Package ‘MultiBD’

December 5, 2016

Type Package
Title Multivariate Birth-Death Processes
Version 0.2.0
Date 2016-07-19
Author Lam S.T. Ho [aut, cre],
 Marc A. Suchard [aut],
 Forrest W. Crawford [aut],
 Jason Xu [ctb],
 Vladimir N. Minin [ctb]
Maintainer Marc A. Suchard <msuchard@ucla.edu>
Description Computationally efficient functions to provide direct likelihood-based
 inference for partially-observed multivariate birth-death processes. Such processes
 range from a simple Yule model to the complex susceptible-infectious-removed model
 in disease dynamics. Efficient likelihood evaluation facilitates maximum likelihood
 estimation and Bayesian inference.
License Apache License 2.0
Depends R (>= 3.1.0)
Imports Rcpp (>= 0.11.2), RcppParallel
LinkingTo Rcpp, BH, RcppParallel
Suggests testthat, knitr, rmarkdown, MCMCpack, ggplot2, matrixStats,
 plotrix
RoxygenNote 5.0.1
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-12-05 18:28:46

R topics documented:

bbd_prob ... 2
Description

Computes the transition probabilities of a birth/birth-death process using the continued fraction representation of its Laplace transform.

Usage

```plaintext
bbd_prob(t, a0, b0, lambda1, lambda2, mu2, gamma, A, B, nblocks = 256,
         tol = 1e-12, computeMode = 0, nThreads = 4, maxdepth = 400)
```

Arguments

- `t` time
- `a0` total number of type 1 particles at \(t = 0 \)
- `b0` total number of type 2 particles at \(t = 0 \)
- `lambda1` birth rate of type 1 particles (a two variables function)
- `lambda2` birth rate of type 2 particles (a two variables function)
- `mu2` death rate function of type 2 particles (a two variables function)
- `gamma` transition rate from type 2 particles to type 1 particles (a two variables function)
- `A` upper bound for the total number of type 1 particles
- `B` upper bound for the total number of type 2 particles
- `nblocks` number of blocks
- `tol` tolerance
- `computeMode` computation mode
- `nThreads` number of threads
- `maxdepth` maximum number of iterations for Lentz algorithm

Value

A matrix of the transition probabilities

References

Ho LST et al. 2015. "Birth(death)/birth-death processes and their computable transition probabilities with statistical applications". In review.
Examples

```r
## Not run:
data(Eyam)

# (R, I) in the SIR model forms a birth/birth-death process

loglik_sir <- function(param, data) {
  alpha <- exp(param[1])  # Rates must be non-negative
  beta <- exp(param[2])

  # Set-up SIR model with (R, I)
  brates1 <- function(a, b) { 0 }
  brates2 <- function(a, b) { beta * max(N - a - b, 0) * b }
  drates2 <- function(a, b) { 0 }
  transR1 <- function(a, b) { alpha * b }

  sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
              function(k) {
                log(bbd_prob(  # Compute the transition probability matrix
                  t = data$time[k + 1] - data$time[k],  # Time increment
                  a0 = data$R[k], b0 = data$I[k],  # From: R(t_k), I(t_k)
                  brates1, brates2, drates2, transR1,
                  A = data$R[k + 1], B = data$R[k + 1] + data$I[k] - data$R[k],
                  computeMode = 4, nblocks = 80  # Compute using 4 threads
                ))[data$R[k + 1] - data$R[k] + 1,
                   data$I[k + 1] + 1]  # To: R(t_(k+1)), I(t_(k+1))
              })))

  loglik_sir(log(c(SNRPT, PNP19)), Eyam)  # Evaluate at mode

  ## End(Not run)
```

`dbd_prob`
Transition probabilities of a death/birth-death process

Description

Computes the transition probabilities of a death/birth-death process using the continued fraction representation of its Laplace transform

Usage

```r
dbd_prob(t, a0, b0, mu1, lambda2, mu2, gamma, a = 0, B, nblocks = 256,
        tol = 1e-12, computeMode = 0, nThreads = 4, maxdepth = 400)
```
Arguments

