_covar, panel.stripplot, panel.bwplot, panel.violin, strucplot, mclust.options

Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=2, gating= ~ BMI, expert= ~ sex, network.data=ais, modelNames="EVE")
MoE_gpairs(res)

Produce the same plot, but with a violin plot in the lower triangle.
Colour the outline of the mosaic tiles rather than the interior.
Size points in the response vs. response panels by their clustering uncertainty.
MoE_gpairs(res, conditional=c("stripplot", "violin"), mfill=FALSE, response.type="uncertainty")

Instead show the bivariate density contours of the response variables (without labels).
(Plotting may be slow when response.type="density" for models with expert covariates.)
Use different colours for histograms of covariates in the gating/expert/both networks.
Also use different colours for response vs. covariate & covariate vs. response panels.
MoE_gpairs(res, response.type="density", show.labels=FALSE, hist.color=c("black", "cyan", "hotpink", "chartreuse"), bg.col=c("whitesmoke", "white", "mintcream", "mintcream", "floralwhite"))

Produce a generalised pairs plot for a model with a noise component.
Reorder the covariates and omit the variables "Hc" and "Hg".
Use barcode plots for the categorical/continuous pairs.
Magnify the size of scatter points assigned to the noise component.
resN <- MoE_clust(ais[,3:7], G=2, gating= ~ SSF + Ht, expert= ~ sex, network.data=ais, modelNames="EEE", tau0=0.1, noise.gate=FALSE)
MoE_gpairs(resN, data.ind=c(1,2,5), cov.ind=c(3,1,2), conditional="barcode", noise.size=grid::unit(0.5, "char"))
MoE_mahala

Description

Computes the Mahalanobis distance between the response variable(s) and the fitted values of linear regression models with multivariate or univariate responses.

Usage

MoE_mahala(fit, resids, squared = FALSE, identity = NULL)

Arguments

fit A fitted lm model, inheriting either the "mlm" or "lm" class.
resids The residuals. Can be residuals for observations included in the model, or residuals arising from predictions on unseen data. Must be coercible to a matrix with the number of columns being the number of response variables. Missing values are not allowed.
squared A logical. By default (FALSE), the generalized interpoint distance is computed. Set this flag to TRUE for the squared value.
identity A logical indicating whether the identity matrix is used in place of the precision matrix in the Mahalanobis distance calculation. Defaults to FALSE for multivariate response data but defaults to TRUE for univariate response data, where TRUE corresponds to the use of the Euclidean distance. Setting identity=FALSE with multivariate data may be advisable when the dimensions of the data are such that the covariance matrix cannot be inverted (otherwise, the pseudo-inverse is used when TRUE).

Value

A vector giving the Mahalanobis distance (or squared Mahalanobis distance) between response(s) and fitted values for each observation.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

Examples

data(ais)
hema <- as.matrix(ais[,3:7])
mod <- lm(hema ~ sex + BMI, data=ais)
res <- hema - predict(mod)
MoE_mahala(mod, res, squared=TRUE)

data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP
mod2 <- lm(CO2 ~ GNP, data=CO2data)
pred <- predict(mod2)
res2 <- CO2 - pred
maha <- MoE_mahala(mod2, res2)

Highlight outlying observations
plot(GNP, CO2, type="n", ylab=expression(\text{Var}\text{CO}_2[2]))
lines(GNP, pred, col="red")
points(GNP, CO2, cex=maha, lwd=2)
text(GNP, CO2, col="blue",
 labels=replace(as.character(CO2data$country), maha < 1, ""))

Replicate initialisation strategy using 2 randomly chosen components
Repeat the random initialisation if necessary
(until 'crit' at convergence is minimised)
G <- 3L
z <- sample(seq_len(G), nrow(CO2data), replace=TRUE)
old <- Inf
crit <- .Machine$double.xmax
while(crit < old) {
 Sys.sleep(1)
 old <- crit
 maha <- NULL
 plot(GNP, CO2, type="n", ylab=expression(\text{Var}\text{CO}_2[2]))
 for(g in seq_len(G)) {
 ind <- which(z == g)
 mod <- lm(CO2 ~ GNP, data=CO2data, sub=ind)
pred <- predict(mod, newdata=CO2data[,"CO2", drop=FALSE])
maha <- cbind(maha, MoE_mahala(mod, CO2 - pred))
 lines(GNP, pred, col=g + 1L)
 }
 min.M <- rowMins(maha)
crit <- sum(min.M)
z <- max.col(maha == min.M)
points(GNP, CO2, cex=min.M, lwd=2, col=z + 1L)
text(GNP, CO2, col=z + 1L,
 labels=replace(as.character(CO2data$country), which(min.M <= 1), ""))
}
crit

MoE_news

Show the NEWS file

Description

Show the NEWS file of the MoEClust package.
Usage

MoE_news()

Value

The MoEClust NEWS file, provided the session is interactive.

Examples

MoE_news()

MoE_plotCrit Model Selection Criteria Plot for MoEClust Mixture Models

Description

Plots the BIC, ICL, AIC, or log-likelihood values of a fitted MoEClust object.

Usage

MoE_plotCrit(res, criterion = c("bic", "icl", "aic", "loglik"), ...)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class "MoECompare" generated by MoE_compare. Models with a noise component are facilitated here too.

criterion The criterion to be plotted. Defaults to "bic".

(...)

Value

A plot of the values of the chosen criterion. The values themselves can also be returned invisibly.

Note

plot.MoEClust is a wrapper to MoE_plotCrit which accepts the default arguments, and also produces other types of plots.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
MoE_plotGate

See Also

MoE_clust, plot.MoEClust, plot.mclustBIC

Examples

data(ais)
res <- MoE_clust(ais[,3:7], expert= ~ sex, network.data=ais)
(crit <- MoE_plotCrit(res))

MoE_plotGate

Plot MoEClust Gating Network

Description

Plots the gating network for fitted MoEClust models, i.e. the observation index against the mixing proportions for that observation, coloured by cluster.

