Package ‘MultiplierDEA’

April 27, 2018

Type Package
Title Multiplier Data Envelopment Analysis and Cross Efficiency
Version 0.1.18
Date 2018-04-27
Author Aurobindh Kalathil Puthanpura <kalat2@pdx.edu>
Maintainer Aurobindh Kalathil Puthanpura <kalat2@pdx.edu>
Description Functions are provided for calculating efficiency using multiplier DEA (Data Envelopment Analysis): Measuring the efficiency of decision making units (Charnes et al., 1978 <doi:10.1016/0377-2217(78)90138-8>) and cross efficiency using single and two-phase approach. In addition, it includes some datasets for calculating efficiency and cross efficiency.
License LGPL-2
Repository CRAN
Depends lpSolveAPI
NeedsCompilation no
LazyData true
Date/Publication 2018-04-27 17:24:13 UTC

R topics documented:

Bank_Branch_Operating_Efficiency ... 2
BenchMarkTests_And_Microcomputer ... 3
CrossEfficiency ... 4
DeaMultiplierModel ... 5
Departments_Of_Accounting ... 7
dict.solveStatus ... 8
Evaluations_Of_NonProfitOrganizations 8
Evaluation_Educational_Program ... 9
Mal_Ben .. 11
Metropolitan_And_London_Rates_Departments 13
options.orientation.l .. 14
options.phase.l .. 14
options.rts.l ... 14
Bank_Branch_Operating_Efficiency

Data: Bank Branch Operating Efficiency data

Description

Bank Branch data for Operating Efficiency.

Usage

Bank_Branch_Operating_Efficiency

Format

A data frame containing data for 17 Bank Branches.

- Branch_Code a character vector
- PH a numeric vector
- OE a numeric vector
- SQM a numeric vector
- A a numeric vector
- B a numeric vector
- C a numeric vector
- D a numeric vector

Source

References

Examples

data(Bank_Branch_Operating_Efficiency)
attach(Bank_Branch_Operating_Efficiency)
x <- data.frame(PH, OE, SQM)
rownames(x) <- Branch_Code
colnames(x) <- colnames(Bank_Branch_Operating_Efficiency)[2:4]
y <- data.frame(A, B, C, D)
rownames(y) <- Branch_Code
colnames(y) <- colnames(Bank_Branch_Operating_Efficiency)[5:8]
detach(Bank_Branch_Operating_Efficiency)
For CRS
result_CRS <- DeaMultiplierModel(x,y,"crs", "input")
For VRS
result_VRS <- DeaMultiplierModel(x,y,"crs", "input")

Benchmark_Tests_And_Microcomputer
Data: Relationship between benchmark tests and Microcomputer price data

Description
The Relationship between benchmark tests and Microcomputer price data.

Usage
Benchmark_Tests_And_Microcomputer

Format
A data frame containing data for 22 Microcomputers.

System a character vector
Price a numeric vector
MemorySize a numeric vector
DiskCapacity a numeric vector
CPU a numeric vector
I0 a numeric vector
RL1 a numeric vector
RL2 a numeric vector
RL3 a numeric vector

Source

References
CrossEfficiency

Examples

```r
data(BenchMark_Tests_And_Microcomputer)
attach(BenchMark_Tests_And_Microcomputer)

x <- BenchMark_Tests_And_Microcomputer
detach(BenchMark_Tests_And_Microcomputer)
```

Cross Efficiency Model

Description

Cross Efficiency uses DEA to do peer evaluation of DMUs. Single-phase cross efficiency approach.

Usage

```r
CrossEfficiency(x = x, y = y, rts = "crs", orientation = "input", weightRestriction)
```

Arguments

- **x**: Inputs or resources used by each decision making unit.
- **y**: Outputs or resources used by each decision making unit.
- **rts**: Returns to scale for the application, or industry studied. Note the default rts is crs. vrs Variable returns to scale. crs Constant returns to scale.
- **orientation**: Orientation of the DEA model - primary emphasis on input-reduction input or output-augmentation output. Note that unlike the DEA functions, the default is input orientation.
- **weightRestriction**: Weight restriction for the model. Optional parameter.

Value

The function returns a number of values per DMU.

- **$ceva_matrix**: Returns the cross efficiency matrix. Row is the Rating DMU and Column is the Rated DMU.
- **$ce_ave**: Returns the cross efficiency score for the DMU.
- **$ceva_max**: Returns the maximum cross efficiency score for the DMU.
- **$ceva_min**: Returns the minimum cross efficiency score for the DMU.
- **$vx**: Input weights from the model.
- **$uy**: Output weights from the model.
- **$Model_Status**: Returns the status of the LP model.
DeaMultiplierModel

Note

cева_matrix - cross-evaluation matrix. cева_max - cross-evaluation maximum. cева_min - cross-evaluation minimum. ce_ave - cross-efficiency scores.

