Package ‘NADIA’

October 12, 2022

Type Package
Title NA Data Imputation Algorithms
Version 0.4.2
Author Jan Borowski, Piotr Fic
Maintainer Jan Borowski <janborowka7@gmail.com>
Description Creates a uniform interface for several advanced imputations missing data methods. Every available method can be used as a part of ‘mlr3’ pipelines which allows easy tuning and performance evaluation. Most of the used functions work separately on the training and test sets (imputation is trained on the training set and impute training data. After that imputation is again trained on the test set and impute test data).
License GPL
Depends R (>= 3.5.0), mlr3, mlr3pipelines, paradox
Imports missForest, missMDA, doParallel, testthat, mlr3learners, rpart, glmnet, Amelia, VIM, softImpute, missRanger, methods, mice, data.table, foreach
Encoding UTF-8
RoxygenNote 7.2.1
BugReports https://github.com/ModelOriented/EMMA/issues
Suggests knitr, rmarkdown, kableExtra, magrittr
VignetteBuilder knitr
NeedsCompilation no
Repository CRAN
Date/Publication 2022-10-02 19:40:02 UTC

R topics documented:

 autotune_Amelia .. 2
 autotune_mice ... 4
 autotune_missForest ... 7
 autotune_missRanger .. 9
autotune_Amelia: Perform imputation using Amelia package and EMB algorithm.

Description

Function use EMB (Expectation-Maximization with Bootstrapping) to impute missing data. Function performance is highly depend from data structure and chosen parameters.

Index

autotune_Amelia | Perform imputation using Amelia package and EMB algorithm. | 63
Usage

autotune_Amelia(
 df,
 col_type = NULL,
 percent_of_missing = NULL,
 col_0_1 = FALSE,
 parallel = TRUE,
 polytime = NULL,
 splinetime = NULL,
 intercs = FALSE,
 empir = NULL,
 verbose = FALSE,
 return_one = TRUE,
 m = 3,
 out_file = NULL
)

Arguments

df data.frame. Df to impute with column names and without target column.
col_type character vector. Vector containing column type names.
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,...)
col_0_1 Decaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).
parallel If true parallel calculation is used.
polytime parameter pass to amelia function
splinetime parameter pass to amelia function
intercs parameter pass to amelia function
empir parameter pass to amelia function as empir in Amelia == empir*nrow(df). If empir dont set empir=nrow(df)*0.015.
verbose If true function will print on console.
return_one Decide if one dataset or amelia object will be returned.
m Number of datasets generated by amelia. If return_one=TRUE first dataset will be given.
out_file Output log file location if file already exists log message will be added. If NULL no log will be produced.

Value

Return one data.frame with imputed values or amelia object.
autotune_mice

Automatical tuning of parameters and imputation using mice package.

Description

Function impute missing data using mice functions. First perform random search using linear models (generalized linear models if only categorical values are available). Using glm its problematic. Function allows users to skip optimization in that case but it can lead to errors. Function optimize prediction matrix and method. Other mice parameters like number of sets(m) or max number of iterations(maxit) should be set as high as possible for best results(higher values are required more time to perform imputation). If u chose to use one inputted dataset m is not important. More information can be found in random_param_mice_search and formula_creating and mice.
Usage

autotune_mice(
 df,
 m = 5,
 maxit = 5,
 col_miss = NULL,
 col_no_miss = NULL,
 col_type = NULL,
 set_cor = 0.5,
 set_method = "pmm",
 percent_of_missing = NULL,
 low_corr = 0,
 up_corr = 1,
 methods_random = c("pmm"),
 iter = 5,
 random.seed = 123,
 optimize = TRUE,
 correlation = TRUE,
 return_one = TRUE,
 col_0_1 = FALSE,
 verbose = FALSE,
 out_file = NULL
)

Arguments

df data frame for imputation.
m number of sets produced by mice.
maxit maximum number of iteration for mice.
col_miss name of columns with missing values.
col_no_miss character vector. Names of columns without NA.
col_type character vector. Vector containing column type names.
set_cor Correlation or fraction of features using if optimize= False
set_method Method used if optimize=FALSE. If NULL default method is used (more in methods_random section).
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3...)
low_corr double between 0,1 default 0 lower boundry of correlation set.
up_corr double between 0,1 default 1 upper boundary of correlation set. Both of these parameters work the same for a fraction of features.
methods_random set of methods to chose. Default ‘pmm’. If seted on NULL this methods are used predictive mean matching (numeric data) logreg, logistic regression imputation (binary data, factor with 2 levels) polyreg, polytomous regression imputation for unordered categorical data (factor > 2 levels) polr, proportional odds model for (ordered, > 2 levels).
iter number of iteration for randomSearch.
random.seed random seed.
optimize if user wont to optimize.
correlation If True correlation is using if Fales fraction of features. Default True.
return_one One or many imputed sets will be returned. Default True.
col_0_1 Decaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).
verbose If FALSE function didn’t print on console.
out_file Output log file location if file already exists log message will be added. If NULL no log will be produced.

Value

Return imputed datasets or mids object containing multi imputation datasets.

Author(s)

Stef van Buuren, Karin Groothuis-Oudshoorn (2011).

Examples

```r
{  raw_data <- mice::nhanes2

  col_type <- 1:ncol(raw_data)
  for (i in col_type) {
    col_type[i] <- class(raw_data[, i])
  }

  percent_of_missing <- 1:ncol(raw_data)
  for (i in percent_of_missing) {
    percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
  }

  col_no_miss <- colnames(raw_data)[percent_of_missing == 0]
  col_miss <- colnames(raw_data)[percent_of_missing > 0]
  imp_data <- autotune_mice(raw_data, optimize = FALSE, iter = 2,
                            col_type = col_type, percent_of_missing = percent_of_missing,
                            col_no_miss = col_no_miss, col_miss = col_miss)

  # Check if all missing value was imputed
  sum(is.na(imp_data)) == 0
  # TRUE
}
```
autotune_missForest

Perform imputation using missForest from missForest package.

Description

Function use missForest package for data imputation. OBBerror (more in autotune_mice) is used to perform grid search.

Usage

```r
autotune_missForest(
  df,
  col_type = NULL,
  percent_of_missing = NULL,
  cores = NULL,
  ntree_set = c(100, 200, 500, 1000),
  mtry_set = NULL,
  parallel = FALSE,
  col_0_1 = FALSE,
  optimize = TRUE,
  ntree = 100,
  mtry = NULL,
  verbose = FALSE,
  maxiter = 20,
  maxnodes = NULL,
  out_file = NULL
)
```

Arguments

df data.frame. Df to impute with column names.
col_type character vector. Vector containing column type names.
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,..)
cores integer. Number of threads used by parallel calculations. By default approximately half of available CPU cores.
ntree_set integer vector. Vector contains numbers of tree for grid search.
mtry_set integer vector. Vector contains numbers of variables randomly sampled at each split.
parallel logical. If TRUE parallel calculation is using.
col_0_1 decide if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False.
optimize optimize inside function
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntree</td>
<td>ntree from missForest function</td>
</tr>
<tr>
<td>mtry</td>
<td>mtry form missforest function</td>
</tr>
<tr>
<td>verbose</td>
<td>If FALSE function didn’t print on console.</td>
</tr>
<tr>
<td>maxiter</td>
<td>maxiter form missForest function.</td>
</tr>
<tr>
<td>maxnodes</td>
<td>maxnodes from missForest function.</td>
</tr>
<tr>
<td>out_file</td>
<td>Output log file location if file already exists log message will be added. If NULL no log will be produced.</td>
</tr>
</tbody>
</table>

Details

Function try to use parallel backend if it’s possible. Half of the available cores are used or number pass as cores param. (Number of used cores can’t be higher then number of variables in df. If it happened a number of cores will be set at ncol(df)-2 unless this number is <= 0 then cores =1). To perform parallel calculation function use `registerDoParallel` to create parallel backend. Creating backend can have significant time cost so for very small df cores=1 can speed up calculation. After calculation function turns off parallel backend.

Grid search is used to chose a sample for each tree and the number of trees can be turn off. Params in grid search have significant influence on imputation quality but function should work on any reasonable values of this parameter.

Value

Return data.frame with imputed values.

Author(s)

References

Examples

```r
raw_data <- data.frame(
  a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
  b = as.integer(1:1000),
  c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
  d = runif(1000, 1, 10),
  e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
  f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE)))

# Preparing col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")
```
```r
percent_of_missing <- 1:6
for (i in percent_of_missing) {
    percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_missForest(raw_data, col_type, percent_of_missing, optimize = FALSE, parallel = FALSE)

# Check if all missing value was imputed
sum(is.na(imp_data)) == 0
# TRUE
```

autotune_missRanger

Perform imputation using missForest from missForest package.