Usage

MoE_plotGate(res,
 x.axis = NULL,
 type = "b",
 pch = 1,
 xlab = "Observation",
 ylab = expression(widehat(tau)[g]),
 ylim = c(0, 1),
 col = NULL,
 ...
)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class "MoECompare" generated by MoE_compare. Models with a noise component are facilitated here too.

x.axis Optional argument for the x-axis against which the mixing proportions are plotted. Defaults to 1:res$n if missing. Supplying x.axis changes the defaults for the type and xlab arguments. Users are advised to only use quantities related to the gating network of the fitted model here. Furthermore, use of the x.axis argument is not recommended for models with more than one gating network covariate.

type, pch, xlab, ylab, ylim, col

These graphical parameters retain their definitions from matplot. col defaults to the settings in mclust.options. Note that the default value of type changes depending on whether x.axis is supplied and whether the gating network contains multiple covariates &/or categorical covariates.

... Catches unused arguments, or additional arguments to be passed to matplot.
MoE_plotLogLik

Value

A plot of the gating network of the fitted MoEClust model. The parameters of the gating network can also be returned invisibly.

Note

plot.MoEClust is a wrapper to MoE_plotGate which accepts the default arguments, and also produces other types of plots.
By default, the noise component (if any) will be coloured "darkgrey".

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

See Also

MoE_clust, plot.MoEClust, matplot

Examples

data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ BMI, G=3, modelNames="EEE",
 network.data=ais, noise.gate=FALSE, tau0=0.1)

Plot against the observation index and examine the gating network coefficients
(gate <- plot.MoEClust(res))

Plot against BMI
MoE_plotGate(res, x.axis=ais$BMI, xlab="BMI")

Plot against a categorical covariate
res2 <- MoE_clust(ais[,3:7], gating= ~ sex, G=3, modelNames="EVE", network.data=ais)
MoE_plotGate(res2, x.axis=ais$sex, xlab="sex")

MoE_plotLogLik

Plot the Log-Likelihood of a MoEClust Mixture Model

Description

Plots the log-likelihood at every iteration of the EM/CEM algorithm used to fit a MoEClust mixture model.

Usage

MoE_plotLogLik(res,
 type = "l",
 xlab = "Iteration",
 ylab = "Log-Likelihood",
 xaxt = "n",
 ...)
MoE_stepwise

Stepwise model/variable selection for MoEClust models

Description

Conducts a greedy forward stepwise search to identify the optimal MoEClust model according to some criterion. Components and/or gating covariates and/or expert covariates are added to new MoE_clust fits at each step, while each step is evaluated for all valid modelNames.
MoE_stepwise

Usage

MoE_stepwise(data,
 network.data = NULL,
 gating = NULL,
 expert = NULL,
 modelNames = NULL,
 fullMoE = FALSE,
 noise = FALSE,
 initialModel = NULL,
 initialG = NULL,
 stepG = TRUE,
 criterion = c("bic", "icl", "aic"),
 equalPro = c("all", "both", "yes", "no"),
 noise.gate = c("all", "both", "yes", "no"),
 verbose = interactive(),
 ...
)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables
are not allowed. If a matrix or data frame, rows correspond to observations and
columns correspond to variables.

network.data An optional matrix or data frame in which to look for the covariates speci-
fied in the gating &/or expert networks, if any. Must include column names.
Columns in network.data corresponding to columns in data will be automati-
cally removed. While a single covariate can be supplied as a vector (provided the
'$' operator or '[]' subset operator are not used), it is safer to supply a named
1-column matrix or data frame in this instance.

gating A vector giving the names of columns in network.data used to define the scope
of the gating network. By default, the initial model will contain no covariates
(unless initialModel is supplied with gating covariates), thereafter all vari-
ables in gating (save for those in initialModel, if any) will be considered for
inclusion where appropriate.

If gating is not supplied (or set to NULL), all variables in network.data will be
considered for the gating network. gating can also be supplied as NA, in
which case no gating network covariates will ever be considered (save for those
in initialModel, if any). Supplying gating and expert can be used to ensure
different subsets of covariates enter different parts of the model.

expert A vector giving the names of columns in network.data used to define the scope
of the expert network. By default, the initial model will contain no covariates
(unless initialModel is supplied with expert covariates), thereafter all vari-
ables in expert (save for those in initialModel, if any) will be considered for
inclusion where appropriate.

If expert is not supplied (or set to NULL), all variables in network.data will be
considered for the expert network. expert can also be supplied as NA, in
which case no expert network covariates will ever be considered (save for those
in initialModel, if any). Supplying expert and gating can be used to ensure different subsets of covariates enter different parts of the model.

modelNames
A character string of valid model names, to be used to restrict the size of the search space, if desired. By default, all valid model types are explored. Rather than considering the changing of the model type as an additional step, every step is evaluated over all entries in modelNames. See MoE_clust for more details. Note that if initialModel is supplied (see below), modelNames will be augmented with initialModel$modelName if needs be.

fullMoE
A logical which, when TRUE, ensures that only models where the same covariates enter both parts of the model (the gating and expert networks) are considered. This restricts the search space to exclude models where covariates differ across networks. Thus, the search is likely to be faster, at the expense of potentially missing out on optimal models. Defaults to FALSE. Furthermore, when TRUE, the set of candidate covariates is automatically taken to be the union of the named covariates in gating and expert, for convenience. In other words, gating=NA will only work if expert=NA also, and both should be set to NULL in order to consider all potential covariates.

