Package ‘MultiRNG’

March 29, 2020

Type Package
Title Multivariate Pseudo-Random Number Generation
Version 1.2.3
Date 2020-03-29
Author Hakan Demirtas, Rawan Allozi, Ran Gao
Maintainer Ran Gao <rgao8@uic.edu>
License GPL-2 | GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-29 21:40:02 UTC

R topics documented:

MultiRNG-package ... 2
draw.correlated.binary ... 3
draw.d.variate.normal .. 4
draw.d.variate.t .. 5
draw.d.variate.uniform .. 6
draw.dirichlet ... 7
draw.dirichlet.multinomial .. 8
draw.inv.wishart ... 9
draw.multinomial ... 10
draw.multivariate.hypergeometric 11
draw.multivariate.laplace .. 12
draw.wishart ... 13
generate.point.in.sphere ... 14
loc.min ... 14

Index 16
Description

This package implements the algorithms described in Demirtas (2004) for pseudo-random number generation of 11 multivariate distributions. The following multivariate distributions are available: Normal, t, Uniform, Bernoulli, Hypergeometric, Beta (Dirichlet), Multinomial, Dirichlet-Multinomial, Laplace, Wishart, and Inverted Wishart.

This package contains 11 main functions and 2 auxiliary functions. The methodology for each random-number generation procedure varies and each distribution has its own function. For multivariate normal, `draw.d.variate.normal` employs the Cholesky decomposition and a vector of univariate normal draws and for multivariate t, `draw.d.variate.t` employs the Cholesky decomposition and a vector of univariate normal and chi-squared draws. `draw.d.variate.uniform` is based on cdf of multivariate normal deviates (Falk, 1999) and `draw.correlated.binary` generates correlated binary variables using an algorithm developed by Park, Park and Shin (1996) and makes use of the auxiliary function `loc.min`. `draw.multivariate.hypergeometric` employs sequential generation of succeeding conditionals which are univariate hypergeometric. Furthermore, `draw.dirichlet` uses the ratios of gamma variates with a common scale parameter and `draw.multinomial` generates data via sequential generation of marginals which are binomials. `draw.dirichlet.multinomial` is a mixture distribution of a multinomial that is a realization of a random variable having a Dirichlet distribution. `draw.multivariate.laplace` is based on generation of a point s on the d-dimensional sphere and utilizes the auxiliary function `generate.point.in.sphere`. `draw.wishart` and `draw.inv.wishart` employs Wishart variates that follow d-variate normal distribution.

Details

Package:	MultiRNG	
Type:	Package	
Version:	1.2.3	
Date:	2020-03-29	
License:	GPL-2	GPL-3

Author(s)

Hakan Demirtas, Rawan Allozi, Ran Gao
Maintainer: Ran Gao <rgao8@uic.edu>

References

draw.correlated.binary

Generation of Correlated Binary Data

Description

This function implements pseudo-random number generation for a multivariate Bernoulli distribution (correlated binary data).

Usage

draw.correlated.binary(no.row, d, prop.vec, corr.mat)

Arguments

- `no.row` Number of rows to generate.
- `d` Number of variables to generate.
- `prop.vec` Vector of means.
- `corr.mat` Correlation matrix.

Value

A `no.row × d` matrix of generated data.

References

See Also

loc.min

Examples

```r
cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
propvec=c(0.3,0.5,0.7)

mydata=draw.correlated.binary(no.row=1e5,d=3,prop.vec=propvec,corr.mat=cmat)
apply(mydata,2,mean)-propvec
cor(mydata)-cmat
```
draw.d.variate.normal Pseudo-Random Number Generation under Multivariate Normal Distribution

Description

This function implements pseudo-random number generation for a multivariate normal distribution with pdf

\[f(x|\mu, \Sigma) = c \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

for \(-\infty < x < \infty\) and \(c = (2\pi)^{-d/2} |\Sigma|^{-1/2}\), \(\Sigma\) is symmetric and positive definite, where \(\mu\) and \(\Sigma\) are the mean vector and the variance-covariance matrix, respectively.

Usage

\[
\text{draw.d.variate.normal}(\text{no.row}, d, \text{mean.vec}, \text{cov.mat})
\]

Arguments

- `no.row`: Number of rows to generate.
- `d`: Number of variables to generate.
- `mean.vec`: Vector of means.
- `cov.mat`: Variance-covariance matrix.

