Package ‘NB’

February 19, 2015

Type Package
Title Maximum Likelihood method in estimating effective population size from genetic data
Version 0.9
Date 2014-10-03
Author Tin-Yu Hui @ Imperial College London
Maintainer Tin-Yu Hui <tin-yu.hui11@imperial.ac.uk>
Description Estimate the effective population size of a closed population using genetic data collected from two or more data points.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-10-06 17:37:10

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB-package</td>
<td>1</td>
</tr>
<tr>
<td>NB.estimator</td>
<td>2</td>
</tr>
<tr>
<td>NB.example.dataset</td>
<td>4</td>
</tr>
<tr>
<td>NB.likelihood</td>
<td>5</td>
</tr>
<tr>
<td>NB.plot.likelihood</td>
<td>6</td>
</tr>
</tbody>
</table>

Index 8
Description

The concept of effective population size (N_e) is an important concept in population genetics. It tells the "effective" number of individuals within a population, that is, those who are able to reproduce. The allele frequencies in a closed population change over time as known as genetic drift, and the magnitude of this fluctuation is directly related to N_e. This package aims to estimate this quantity from genetic samples collected over multiple time points.

Details

Package: NB
Type: Package
Version: 0.9
Date: 2014-10-03
License: GPL (>= 2)

Author(s)

Tin-Yu Hui

References

Please email me for referencing or citation.

NB.estimator

Maximum likelihood estimation of effective population size from temporally-spaced genetic data

Description

The concept of effective population size is important in population genetics. This function estimates the effective population size N_e from temporally-spaced genetic data using maximum likelihood method with continuous approximation.

Usage

```
NB.estimator(infile, alleles, sample.interval, bound = c(50, 1e+07), profile.likelihood=FALSE)
```
Arguments

infile The input dataset. It should be a plain text file (*.txt) containing the number of alleles of each allele, at each locus, from each temporal sample. For example, suppose we have \(i \) temporal samples from the focal population, \(j \) loci, and \(K_j \) alleles at locus \(j \). Denoting the number of copies of allele \(k \) at locus \(j \) from sample \(i \) as \(n_{k,j,i} \), then the input format of data is as follows:

\[
\begin{align*}
 n_{1,1,1} & \sim n_{2,1,1} & \sim & \cdots & \sim n_{K_1,1,1} \\
 n_{1,2,1} & \sim n_{2,2,1} & \sim & \cdots & \sim n_{K_2,2,1} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 n_{1,j,1} & \sim n_{2,j,1} & \sim & \cdots & \sim n_{K_j,1,j} \\
 n_{1,j,2} & \sim n_{2,j,2} & \sim & \cdots & \sim n_{K_1,1,2} \\
 n_{1,j,2} & \sim n_{2,j,2} & \sim & \cdots & \sim n_{K_2,2,2} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 n_{1,j,2} & \sim n_{2,j,2} & \sim & \cdots & \sim n_{K_j,j,2} \\
 \vdots & \vdots & \ddots & \vdots & \vdots
\end{align*}
\]

Note: A space is required to separate the allele counts.

alleles A vector containing the number of alleles at each locus. For example, \([4, 4, 4] \) would mean that 3 loci are sampled, with 4 alleles each.

sample.interval A vector stating at which generations the samples were taken. For example, \([0, 8] \) would indicate that two samples were collected from the 0th and 8th generation.

bound Lower and upper bound for searching for the effective population size. Default values are \([50, 1e7] \).

profile.likelihood TRUE if you would like to plot the log-likelihood function, or to look at the details of the log-likelihood values between your confidence interval. FALSE will return you the lower and upper 95% confidence interval only.

Details

The input arguments above largely follow the input format of MLNE (Wang, 2001; Wang and Whitlock, 2003) to allow users to switch between platforms with the minimal effort. The infile should be in a plain text (*.txt) file format. It contains the same information as the input data as MLNE does. The built-in \texttt{optim} optimiser is wrapped within this function.

Value

\(N \) The point estimate of the effective population size \(N_e \).

\(CI \) The approximate 95% confidence interval calculated from the log-likelihood. They are the region where the log-likelihood is 2 units below the maxima.

\(\log.\text{like} \) The value of the maximised log-likelihood.

\(\text{profile.CI} \) A list of log-likelihood values as a function of \(N_e \) within the 95% confidence interval.
Note

If you would like to use your own optimisation algorithm or customise the parameters within the optim function, please consider using `NB.likelihood` from this package.