In addition, caution is advised using this argument in conjunction with initialModel, which must satisfy the constraint that the same set of covariates be used in both parts of the model, for initial models where gating covariates are allowable. Finally, note that this argument does not preclude a model with only expert covariates included if the number of components is such that the inclusion of gating covariates is infeasible.

noise
A logical indicating whether to assume all models contain an additional noise component (TRUE) or not (FALSE, the default). If initialModel or initialG is not specified, the search starts from a G=0 noise-only model when noise is TRUE, otherwise the search starts from a G=1 model with no covariates when noise is FALSE. See MoE_control for more details. Note, however, that if the model specified in initialModel contains a noise component, the value of the noise argument will be overridden to TRUE; similarly, if the initialModel model does not contain a noise component, noise will be overridden to FALSE.

initialModel
An object of class "MoEClust" generated by MoE_clust or an object of class "MoECompare" generated by MoE_compare. This gives the initial model to use at the first step of the selection algorithm, to which components and/or covariates etc. can be added. Especially useful if the model is expected to have more than one component a priori (see initialG below as an alternative). The initialModel model must have been fitted to the same data in data.

If initialModel is not specified, the search starts from a G=0 noise-only model when noise is TRUE, otherwise the search starts from a G=1 model with no covariates when noise is FALSE. If initialModel is supplied and it contains a noise component, only models with a noise component will be considered thereafter (i.e. the noise argument can be overridden by the initialModel argument). If initialModel contains gating &/or expert covariates, these covariates will be included in all subsequent searches, with covariates in expert and gating still considered as candidates for additional inclusion, as normal. However, while initialModel can include covariates not specified in gating &/or expert, the initialModel$modelName should be included in the spec-
MoE_stepwise

if modelNames is not, modelNames will be forcibly augmented with initialModel$modelName (as stated above). Furthermore, it is assumed that initialModel is already optimal with respect to the model type. If it is not, the algorithm may be liable to converge to a sub-optimal model, and so a warning will be printed if the function suspects that this might be the case.

initialG

A single (positive) integer giving the number of mixture components (clusters) to initialise the stepwise search algorithm with. This is a simpler alternative to the initialModel argument, to be used when the only prior knowledge relates to the number of components, and not other features of the model (e.g. the covariates which should be included). Consequently, initialG is only relevant when initialModel is not supplied. When neither initialG nor initialModel is specified, the search starts from a G=0 noise-only model when noise is TRUE, otherwise the search starts from a G=1 model with no covariates when noise is FALSE. See stepG below for fixing the number of components at this initialG value.

stepG

A logical indicating whether the algorithm should consider incrementing the number of components at each step. Defaults to TRUE; use FALSE when searching only over configurations with the same number of components is of interest. Setting stepG to FALSE is possible with or without specifying initialModel or initialG, but is primarily intended for use when one of these arguments is supplied, otherwise the algorithm will be stuck forever with only one component.

criterion

The model selection criterion used to determine the optimal action at each step. Defaults to "bic".

equalPro

A character string indicating whether models with equal mixing proportions should be considered. "both" means models with both equal and unequal mixing proportions will be considered, "yes" means only models with equal mixing proportions will be considered, and "no" means only models with unequal mixing proportions will be considered. Notably, no setting for equalPro is enough to rule out models with gating covariates from consideration. The default ("all") is equivalent to "both" with the addition that all possible mixing proportion constraints will be tried for the initialModel (if any, provided it doesn't contain gating covariate(s)) or initialG before adding a component or additional covariates; otherwise, this equalPro argument only governs whether mixing proportion constraints are considered as components are added.

Considering "all" (or "both") equal and unequal mixing proportion models increases the search space and the computational burden, but this argument becomes irrelevant after a model, if any, with gating network covariate(s) is considered optimal for a given step. The "all" default is strongly recommended so that viable candidate models are not missed out on, particularly when initialModel or initialG are given. However, this does not guarantee that an optimal model will not be skipped; if equalPro is restricted via "yes" or "no", a suboptimal model at one step may ultimately lead to a better final model, in some edge cases. See MoE_control for more details.

noise.gate

A character string indicating whether models where the gating network for the noise component depends on covariates are considered. "yes" means only models where this is the case will be considered, "no" means only models for which
the noise component’s mixing proportion is constant will be considered and "both" means both of these scenarios will be considered.

The default ("all") is equivalent to "both" with the addition that all possible gating network noise settings will be tried for the initialModel (if any, provided it contains gating covariates and a noise component) before adding a component or additional covariates; otherwise, this noise.gate argument only governs the inclusion/exclusion of this constraint as components or covariates are added.

Considering "all" (or "both") settings increases the search space and the computational burden, but this argument is only relevant when noise=TRUE and gating covariates are being considered. The "all" default is strongly recommended so that viable candidate models are not missed out on, particularly when initialModel or initialG are given. However, this does not guarantee that an optimal model will not be skipped; if noise.gate is restricted via "yes" or "no", a suboptimal model at one step may ultimately lead to a better final model, in some edge cases. See MoE_control for more details.

verbose Logical indicating whether to print messages pertaining to progress to the screen during fitting. By default is TRUE if the session is interactive, and FALSE otherwise. If FALSE, warnings and error messages will still be printed to the screen, but everything else will be suppressed.

... Additional arguments to MoE_control, except for those arguments of the same name which are already listed here, e.g. equalPro and noise.gate. Note that these arguments will be supplied to all candidate models for every step. For arguments specific to MoE_control (e.g. stopping, algo, etc.), it is recommended to run MoE_stepwise multiple times while toggling these arguments, if desired.

Details

The arguments modelNames, equalPro, and noise.gate are provided for computational convenience. They can be used to reduce the number of models under consideration at each stage.

The same is true of the arguments gating and expert, which can each separately (or jointly, if fullMoE is TRUE) be made to consider all variables in network.data, or a subset, or none at all.

Finally, initialModel or initialG can be used to kick-start the search algorithm by incorporating prior information in a more direct way; in the latter case, only in the form of the number of components; in the former case, a full model with a given number of components, certain included gating and expert network covariates, and a certain model type can give the model an even more informed head start. In either case, the stepG argument can be used to fix the number of components and only search over different configurations of covariates.