Examples

dmu <- c("A", "B", "C", "D", "E", "F")
x <- data.frame(c(150, 400, 320, 520, 350, 320), c(0.2, 0.7, 1.2, 2.0, 1.2, 0.7))
rownames(x) <- dmu
colnames(x)[1] <- c("StartHours")
colnames(x)[2] <- c("Supplies")

y <- data.frame(c(14, 14, 42, 28, 19, 14), c(3.5, 21, 10.5, 42, 25, 15))
rownames(y) <- dmu
colnames(y)[1] <- c("Reimbursed")
colnames(y)[2] <- c("Private")

Calculate the efficiency score
result <- CrossEfficiency(x, y, "crs", "input")
Examine the cross efficiency score for DMUs
print(result$ce_ave)

DeaMultiplierModel DEA Multiplier Model

Description

DEA multiplier model calculates the efficiency and reference sets for each DMUs.

Usage

DeaMultiplierModel(x = x, y = y, rts = "crs", orientation = "input", weightRestriction)

Arguments

x Inputs or resources used by each decision making unit.
y Outputs or resources used by each decision making unit.
rts Returns to scale for the application, or industry studied. Note the default rts is crs. vrs Variable returns to scale. crs Constant returns to scale. Available option: crs, vrs
orientation Orientation of the DEA model - primary emphasis on input-reduction or output-augmentation output. Note that unlike the DEA functions, the default is input orientation. Available option: input, output.
weightRestriction Weight restriction for the model. Optional parameter.
Value

The function returns a number of values per DMU. The standardized efficiency (all inefficiencies are between 0 and 1, for input and output orientation). Efficiency, and lambda values are returned.

rts Returns to scale of the model.
$orientation$ Orientation of the model.
$inputValues$ Input Values (x) passed to the model.
$outputValues$ Output Values (y) passed to the model.
$efficiency$ Efficiency of each DMU in the model.
$lambda$ Lambdas per DMU in the model.
HCU_Input HCU data for inputs.
HCU_Output HCU data for outputs.
vx Input weights from the model.
uy Output weights from the model.
$Free_Weights$ Free weights from the model. Applies only to vrs returns-to-scale.
$model_Status$ Returns the status of the LP model.

Examples

dmu <- c("A", "B", "C", "D", "E", "F")

x <- data.frame(c(150,400,320,520,350,320),c(0.2,0.7,1.2,2.0,1.2,0.7))
rownames(x) <- dmu
colnames(x)[1] <- c("StartHours")
colnames(x)[2] <- c("Supplies")

y <- data.frame(c(14,14,42,28,19,14),c(3.5,21,10.5,42,25,15))
rownames(y) <- dmu
colnames(y)[1] <- c("Reimbursed")
colnames(y)[2] <- c("Private")

#Creating the weight restriction data frame with Upper bound

weightRestriction<-data.frame(lower = c(1), numerator = c("StartHours"),
derominator = c("Supplies"), upper = c(2))

#Creating the weight restriction data frame without Upper bound

weightRestriction<-data.frame(lower = c(1), numerator = c("StartHours"),
derominator = c("Supplies"))

#Creating the weight restriction data frame with Upper bound and Na, Inf or NaN

weightRestriction<-data.frame(lower = c(1,2), numerator = c("StartHours","Reimbursed"),
derominator = c("Supplies","Private"), upper = c(2,Inf))
Calculate the efficiency score without weight restriction
result <- DeaMultiplierModel(x,y,"crs", "input")
Examine the efficiency score for DMUs
print(result$Efficiency)

Calculate the efficiency score with weight restriction
result <- DeaMultiplierModel(x,y,"crs", "input", weightRestriction)
Examine the efficiency score for DMUs
print(result$Efficiency)

Departments Of Accounting

Data: UK University Departments Of Accounting Efficiency data.

Description

Evaluation the Efficiency of UK University Departments Of Accounting Efficiency.

Usage

`Departments_Of_Accounting`

Format

A data frame containing data for 20 UK University Departments Of Accounting.