Description

Function use missForest package for data imputation. Function use OBBerror (more in missForest documentation) to perform random search.

Usage

```r
autotune_missRanger(
  df,
  percent_of_missing = NULL,
  maxiter = 10,
  random.seed = 123,
  mtry = NULL,
  num.trees = 500,
  verbose = FALSE,
  col_0_1 = FALSE,
  out_file = NULL,
  pmm.k = 5,
  optimize = TRUE,
  iter = 10
)
```

Arguments

df data.frame. Df to impute with column names and without target column.

percent_of_missing numeric vector. Vector containting percent of missing data in columns for example c(0,1,0,0,11,3,...)

maxiter maximum number of iteration for missRanger algorithm

random.seed random seed use in imputation
mtry sample fraction use by missRanger. This param isn’t optimized automatically.
 If NULL default value from ranger package will be used.
num.trees number of trees. If optimize == TRUE. Param set seq(10,num.trees,iter) will be
 used.
verbose If FALSE function doesn’t print on console.
col_0_1 decide if add bonus column informing where imputation been done. 0 - value
 was in dataset, 1 - value was imputed. Default False.
out_file Output log file location if file already exists log message will be added. If NULL
 no log will be produced.
pmm.k Number of candidate non-missing values to sample from in the predictive mean-
 matching step. 0 to avoid this step. If optimize == TRUE param set sample(1:pmm.k,iter) will
 be used. If pmm.k==0 missRanger == missForest.
optimize If TRUE inside optimization will be performed.
iter Number of iteration for a random search.

Value
 Return data.frame with imputed values.

Author(s)
 Michael Mayer (2019).

References
 https://CRAN.R-project.org/package=missRanger

Examples

```r
raw_data <- data.frame(
  a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
  b = as.integer(1:1000),
  c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
  d = runif(1000, 1, 10),
  e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
  f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE)))
# Prepering col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
  percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_missRanger(raw_data[1:1000], percent_of_missing, optimize = FALSE)
```
Check if all missing value was imputed
sum(is.na(imp_data)) == 0
TRUE

autotune_softImpute (Perform imputation using softImpute package)

Description

Function use softImpute to impute missing data it works only with numeric data. Columns with categorical values are imputed by a selected function.

Usage

```r
autotune_softImpute(
  df,
  percent_of_missing = NULL,
  col_type = NULL,
  col_0_1 = FALSE,
  cat_Fun = VIM::maxCat,
  lambda = 0,
  rank.max = 2,
  type = "als",
  thresh = 1e-05,
  maxit = 100,
  out_file = NULL
)
```

Arguments

- `df` data.frame. Df to impute with column names and without target column.
- `percent_of_missing` numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,..)
- `col_type` Character vector with types of columns.
- `col_0_1` Decaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).
- `cat_Fun` Function to impute categorical features. Default maxCat (mode). Can be every function with input one character vector and return atomic object.
- `lambda` nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to "hardImpute", for which convergence is typically slower. If null lambda is set automatically at the highest possible values.
rank.max This restricts the rank of the solution. Default 2 if set as NULL. rank.max=min(dim(X))-1.

type Chose of algorithm 'als' or 'svd'. Default 'als'.

thresh Threshold for convergence.

maxit Maximum number of iterations.

out_file Output log file location if file already exists log message will be added. If NULL no log will be produced.

Details

Function use algorithm base on matrix what's meaning if only one numeric column exists in dataset imputation algorithm don't work. In that case, this column will be imputed using a function for categorical columns. Because of this algorithm is working properly only with at least two numeric features in the dataset. To specify column type argument col_type is used so it's possible to forcefully use for example numeric factors in imputation. Action like this can lead to errors and its not.

Value

Return one data.frame with imputed values.

Author(s)

References

Examples

```r
raw_data <- data.frame(
  a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
  b = as.integer(1:1000),
  c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
  d = runif(1000, 1, 10),
  e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
  f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE))
)

# Preparing col_type
col_type <- c("Factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
  percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_softImpute(raw_data, percent_of_missing, col_type)
```
Check if all missing value was imputed
sum(is.na(imp_data)) == 0
TRUE

autotune_VIM_hotdeck

Hot-Deck imputation using VIM package.

Description

Function perform hotdeck function from VIM package. Any tunable parameters aren’t available in this algorithm.

Usage

autotune_VIM_hotdeck(
 df,
 percent_of_missing = NULL,
 col_0_1 = FALSE,
 out_file = NULL
)

Arguments

df data.frame. Df to impute with column names and without target column.
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,...)
col_0_1 decide if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False.
out_file Output log file location if file already exists log message will be added. If NULL no log will be produced.

Value

Return data.frame with imputed values.

Author(s)

Alexander Kowarik, Matthias Templ (2016) doi:10.18637/jss.v074.i07

References

Examples

```r
raw_data <- data.frame(
  a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
  b = as.integer(1:1000),
  c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
  d = runif(1000, 1, 10),
  e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
  f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE)))

# Preparing col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
  percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_VIM_hotdeck(raw_data, percent_of_missing)

# Check if all missing value was imputed
sum(is.na(imp_data)) == 0
# TRUE
```

autotune_VIM_Irmi

Perform imputation using VIM package and irmi function

Description

Function use IRMI (Iterative robust model-based imputation) to impute missing data.

Usage

```r
autotune_VIM_Irmi(
  df,
  col_type = NULL,
  percent_of_missing = NULL,
  eps = 5,
  maxit = 100,
  step = FALSE,
  robust = FALSE,
  init.method = "kNN",
  force = FALSE,
  col_0_1 = FALSE,
  out_file = NULL
)```
Arguments

df data.frame. Df to impute with column names and without target column.
col_type character vector. Vector containing column type names.
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,..)
eps threshold for convergency
maxit maximum number of iterations
step stepwise model selection is applied when the parameter is set to TRUE
robust if TRUE, robust regression methods will be applied (it’s impossible to set step=TRUE and robust=TRUE at the same time)
init.method Method for initialization of missing values (kNN or median)
force if TRUE, the algorithm tries to find a solution in any case, possible by using different robust methods automatically. (should be set FALSE for simulation)
col_0_1 Decaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).
out_file Output log file location if file already exists log message will be added. If NULL no log will be produced.

Details

Function can work with various different times depending on data size and structure. In some cases when selected param wouldn’t work function try to run on default. Most important param for both quality and reliability its eps.

Value

Return one data.frame with imputed values.

Author(s)

Alexander Kowarik, Matthias Templ (2016) doi:10.18637/jss.v074.i07

References


Examples

```
raw_data <- data.frame(
a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
b = as.integer(1:1000),
c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
```
d = runif(1000, 1, 10),
e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE))

# Preparing col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
  percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_VIM_Irmi(raw_data, col_type, percent_of_missing)

# Check if all missing value was imputed
sum(is.na(imp_data)) == 0
# TRUE

---

autotune_VIM_kNN  
K nearest neighbor imputation using VIM package.

Description

Function perform kNN function from VIM package.

@details Function don’t perform any inside param tuning. Users can change important param for kNN like number or nearest or aggregation functions.

Usage

autotune_VIM_kNN(
  df,
  percent_of_missing = NULL,
  k = 5,
  numFun = stats::median,
  catFun = VIM::maxCat,
  col_0_1 = FALSE,
  out_file = NULL
)

Arguments

df data.frame. Df to impute with column names and without target column.
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3...)
**autotune_VIM_kNN**

- **k**
  Value of k use if optimize=FALSE

- **numFun**
  function for aggregating the k Nearest Neighbours in the case of a numerical variable. Default median.

- **catFun**
  function for aggregating the k Nearest Neighbours in the case of a categorical variable. Default mode.

- **col_0_1**
  decide if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False.

- **out_file**
  Output log file location if file already exists log message will be added. If NULL no log will be produced.

**Author(s)**

Alexander Kowarik, Matthias Templ (2016) doi:10.18637/jss.v074.i07x

**References**


**Examples**

```r
raw_data <- data.frame(
 a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
 b = as.integer(1:1000),
 c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
 d = runif(1000, 1, 10),
 e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
 f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE))
)

Preparing col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
 percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_VIM_kNN(raw_data, percent_of_missing)