See Also

`NB.likelihood`, `NB.example.dataset`.

Examples

```r
## CREATE SAMPLE DATASET
NB.example.dataset()

## RUN THE FUNCTION
NB.estimator(infile='sample_data.txt', alleles=rep(4, 50), sample.interval=c(0, 8), profile.likelihood=FALSE)

####
## NUMERICAL RESULTS
#N
# [1] 1241.079
#
#C
# [1] 594.195 6375.933
#C
# $log.like
# [1] -543.9159
####
```

NB.example.dataset Generate sample dataset

Description

To create a sample dataset in plain text format to illustrate the use of this package.

Usage

`NB.example.dataset()`

Details

No arguments required. Just run the function.

Note

A plain text (*.txt) file will be created in your current working directory. Please make sure that you have the permission to write onto the working directory.
NB.likelihood

See Also

NB.estimator

Examples

CREATE A SAMPLE DATASET IN PLAIN TEXT FORM
NB.example.dataset()

CHECK YOUR WORKING DIRECTORY!

NB.likelihood infile alleles sample

Arguments

N
in infile
alleles
sample

The effective population size for diploid individuals.
Your input data file in a plain text format. This data contains the allele counts at each locus and from each sampling time point. a vector containing the number of alleles at each locus. For example, c(4, 4, 4) would mean that 3 loci are sampled, with 4 alleles each.
a vector stating at which generations the samples were taken. For example, c(0, 8) would indicate that two samples were collected from the 0th and 8th generation.

Details

More details please see NB.estimator.

Value

This function returns one single element, the log-likelihood of the model given the effective population size N and your inputs.

Note

This function allows you to use your own optimisation algorithms or customise the parameters using optim or nlm. Otherwise please use NB.estimator which has the internal optim wrapped inside.
NB.plot.likelihood

See Also

\texttt{NB.estimator}.

Examples

\begin{verbatim}
CREATE SAMPLE DATASET
NB.example.dataset()

SEE WHAT'S THE LOG-LIKELIHOOD VALUE IS WHEN N=1000
NB.likelihood(N=1000, infile='sample_data.txt',
 alleles=rep(4, 50), sample.interval=c(0, 8))

####
NUMERICAL RESULT
#[1] -544.0405
####
\end{verbatim}

\texttt{NB.plot.likelihood} \hspace{1cm} \textit{Plot profile (log)-likelihood}

Description

This function does not maximise the likelihood function but rather provide a range of log-likelihood values as a function of effective population size.

Usage

\texttt{NB.plot.likelihood(infile, alleles, sample.interval, lb, ub, step, plotit = TRUE)}

Arguments

\begin{itemize}
 \item \texttt{infile} \hspace{1cm} The input data. Please refer to \texttt{infile} from \texttt{NB.estimator}.
 \item \texttt{alleles} \hspace{1cm} Number of alleles at each locus. Please refer to \texttt{alleles} from \texttt{NB.estimator}.
 \item \texttt{sample.interval} \hspace{1cm} Please refer to \texttt{sample.interval} from \texttt{NB.estimator}.
 \item \texttt{lb} \hspace{1cm} The lower bound of N.
 \item \texttt{ub} \hspace{1cm} The upper bound of N.
 \item \texttt{step} \hspace{1cm} How many points do you want to evaluate at.
 \item \texttt{plotit} \hspace{1cm} Do you want to plot the log-likelihood out?
\end{itemize}

Details

The input arguments \texttt{infile}, \texttt{alleles}, and \texttt{sample.interval} have the same definitions as those in \texttt{NB.estimator}.
Value

Returns a range of log-likelihood values with the associated effective population size. If plotit==TRUE then a plot of the log-likelihood will also be produced.

Note

This would be a good way to examine whether the maximization converges to the global maximum.

See Also

NB.estimator.

Examples

```r
## CREATE SAMPLE DATASET
NB.example.dataset()

## PLOT THE LOG-LIKELIHOOD
NB.plot.likelihood(infile='sample_data.txt', alleles=rep(4, 50),
                  sample.interval=c(0, 8), lb=300, ub=2000, step=200)
```
Index

∗Topic Effective population size. Maximum Likelihood Estimation.
 NB-package. 1

NB (NB-package), 1
NB-package, 1
NB.estimator, 2, 5–7
NB.example.dataset, 4, 4
NB.likelihood, 4, 5
NB.plot.likelihood, 6