- `Departments` a numeric vector
- `Undergraduates` a numeric vector
- `Research` a numeric vector
- `Taught` a numeric vector
- `Res.Co` a numeric vector
- `OtherRes` a numeric vector
- `OtherIncome` a numeric vector
- `Publications` a numeric vector
- `AcademicStaff` a numeric vector
- `Salaries` a numeric vector
- `OtherExp` a numeric vector

Source

References

Examples

data(Departments_Of_Accounting)
attach(Departments_Of_Accounting)

x <- data.frame(AcademicStaff)
rownames(x) <- Departments
colnames(x) <- colnames(Departments_Of_Accounting)[9]

y <- data.frame(Undergraduates, Research, Taught,(Res.Co + OtherRes + OtherIncome))
rownames(y) <- Departments
colnames(y)[1] <- colnames(Departments_Of_Accounting)[2]
colnames(y)[2] <- colnames(Departments_Of_Accounting)[3]
colnames(y)[3] <- colnames(Departments_Of_Accounting)[4]
colnames(y)[4] <- c("Total_Income")
detach(Departments_Of_Accounting)

result <- DeaMultiplierModel(x,y,"crs", "input")

<table>
<thead>
<tr>
<th>dict.solveStatus</th>
<th>Provides the solver status codes.</th>
</tr>
</thead>
</table>

Description

Provides the solver status codes and description.

Examples

#List status codes and description.
dict.solveStatus

evaluations_of_nonprofitorganizations

Data: Evaluation of Non-Profit organizations data

Description

Evaluation of Non-Profit organizations efficiency.
Usage

Evaluations_Of_NonProfitOrganizations

Format

A data frame containing data for 16 Non-Profit organizations.

Hospital a numeric vector
H0 a numeric vector
PercentOccupancy a numeric vector
RevenuePerDay a numeric vector
A/RTurnover a numeric vector
CostPerDay a numeric vector
LengthOfStay a numeric vector

Source

References

Examples

data(Evaluations_Of_NonProfitOrganizations)
attach(Evaluations_Of_NonProfitOrganizations)
x <- Evaluations_Of_NonProfitOrganizations
detach(Evaluations_Of_NonProfitOrganizations)

Evaluation_Educational_Program

Data: Educational program data

Description

Evaluation of Educational program.

Usage

Evaluation_Educational_Program
Evaluation_Educational_Program

Format

A data frame containing data for 22 educational programs.

Program a numeric vector
CCR_EFF a numeric vector
Revenue_Generated a numeric vector
Student_Employed a numeric vector
Employer_Satisfaction a numeric vector
Contact_Hours a numeric vector
Number_of_FTE_Staff a numeric vector
Facility_Allocation a numeric vector
Expenditures a numeric vector

Source

References

Examples

data(Evaluation_Educational_Program)
attach(Evaluation_Educational_Program)

x <- data.frame(Contact_Hours, Number_of_FTE_Staff, Facility_Allocation, Expenditures)
rownames(x) <- Program
colnames(x) <- colnames(Evaluation_Educational_Program)[6:9]

y <- data.frame(Revenue_Generated, Student_Employed, Employer_Satisfaction)
rownames(y) <- Program
colnames(y) <- colnames(Evaluation_Educational_Program)[3:5]
detach(Evaluation_Educational_Program)

result <- DeaMultiplierModel(x,y,"crs", "input")
Description
Two-Phase Cross efficiency approach.

Usage
Mal_Ben(x = x, y = y, rts = "crs", orientation = "input", phase = "mal",
weightRestriction, include = TRUE)

Arguments
x Inputs or resources used by each decision making unit.
y Outputs or resources used by each decision making unit.
rts Returns to scale for the application, or industry studied. Note the default rts is crs. vrs Variable returns to scale. crs Constant returns to scale. Available option: crs, vrs.
orientation Orientation of the DEA model - primary emphasis on input-reduction input or output-augmentation output. Note that unlike the DEA functions, the default is input orientation. Available option: input, output.
weightRestriction Weight restriction for the model. Optional parameter.
phase Second phase of the model. Malevolent or Benevolent. Note the default is mal.Available option: mal, ben.
include In the second phase include evaluating DMU in the calculation. Default is TRUE. Available option: TRUE, FALSE.

Value
The function returns a number of values per DMU. The standardized efficiency (all inefficiencies are between 0 and 1, for input and output orientation) Efficiency, and the lambda values, lambda, are returned.

$rts Returns to scale of the model.
$Orientation Orientation of the model.
$InputValues Input Values (x) passed to the model.
$OutputValues Output Values (y) passed to the model.
$Phase1_Efficiency Efficiency of each DMU in the model from Phase 1.
$Phase1_Lambda Lambdas per DMU in the model from Phase 1.
$Phase1_vx Input weights from the model from Phase 1.
Phase1_uy Output weights from the model from Phase 1.

$\text{Phase1_Free_Weights}$
Free weights from the model from Phase 1. Applies only to vrs returns-to-scale.

$\text{Phase1_Model_Status}$
Returns the status of the phase two LP model.