Check if all missing value was imputed
sum(is.na(imp_data)) == 0
TRUE
```

autotune_VIM_regrImp  Perform imputation using VIM package and regressionImp function.

Description
Function use Regression models to impute missing data.

Usage
autotune_VIM_regrImp(
  df,
  col_type = NULL,
  percent_of_missing = NULL,
  col_0_1 = FALSE,
  robust = FALSE,
  mod_cat = FALSE,
  use_imputed = FALSE,
  out_file = NULL
)

Arguments
df  data.frame. Df to impute with column names and without target column.
col_type  Character vector with types of columns.
percent_of_missing  numeric vector. Vector contahting percent of missing data in columns for example c(0,1,0,0,11.3,...)
col_0_1  Declaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).
robust  TRUE/FALSE if robust regression should be used.
mod_cat  TRUE/FALSE if TRUE for categorical variables the level with the highest prediction probability is selected, otherwise it is sampled according to the probabilities.
use_imputed  TRUE/FALSE if TRUE already imputed columns will be used to impote another.
out_file  Output log file location if file already exists log message will be added. If NULL no log will be produced.

Details
Function impote one column per iteration to allow more control of imputation. All columns with missing values can be imputed with different formulas. For every new column to impotiation one of four formula is used
1. col to impote ~ all columns without missing
2. col to impute - all numeric columns without missing
3. col to impute - first of columns without missing
4. col to impute - first of numeric columns without missing
For example, if formula 1 and 2 can’t be used algorithm will try with formula 3. If all formula can’t be used function will be stopped and error form tries with formula 4 or 3 presented. In some case, setting use_imputed on TRUE can solve this problem but in general its lower quality of imputation.

Value

Return one data.frame with imputed values.

Author(s)

Alexander Kowarik, Matthias Templ (2016) doi:10.18637/jss.v074.i07

References


Examples

```r
raw_data <- data.frame(
a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
b = as.integer(1:1000),
c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
d = runif(1000, 1, 10),
e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE)))

Preparing col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
 percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- autotune_VIM_regrImp(raw_data, col_type, percent_of_missing)

Check if all missing value was imputed
sum(is.na(imp_data)) == 0
TRUE
```
fetch_data  
*Fetch data. Used in mice.reuse.*

**Description**

Retrieve the main imputation object when within the `mice:::sampler` post-imputation calling environment and return the data object (including missingness) stored within.

**Usage**

```r
fetch_data()
```

**Value**

data.frame the original, non-imputed dataset of the mids object

formula_creating  
*Creating a formula for use in mice imputation evaluation.*

**Description**

Function is used in `autotune_mice` but can be used separately.

**Usage**

```r
formula_creating(df, col_miss, col_no_miss, col_type, percent_of_missing)
```

**Arguments**

- `df`  
data.frame. Data frame to impute missing values with column names.
- `col_miss`  
character vector. Names of columns with NA.
- `col_no_miss`  
character vector. Names of columns without NA.
- `col_type`  
character vector. A vector containing column type names.
- `percent_of_missing`  
numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,...)
mice.reuse

Details

Function create a formula as follows. It creates one of the formulas its next possible formula im-
possible possible formula is created:
1. Numeric no missing ~ 3 numeric with most missing
2. Numeric no missing ~ all available numeric with missing
3. Numeric with less missing ~ 3 numeric with most missing
4. Numeric with less missing ~ all available numeric with missing
5. No numeric no missing ~ 3 most missing no numeric
6. No numeric no missing ~ all available no numeric with missing
7. No numeric with less missing ~ 3 no numeric with most missing
8. No numeric with less missing ~ all available no numeric with missing.
For example, if its impossible to create formula 1 and 2 formula 3 will be created but if it’s possible
to create formula 1 and 5 formula 1 will be created.

Value

List with formula object[1] and information if its no numeric value in dataset[2].

References

Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate Imputation by Chained

mice.reuse

Reuseable mice function

Description

Reuse a previously fit multivariate imputation by chained equations to impute values for previously
unseen data without changing the imputation fit (i.e. solely use the original training data to guide
the imputation models).

Note: see https://github.com/stefvanbuuren/mice/issues/32 for discussion

Usage

mice.reuse(mids, newdata, maxit = 5, printFlag = TRUE, seed = NA)

Arguments

mids : mids object An object of class mids, typically produces by a previous call to
mice() or mice.mids()
newdata : data.frame Previously unseen data of the same structur as used to generate
'mids'
maxit : integer scalar The number of additional Gibbs sampling iterations to refine the
new imputations
printFlag : logical scalar. A Boolean flag. If TRUE, diagnostic information during the Gibbs sampling iterations will be written to the command window. The default is TRUE.

seed : integer scalar. An integer that is used as argument by the set.seed() for offsetting the random number generator. Default is to use the last seed value stored in 'mids'.

Value

data : list of data.frames. The imputations of newdata

lastSeedValue : integer vector. The random seed at the end of the procedure

Author(s)

Patrick Rockenschaub. git https://github.com/prockenschaub

mids.append

Joining mice objects. Used in mice.reuse.

Description

Append one mids object to another. Both objects are expected to have the same variables.

Usage

mids.append(x, y)

Arguments

x mids object provides both data and specification of imputation procedure

y mids object only data information will be retained in the combined object

Details

Only the data specific aspects are copied (i.e. $data, $imp, $where, $nmis), all other information in 'y' is discarded. Therefore, only the imputation model of 'x' is kept and 'y' must not contain missing data in variables that did not have missing data in 'x' (but the reverse is allowed).

Value

mids object. A new mids object that contains all of 'x' and the additional data in 'y'
Description

The function allows the user access to missMDA imputation in the A approach.

Usage

```r
missMDA.reuse(
 train_data,
 new_data,
 col_type = NULL,
 ncp,
 random.seed = NULL,
 maxiter = 998,
 coeff.ridge = 1,
 threshold = 1e-06,
 method = "Regularized",
 MFA = FALSE,
 MFA_Object = NULL
)
```

Arguments

- `train_data`: data.frame used for training.
- `new_data`: data.frame. Df to impute with column names and without target column.
- `col_type`: character vector. Vector containing column type names.
- `ncp`: return when the training data set was imputed.
- `random.seed`: Integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization.
- `maxiter`: maximal number of iteration in algorithm.
- `coeff.ridge`: Value use in Regularized method.
- `threshold`: threshold for convergence.
- `method`: method used in imputation algorithm.
- `MFA`: If TRUE MFA is used if not MCA, PCA, or FMAD algorithm.
- `MFA_Object`: Object produce by missMDA_MFA required to perform MFA imputation.

Details

Function use the same trick as in mice.reuse (new data are changed in NA in imputation stage and added back after it ). Because in missMDA is impossible to completely ignore new rows. We set their weights on 1e-300 when weights in the training set equal 1.
missMDA_FMAD_MCA_PCA

Perform imputation using MCA, PCA, or FMAD algorithm.

Description

Function use missMDA package to perform data imputation. Function can found the best number of dimensions for this imputation. User can choose whether to return one imputed dataset or list or imputed datasets form Multiple Imputation.

Usage