Without any prior information, it is best to accept the defaults at the expense of a longer run-time.

Value

An object of class "MoECompare" containing information on all visited models and the optimal model (accessible via x$optimal).
Note

It is advised to run this function once with noise=FALSE and once with noise=TRUE and then choose the optimal model across both sets of results.

At present, only additions (of components and covariates) are considered. In future updates, it may be possible to allow both additions and removals.

The function will attempt to remove duplicate variables found in both data and network.data; in particular, they will be removed from network.data. Users are however advised to carefully specify data and network.data such that there are no duplicates, especially if the desired variable(s) should belong to network.data.

Finally, if the user intends to search for the best model according to the "icl" criterion, then specifying either initialModel or initialG is advisable. This is because the algorithm otherwise starts with a single component and thus there is no entropy term, meaning the stepwise search can quickly and easily get stuck at G=1. See the examples below.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

References

See Also

`MoE_clust`, `MoE_compare`, `MoE_control`

Examples

```r
# data(CO2data)
# Search over all models where the single covariate can enter either network
# (mod1 <- MoE_stepwise(CO2data$CO2, CO2data[,"GNP", drop=FALSE]))
#
## data(ais)
## Only look for EVE & EEE models with at most one expert network covariate
## Do not consider any gating covariates and only consider models with equal mixing proportions
# (mod2 <- MoE_stepwise(ais[,3:7], ais, gating=NA, expert="sex",
# equalPro="yes", modelNames=c("EVE", "EEE")))
#
## Look for models with noise & only those where the noise component's mixing proportion is constant
## Speed up the search with an initialModel, fix G, and restrict the covariates & model type
# init  <- MoE_clust(ais[,3:7], G=2, modelNames="EEE",
# expert= ~ sex, network.data=ais, tau0=0.1)
# (mod3 <- MoE_stepwise(ais[,3:7], ais, noise=TRUE, expert="sex",
# gating=c("SSF", "Ht"), noise.gate="no",
# initialModel=init, stepG=FALSE, modelNames="EEE"))
#
# Compare both sets of results (with & without a noise component) for the ais data
```
(comp1 <- MoE_compare(mod2, mod3, optimal.only=TRUE))
comp1$optimal
#
Target a model for the AIS data which is optimal in terms of ICL, without any restrictions
mod4 <- MoE_stepwise(ais[,3:7], ais, criterion="icl")
#
This gets stuck at a G=1 model, so specify an initial G value as a head start
mod5 <- MoE_stepwise(ais[,3:7], ais, criterion="icl", initialG=2)
#
Check that specifying an initial G value enables a better model to be found
(comp2 <- MoE_compare(mod4, mod5, optimal.only=TRUE, criterion="icl"))
#
Finally, restrict the search to full MoE models only
Notice that the candidate covariates are the union of gating and expert
Notice also that the algorithm initially traverses models with only
expert covariates when the inclusion of gating covariates is infeasible
mod6 <- MoE_stepwise(ais[,3:7], ais, fullMoE=TRUE, gating="BMI", expert="Bfat")

MoE_Uncertainty

Description

Plots the clustering uncertainty for every observation from a fitted "MoEClust" model, including models with a noise component.

Usage

```r
MoE_Uncertainty(res,
  type = c("barplot", "profile"),
  truth = NULL, decreasing = FALSE,
  ...)
```

Arguments

- **res**: An object of class "MoEClust" generated by `MoE_clust`, or an object of class "MoECompare" generated by `MoE_compare`. Models with a noise component are facilitated here too.
- **type**: The type of plot to be produced (defaults to "barplot"). The "profile" option instead displays uncertainties in increasing/decreasing order of magnitude (see `decreasing`).
- **truth**: An optional argument giving the true classification of the data. When truth is supplied and type="barplot", misclassified observations are highlighted in a different colour, otherwise observations with uncertainty greater than 1/res$G are given in a different colour. When truth is supplied and type="profile", the uncertainty of misclassified observations is marked by vertical lines on the plot.
MoE_Uncertainty

- **decreasing**: Logical indicating whether uncertainties should be ordered in decreasing order (defaults to FALSE). Only relevant when type="profile".
- **...**: Catches unused arguments.

Details

The y-axis of this plot runs from 0 to 1 -1/res$G, with a horizontal line also drawn at 1/res$G. When type=“barplot”, uncertainties greater than this value are given a different colour when truth is not supplied, otherwise misclassified observations are given a different colour. Note, however, that G(0) = res$G + 1 is used in place of res$G for models with a noise component.

Value

A plot showing the clustering uncertainty of each observation (sorted in increasing/decreasing order when type=“profile”). The (unsorted) vector of uncertainties can also be returned invisibly. When truth is supplied, the indices of the misclassified observations are also invisibly returned.

Note

`plot.MoEClust` is a wrapper to `MoE_Uncertainty` which accepts the default arguments, and also produces other types of plots.

An alternative means of visualising clustering uncertainties (at least for multivariate data) is provided by the functions `MoE_gpairs` and `plot.MoEClust`, specifically when their argument `response.type` is given as "uncertainty".

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

`MoE_clust, MoE_gpairs, plot.MoEClust`

Examples

```r
data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ sex, G=3, modelNames="EEE", network.data=ais)

# Produce an uncertainty barplot
MoE_Uncertainty(res)

# Produce an uncertainty profile plot
MoE_Uncertainty(res, type="profile")

# Let's assume the true clusters correspond to sex
(ub <- MoE_Uncertainty(res, truth=ais$sex))
(up <- MoE_Uncertainty(res, type="profile", truth=ais$sex))
```
noise_vol

Description

Computes simple approximations to the hypervolume of univariate and multivariate data sets. Also returns the location of the centre of mass.

