Package ‘MultiOrd’

February 11, 2018

Type Package
Title Generation of Multivariate Ordinal Variates
Version 2.3
Date 2018-02-02
Author Anup Amatya and Hakan Demirtas
Maintainer Anup Amatya <aamatya@nmsu.edu>
Depends mvtnorm, corpcor, Matrix, psych
Description A method for multivariate ordinal data generation given marginal distributions and correlation matrix based on the methodology proposed by Demirtas (2006).
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2018-02-11 14:13:41 UTC

R topics documented:

<table>
<thead>
<tr>
<th>MultiOrd-package</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BinToOrd</td>
<td>2</td>
</tr>
<tr>
<td>compute.sigma.star</td>
<td>4</td>
</tr>
<tr>
<td>conformity.Check</td>
<td>4</td>
</tr>
<tr>
<td>find.binary.prob</td>
<td>5</td>
</tr>
<tr>
<td>generate.binary</td>
<td>5</td>
</tr>
<tr>
<td>genOrd</td>
<td>6</td>
</tr>
<tr>
<td>simBinCorr</td>
<td>7</td>
</tr>
<tr>
<td>validation.CorrMat</td>
<td>8</td>
</tr>
<tr>
<td>validation.ordPmat</td>
<td>9</td>
</tr>
</tbody>
</table>

Index 11
MultiOrd-package

Generation of multivariate ordinal data.

Description

A package for multivariate ordinal data generation given marginal distributions and correlation matrix based on the methodology proposed by Demirtas (2006).

Details

Package: MultiOrd
Type: Package
Version: 2.3
Date: 2018-02-02
License: GPL-2

This package can be used to generate multivariate ordinal data. Two main input required are matrix of marginal probabilities of each variable and the correlation matrix of the ordinal variables. Due to the limitation on the magnitude of the binary correlations which depends on the marginal probabilities, off-diagonal entries of ordinal correlation matrix are not free to vary between -1 and 1.

The main function in this package is genOrd which generates the multivariate ordinal data. Another important function is simBinCorr which calculates the intermediate binary correlation.

Author(s)

Anup Amatya and Hakan Demirtas
Maintainer: Anup Amatya <aamatya@nmsu.edu>

References

BinToOrd

Converts multivariate binary data to multivariate ordinal data

Description

Converts multivariate binary data to multivariate ordinal data using original ordinal probabilities.
Usage

`BinToOrd(prop.vec.bin, ordPmat, Mlocation, bin.data)`

Arguments

- `prop.vec.bin`: Vector of marginal probabilities. It is usually a first component of the list returned by `find.binary.prob`
- `ordPmat`: Input matrix of ordinal marginal probabilities
- `Mlocation`: Vector of locations where dichotomization is done. It is usually a second component of the list returned by `find.binary.prob`
- `bin.data`: Matrix of binary data generated using `generate.binary`

Details

As a part of the multivariate ordinal data generation, intermediate multivariate binary data are generated. This function converts multivariate binary data generated by `generate.binary` to the multivariate ordinal data.

Value

- `y`: Matrix of multivariate ordinal data
- `Corr`: Correlation matrix of `y`

Examples

```r
## Not run: nObs = 1000; nSim = 100000
## Not run: ordPmat1 = matrix(c(0.15,0.70,0.40,
## 0.55,0.10,0.25,
## 0.25,0.10,0.15,
## 0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)

## Not run: \ cmat1= matrix(c(1,0.2,0.2,
## 0.2,1,0.2,
## 0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)

## Not run: binObj = simBinCorr(ordPmat1, cmat1, nSim)
## Not run: ep0 = generate.binary( nObs, binObj$vec, binObj$del.next)
## Not run: Mydata= BinToOrd(binObj$vec, ordPmat1, binObj$Mlocation, ep0)
```
compute.sigma.star Computes the tetrachoric correlation matrix. If it is non-positive definite, a nearest positive definite matrix is used.

Description
It computes the tetrachoric correlation matrix using the algorithm described in Emrich and Piedmonte (1991). If the resulting matrix is non-positive definite, a nearest positive definite matrix is returned and the warning message will be printed.

Usage
compute.sigma.star(prop.vec.bin, corr.mat)

Arguments
prop.vec.bin Vector of marginal probabilities
corr.mat Correlation matrix of the binary data

Value
Tetrachoric correlation matrix

See Also
phi2poly and nearPD

conformity.Check Checks whether the dimension of marginal probability matrix matches the dimension of correlation matrix.

Description
Checks whether the dimension of marginal probability matrix matches the dimension of correlation matrix.

Usage
conformity.Check(ordPmat, CorrMat)

Arguments
ordPmat Input matrix of ordinal marginal probabilities
CorrMat Correlation matrix of the multivariate ordinal data.
find.binary.prob

Collapses the ordinal categories to binary ones

Description

Collapses the ordinal categories to binary ones and counts the number of categories in each variable.

Usage

```r
find.binary.prob(ordpmat)
```

Arguments

- `ordpmat` Input matrix of ordinal marginal probabilities.

Value

- `p` Vector of binary probabilities
- `Mlocation` Vector of points where ordinal variables will be dichotomized

See Also

`validation.ordpmat`

Examples

```r
# Not run:
ordpmat1 = matrix(c(0.15,0.70,0.40,
            0.55,0.10,0.25, 0.25,0.10,0.15,
            0.05,0.10,0.20),4,3,byrow=TRUE)
find.binary.prob(ordpmat1)

# End(Not run)
```

generate.binary

Generates multivariate binary data given marginal probabilities and correlation.