```r
missMDA_FMAD_MCA_PCA(
 df,
 col_type = NULL,
 percent_of_missing = NULL,
 optimize_ncp = TRUE,
 set_ncp = 2,
 col_0_1 = FALSE,
 ncp.max = 5,
 return_one = TRUE,
 random.seed = 123,
 maxiter = 998,
 coeff.ridge = 1,
 threshold = 1e-06,
 method = "Regularized",
 out_file = NULL,
 return_ncp = FALSE
)
```

Arguments

df data.frame. Df to impute with column names and without target column.

col_type character vector. Vector containing column type names.

percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,..)

optimize_ncp logical. If true number of dimensions used to predict the missing entries will be optimized. If False by default ncp = 2 it’s used.

set_ncp integer >0. Number of dimensions used by algorithms. Used only if optimize_ncp = Flase.

col_0_1 Decaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).

ncp.max integer corresponding to the maximum number of components to test. Default 5.
return_one: One or many imputed sets will be returned. Default True.
random.seed: integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization.
maxiter: maximal number of iteration in algorithm.
coeff.ridge: Value use in Regularized method.
threshold: threshold for convergence.
method: method used in imputation algorithm.
out_file: Output log file location if file already exists log message will be added. If NULL no log will be produced.
return_ncp: Function should return used ncp value.

Details
Function use different algorithm to adjust for variable types in df. For only numeric data PCA will be used. MCA for only categorical and FMAD for mixed. If optimize==TRUE function will try to find optimal ncp if its not possible default ncp=2 will be used. In some cases ncp=1 will be used if ncp=2 don’t work. For multiple imputations, if set ncp don’t work error will be return.

Value
Retrun one imputed data.frame if retrun_one=True or list of imputed data.frames if retrun_one=False.

Author(s)
Julie Josse, Francois Husson (2016) doi:10.18637/jss.v070.i01

References

Examples
{
  raw_data <- data.frame(
    a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
    b = as.integer(1:1000),
    c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
    d = runif(1000, 1, 10),
    e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
    f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE)))

  # Preparing col_type
  col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

  percent_of_missing <- 1:6
  for (i in percent_of_missing) {
    percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
  }
}
missMDA_MFA

Perform imputation using MFA algorithm.

Description

Function use MFA (Multiple Factor Analysis) to impute missing data.

Usage

missMDA_MFA(
  df,
  col_type = NULL,
  percent_of_missing = NULL,
  random.seed = NULL,
  ncp = 2,
  col_0_1 = FALSE,
  maxiter = 1000,
  coeff.ridge = 1,
  threshold = 1e-06,
  method = "Regularized",
  out_file = NULL,
  imp_data = FALSE
)

Arguments

df data.frame. Df to impute with column names and without target column.
col_type character vector. Vector containing column type names.
percent_of_missing numeric vector. Vector containing percent of missing data in columns for example c(0,1,0,0,11.3,...)
random.seed integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization
ncp Number of dimensions used by algorithm. Default 2.
col_0_1 Decaid if add bonus column informing where imputation been done. 0 - value was in dataset, 1 - value was imputed. Default False. (Works only for returning one dataset).
maxiter  maximal number of iteration in algorithm.
coeff.ridge Value use in Regularized method.
threshold  for convergence.
method used in imputation algorithm.
out_file Output log file location if file already exists log message will be added. If NULL no log will be produced.
imp_data If True data abute imputation requaierd for missMDA.reuse its return.

Details

Groups are created using the original column order and taking as much variable to one group as possible. MFA requires selecting group type but numeric types can only be set as ‘c’ - centered and ‘s’ - scale to unit variance. It's impossible to provide these conditions so numeric type is always set as ‘s’. Because of that imputation can depend from column order. In this function, no param is set automatically but if selected ncp don’t work function will try use ncp=1.

Value

Return one data.frame with imputed values.

Author(s)

Julie Josse, Francois Husson (2016) doi:10.18637/jss.v070.i01

References


Examples

```{r}
raw_data <- data.frame(
a = as.factor(sample(c("red", "yellow", "blue", NA), 1000, replace = TRUE)),
b = as.integer(1:1000),
c = as.factor(sample(c("YES", "NO", NA), 1000, replace = TRUE)),
d = runif(1000, 1, 10),
e = as.factor(sample(c("YES", "NO"), 1000, replace = TRUE)),
f = as.factor(sample(c("male", "female", "trans", "other", NA), 1000, replace = TRUE)))

Preparing col_type
col_type <- c("factor", "integer", "factor", "numeric", "factor", "factor")

percent_of_missing <- 1:6
for (i in percent_of_missing) {
 percent_of_missing[i] <- 100 * (sum(is.na(raw_data[, i])) / nrow(raw_data))
}

imp_data <- missMDA_MFA(raw_data, col_type, percent_of_missing)
```
# Check if all missing value was imputed
sum(is.na(imp_data)) == 0
# TRUE

---

PipeOpAmelia

Description

Implements EMB methods as mlr3 pipeline more about Amelia [autotune_Amelia](https://cran.r-project.org/package=Amelia) or [https://cran.r-project.org/package=Amelia](https://cran.r-project.org/package=Amelia)

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from `[PipeOpImpute]`, as well as:

- `id`: character(1)
  Identifier of resulting object, default "imput_Amelia".
- `m`: integer(1)
  Number of datasets generated by Amelia, default 3.
- `polytime`: integer(1)
  Integer between 0 and 3 indicating what power of polynomial should be included in the imputation model to account for the effects of time. A setting of 0 would indicate constant levels, 1 would indicate linear time effects, 2 would indicate squared effects, and 3 would indicate cubic time effects, default NULL.
- `splinetime`: integer(1)
  Integer value of 0 or greater to control cubic smoothing splines of time. Values between 0 and 3 create a simple polynomial of time (identical to the polytime argument). Values k greater than 3 create a spline with an additional k-3 knotpoints, default NULL.
- `intercs`: logical(1)
  Variable indicating if the time effects of polytime should vary across the cross-section, default FALSE.
- `empir`: double(1)
  Number indicating level of the empirical (or ridge) prior. This prior shrinks the covariances of the data, but keeps the means and variances the same for problems of high missingness, small N’s or large correlations among the variables. Should be kept small, perhaps 0.5 to 1 percent of the rows of the data; a reasonable upper bound is around 10 percent of the rows of the data. If empir is not set, empir=nrow(df)*0.015, default NULL.
PipeOpAmelia

- parallel :: double(1)
  If true parallel calculation is used, default TRUE.
- out_fill :: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> Amelia_imputation

Methods

Public methods:
- PipeOpAmelia$new()
- PipeOpAmelia$clone()

Method new():
Usage:
PipeOpAmelia$new(
  id = "impute_Amelia_B",
  polytime = NULL,
  splinetime = NULL,
  intercs = FALSE,
  empir = NULL,
  m = 3,
  parallel = TRUE,
  out_file = NULL
)

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpAmelia$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.

Examples

# Using debug learner for example purpose

graph <- PipeOpAmelia$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

graph_learner$param_set$values$impute_Amelia_B.parallel <- FALSE

resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
Description

Impute numerical features by histogram in approach B (independently during the training and prediction phase).

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from [‘PipeOpImpute‘], as well as:

• id :: character(1)
  Identifier of resulting object, default “impute_hist_B”.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> Hist_B_imputation

Methods

Public methods:

• PipeOpHist_B$new()
• PipeOpHist_B$clone()

Method new():

Usage:
PipeOpHist_B$new(id = "impute_hist_B", param_vals = list())

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpHist_B$clone(deep = FALSE)

Arguments:
deepp Whether to make a deep clone.
PipeOpMean_B

Examples

```r
Using debug learner for example purpose

graph <- PipeOpHist_B$new() %>>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)
set.seed(1)
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
```

---

PipeOpMean_B  PipeOpMean_B

Description

Impute numerical features by their mean in approach B (independently during the training and prediction phase).

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from ['PipeOpImpute'], as well as:

- **id**: character(1)
  Identifier of resulting object, default "imput_mean_B".

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> Mean_B_imputation

Methods

Public methods:
- `PipeOpMean_B$new`
- `PipeOpMean_B$clone`

Method `new()`:

**Usage:**

`PipeOpMean_B$new(id = "impute_mean_B", param_vals = list())`

Method `clone()`: The objects of this class are cloneable with this method.

**Usage:**

`PipeOpMean_B$clone(deep = FALSE)`

**Arguments:**

- `deep` Whether to make a deep clone.
Examples

```r
Using debug learner for example purpose

graph <- PipeOpMean_B$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)
set.seed(1)
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
```

### Description

Impute features by OOR imputation in approach B (independently during the training and prediction phase).

### Input and Output Channels

Input and output channels are inherited from `PipeOpImpute`.

### Parameters

The parameters include inherited from `[PipeOpImpute]`, as well as:

- **id** :: character(1)
  
  Identifier of resulting object, default "impute_median_B".

### Super classes

`mlr3pipelines::PipeOp` -> `mlr3pipelines::PipeOpImpute` -> `Median_B_imputation`

### Methods

**Public methods:**
- `PipeOpMedian_B$new()`
- `PipeOpMedian_B$clone()`

**Method new():**

*Usage:*

```r
PipeOpMedian_B$new(id = "impute_median_B", param_vals = list())
```

**Method clone():** The objects of this class are cloneable with this method.

*Usage:*

```r
PipeOpMedian_B$clone(deep = FALSE)
```

*Arguments:*

deep  Whether to make a deep clone.
**PipeOpMice**

**Examples**