Value

A `no.row` x `d` matrix of generated data.

Examples

\[
\begin{align*}
\text{cmat} &\leftarrow \text{matrix}(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), \text{nrow}=3, \text{ncol}=3) \\
\text{meanvec} &\leftarrow c(0,3,7) \\
\text{mydata} &\leftarrow \text{draw.d.variate.normal}(\text{no.row}=1e5, d=3, \text{mean.vec}=\text{meanvec}, \text{cov.mat}=\text{cmat}) \\
\text{apply} &\leftarrow (\text{mydata}, 2, \text{mean}) \leftarrow \text{meanvec} \\
\text{cor} &\leftarrow (\text{mydata}) \leftarrow \text{cmat}
\end{align*}
\]
draw.d.variate.t

Pseudo-Random Number Generation under Multivariate t Distribution

Description

This function implements pseudo-random number generation for a multivariate t distribution with pdf

$$f(x|\mu, \Sigma, \nu) = c \left(1 + \frac{1}{\nu} (x - \mu)^T \Sigma^{-1} (x - \mu) \right)^{-(\nu+d)/2}$$

for $-\infty < x < \infty$ and $c = \frac{\Gamma((\nu+d)/2)}{\Gamma(\nu/2)\Gamma(d/2)|\Sigma|^{-1/2}}$, Σ is symmetric and positive definite, $\nu > 0$, where μ, Σ, and ν are the mean vector, the variance-covariance matrix, and the degrees of freedom, respectively.

Usage

draw.d.variate.t(dof, no.row, d, mean.vec, cov.mat)

Arguments

dof Degrees of freedom.
no.row Number of rows to generate.
d Number of variables to generate.
mean.vec Vector of means.
cov.mat Variance-covariance matrix.

Value

A $\text{no.row} \times d$ matrix of generated data.

Examples

cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
meanvec=c(0,3,7)
mydata=draw.d.variate.t(dof=5, no.row=1e5, d=3, mean.vec=meanvec, cov.mat=cmat)
apply(mydata,2,mean)-meanvec
cor(mydata)-meanvec
draw.d.variate.uniform

Pseudo-Random Number Generation under Multivariate Uniform Distribution

Description

This function implements pseudo-random number generation for a multivariate uniform distribution with specified mean vector and covariance matrix.

Usage

draw.d.variate.uniform(no.row,d,cov.mat)

Arguments

no.row Number of rows to generate.
d Number of variables to generate.
cov.mat Variance-covariance matrix.

Value

A no.row × d matrix of generated data.

References

Examples

cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
mydata=draw.d.variate.uniform(no.row=1e5,d=3,cov.mat=cmat)
apply(mydata,2,mean)-rep(0.5,3)
cor(mydata)-cmat
draw.dirichlet

Pseudo-Random Number Generation under Multivariate Beta (Dirichlet) Distribution

Description

This function implements pseudo-random number generation for a multivariate beta (Dirichlet) distribution with pdf

\[
f(x|\alpha_1, \ldots, \alpha_d) = \frac{\Gamma\left(\sum_{j=1}^{d} \alpha_j\right)}{\prod_{j=1}^{d} \Gamma(\alpha_j)} \prod_{j=1}^{d} x_j^{\alpha_j-1}
\]

for \(\alpha_j > 0, x_j \geq 0, \) and \(\sum_{j=1}^{d} x_j = 1\), where \(\alpha_1, \ldots, \alpha_d\) are the shape parameters and \(\beta\) is a common scale parameter.

Usage

`draw.dirichlet(no.row, d, alpha, beta)`

Arguments

- **no.row** Number of rows to generate.
- **d** Number of variables to generate.
- **alpha** Vector of shape parameters.
- **beta** Scale parameter common to \(d\) variables.

Value

A \(no.row \times d\) matrix of generated data.

Examples

```r
alpha.vec=c(1,3,4,4)
mydata=draw.dirichlet(no.row=1e5, d=4, alpha=alpha.vec, beta=2)
apply(mydata, 2, mean) - alpha.vec/sum(alpha.vec)
```
draw.dirichlet.multinomial

Pseudo-Random Number Generation under Dirichlet-Multinomial Distribution

Description

This function implements pseudo-random number generation for a Dirichlet-multinomial distribution. This is a mixture distribution that is multinomial with parameter θ that is a realization of a random variable having a Dirichlet distribution with shape vector α. N is the sample size and β is a common scale parameter.