Phase2_Efficiency
Efficiency of each DMU in the model from Phase 2.

Phase2_Lambda
Lambdas per DMU in the model from Phase 2.

Phase2_vx
Input weights from the model from Phase 2.

Phase2_uy
Output weights from the model from Phase 2.

$\text{Phase2_Free_weights}$
Free weights from the model from Phase 2. Applies only to vrs returns-to-scale.

$\text{Phase2_Model_Status}$
Returns the status of the phase two LP model.

ceva_matrix
Returns the cross efficiency matrix. Row is the Rating DMU and Column is the Rated DMU.

ce_ave
Returns the cross efficiency score for the DMU.

ceva_max
Returns the maximum cross efficiency score for the DMU.

ceva_min
Returns the minimum cross efficiency score for the DMU.

\textbf{Note}

\text{ceva_matrix} - cross-evaluation matrix. \text{ceva_max} - cross-evaluation maximum. \text{ceva_min} - cross-evaluation minimum. \text{ce_ave} - cross-efficiency scores.

\textbf{Examples}

dmu <- c("A", "B", "C", "D", "E", "F")
x <- data.frame(c(150,400,320,520,350,320),c(0.2,0.7,1.2,2.0,1.2,0.7))
rownames(x) <- dmu
colnames(x)[1] <- c("StartHours")
colnames(x)[2] <- c("Supplies")
y <- data.frame(c(14,14,42,28,19,14),c(3.5,21,10.5,42,25,15))
rownames(y) <- dmu
colnames(y)[1] <- c("Reimbursed")
colnames(y)[2] <- c("Private")

Calculate the efficiency score
result <- Mal_Ben(x, y, rts = "crs", orientation = "input", phase = "mal", include = TRUE)
Examine the cross efficiency score for DMUs
print(result$ce_ave)
Metropolitan_And_London_Rates_Departments

Data: Metropolitan and London rates departments data

Description
Relative Efficiency Metropolitan and London rates departments.

Usage

Metropolitan_And_London_Rates_Departments

Format
A data frame containing data for 62 rates department authority.

Authority a character vector
TotalCost a numeric vector
Non-cn1 a numeric vector
Rate a numeric vector
Summons a numeric vector
NPV a numeric vector

Source

References

Examples

data(Metropolitan_And_London_Rates_Departments)
attach(Metropolitan_And_London_Rates_Departments)

x <- data.frame(TotalCost)
rownames(x) <- Authority
colnames(x) <- colnames(Metropolitan_And_London_Rates_Departments)[2]

y <- data.frame('Non-cn1', Rate, Summons, NPV)
rownames(y) <- Authority
colnames(y) <- colnames(Metropolitan_And_London_Rates_Departments)[3:6]
```r
detach(Metropolitan_And_London_Rates_Departments)
result <- DEAMultiplierModel(x,y,"crs", "input")
```

`options.orientation.l` *Provides the orientation option.*

Description

Provides the orientation option values.

Examples

```r
# List the orientation option used as arguments.
options.orientation.l
```

`options.phase.l` *Provides the second phase options.*

Description

Provides the second phase options available for Mal_Ben function.

Examples

```r
# List the phase option used as arguments.
options.phase.l
```

`options.rts.l` *Provides the rts (returns to scale) option.*

Description

Provides the rts (returns to scale) option values.

Examples

```r
# List the returns to scale option used as arguments.
options.rts.l
```
Index

*Topic **Assurance Region**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **Benevolent**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **Cross Efficiency**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **DEA**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **Malevolent**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14

*Topic **Multiplier DEA Model**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **Single-Phase Approach**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **Two-Phase Approach**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **Weight restrictions**
 CrossEfficiency, 4
 DeaMultiplierModel, 5
 dict.solveStatus, 8
 Mal_Ben, 11
 options.orientation.1, 14
 options.phase.1, 14
 options.rts.1, 14

*Topic **datasets**
 Bank_Branch_Operating_Efficiency, 2
 BenchMark_Tests_And_Microcomputer, 3
 Departments_Of_Accounting, 7
Evaluation_Educational_Program, 9
Evaluations_Of_NonProfitOrganizations, 8
Metropolitan_And_London_Rates_Departments, 13

BenAndMal (Mal_Ben), 11
BenchMark.Tests_And_Microcomputer, 3

CrossEfficiency, 4
DeaMultiplierModel, 5
Departments_Of_Accounting, 7
dict.solveStatus, 8

Evaluation_Educational_Program, 9
Evaluations_Of_NonProfitOrganizations, 8

Mal_Ben, 11
Metropolitan_And_London_Rates_Departments, 13

options.orientation, 1, 14
options.phase, 1, 14
options.rts, 1, 14