```r
Using debug learner for example purpose

graph <- PipeOpMedian_B$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

Task with NA

set.seed(1)
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
```

---

**Description**

Implements mice methods as mlr3 pipeline more about mice [autotune_mice](#).

**Input and Output Channels**

Input and output channels are inherited from [PipeOpImpute](#).

**Parameters**

The parameters include inherited from [PipeOpImpute](#), as well as:

- **id:: character(1)**
  Identifier of resulting object, default "imput_mice".
- **m:: integer(1)**
  Number of datasets produced by mice, default 5.
- **maxit:: integer(1)**
  Maximum number of iterations for mice, default 5.
- **set_corr:: double(1)**
  Correlation or fraction of features used when optimize=FALSE. When correlation=FALSE, it represents a fraction of case to use in imputation for each variable, default 0.5.
- **set_method:: character(1)**
  Method used if optimize=FALSE. If NULL default method is used (more in methods_random section), default 'pmm'.
- **low_corr:: double(1)**
  Double between 0-1. Lower boundary of correlation used in inner optimization (used only when optimize=TRUE), default 0.
PipeOpMice

- **up_corr**: double(1)
  Double between 0-1. Upper boundary of correlation used in inner optimization (used only when optimize=TRUE). Both of these parameters work the same for a fraction of case if correlation=FALSE, default 1.

- **methods_random**: character(1)
  Set of methods to chose. Available methods "pmm", "midastouch", "sample", "cart", "rf" Default 'pmm'. If set on NULL this methods are used predictive mean matching (numeric data) logreg, logistic regression imputation (binary data, factor with 2 levels) polyreg, polytomous regression imputation for unordered categorical data (factor > 2 levels) polr, proportional odds model for (ordered, > 2 levels).

- **iter**: integer(1)
  Number of iteration for random search, default 5.

- **random.seed**: integer(1)
  Random seed, default 123.

- **optimize**: logical(1)
  If set TRUE, function will optimize parameters of imputation automatically. If parameters will be tuned by other method, should be set to FALSE, default FALSE.

- **correlation**: logical(1)
  If set TRUE, correlation is used, if set FALSE then fraction of case, default TRUE.

Super classes

`mlr3pipelines::PipeOp` -> `mlr3pipelines::PipeOpImpute` -> `mice_imputation`

Methods

**Public methods:**

- `PipeOpMice$new()`
- `PipeOpMice$clone()`

**Method** `new()`:

**Usage**:

PipeOpMice$new(id = "impute_mice_B",
               m = 5,
               maxit = 5,
               set_cor = 0.5,
               set_method = "pmm",
               low_corr = 0,
               up_corr = 1,
               methods_random = c("pmm"),
               iter = 5,
               random.seed = 123,
               optimize = FALSE,
               correlation = FALSE,
               out_file = NULL)
**Method** `clone()`: The objects of this class are cloneable with this method.

**Usage:**
PipeOpMice$clone(deep = FALSE)

**Arguments:**
deep Whether to make a deep clone.

**Examples**

```r
Using debug learner for example purpose
graph <- PipeOpMice$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

Task with NA
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
```

**Description**

Implements mice methods as mlr3 in A approach (training imputation model on training data and used a trained model on test data).

**Details**

Code of used function was written by [https://github.com/prockenschaub](https://github.com/prockenschaub) more information about this approach can be found here [https://github.com/amices/mice/issues/32](https://github.com/amices/mice/issues/32)

**Input and Output Channels**

Input and output channels are inherited from `PipeOpImpute`.

**Parameters**

The parameters include inherited from `PipeOpImpute`, as well as:

- `id` :: character(1)
  Identifier of resulting object, default "imput_mice_A".

- `m` :: integer(1)
  Number of datasets produced by mice, default 5.
• maxit :: integer(1)
  Maximum number of iterations for mice, default 5.
• set_corr :: double(1)
  Correlation or fraction of features used when optimize=FALSE. When correlation=FALSE, it
  represents a fraction of case to use in imputation for each variable, default 0.5.
• random.seed :: integer(1)
  Random seed, default 123.
• correlation :: logical(1)
  If set TRUE correlation is used, if set FALSE then fraction of case, default TRUE.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> mice_A_imputation

Methods

Public methods:
• PipeOpMice_A$new()
• PipeOpMice_A$clone()

Method new():
Usage:
PipeOpMice_A$new(
  id = "impute_mice_A",
  set_cor = 0.5,
  m = 5,
  maxit = 5,
  random.seed = 123,
  correlation = FALSE,
  methods = NULL
)

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpMice_A$clone(deep = FALSE)
Arguments:
deeep Whether to make a deep clone.

Examples

# Using debug learner for example purpose

graph <- PipeOpMice_A$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)
PipeOpmissForest

# Task with NA
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))

---

**Description**

Implements missForest methods as mlr3 pipeline more about missForest [autotune_missForest](#).

**Input and Output Channels**

Input and output channels are inherited from `PipeOpImpute`.

**Parameters**

The parameters include inherited from `['PipeOpImpute']`, as well as:

- `id`:: character(1)
  
  Identifier of resulting object, default "imput_missForest".

- `cores`:: integer(1)
  
  Number of threads used by parallel calculations. If NULL approximately half of available CPU cores will be used, default NULL.

- `ntree_set`:: integer(1)
  
  Vector with number of trees values for grid search, used only when optimize=TRUE, default c(100,200,500,1000).

- `mtry_set`:: integer(1)
  
  Vector with number of variables values randomly sampled at each split, used only when optimize=TRUE, default NULL.

- `parallel`:: logical(1)
  
  If TRUE parallel calculations are used, default FALSE.

- `ntree`:: integer(1)
  
  ntree from missForest function, default 100.

- `optimize`:: logical(1)
  
  If set TRUE, function will optimize parameters of imputation automatically. If parameters will be tuned by other method, should be set to FALSE, default FALSE.

- `mtry`:: integer(1)
  
  mtry from missForest function, default NULL.

- `maxiter`:: integer(1)
  
  maxiter from missForest function, default 20.
• maxnodes :: character(1)
  maxnodes from missForest function, default NULL

• out_fill :: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will
  be produced, default NULL.

Super classes

  mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> missForest_imputation

Methods

Public methods:

• PipeOpmissForest$new()
• PipeOpmissForest$clone()

Method new():

Usage:
PipeOpmissForest$new(
  id = "impute_missForest_B",
  cores = NULL,
  ntree_set = c(100, 200, 500, 1000),
  mtry_set = NULL,
  parallel = FALSE,
  mtry = NULL,
  ntree = 100,
  optimize = FALSE,
  maxiter = 20,
  maxnodes = NULL,
  out_file = NULL
)

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpmissForest$clone(deep = FALSE)

Arguments:

depth  Whether to make a deep clone.

Examples

# Using debug learner for example purpose

graph <- PipeOpmissForest$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

# Task with NA
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))

---

Description

Implements MFA methods as mlr3 pipeline, more about MFA missMDA_MFA.

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from [PipeOpImpute], as well as:

- **id**: character(1)
  Identifier of resulting object, default "imput_missMDA_MFA".
- **ncp**: integer(1)
  Number of dimensions used by algorithm, default 2.
- **random.seed**: integer(1)
  Integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization, default NULL.
- **maxiter**: integer(1)
  Maximal number of iteration in algorithm, default 998.
- **coeff.ridge**: integer(1)
  Value used in Regularized method, default 1.
- **threshold**: double(1)
  Threshold for convergence, default 1e-06.
- **method**: character(1)
  Method used in imputation algorithm, default 'Regularized'.
- **out_fill**: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> missMDA_MFAimputation
Methods

Public methods:

- PipeOpMissMDA_MFA$new()
- PipeOpMissMDA_MFA$clone()

Method new():

Usage:
PipeOpMissMDA_MFA$new(
  id = "impute_missMDA_MFA_B",
  ncp = 2,
  random.seed = NULL,
  maxiter = 998,
  coeff.ridge = 1,
  threshold = 1e-06,
  method = "Regularized",
  out_file = NULL
)

Method clone(): The objects of this class are cloneable with this method.

Usage:
PipeOpMissMDA_MFA$clone(deep = FALSE)

Arguments:
  deep  Whether to make a deep clone.

Examples

# Using debug learner for example purpose

graph <- PipeOpMissMDA_MFA$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

# Task with NA

resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))

Description

Implements MFA methods as mlr3 pipeline in A approche, more about MFA missMDA_MFA and missMDA.reuse
Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from ['PipeOpImpute'], as well as:

- **id:: character(1)**
  Identifier of resulting object, default "imput_missMDA_MFA".
- **ncp:: integer(1)**
  Number of dimensions used by algorithm, default 2.
- **maxiter:: integer(1)**
  Maximal number of iteration in algorithm, default 998.
- **coeff.ridge:: integer(1)**
  Value used in Regularized method, default 1.
- **threshold:: double(1)**
  Threshold for convergence, default 1e-06.
- **method:: character(1)**
  Method used in imputation algorithm, default 'Regularized'.
- **out_fill:: character(1)**
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> missMDA_MFAimputation_A

Methods

Public methods:

- PipeOpMissMDA_MFA_A$new()
- PipeOpMissMDA_MFA_A$clone()

Method new():

Usage:

PipeOpMissMDA_MFA_A$new(
  id = "impute_missMDA_MFA_A",
  ncp = 2,
  maxiter = 998,
  coeff.ridge = 1,
  threshold = 1e-06,
  method = "Regularized",
  out_file = NULL
)

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpMissMDA_MFA_A$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

Examples

# Using debug learner for example purpose

graph <- PipeOpMissMDA_MFA_A$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

# Task with NA
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))

Description

Implements PCA, MCA, FMAD methods as mlr3 pipeline, more about methods missMDA_FMAD_MCA_PCA.

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from [PipeOpImpute], as well as:

- id:: character(1)
  Identifier of resulting object, default "imput_missingMDA_MCA_PCA_FMAD".
- optimize_ncp:: logical(1)
  If TRUE, parameter number of dimensions, used to predict the missing values, will be optimized. If FALSE, by default ncp=2 is used, default TRUE.
- set_ncp:: integer(1)
  integer >0. Number of dimensions used by algorithms. Used only if optimize_ncp = Flase, default 2.
- ncp.max:: integer(1)
  Number corresponding to the maximum number of components to test when optimize_ncp=TRUE, default 5.
PipeOpMissMDA_PCA_MCA_FMAD

- **random.seed**: integer(1)
  Integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization, default NULL.

- **maxiter**: integer(1)
  Maximal number of iteration in algorithm, default 998.

- **coeff.ridge**: double(1)
  Value used in `Regularized` method, default 1.

- **threshold**: double(1)
  Threshold for convergence, default 1e-6.

- **method**: character(1)
  Method used in imputation algorithm, default 'Regularized'.

- **out_fill**: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

`mlr3pipelines::PipeOp` -> `mlr3pipelines::PipeOpImpute` -> `missMDA_MCA_PCA_FMAD_imputation`

Methods

Public methods:

- PipeOpMissMDA_PCA_MCA_FMAD$new()
- PipeOpMissMDA_PCA_MCA_FMAD$clone()

Method `new()`:

Usage:
PipeOpMissMDA_PCA_MCA_FMAD$new(
  id = "impute_missMDA_MCA_PCA_FMAD_B",
  optimize_ncp = TRUE,
  set_ncp = 2,
  ncp.max = 5,
  random.seed = NULL,
  maxiter = 998,
  coeff.ridge = 1,
  threshold = 1e-06,
  method = "Regularized",
  out_file = NULL
)

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
PipeOpMissMDA_PCA_MCA_FMAD$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.
Examples