Usage

```r
noise_vol(data,
          method = c("hypvol", "convexhull", "ellipsoidhull"),
          reciprocal = FALSE)
```

Arguments

- `data` A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed, and covariates should not be included. If a matrix or data frame, rows correspond to observations and columns correspond to variables. There must be more observations than variables.
- `method` The method used to estimate the hypervolume. The default method uses the function `hypvol`. The "convexhull" and "ellipsoidhull" options require loading the geometry and cluster libraries, respectively. This argument is only relevant for multivariate data; for univariate data, the range of the data is used.
- `reciprocal` A logical variable indicating whether or not the reciprocal hypervolume is desired rather than the hypervolume itself. The default is to return the hypervolume.

Value

A list with the following two elements:

- `vol` A hypervolume estimate (or its inverse).
 - This can be used as the hypervolume parameter for the noise component when observations are designated as noise in `MoE_clust`.
- `loc` A vector of length `ncol(data)` giving the location of the centre of mass.
 - This can help in predicting the fitted values of models fitted with noise components via `MoE_clust`.

Note

This function is called when adding a noise component to MoEClust models via the function `MoE_control`, specifically its argument `noise.meth`. The function internally only uses the response variables, and not the covariates. However, one can bypass the invocation of this function by specifying its `noise.vol` argument directly. This is explicitly necessary for models for
high-dimensional data which include a noise component for which this function cannot estimate a (hyper)volume.

Note that supplying the volume manually to `MoE_clust` can affect the summary of the means in `parameters$mean` and by extension the location of the MVN ellipses in `MoE_gpairs` plots for models with both expert network covariates and a noise component. The location cannot be estimated when the volume is supplied manually; in this case, prediction is made on the basis of renormalising the `z` matrix after discarding the column corresponding to the noise component. Otherwise, the mean of the noise component is accounted for. The renormalisation approach can be forced by specifying `noise.args$discard.noise=TRUE`, even when the mean of the noise component is available.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

See Also

`hypvol`, `convhulln`, `ellipsoidhull`

Examples

```r
data(ais)
noise_vol(ais[,3:7], reciprocal=TRUE)
noise_vol(ais[,3:7], reciprocal=FALSE, method="convexhull")
```

plot.MoEClust
Plot MoEClust Results

Description

Plot results for fitted MoE_clust mixture models with gating &/or expert network covariates: generalised pairs plots, model selection criteria, the log-likelihood vs. the EM iterations, and the gating network are all currently visualisable.

Usage

```r
## S3 method for class 'MoEClust'
plot(x, 
what = c("gpairs", "gating", "criterion", "loglik", "uncertainty"),
...)
```

Arguments

- `x`
 An object of class "MoEClust" generated by `MoE_clust`, or an object of class "MoECompare" generated by `MoE_compare`. Models with a noise component are facilitated here too.

- `what`
 The type of graph requested:
gpairs A generalised pairs plot. To further customise this plot, arguments to `MoE_gpairs` can be supplied.
gating The gating network. To further customise this plot, arguments to `MoE_plotGate` and `matplot` can be supplied.
criterion The model selection criteria. To further customise this plot, arguments to `MoE_plotCrit` and `plot.mclustBIC` can be supplied.
loglik The log-likelihood vs. the iterations of the EM algorithm. To further customise this plot, arguments to `MoE_plotLogLik` and `plot` can be supplied.
uncertainty The clustering uncertainty for every observation. To further customise this plot, arguments to `MoE_Uncertainty` can be supplied.

By default, all of the above graphs are produced.

... Optional arguments to be passed to `MoE_gpairs`, `MoE_plotGate`, `MoE_plotCrit`, `MoE_plotLogLik`, `MoE_Uncertainty`, `matplot`, `plot.mclustBIC` and `plot`. In particular, the argument `legendArgs` to `plot.mclustBIC` can be passed to `MoE_plotCrit`.

Details

For more flexibility in plotting, use `MoE_gpairs`, `MoE_plotGate`, `MoE_plotCrit`, `MoE_plotLogLik` and `MoE_Uncertainty` directly.

Value

The visualisation according to what of the results of a fitted MoEClust model.

Note

Caution is advised producing generalised pairs plots when the dimension of the data is large.

Other types of plots are available by first calling `as.Mclust` on the fitted object, and then calling `plot.Mclust` on the results. These can be especially useful for univariate data.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

References

See Also

`MoE_clust`, `MoE_stepwise`, `MoE_gpairs`, `MoE_plotGate`, `MoE_plotCrit`, `MoE_plotLogLik`, `MoE_Uncertainty`, `as.Mclust`, `plot.Mclust`
Examples

data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ BMI, expert= ~ sex,
G=2, modelNames="EVE", network.data=ais)

Plot the gating network
plot(res, what="gating", x.axis=ais$BMI, xlab="BMI")

Plot the log-likelihood
plot(res, what="loglik", col="blue")

Plot the uncertainty profile
plot(res, what="uncertainty", type="profile")

Produce a generalised pairs plot
plot(res, what="gpairs")

Modify the gpairs plot by passing arguments to MoE_gpairs()
plot(res, what="gpairs", response.type="density", varwidth=TRUE,
data.ind=c(5,3,4,1,2), jitter=FALSE, show.counts=FALSE)

predict.MoEClust Predictions for MoEClust models

Description

Predicts both cluster membership probabilities and fitted response values from a MoEClust model, using covariates and response data, or covariates only. The predicted MAP classification, mixing proportions, and component means are all also reported in both cases, as well as the predictions of the expert network corresponding to the most probable component.

Usage

S3 method for class 'MoEClust'
predict(object,
newdata,
resid = FALSE,
discard.noise = FALSE,
MAPresids = FALSE,
use.y = TRUE,
...)

S3 method for class 'MoEClust'
fitted(object,
...)

S3 method for class 'MoEClust'
residuals(object,
predict.MoEClust

newdata,
...