Usage

```r
draw.dirichlet.multinomial(no.row, d, alpha, beta, N)
```

Arguments

- `no.row`: Number of rows to generate.
- `d`: Number of variables to generate.
- `alpha`: Vector of shape parameters.
- `beta`: Scale parameter common to d variables.
- `N`: Sample size.

Value

A $no.row \times d$ matrix of generated data.

See Also

`draw.dirichlet, draw.multinomial`

Examples

```r
alpha.vec=c(1,3,4,4); N=3
mydata=draw.dirichlet.multinomial(no.row=1e5, d=4, alpha=alpha.vec, beta=2, N=3)
apply(mydata, 2, mean) - N*alpha.vec/sum(alpha.vec)
```
draw.inv.wishart

Pseudo-Random Number Generation under Inverted Wishart Distribution

Description

This function implements pseudo-random number generation for an inverted Wishart distribution with pdf

\[
f(x|\nu, \Sigma) = (2^{d/2} \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma((\nu + 1 - i)/2))^{-1} |\Sigma|^{\nu/2} |x|^{-(\nu+d+1)/2} \exp\left(-\frac{1}{2} tr(\Sigma x^{-1})\right)
\]

\(x\) is positive definite, \(\nu \geq d\), and \(\Sigma^{-1}\) is symmetric and positive definite, where \(\nu\) and \(\Sigma^{-1}\) are the degrees of freedom and the inverse scale matrix, respectively.

Usage

\[
draw.inv.wishart(no.row,d,nu,inv.sigma)
\]

Arguments

- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **nu**: Degrees of freedom.
- **inv.sigma**: Inverse scale matrix.

Value

A \(no.row \times d^2\) matrix containing Wishart deviates in the form of rows. To obtain the Inverted-Wishart matrix, convert each row to a matrix where rows are filled first.

See Also

- `draw.wishart`

Examples

```r
mymat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
draw.inv.wishart(no.row=1e5,d=3,nu=5,inv.sigma=mymat)
```
draw.multinomial

Pseudo-Random Number Generation under Multivariate Multinomial Distribution

Description

This function implements pseudo-random number generation for a multivariate multinomial distribution with pdf

\[f(x | \theta_1, ..., \theta_d) = \frac{N!}{\prod x_j!} \prod_{j=1}^d \theta_j^{x_j} \]

for \(0 < \theta_j < 1, x_j \geq 0, \) and \(\sum_{j=1}^d x_j = N\), where \(\theta_1, ..., \theta_d\) are cell probabilities and \(N\) is the size.

Usage

```r
draw.multinomial(no.row, d, theta, N)
```

Arguments

- `no.row` Number of rows to generate.
- `d` Number of variables to generate.
- `theta` Vector of cell probabilities.
- `N` Sample Size. Must be at least 2.

Value

A `no.row x d` matrix of generated data.

Examples

```r
theta.vec=c(0.3, 0.3, 0.25, 0.15); N=4
mydata=draw.multinomial(no.row=1e5, d=4, theta=c(0.3, 0.3, 0.25, 0.15), N=4)
apply(mydata, 2, mean) - N*theta.vec
```
draw.multivariate.hypergeometric

Pseudo-Random Number Generation under Multivariate Hypergeometric Distribution

Description

This function implements pseudo-random number generation for a multivariate hypergeometric distribution.

Usage

```
draw.multivariate.hypergeometric(no.row,d,mean.vec,k)
```

Arguments

- `no.row` Number of rows to generate.
- `d` Number of variables to generate.
- `mean.vec` Number of items in each category.
- `k` Number of items to be sampled. Must be a positive integer.

Value

A `no.row` × `d` matrix of generated data.

