Package ‘NLMR’

February 27, 2019

Type Package

Title Simulating Neutral Landscape Models

Version 0.4.2

Maintainer Marco Sciaini <sciaini.marco@gmail.com>

Description Provides neutral landscape models (<doi:10.1007/BF02275262>,
<http://sci-hub.tw/10.1007/bf02275262>).
Neutral landscape models range from *“hard"
neutral models (completely random distributed), to ““soft" neutral models
(definable spatial characteristics) and generate landscape patterns that are
independent of ecological processes.
Thus, these patterns can be used as null models in landscape ecology. 'nlmr’'
combines a large number of algorithms from other published software for
simulating neutral landscapes. The simulation results are obtained in a
geospatial data format (raster* objects from the 'raster' package) and can,
therefore, be used in any sort of raster data operation that is performed
with standard observation data.

License GPL-3

Encoding UTF-8

LazyData true

ByteCompile true

Depends R (>=3.1.0)

SystemRequirements C++11

RoxygenNote 6.1.1

Imports checkmate, dplyr, RandomFields, raster, spatstat, stats,
tibble, fasterize, sf, Rcpp

URL https://ropensci.github.io/NLMR/

BugReports https://github.com/ropensci/NLMR/issues/
Suggests testthat, covr, knitr, rmarkdown, lintr, landscapetools
LinkingTo Rcpp

VignetteBuilder knitr

https://ropensci.github.io/NLMR/
https://github.com/ropensci/NLMR/issues/

2 NLMR-package
NeedsCompilation yes
Author Marco Sciaini [aut, cre] (<https://orcid.org/0000-0002-3042-5435>),
Matthias Fritsch [aut],
Craig Simpkins [aut] (<https://orcid.org/0000-0003-3212-1379>),
Cédric Scherer [aut] (<https://orcid.org/0000-0003-0465-2543>),
Sebastian HanB [aut] (<https://orcid.org/0000-0002-3990-4897>),
Laura Graham [rev] (Laura reviewed the package for rOpenSci, see
https://github.com/ropensci/onboarding/issues/188),
Jeffrey Hollister [rev] (Jeffrey reviewed the package for rOpenSci, see
https://github.com/ropensci/onboarding/issues/188)
Repository CRAN
Date/Publication 2019-02-27 05:10:04 UTC
R topics documented:
NLMR-package o o e e e e 2
nlm_curds L e 3
nlm_distancegradient oL oL e 5
nlm_edgegradient 6
nlm_fbm e 7
nlm_gaussianfield Lo 8
nlm_mosaicfield 10
nlm_mosaicgibbs 11
nlm_MOSAICLESS e e e e e e e e 12
nlm_mpd e 13
nlm_neigh 15
nlm_percolation e e 16
nlm_planargradient 18
nlm_random e e e 19
nlm_randomcluster e 20
nlm_randomrectangularcluster Lo Lo 21
Index 23
NLMR-package Simulating Neutral Landscape Models
Description

NLMR is an R package for simulating neutral landscape models (NLMs).

Details

This package contains vignettes that introduce NLM and basic usage of the NLMR package. The

vignettes in this package are listed below.

Quickstart Guide Short walk-through of the NLMR package and how to handle the simulations.

https://ropensci.github.io/NLMR/articles/getstarted.html

nlm_curds 3

Author(s)

Maintainer: Marco Sciaini <sciaini.marco@gmail.com> (0000-0002-3042-5435)
Authors:

e Matthias Fritsch <matthias.fritsch@forst.uni-goettingen.de>

* Craig Simpkins <simpkinscraig@63@gmail.com> (0000-0003-3212-1379)

» Cédric Scherer <cedricphilippscherer@gmail.com> (0000-0003-0465-2543)
* Sebastian Hanf} (0000-0002-3990-4897)

Other contributors:

* Laura Graham (Laura reviewed the package for rOpenSci, see https://github.com/ropensci/onboarding/issues/188)
[reviewer]

« Jeffrey Hollister (Jeffrey reviewed the package for rOpenSci, see https://github.com/ropensci/onboarding/issues/188)
[reviewer]

See Also
Useful links:

e https://ropensci.github.io/NLMR/
* Report bugs at https://github.com/ropensci/NLMR/issues/

nlm_curds nlm_curds

Description

Simulates a random curd neutral landscape model with optional wheys.

Usage

nlm_curds(curds, recursion_steps, wheyes = NULL, resolution = 1)

Arguments

curds [numerical(x)]

Vector with percentage/s to fill with curds (fill with habitat (value == TRUE)).
recursion_steps

[numerical(x)]

Vector of successive cutting steps for the blocks (split 1 block into x blocks).
wheyes [numerical(x)]

Vector with percentage/s to fill with wheys, which fill matrix in an additional

step with habitat.

resolution [numerical(1)]
Resolution of the resulting raster.

https://ropensci.github.io/NLMR/
https://github.com/ropensci/NLMR/issues/

4 nlm_curds

Details

Random curdling recursively subdivides the plane into blocks. At each level of the recursion, a
fraction of the blocks are declared as habitat (value == TRUE) while the remaining blocks continue
to be defined as matrix (value == FALSE) and enter the next recursive cycle.