Arguments

object An object of class "MoEClust" generated by MoE_clust, or an object of class "MoECompare" generated by MoE_compare. Predictions for models with a noise component are facilitated here too (see discard.noise).

newdata A list with two named components, each of which must be a data.frame or matrix with named columns, giving the data for which predictions are desired.

new.x The new covariates for the gating &/or expert networks. Must be supplied when newdata$new.y is supplied.

new.y (Optional) response data (see use.y below). When supplied, cluster and response prediction is based on both newdata$new.x and newdata$new.y, otherwise only on the covariates in newdata$new.x.

If supplied as a list with elements new.x and new.y, both must have the same number of rows.

Alternatively, a single data.frame or matrix can be supplied and an attempt will be made to extract & separate covariate and response columns (if any) into newdata$new.x and newdata$new.y based on the variable names in object$data and object$net.covs.

When newdata is not supplied in any way, the covariates and response variables used in the fitting of the model are used here. It is possible to not supply new.y and to supply an empty data.frame or matrix for new.x (or to equivalently supply an empty data.frame or matrix for newdata itself) for models with no covariates of any kind, which effectively predicts the weighted mean of the component means.

resid A logical indicating whether to return the residuals also. Defaults to FALSE. Only allowed when response variables are supplied in some form. The function residuals is a wrapper to predict with the argument resid set to TRUE, with only the residuals returned.

discard.noise A logical governing how predictions of the responses are made for models with a noise component (otherwise this argument is irrelevant). By default (FALSE), the mean of the noise component is accounted for. Otherwise, or when the mean of the noise component is unavailable (due to having been manually supplied through MoE_control via noise.args$noise.vol), prediction of the responses is performed using a z matrix which is renormalised after discarding the column corresponding to the noise component. The renormalisation approach can be forced by specifying TRUE, even when the mean of the noise component is available. For models with a noise component fitted with algo="CEM", a small extra E-step is conducted for observations assigned to the non-noise components in this case.

MAPresids A logical indicating whether residuals are computed against y (TRUE, the default) or MAPy when FALSE. Not relevant for models with equal mixing proportions when only new.x is available. See Value below for more details.
predict.MoEClust

use.y

A logical indicating whether the response variables (if any are supplied either via new.y or via newdata itself) are actually used in the prediction. Defaults to TRUE, but useful when FALSE for computing residuals as though only the covariates in new.x were supplied. For out-of-sample prediction, typically new.y would not be supplied anyway and so the use.y=TRUE default becomes irrelevant.

... Catches unused arguments (and allows the predict arguments discard.noise &/or use.y to be passed through fitted or the discard.noise, MAPresids, and/or use.y arguments to be passed through residuals).

Details

Predictions can also be made for models with a noise component, in which case z will include the probability of belonging to “Cluster0” & classification will include labels with the value 0 for observations classified as noise (if any). The argument discard.noise governs how the responses are predicted in the presence of a noise component (see noise_vol for more details).

Note that the argument discard.noise is invoked for any models with a noise component, while the similar MoE_control argument noise.args$discard.noise is only invoked for models with both a noise component and expert network covariates.

Please be aware that a model considered optimal from a clustering point of view may not necessarily be optimal from a prediction point of view. In particular, full MoE models with covariates in both networks (for which both the cluster membership probabilities and component means are observation-specific) are recommended for out-of-sample prediction when only new covariates are observed (see new.x and new.y above, as well as use.y).

Value

A list with the following named components, regardless of whether newdata$new.x and newdata$new.y were used, or newdata$new.x only.

y

Aggregated fitted values of the response variables.

z

A matrix whose [i, k]-th entry is the probability that observation i of the newdata belongs to the k-th component. For models with a noise component, the final column gives the probability of belonging to the so-called Cluster0.

classification

The vector of predicted cluster labels for the newdata. 0 is returned for observations assigned to the noise component.

pro

The predicted mixing proportions for the newdata, i.e. predicted values of the gating network. object$parameters$pro is returned for models without gating network covariates. See predict.MoE_gating.

mean

The predicted component means for the newdata, i.e. predicted values of the expert network. Given as a 3-dimensional array with dimensions given by the number of new observations, the number of variables, and the number of clusters. The first dimension is of length 1 when there are no expert network covariates, in which case the entries correspond to object$parameters$mean. See predict.MoE_expert.

MAPy

Fitted values of the single expert network to which each observation is most probably assigned. Not returned for models with equal mixing proportions when
only new.x is available. Likely to only be of use for models with gating and expert covariates when only new.x is supplied. Note that MAPy and y will coincide for models fitted via the CEM algorithm (see MoE_control and its argument algo).

When residuals is called, only the residuals (governed by MAPresids) are returned; when predict is called with resid=TRUE, the list above will also contain the element resids, containing the residuals.

The returned values of pro and mean are always the same, regardless of whether newdata$new.x and newdata$new.y were used, or newdata$new.x only.

Finally, fitted is simply a wrapper to predict.MoEClust(object)$y without any newdata, and with the resid and MAPresids arguments also ignored.

Note

Note that a dedicated predict function is also provided for objects of class "MoE_gating" (typically object$gating, where object is of class "MoEClust"). This function is effectively a shortcut to predict(object,...)$pro, which (unlike the predict method for multinom on which it is based) accounts for the various ways of treating gating covariates and noise components, although its type argument defaults to "probs" rather than "class". Notably, its keep.noise argument behaves differently from the discard.noise argument here; here, the noise component is only discarded in the computation of the predicted responses. See predict.MoE_gating for further details.

Similarly, a dedicated predict function is also provided for objects of class "MoE_expert" (typically object$expert, where object is of class "MoE_expert"). This function is effectively a wrapper to predict(object,...)$mean, albeit it returns a list (by default) rather than a 3-dimensional array and also always preserves the dimensions of newdata, even for models without expert network covariates. See predict.MoE_expert for further details.

Author(s)

Keefe Murphy - <keefe.murphy@mu.ie>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covariates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325. <doi: 10.1007/s11634019003738>.