References

Examples

```r
meanvec=c(10,10,12) ; myk=5
mydata=draw.multivariate.hypergeometric(no.row=1e5,d=3,mean.vec=meanvec,k=myk)
apply(mydata,2,mean)-myk*meanvec/sum(meanvec)
```
draw.multivariate.laplace

Pseudo-Random Number Generation under Multivariate Laplace Distribution

Description

This function implements pseudo-random number generation for a multivariate Laplace (double exponential) distribution with pdf

\[f(x|\mu, \Sigma, \gamma) = c \exp(-((x - \mu)^T \Sigma^{-1} (x - \mu))^\gamma/2) \]

for \(-\infty < x < \infty\) and \(c = \frac{\gamma^{d/2}}{2\pi^{d/2} |\Sigma|^{-1/2}}\), \(\Sigma\) is symmetric and positive definite, where \(\mu\), \(\Sigma\), and \(\gamma\) are the mean vector, the variance-covariance matrix, and the shape parameter, respectively.

Usage

```r
draw.multivariate.laplace(no.row, d, gamma, mu, Sigma)
```

Arguments

- `no.row`: Number of rows to generate.
- `d`: Number of variables to generate.
- `gamma`: Shape parameter.
- `mu`: Vector of means.
- `Sigma`: Variance-covariance matrix.

Value

A `no.row x d` matrix of generated data.

References

See Also

- `generate.point.in.sphere`

Examples

```r
cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
mu.vec=c(0,3,7)
mydata=draw.multivariate.laplace(no.row=1e5, d=3, gamma=2, mu=mu.vec, Sigma=cmat)

apply(mydata,2,mean)-mu.vec
cor(mydata)-cmat
```
draw.wishart

Pseudo-Random Number Generation under Wishart Distribution

Description

This function implements pseudo-random number generation for a Wishart distribution with pdf

\[
 f(x|\nu, \Sigma) = \left(\frac{2^{\nu d/2}}{\pi^{d(d-1)/4}}\right) \prod_{i=1}^{d} \Gamma\left((\nu + 1 - i)/2\right) |\Sigma|^{-\nu/2} |x|^{(\nu - d - 1)/2} \exp\left(-\frac{1}{2} tr(\Sigma^{-1}x)\right)
\]

\(x\) is positive definite, \(\nu \geq d\), and \(\Sigma\) is symmetric and positive definite, where \(\nu\) and \(\Sigma\) are positive definite and the scale matrix, respectively.

Usage

\[
 \text{draw.wishart}(\text{no.row}, d, \nu, \sigma)
\]

Arguments

- **no.row**: Number of rows to generate.
- **d**: Number of variables to generate.
- **nu**: Degrees of freedom.
- **sigma**: Scale matrix.

Value

A \(\text{no.row} \times d^2\) matrix of Wishart deviates in the form of rows. To obtain the Wishart matrix, convert each row to a matrix where rows are filled first.

See Also

- **draw.d.variate.normal**

Examples

```r
mymat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
draw.wishart(no.row=1e5,d=3,nu=5,sigma=mymat)
```
generate.point.in.sphere

Point Generation for a Sphere

Description

This function generates s points on a d-dimensional sphere.

Usage

`generate.point.in.sphere(no.row,d)`

Arguments

- `no.row`: Number of rows to generate.
- `d`: Number of variables to generate.

Value

A `no.row × d` matrix of coordinates of points in sphere.

References

Examples

`generate.point.in.sphere(no.row=1e5,d=3)`

loc.min

Minimum Location Finder

Description

This function identifies the location of the minimum value in a square matrix.

Usage

`loc.min(my.mat,d)`

Arguments

- `my.mat`: A square matrix.
- `d`: Dimensions of the matrix.
Value

A vector containing the row and column number of the minimum value.

Examples

cmat<-matrix(c(1,0.2,0.3,0.2,1,0.2,0.3,0.2,1), nrow=3, ncol=3)
loc.min(my.mat=cmat, d=3)
Index

draw.correlated.binary, 3
draw.d.variate.normal, 4, 13
draw.d.variate.t, 5
draw.d.variate.uniform, 6
draw.dirichlet, 7, 8
draw.dirichlet.multinomial, 8
draw.inv.wishart, 9
draw.multinomial, 8, 10
draw.multivariate.hypergeometric, 11
draw.multivariate.laplace, 12
draw.wishart, 9, 13

generate.point.in.sphere, 12, 14

loc.min, 3, 14

MultiRNG (MultiRNG-package), 2
MultiRNG-package, 2