Description

Usage

```r
generate.binary(no.rows, prop.vec.bin, corr.mat)
```

Arguments

- `no.rows` Number of observations
- `prop.vec.bin` Vector of binary marginal probabilities
- `corr.mat` Correlation matrix of the binary data

Details

It generates multivariate binary data from the marginal probabilities and correlation matrix. It uses the algorithm described in Emrich and Piedmonte (1991). In the process, if the tetrachoric correlation matrix is non-positive definite, a nearest positive definite matrix is used.

Value

- `data` Matrix of multivariate binary data

See Also

- `nearPD`, `compute.sigma.star`

Examples

```r
## Not run: ordmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.25,0.10,0.15,
0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)
## Not run: cmat1= matrix( c(1,0.2,0.2,
0.2,1,0.2,
0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)
## Not run: p=find.binary.prob(ordmat1)
## Not run: finalCorr = simBinCorr(ordmat1, cmat1, nSim=100000)
## Not run: y=generate.binary( 1000, p,p, finalCorr$del.next)
```

Description

Generates multivariate ordinal data from binary parameters.
Usage

`genord(nobs, ordpmat, binObj)`

Arguments

- **nobs**: Number of rows
- **ordpmat**: Input matrix of ordinal marginal probabilities
- **binObj**: A list returned by the `simBinCorr`

Details

It generates multivariate ordinal data. The argument `binObj` must be calculated using `simBinCorr` before executing this function.

Value

- **mydata**: A list with two components. Two components are a matrix of multivariate ordinal data (y) and its correlation matrix (Corr)

See Also

- `simBinCorr`, `BinToOrd`, `generate.binary`

Examples

```r
# Not run: ordpmat1 = matrix( c(PN1U,PN7P,PNTP,
# PNUU,PN1P,PNRU,
# PNRU,PN1P,PN1U,
# PNPU,PN1P,PNRP), T, S, byrow=true)
# End(not run)
# Not run: cmat1= matrix( c(1,PNR,PNR,
# PNR,1,PNR,
# PNR,PNR,1), S, S, byrow=true)
# End(not run)
# Not run: binobj=simbincorr(ordpmat1, cmat1, nsim=1PPP, steps=PNPRU)
# Not run: mydata = genord( 1PPP, ordpmat1, binobj)
```

simBinCorr

Calculates intermediate binary correlation matrix

Description

Calculates intermediate binary correlation matrix via simulation.

Usage

`simBinCorr(ordPmat, CorrMat, nSim, steps = 0.025)`
validation.CorrMat

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordPmat</td>
<td>Input matrix of ordinal marginal probabilities</td>
</tr>
<tr>
<td>CorrMat</td>
<td>Correlation matrix of the multivariate ordinal data</td>
</tr>
<tr>
<td>nSim</td>
<td>Number of simulations to use to calculate intermediate binary correlation matrix</td>
</tr>
<tr>
<td>steps</td>
<td>Fraction of difference between the current and target matrix to be added in each iteration.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>del.next</td>
<td>Calculated binary correlation matrix</td>
</tr>
<tr>
<td>Mlocation</td>
<td>Cutoff point for converting ordinal probabilities to binary ones.</td>
</tr>
<tr>
<td>pvec</td>
<td>Vector of binary probabilities</td>
</tr>
</tbody>
</table>

See Also

`generate.binary, BinToOrd`

Examples

```r
## Not run: ordPmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.25,0.10,0.15,
0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)
## Not run: cmat1= matrix( c(1,0.2,0.2,
0.2,1,0.2,
0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)
## Not run: simBinCorr(ordPmat1, cmat1, nSim=100000, steps = 0.025)
```

validation.CorrMat validates input correlation matrix

Description

Checks symmetry, positive definiteness, conformity and range of the correlation matrix.

Usage

`validation.CorrMat(prop.vec.bin, CorrMat)`

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prop.vec.bin</td>
<td>Vector of binary (converted from ordinal) marginal probabilities</td>
</tr>
<tr>
<td>CorrMat</td>
<td>Correlation matrix to be validated</td>
</tr>
</tbody>
</table>
Details
This function checks the correlation matrix for basic properties of correlation matrix, such as symmetry and positive definiteness. In addition it verifies that all the correlations are in valid range for the calculated binary marginal probabilities. Range violation error message indicates that ordinal data with the specified correlations cannot be generated due to distributional constraints.

See Also
find.binary.prob

validation.ordPmat
Validates matrix of ordinal probabilities

Description
Validates the range of input matrix of marginal probabilities. It also counts the ordinal categories for each variable.

Usage
validation.ordPmat(ordPmat)

Arguments
ordPmat Matrix of marginal probabilities.

Details
Number of columns of input matrix is the number of variables and each column contains probability of each category within each variable. Any probability with 0 value must be entered at the end of corresponding column. For example if a column contains c(0.3,0.5,0.2,0), then it is assumed that particular variable has only 3 (1, 2 and 3) categories.

Value
J Number of ordinal variables
K Vector of number of categories for each variable

Examples
Not run:
3 outcomes with 3, 4 and 4 categories.
ordPmat1 = matrix(c(0.15,0.70,0.40,
 0.55,0.10,0.25,
 0.30,0.10,0.15,
 0,0.10,0.20),4,3,byrow=TRUE)
validation.ordPmat(ordPmat1)
End (Not run)
Index

BinToOrd, 2, 7, 8

compute.sigma.star, 4, 6
conformity.Check, 4

find.binary.prob, 3, 5, 9

generate.binary, 3, 5, 7, 8

genOrd, 2, 6

MultiOrd (MultiOrd-package), 2
MultiOrd-package, 2

nearPD, 4, 6

phi2poly, 4

simBinCorr, 2, 6, 7, 7

validation.CorrMat, 8
validation.ordPmat, 5, 9