```r
Using debug learner for example purpose

graph <- PipeOpMissMDA_PCA_MCA_FMAD$new() %>>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

Task with NA
set.seed(1)
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
```

Description

Implements PCA, MCA, FMAD methods as mlr3 pipeline in approach A, more about methods `missMDA_FMAD_MCA_PCA` and `missMDA.reuse`.

Input and Output Channels

Input and output channels are inherited from `PipeOpImpute`.

Parameters

The parameters include inherited from `["PipeOpImpute"]`, as well as:

- `id`:: `character(1)`
  Identifier of resulting object, default "imput_missMDA_MCA_PCA_FMAD".

- `optimize_ncp`:: `logical(1)`
  If TRUE, parameter `number of dimensions`, used to predict the missing values, will be optimized. If FALSE, by default ncp=2 is used, default TRUE.

- `set_ncp`:: `integer(1)`
  Integer >0. Number of dimensions used by algorithms. Used only if optimize_ncp = Flase, default 2.

- `ncp.max`:: `integer(1)`
  Number corresponding to the maximum number of components to test when optimize_ncp=TRUE, default 5.

- `random.seed`:: `integer(1)`
  Integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization, default NULL.
PipeOpMissMDA_PCA_MCA_FMAD_A

- **maxiter**: integer(1)
  Maximal number of iteration in algorithm, default 998.
- **coeff.ridge**: double(1)
  Value used in *Regularized* method, default 1.
- **threshold**: double(1)
  Threshold for convergence, default 1e-6.
- **method**: character(1)
  Method used in imputation algorithm, default 'Regularized'.
- **out_fill**: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

**Super classes**

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> missMDA_MCA_PCA_FMAD_imputation_A

**Methods**

**Public methods:**

- `PipeOpMissMDA_PCA_MCA_FMAD_A$new()`
- `PipeOpMissMDA_PCA_MCA_FMAD_A$clone()`

**Method** `new()`:

*Usage:*

PipeOpMissMDA_PCA_MCA_FMAD_A$new(
  id = "impute_missMDA_MCA_PCA_FMAD_A",
  optimize_ncp = TRUE,
  set_ncp = 2,
  ncp.max = 5,
  random.seed = NULL,
  maxiter = 998,
  coeff.ridge = 1,
  threshold = 1e-06,
  method = "Regularized",
  out_file = NULL
)

**Method** `clone()`: The objects of this class are cloneable with this method.

*Usage:*

PipeOpMissMDA_PCA_MCA_FMAD_A$clone(deep = FALSE)

*Arguments:*

deep  Whether to make a deep clone.
# Using debug learner for example purpose

graph <- PipeOpMissMDA_PCA_MCA_FMAD_A$new() %>>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

# Task with NA
set.seed(1)
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))

---

**PipeOpmissRanger**

**PipeOpmissRanger**

---

**Description**

Implements missRanger methods as mlr3 pipeline, more about missRanger [autotune_missRanger](#).

**Input and Output Channels**

Input and output channels are inherited from **PipeOpImpute**.

**Parameters**

The parameters include inherited from `['PipeOpImpute']`, as well as:

- **id** :: character(1)
  Identifier of resulting object, default "imput_missRanger".

- **mtry** :: integer(1)
  Sample fraction used by missRanger. This param isn't optimized automatically. If NULL default value from ranger package will be used, NULL.

- **num.trees** :: integer(1)
  Number of trees. If optimize == TRUE. Param set seq(10,num.trees,iter) will be used, default 500

- **pmm.k** :: integer(1)
  Number of candidate non-missing values to sample from in the predictive mean matching step. 0 to avoid this step. If optimize=TRUE params set: sample(1:pmm.k, iter) will be used. If pmm.k=0, missRanger is the same as missForest, default 5.

- **random.seed** :: integer(1)
  Random seed, default 123.

- **iter** :: integer(1)
  Number of iterations for a random search, default 10.
PipeOpmissRanger

- **optimize**: logical(1)
  - If set TRUE, function will optimize parameters of imputation automatically. If parameters will be tuned by other method, should be set to FALSE, default FALSE.

- **out_fill**: character(1)
  - Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

**Super classes**

*mlr3pipelines::PipeOp* -> *mlr3pipelines::PipeOpImpute* -> missRanger_imputation

**Methods**

*Public methods:*

- PipeOpmissRanger$new()
- PipeOpmissRanger$clone()

**Method** new():

*Usage:*

PipeOpmissRanger$new(
  id = "impute_missRanger_B",
  maxiter = 10,
  random.seed = 123,
  mtry = NULL,
  num.trees = 500,
  pmm.k = 5,
  optimize = FALSE,
  iter = 10,
  out_file = NULL
)

**Method** clone(): The objects of this class are cloneable with this method.

*Usage:*

PipeOpmissRanger$clone(deep = FALSE)

*Arguments:*

depth  Whether to make a deep clone.

**Examples**

```r
Using debug learner for example purpose

graph <- PipeOpmissRanger$new() %>% LearnerClassifDebug$new()
graph_learner <- GraphLearner$new(graph)

Task with NA
```
resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))

Description

Impute features by their mode in approach B (independently during the training and prediction phase).

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from ['PipeOpImpute'], as well as:

- **id**: character(1)
  Identifier of resulting object, default "impute_mode_B".

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> Mode_B_imputation

Methods

Public methods:

- PipeOpMode_B$new()
- PipeOpMode_B$clone()

Method **new()**:

Usage:
PipeOpMode_B$new(id = "impute_mode_B", param_vals = list())

Method **clone()**: The objects of this class are cloneable with this method.

Usage:
PipeOpMode_B$clone(deep = FALSE)

Arguments:

- deep  Whether to make a deep clone.
Examples

{  
  # Using debug learner for example purpose
  graph <- PipeOpMode_B$new() %>% LearnerClassifDebug$new()
  graph_learner <- GraphLearner$new(graph)

  # Task with NA
  set.seed(1)
  resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
}

Description

Impute features by OOR imputation in approach B (independently during the training and prediction phase).

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from ['PipeOpImpute'], as well as:

- id: character(1)
  Identifier of resulting object, default "impute_OOR_B".

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> OOR_B_imputation

Methods

Public methods:

- PipeOpOOR_B$new()
- PipeOpOOR_B$clone()

Method new():

Usage:
PipeOpOOR_B$new(id = "impute_oor_B", param_vals = list())

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpOOR_B$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.

Examples
{
  # Using debug learner for example purpose
  graph <- PipeOpOOR_B$new() %>>% LearnerClassifDebug$new()
  graph_learner <- GraphLearner$new(graph)

  # Task with NA
  set.seed(1)
  resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
}

PipeOpSample_B

Description
Impute features by sampling from non-missing data in approach B (independently during the training and prediction phase).

Input and Output Channels
Input and output channels are inherited from PipeOpImpute.

Parameters
The parameters include inherited from ['PipeOpImpute'], as well as:

  * id :: character(1)
    Identifier of resulting object, default "impute_sample_B".

Super classes
mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> Sample_B_imputation
Methods

Public methods:
• PipeOpSample_B$new()
• PipeOpSample_B$clone()

Method new():
Usage:
PipeOpSample_B$new(id = "impute_sample_B", param_vals = list())

Method clone(): The objects of this class are cloneable with this method.
Usage:
PipeOpSample_B$clone(deep = FALSE)
Arguments:
depth Whether to make a deep clone.

Examples

