Package ‘MultinomialCI’

October 12, 2022

License LGPL (>= 3)

Maintainer Pablo J. Villacorta <pjvi@decsai.ugr.es>

BugReports https://ccia.ugr.es/~pjvi/

Title Simultaneous Confidence Intervals for Multinomial Proportions
According to the Method by Sison and Glaz

Type Package

Author Pablo J. Villacorta <pjvi@decsai.ugr.es>

Description An implementation of a method for building simultaneous confidence intervals for the probabilities of a multinomial distribution given a set of observations, proposed by Sison and Glaz in their paper:
The method is an R translation of the SAS code implemented by May and Johnson in their paper:

Paper and code available at <DOI:10.18637/jss.v005.i06>.

Version 1.2

URL https://ccia.ugr.es/~pjvi/

Date 2021-05-11

Depends R (>= 2.15.0)

Collate 'aux-fn.R' 'sison.R'

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-05-11 21:22:18 UTC

R topics documented:

 multinomialCI ... 2
Simultaneous Confidence Intervals for Multinomial Proportions

Description

Simultaneous confidence intervals for multinomial proportions, calculated according to the method of Sison and Glaz

Usage

```
multinomialCI(x, alpha, verbose = FALSE)
```

Arguments

- `x`: A vector of positive integers representing the number of occurrences of each class. The total number of samples equals the sum of such elements.
- `alpha`: The significance level for the confidence intervals. Must be a real number in the interval [0, 1].
- `verbose`: A boolean flag indicating whether details should be printed to screen during the execution of the method. Defaults to FALSE.

Details

Given a vector of observations with the number of samples falling in each class of a multinomial distribution, this function builds simultaneous confidence intervals for the multinomial probabilities according to the method proposed by Sison and Glaz (1995). The R code has been translated from the SAS code written by May and Johnson (2000).

Value

A k x 2 real matrix, with k being the number of classes, which matches the length of the input vector x. Row i of the matrix contains the lower bound (first column) and upper bound (second column) defining the confidence interval for the probability of the i-th class, which corresponds to the i-th position of the input vector.

References

Examples

Multinomial distribution with 3 classes, from which 79 samples
were drawn: 23 of them belong to the first class, 12 to the
second class and 44 to the third class. Punctual estimations
of the probabilities from this sample would be 23/79, 12/79
and 44/79 but we want to build 95% simultaneous confidence intervals
for the true probabilities
m = multinomialCI(c(23,12,44), 0.05)
print(paste("First class: [", m[1,1], m[1,2], "]"))
print(paste("Second class: [", m[2,1], m[2,2], "]"))
print(paste("Third class: [", m[3,1], m[3,2], "]"))
Index

multinomialCI, 2