See Also

MoE_clust,MoE_control,noise_vol,predict.MoE_gating,predict.MoE_expert

Examples

data(ais)
Fit a MoEClust model and predict the same data
res <- MoE_clust(ais[,3:7], G=2, gating= ~ BMI, expert= ~ sex,
 modelNames="EVE", network.data=ais)
pred1 <- predict(res)

Get only the fitted responses
fits <- fitted(res)
all.equal(pred1$y, fits) # TRUE

Remove some rows of the data for prediction purposes
ind <- sample(1:nrow(ais), 5)
dat <- ais[-ind,]

Fit another MoEClust model to the retained data
res2 <- MoE_clust(dat[,3:7], G=3, gating= ~ BMI + sex,
 modelNames="EEE", network.data=dat)

Predict held back data using the covariates & response variables
(pred2 <- predict(res2, newdata=ais[ind,]))

Get the residuals
residuals(res2, newdata=ais[ind,])

Predict held back data using only the covariates
(pred3 <- predict(res2, newdata=ais[ind,], use.y=FALSE))

predict.MoE_expert Predictions from MoEClust expert networks

Description
Predictions (point estimates) of observation-specific component means from each (non-noise) component’s expert network linear regression.

Usage

S3 method for class 'MoE_expert'
predict(object,
 newdata = NULL,
 simplify = FALSE,
 droplevels = FALSE,
 ...)

S3 method for class 'MoE_expert'
fitted(object,
 ...

S3 method for class 'MoE_expert'
residuals(object, ...)

Arguments

object An object of class "MoE_expert" (typically x$expert, where x is of class "MoEClust").
newdata A matrix or data frame of test examples. If omitted, the fitted values are used.
simplify Logical indicating whether to simplify the output (in the form of a list) to a 3-dimensional array with dimensions given by the number of new observations, the number of variables, and the number of clusters. The first dimension of such an array is of length 1 when there are no expert network covariates, in which case the entries correspond to object$parameters$mean. Defaults to FALSE.
droplevels A logical indicating whether unseen factor levels in categorical variables within newdata should be dropped (with NA predicted in their place). Defaults to FALSE. See drop_levels.

Details

This function is effectively just a shortcut to lapply(x$expert,predict.lm,newdata=...). It can also be thought of as a wrapper to predict.MoEClust(x,...)$mean, although it returns a list (by default) rather than a 3-dimensional array and also always preserves the dimensions of newdata, even for models without expert network covariates.

Value

For simplify=FALSE, either a list of vectors or predictions (for univariate data) or a list of matrices of predictions (for multivariate data). These lists are of the same length as number of non-noise components in the fitted model. When simplify=TRUE, a 3-dimensional array of predictions is returned, with respective dimensions given by the number of observations, variables, and non-noise components.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

predict.MoEClust, lm, predict.MoE_gating, drop_levels

Examples

data(CO2data)
res <- MoE_clust(CO2data$CO2, G=3, equalPro=TRUE, expert= ~ GNP, network.data=CO2data)
predict(res$expert)

Try with newdata and simplify=TRUE
predict(res$expert, newdata=CO2data[1:5,"GNP", drop=FALSE], simplify=TRUE)
Predictions from MoEClust gating networks

Description

Predicts mixing proportions from MoEClust gating networks. Effectively akin to predicting from a multinomial logistic regression via `multinom`, although here the noise component (if any) is properly accounted for. So too are models with no gating covariates at all, or models with the equal mixing proportion constraint. Prior probabilities are returned by default.

Usage

```r
## S3 method for class 'MoE_gating'
predict(object,
    newdata = NULL,
    type = c("probs", "class"),
    keep.noise = TRUE,
    droplevels = FALSE,
    ...)

## S3 method for class 'MoE_gating'
fitted(object,
    ...
)

## S3 method for class 'MoE_gating'
residuals(object,
    ...)
```

Arguments

- **object**: An object of class "MoE_gating" (typically `x$gating`, where `x` is of class "MoEClust").
- **newdata**: A matrix or data frame of test examples. If omitted, the fitted values are used.
- **type**: The type of output desired. The default ("probs") returns prior probabilities, while "class" returns labels indicating the most likely group a priori. Note that observations classified assigned the noise component (if any) are given a label of 0.
- **keep.noise**: A logical indicating whether the output should acknowledge the noise component (if any). Defaults to TRUE; when FALSE, this column is discarded and the matrix of probabilities is renormalised accordingly.
- **droplevels**: A logical indicating whether unseen factor levels in categorical variables within `newdata` should be dropped (with NA predicted in their place). Defaults to FALSE. See `drop_levels`.
- **...**: Catches unused arguments or allows the `type` and `keep.noise` arguments to be passed through `fitted` and the `keep.noise` argument to be passed through `residuals`.
Details

This function is effectively a shortcut to `predict.MoEClust(x,...)$pro`, which (unlike the predict method for `multinom` on which `predict.MoE_gating` is based) accounts for the various ways of treating gating covariates, equal mixing proportion constraints, and noise components, although its type argument defaults to "probs" rather than "class".

Value

The return value depends on whether `newdata` is supplied or not and whether the model includes gating covariates to begin with. When `newdata` is not supplied, the fitted values are returned (as a matrix if the model contained gating covariates, otherwise as a vector as per `x$parameters$pro`). If `newdata` is supplied, the output is always a matrix with the same number of rows as the `newdata`.