```
{
 graph <- PipeOpSample_B$new() %>>% mlr3learners::LearnerClassifGlmnet$new()
 graph_learner <- GraphLearner$new(graph)

 # Task with NA
 set.seed(1)
 resample(tsk("pima"), graph_learner, rsmpl("cv", folds = 3))
}
```

PipeOpSimulateMissings

Description
Generates MCAR missing values in mlr3 pipeline according to set parameters. Missings are inserted to task data once during first training.

Input and Output Channels
Input and output channels are inherited from PipeOpTaskPreproc.

Parameters
• per_missings :: double(1)
  Overall percentage of missing values generated in dataset [0, 100]. Must be set every time, default 50
• per_instances_missings :: double(1)
  Percentage of instances which will have missing values [0, 100].
• per_variables_missings :: double(1)
  Percentage of variables which will have missing values [0, 100].
• variables_missings :: integer
  Only when 'per_variables_missings' is 'NULL'. Vector of indexes of columns in which missings will be generated.

**Super classes**

`mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> PipeOpSimulateMissings`

**Methods**

**Public methods:**

• `PipeOpSimulateMissings$new()`

• `PipeOpSimulateMissings$clone()`

**Method new():**

*Usage:*

```r
PipeOpSimulateMissings$new(
 id = "simulate_missings",
 param_vals = list(per_missings = 50)
)
```

**Method clone():** The objects of this class are cloneable with this method.

*Usage:*

```r
PipeOpSimulateMissings$clone(deep = FALSE)
```

**Arguments:**

depth  Whether to make a deep clone.

**Examples**

```r
{
 task_NA <- PipeOpSimulateMissings$new()$train(list(tsk("iris"))[1])

 # check
 sum(task_NA$missings()) > 0
}
```

---

**Description**

Implements SoftImpute methods as mlr3 pipeline, more about SoftImpute [autotune_softImpute](#).
PipeOpSoftImpute

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.

Parameters

The parameters include inherited from ['PipeOpImpute'], as well as:

- **id**: character(1)
  Identifier of resulting object, default "imput_softImpute".
- **lambda**: integer(1)
  Nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to "hardImpute", for which convergence is typically slower. If NULL lambda is set automatically at the highest possible value, default 0.
- **rank.max**: integer(1)
  This param restricts the rank of the solution. If set as NULL: rank.max=min(dim(X))-1, default 2.
- **type**: character(1)
  Two algorithms are implemented: type="svd" or the default type="als". The "svd" algorithm repeatedly computes the svd of the completed matrix, and soft thresholds its singular values. Each new soft-thresholded svd is used to re-impute the missing entries. For large matrices of class "Incomplete", the svd is achieved by an efficient form of alternating orthogonal ridge regression. The "als" algorithm uses the same alternating ridge regression, but updates the imputation at each step, leading to quite substantial speedups in some cases. The "als" approach does not currently have the same theoretical convergence guarantees as the "svd" approach, default 'als'.
- **thresh**: double(1)
  Threshold for convergence, default 1e-5
- **maxit**: integer(1)
  Maximum number of iterations, default 100.
- **cat_Fun**: function()
  Function for aggregating the k Nearest Neighbors in case of categorical variables. It can be any function with input=not_numeric_vector and output=atomic_object, default VIM::maxCat.
- **out_fill**: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> softImpute_imputation

Methods

Public methods:

- PipeOpSoftImpute$new()
- PipeOpSoftImpute$clone()
Method `new()`:  
Usage:  
PipeOpSoftImpute$new(  
id = "impute_softImpute_B",  
cat_Fun = VIM::maxCat,  
lambda = 0,  
rank.max = 2,  
type = "als",  
thresh = 1e-05,  
maxit = 100,  
out_file = NULL  
)

Method `clone()`: The objects of this class are cloneable with this method.  
Usage:  
PipeOpSoftImpute$clone(deep = FALSE)  
Arguments:  
deep Whether to make a deep clone.

Examples

```r
{
 graph <- PipeOpAmelia$new() %>% mlr3learners::LearnerClassifGlmnet$new()
 graph_learner <- GraphLearner$new(graph)

 # Task with NA

 resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
}
```

---

**Description**

Implements Hot Deck methods as mlr3 pipeline more about VIM_HD [autotune_VIM_hotdeck](#)

**Input and Output Channels**

Input and output channels are inherited from PipeOpImpute.

**Parameters**

The parameters include inherited from `PipeOpImpute`, as well as:

- `id`: character(1)  
  Identifier of resulting object, default "imput_VIM_HD".
PipeOpVIM_IRMI

• out_fill :: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> VIM_HD_imputation

Methods

Public methods:
  • PipeOpVIM_HD$new()
  • PipeOpVIM_HD$clone()

Method new():
  Usage:
  PipeOpVIM_HD$new(id = "impute_VIM_HD_B", out_file = NULL)

Method clone(): The objects of this class are cloneable with this method.
  Usage:
  PipeOpVIM_HD$clone(deep = FALSE)
  Arguments:
  deep Whether to make a deep clone.

Examples

{  
  graph <- PipeOpVIM_HD$new() %>% mlr3learners::LearnerClassifGlmnet$new()
  graph_learner <- GraphLearner$new(graph)

  # Task with NA

  resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
}

Description

Implements IRMI methods as mlr3 pipeline, more about VIM_IRMI autotune_VIM_Irmi.

Input and Output Channels

Input and output channels are inherited from PipeOpImpute.
Parameters

The parameters include inherited from [‘PipeOpImpute’], as well as:

- **id**: character(1)
  Identifier of resulting object, default "impute_VIM_IRMI".
- **eps**: double(1)
  Threshold for convergence, default 5.
- **maxit**: integer(1)
  Maximum number of iterations, default 100
- **step**: logical(1)
  Stepwise model selection is applied when the parameter is set to TRUE, default FALSE.
- **robust**: logical(1)
  If TRUE, robust regression methods will be applied (it’s impossible to set step=TRUE and robust=TRUE at the same time), default FALSE.
- **init.method**: character(1)
  Method for initialization of missing values (kNN or median), default ‘kNN’.
- **force**: logical(1)
  If TRUE, the algorithm tries to find a solution in any case by using different robust methods automatically (should be set FALSE for simulation), default FALSE.
- **out_fill**: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

```r
mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> VIM_IRMI_imputation
```

Methods

**Public methods:**

- `PipeOpVIM_IRMI$new()`
- `PipeOpVIM_IRMI$clone()`

**Method new():**

```r
Usage:
PipeOpVIM_IRMI$new(
 id = "impute_VIM_IRMI_B",
 eps = 5,
 maxit = 100,
 step = FALSE,
 robust = FALSE,
 init.method = "kNN",
 force = FALSE,
 out_file = NULL
)
```
PipeOpVIM_kNN

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
PipeOpVIM_IRMI$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

```r
graph <- PipeOpVIM_IRMI$new() %>>% mlr3learners::LearnerClassifGlmnet$new()
graph_learner <- GraphLearner$new(graph)

Task with NA
resample(TaskClassif$new('id', tsk('pima')$data(rows=1:100),
'diabetes'), graph_learner, rsmp("cv", folds=2))
```

Description

Implements KNN methods as mlr3 pipeline, more about VIM_KNN `autotune_VIM_kNN`.

Input and Output Channels

Input and output channels are inherited from `PipeOpImpute`.

Parameters

The parameters include inherited from `['PipeOpImpute']`, as well as:

- **id** :: character(1)
  Identifier of resulting object, default "impute_VIM_kNN".
- **k** :: integer(1)
  Threshold for convergence, default 5.
- **numFUN** :: function()
  Function for aggregating the k Nearest Neighbours in the case of a numerical variable. Can be ever function with input=numeric_vector and output=atomic_object, default median.
- **catFUN** :: function()
  Function for aggregating the k Nearest Neighbours in case of categorical variables. It can be any function with input=not_numeric_vector and output=atomic_object, default VIM::maxCat.
- **out_fill** :: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.
Super classes

`mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpImpute -> VIM_kNN_imputation`

Methods

Public methods:

- `PipeOpVIM_kNN$new()`
- `PipeOpVIM_kNN$clone()`

Method `new()`:

Usage:

```
PipeOpVIM_kNN$new(
 id = "impute_VIM_kNN_B",
 k = 5,
 numFun = median,
 catFun = VIM::maxCat,
 out_file = NULL
)
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

```
PipeOpVIM_kNN$clone(deep = FALSE)
```

Arguments:

depth Whether to make a deep clone.