- `t`: time
- `a0`: total number of type 1 particles at \(t = 0 \)
- `b0`: total number of type 2 particles at \(t = 0 \)
- `mu1`: death rate of type 1 particles (a two variables function)
- `lambda2`: birth rate of type 2 particles (a two variables function)
- `mu2`: death rate function of type 2 particles (a two variables function)
- `gamma`: transition rate from type 2 particles to type 1 particles (a two variables function)
- `a`: lower bound for the total number of type 1 particles (default \(a = 0 \))
- `B`: upper bound for the total number of type 2 particles
- `nblocks`: number of blocks
- `tol`: tolerance
- `computeMode`: computation mode
- `nThreads`: number of threads
- `maxdepth`: maximum number of iterations for Lentz algorithm

Value

A matrix of the transition probabilities

References

Examples

```r
## Not run:
data(Eyam)

loglik_sir <- function(param, data) {
  alpha <- exp(param[1]) # Rates must be non-negative
  beta <- exp(param[2])

  # Set-up SIR model
  drates1 <- function(a, b) { 0 }
  brates2 <- function(a, b) { 0 }
  drates2 <- function(a, b) { alpha * b }
  trans12 <- function(a, b) { beta * a * b }

  sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
              function(k) {
                log(
                  dbd_prob( # Compute the transition probability matrix
                    t = data$time[k + 1] - data$time[k], # Time increment
                    a0 = data$S[k], b0 = data$I[k], # From: S(t_k), I(t_k)
                    a = data$S[k] - data$I[k], b = data$I[k] - data$I[k],
                    mu1 = lambda2 = mu2 = gamma = a0 = b0 = a = b
                  )
                )
              })), # Sum across all time steps k
}
```
Eyam plague.

Description
A dataset containing the number of susceptible, infectious and removed individuals during the Eyam plague from June 18 to October 20, 1666.

Usage
data(Eyam)

Format
A data frame with 8 rows and 4 variables:

- **time** Months past June 18 1666
- **S** Susceptible
- **I** Infectious
- **R** Removed
References

MultiBD

Multivariate birth-death processes

Description

The MultiBD package computes the transition probabilities of several multivariate birth-death processes.

References

SIR_prob

Transition probabilities of an SIR process

Description

Computes the transition probabilities of an SIR process using the bivariate birth process representation

Usage

SIR_prob(t, alpha, beta, S0, I0, nSI, nIR, direction = c("Forward", "Backward"), nblocks = 20, tol = 1e-12, computeMode = 0, nThreads = 4)

Arguments

t time
alpha removal rate
beta infection rate
S0 initial susceptible population
I0 initial infectious population
nSI number of infection events
nIR number of removal events
direction direction of the transition probabilities (either Forward or Backward)
nblocks number of blocks
tol tolerance
computeMode computation mode
nThreads number of threads
Value

a matrix of the transition probabilities

Examples

data(Eyam)

loglik_sir <- function(param, data) {
 alpha <- exp(param[1]) # Rates must be non-negative
 beta <- exp(param[2])

 if(length(unique(rowSums(data[, c("S", "I", "R"),)]) > 1) {
 stop("Please make sure the data conform with a closed population")
 }

 sum(sapply(1:(nrow(data) - 1), # Sum across all time steps k
 function(k) {
 log(
 SIR_prob(# Compute the forward transition probability matrix
 t = data$time[k + 1] - data$time[k], # Time increment
 alpha = alpha, beta = beta,
 S0 = data$S[k], I0 = data$I[k], # From: R(t_k), I(t_k)
 nS1 = data$S[k] - data$S[k + 1], nIR = data$R[k + 1] - data$R[k],
 computeMode = 4, nblocks = 80 # Compute using 4 threads
)[data$S[k] - data$S[k + 1] + 1,
 data$R[k + 1] - data$R[k] + 1] # To: R(t_(k+1)), I(t_(k+1))
)
 })
 })
}

loglik_sir(log(c(3.204, 0.019)), Eyam) # Evaluate at mode
Index

bbd_prob, 2

dbd_prob, 3

Eyam, 5

MultiBD, 6
MultiBD-package (MultiBD), 6

SIR_prob, 6