Note

Note that the `keep.noise` argument does not correspond in any way to the `discard.noise` argument to `predict.MoEClust`; there, the noise component is respected in the computation of the mixing proportions and only discarded (if at all) in the prediction of the responses.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

See Also

`predict.MoEClust`, `multinom`, `predict.MoE_expert`, `drop_levels`

Examples

data(ais)
mod <- MoE_clust(ais[,3:7], G=2, modelNames="EEE", gating=~SSF + Ht,
expert=~sex, network.data=ais, tau0=0.1, noise.gate=FALSE)
(preds <- predict(mod$gating, newdata=ais[1:5,]))
all.equal(preds, predict(mod, newdata=ais[1:5,])$pro) #TRUE

Note that the predictions are not the same as the multinom predict method
in this instance, owing to the invocation of noise.gate=FALSE above
mod2 <- mod
class(mod2$gating) <- c("multinom", "nnet")
predict(mod2$gating, newdata=ais[1:5,], type="probs")

We can make this function behave in the same way by invoking keep.noise=FALSE
predict(mod$gating, keep.noise=FALSE, newdata=ais[1:5,])
Quant-based Clustering for Univariate Data

Description

Returns a quantile-based clustering for univariate data.

Usage

```r
quant_clust(x, G)
```

Arguments

- `x`: A vector of numeric data.
- `G`: The desired number of clusters.

Value

The vector of cluster labels.

Examples

```r
data(CO2data)
quant_clust(CO2data$CO2, G=2)
```
Index

* clustering
 MoE_clust, 15
 MoE_compare, 22
 MoE_crit, 34
 MoE_cstep, 36
 MoE_dens, 38
 MoE_estep, 41
 MoE_stepwise, 56
 quant_clust, 75
* control
 aitken, 6
 MoE_control, 26
 noise_vol, 64
* datasets
 ais, 5
 CO2data, 10
* main
 MoE_clust, 15
 MoE_compare, 22
 MoE_stepwise, 56
 plot.MoEClust, 65
 predict.MoEClust, 67
* package
 MoEClust-package, 2
* plotting
 MoE_gpairs, 43
 MoE_plotCrit, 53
 MoE_plotGate, 54
 MoE_plotLogLik, 55
 MoE_Uncertainty, 62
 plot.MoEClust, 65
* prediction
 predict.MoE_expert, 71
 predict.MoE_gating, 73
 predict.MoEClust, 67
* utility
 as.Mclust, 7
 drop_constants, 10
 drop_levels, 12
 expert_covar, 13
 force_posiDiag, 14
 MoE_entropy, 40
 MoE_mahala, 51
 MoE_news, 52
 predict.MoE_expert, 71
 predict.MoE_gating, 73
 predict.MoEClust, 67
 ais, 5
 aitken, 3, 6, 19, 21, 30, 33
 as.Mclust, 3, 7, 8, 13, 14, 20, 21, 25, 66
 clustCombi, 9
 clustCombiOptim, 9
 clustMD, 27, 29, 30, 32, 33
 CO2data, 10
 convhulln, 33, 65
 drop_constants, 10, 12, 30
 drop_levels, 11, 12, 30, 72–74
 ellipsoidhull, 33, 65
 expert_covar, 8, 9, 13, 19, 21, 46, 50
 fitted.MoE_expert (predict.MoE_expert), 71
 fitted.MoE_gating (predict.MoE_gating), 73
 fitted.MoEClust (predict.MoEClust), 67
 force_posiClust, 14
 formula, 11, 16, 17
 hc, 26, 32, 33
 hypvol, 28, 33, 64, 65
 I, 11, 16, 17, 21
 lm, 12, 51, 72
 matplotlib, 54, 55, 66
INDEX

McLust, 7, 9, 27–30, 33
mclust.options, 32, 33, 49, 50, 54
mclustModelNames, 16, 21, 24, 25, 35, 36
mclustVariance, 19, 21, 37–40, 42, 43
MoE_clust, 3, 6–9, 13, 14, 15, 17, 22, 23, 25–27, 29, 30, 32, 33, 35–44, 50, 53–56, 58, 61–66, 68, 70
MoE_compare, 3, 8, 13, 17, 21, 22, 23, 25, 33, 40, 44, 53, 54, 56, 58, 61, 62, 65, 68
MoEcontrol, 3, 7, 9, 15–17, 19–21, 24, 26, 32, 38, 41, 43, 58–61, 68–70
MoE_crit, 3, 18, 19, 21, 34
MoE_cstep, 21, 36, 39, 40, 43
MoE_dens, 3, 21, 36–38, 38, 41–43
MoE_entropy, 40
MoE_estep, 3, 21, 38–40, 41
MoE_gpairs, 3, 8, 13, 14, 28, 43, 49, 63, 65, 66
MoE_mahala, 51
MoE_news, 52
MoE_plotCrit, 53, 53, 66
MoE_plotGate, 54, 55, 66
MoE_plotLogLik, 55, 56, 66
MoE_stepwise, 3, 21–23, 25, 32, 33, 50, 56, 66
MoE_Uncertainty, 44, 50, 62, 63, 66
MoEClust (MoEClust-package), 2
MoEClust-package, 2
multinom, 12, 18, 32, 33, 70, 73, 74
noise_vol, 28, 33, 37, 39, 42, 64, 69, 70
nVarParams, 36
panel.bwplot, 45, 48, 50
panel.stripplot, 45, 50
panel.violin, 50
plot, 8, 20, 56, 66
plot.Mclust, 8, 9, 66
plot.mclustBIC, 53, 54, 66
plot.MoEClust, 3, 9, 13, 14, 21, 25, 49, 50, 53–56, 63, 65
predict, 3, 18–20, 70
predict.Mclust, 9
predict.MoE_expert, 21, 69, 70, 71, 74
predict.MoE_gating, 21, 69, 70, 72, 73
predict.MoEClust, 9, 21, 67, 72, 74
print.MoEClust (MoE_clust), 15
print.MoECompare (MoE_compare), 22
quant_clust, 27, 33, 75
residuals.MoE_expert
(predict.MoE_expert), 71
residuals.MoE_gating
(predict.MoE_gating), 73
residuals.MoEClust (predict.MoEClust), 67
rowLogSumExps, 42, 43
strucplot, 45, 48, 50
summary.MoEClust (MoE_clust), 15