Examples

```
{
 graph <- PipeOpVIM_kNN$new() %>% mlr3learners::LearnerClassifGlmnet$new()
 graph_learner <- GraphLearner$new(graph)

 # Task with NA
 resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
}
```

Description

Implements Regression Imputation methods as mlr3 pipeline, more about RI `autotune_VIM_regrImp`.

Input and Output Channels

Input and output channels are inherited from `PipeOpImpute`.  

PipeOpVIM_regrImp  

PipeOpVIM_regrImp
Parameters

The parameters include inherited from `PipeOpImpute`, as well as:

- **id**: character(1)
  Identifier of resulting object, default "imput_VIM_regrImp".

- **robust**: logical(1)
  TRUE/FALSE: whether to use robust regression, default FALSE.

- **mod_cat**: logical(1)
  TRUE/FALSE if TRUE for categorical variables the level with the highest prediction probability is selected, otherwise it is sampled according to the probabilities, default FALSE.

- **use_imputed**: logical(1)
  TRUE/FALSE: if TRUE, already imputed columns will be used to impute others, default FALSE.

- **out_fill**: character(1)
  Output log file location. If file already exists log message will be added. If NULL no log will be produced, default NULL.

Super classes

`mlr3pipelines::PipeOp` -> `mlr3pipelines::PipeOpImpute` -> VIM_regrImp_imputation

Methods

Public methods:

- `PipeOpVIM_regrImp$new`
- `PipeOpVIM_regrImp$clone`

Method `new()`:

Usage:
```
PipeOpVIM_regrImp$new(
 id = "impute_VIM_regrImp_B",
 robust = FALSE,
 mod_cat = FALSE,
 use_imputed = FALSE,
 out_file = NULL
)
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```
PipeOpVIM_regrImp$clone(deep = FALSE)
```
Arguments:

depth  Whether to make a deep clone.
random_param_mice_search

Examples

```r
Examples

{ # Examples
 graph <- PipeOpVIM_regrImp$new() %>>% mlr3learners::LearnerClassifGlmnet$new()
 graph_learner <- GraphLearner$new(graph)
 # Task with NA
 resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
}
```

**random_param_mice_search**

Performing randomSearch for selecting the best method and correlation or fraction of features used to create a prediction matrix.

**Description**

This function perform random search and return values corresponding to best mean MIF (missing information fraction). Function is mainly used in autotune_mice but can be use separately.

**Usage**

```r
random_param_mice_search(
 low_corr = 0,
 up_corr = 1,
 methods_random = c("pmm"),
 df,
 formula,
 no_numeric,
 iter,
 random.seed = 123,
 correlation = TRUE
)
```

**Arguments**

- `low_corr` double between 0,1 default 0 lower boundry of correlation set.
- `up_corr` double between 0,1 default 1 upper boundary of correlation set. Both of these parameters work the same for a fraction of features.
- `methods_random` set of methods to chose. Default 'pmm'.
- `df` data frame to input.
- `formula` first product of formula_creating() function. For example formula_creating(...) [1]
- `no_numeric` second product of formula_creating() function.
- `iter` number of iteration for randomSearch.
- `random.seed` random seed.
- `correlation` If True correlation is using if Fales fraction of features. Default True.
Details

Function use Random Search Technik to found the best param for mice imputation. To evaluate the next iteration logistic regression or linear regression (depending on available features) are used. Model is build using a formula from formula_creating function. As metric MIF (missing information fraction) is used. Params combination with lowest (best) MIF is chosen. Even if a correlation is set at False correlation it's still used to select the best features. That main problem with calculating correlation between categorical columns is still important.

Value

List with best correlation (or fraction) at first place, best method at second, and results of every iteration at 3.

---

replace_overimputes | Replace overimputes. Used in mice.reuse.

Description

Replace all overimputed data points in the mice imputation of one variable. Overimputed data points are those data that were not missing in the original but were marked for imputation manually and imputed by the imputation procedure.

Usage

replace_overimputes(data, imp, j, i)

Arguments

data | data.frame the original, non-imputed dataset (mids$data)
imp | list of data.frames all imputations stored in the mids object
j | character scalar the name of the variable whose imputations should be replaced
i | character or integer scalar the number of the current imputation (can be 1:m)

---

simulate_missings | Generate MCAR missings in dataset.

Description

Function generates random missing values in given dataset according to set parameters.
Usage

simulate_missings(
  df,
  per_missings,
  per_instances_missings = NULL,
  per_variables_missings = NULL,
  variables_with_missings = NULL
)

Arguments

  df
    Data.frame or data.table where missing values will be generated
  per_missings
    Overall percentage of missing values generated in dataset. Must be set every
    time.
  per_instances_missings
    Percentage of instances which will have missing values.
  per_variables_missings
    Percentage of variables which will have missing values.
  variables_with_missings
    Only when 'per_variables_missings' is 'NULL'. Vector of column indexes
    where missings will be generated.

Value

  Dataset with generated missings.

Examples

  {
    data_NA <- simulate_missings(iris, 20)

    # check
    sum(is.na(data_NA)) > 0
  }
Index

autotune_Amelia, 2, 28
autotune_mice, 4, 7, 20, 33, 60
autotune_missForest, 7, 37
autotune_missRanger, 9, 46
autotune_softImpute, 11, 52
autotune_VIM_hotdeck, 13, 54
autotune_VIM_Irmi, 14, 55
autotune_VIM_kNN, 16, 57
autotune_VIM_regrImp, 18, 58

fetch_data, 20
formula_creating, 4, 20, 61

mice, 4
mice.reuse, 21
mids.append, 22
missMDA.reuse, 23, 40, 44
missMDA_FMAD_MCA_PCA, 24, 42, 44
missMDA_MFA, 26, 39, 40
mlr3pipelines::PipeOp, 29–32, 34, 36, 38, 39, 41, 43, 45, 47–50, 52, 53, 55, 56, 58, 59
mlr3pipelines::PipeOpImpute, 29–32, 34, 36, 38, 39, 41, 43, 45, 47–50, 52, 53, 55, 56, 58, 59
mlr3pipelines::PipeOpTaskPreproc, 52

PipeOpAmelia, 28
PipeOpHist_B, 30
PipeOpImpute, 28, 30–33, 35, 37, 39, 41, 42, 44, 46, 48–50, 53–55, 57, 58
PipeOpMean_B, 31
PipeOpMedian_B, 32
PipeOpMice, 33
PipeOpMice_A, 35
PipeOpMissForest, 37
PipeOpMissMDA_MFA(PipeOpMissMDA_MFA), 39
PipeOpMissMDA_MFA, 39
PipeOpMissMDA_MFA_A
(PipeOpMissMDA_MFA_A), 40
PipeOpMissMDA_MFA, 40
PipeOpMissMDA_PCA_MCA_FMAD
(PipeOpMissMDA_PCA_MCA_FMAD), 42
PipeOpMissMDA_PCA_MCA_FMAD, 42
PipeOpMissMDA_PCA_MCA_FMAD_A
(PipeOpMissMDA_PCA_MCA_FMAD_A), 44
PipeOpMissMDA_PCA_MCA_FMAD_A, 44
PipeOpMissRanger, 46
PipeOpMode_B, 48
PipeOpOOR_B, 49
PipeOpSample_B, 50
PipeOpSimulateMissings, 51
PipeOpSoftImpute, 52
PipeOpTaskPreproc, 51
PipeOpVIM_HD, 54
PipeOpVIM_Irmi, 55
PipeOpVIM_kNN, 57
PipeOpVIM_regrImp, 58

random_param_mice_search, 4, 60
registerDoParallel, 8
replace_overimputes, 61
simulate_missings, 61

63