The optional argument (wheyes) allows wheys to be added, in which a set proportion of cells that
were declared matrix (value == FALSE) during recursion, are now set as habitat cells (value ==
TRUE).

If
curds, = curdsy = recursiongtepss = ... = curds, = recursionsteps,
the models resembles a binary random map.

Note that you can not set ncol and nrow with this landscape algorithm. The amount of cells and
hence dimension of the raster is given by the vector product of the recursive steps.

Value

raster

References

Keitt TH. 2000. Spectral representation of neutral landscapes. Landscape Ecology 15:479-493.

Szaro, Robert C., and David W. Johnston, eds. Biodiversity in managed landscapes: theory and
practice. Oxford University Press, USA, 1996.

Examples

simulate random curdling
(random_curdling <- nlm_curds(curds = c(0.5, 0.3, 0.6),
recursion_steps = c(32, 6, 2)))

simulate wheyed curdling

(wheyed_curdling <- nlm_curds(curds = c(0.5, 9.3, 0.6),
recursion_steps = c(32, 6, 2),
wheyes = c(0.1, 0.05, 0.2)))

Not run:

Visualize the NLMs

landscapetools: : show_landscape(random_curdling)

landscapetools: : show_landscape(wheyed_curdling)

End(Not run)

nlm_distancegradient 5

nlm_distancegradient nlm_distancegradient

Description

Simulates a distance-gradient neutral landscape model.

Usage

nlm_distancegradient(ncol, nrow, resolution = 1, origin,
rescale = TRUE)

Arguments
ncol [numerical (1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
origin [numerical(4)]
Edge coordinates of the origin (raster::extent with xmin, xmax, ymin, ymax) of
the distance measurement.
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1. Otherwise, the distance
in raster units is calculated.
Details

The function takes the number of columns and rows as input and creates a RasterLayer with the
same extent. Origin is a numeric vector of xmin, xmax, ymin, ymax for a rectangle inside the
raster from which the distance is measured.

Value

RasterLayer

See Also

nlm_edgegradient, nlm_planargradient

6 nlm_edgegradient

Examples

simulate a distance gradient

distance_gradient <- nlm_distancegradient(ncol = 100, nrow = 100,
origin = c(20, 30, 10, 15))

Not run:

visualize the NLM

landscapetools: :show_landscape(distance_gradient)

End(Not run)

nlm_edgegradient nlm_edgegradient

Description

Simulates an edge-gradient neutral landscape model.

Usage

nlm_edgegradient(ncol, nrow, resolution = 1, direction = NA,
rescale = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
direction [numerical(1)]
Direction of the gradient (between 0 and 360 degrees), if unspecified the direc-
tion is randomly determined.
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
Details

Simulates a linear gradient orientated on a specified or random direction that has a central peak
running perpendicular to the gradient direction.

Value

RasterLayer

nlm_fbm 7

References

Travis, J.M.J. & Dytham, C. (2004) A method for simulating patterns of habitat availability at static
and dynamic range margins. Oikos, 104, 410-416.

See Also

nlm_distancegradient, nlm_planargradient

Examples

simulate random curdling
edge_gradient <- nlm_edgegradient(ncol = 100, nrow = 100, direction = 80)

Not run:
visualize the NLM

landscapetools: :show_landscape(edge_gradient)

End(Not run)

nlm_fbm nlm_fbm

Description

Creates a two-dimensional fractional Brownian motion neutral landscape model.

Usage
nlm_fbm(ncol, nrow, resolution = 1, fract_dim = 1, user_seed = NULL,
rescale = TRUE, ...)
Arguments
ncol [numerical(1)]

Number of columns forming the raster.

nrow [numerical(1)]
Number of rows forming the raster.

resolution [numerical(1)]
Resolution of the raster.

fract_dim [numerical(1)]
The fractal dimension of the process (0,2)

user_seed [numerical(1)]
Set random seed for the simulation

rescale [numeric(1)]
If TRUE (default), the values are rescaled between 0-1.

8 nlm_gaussianfield

Other options to RandomFields::RFoptions, especially if using a fractal dimen-
sion between ~ 1.6 and 1.9 one must set the option modus_operandi = "sloppy”.

Details

Neutral landscapes are generated using fractional Brownian motion, an extension of Brownian mo-
tion in which the amount of correlation between steps is controlled by frac_dim. A high value
of frac_dim produces a relatively smooth, correlated surface while a low value produces a rough,
uncorrelated one.

Value

RasterLayer

References

Travis, J.M.J. & Dytham, C. (2004). A method for simulating patterns of habitat availability at
static and dynamic range margins. Oikos , 104, 410-416.

Martin Schlather, Alexander Malinowski, Peter J. Menck, Marco Oesting, Kirstin Strokorb (2015).
nlm_fBm. Journal of Statistical Software, 63(8), 1-25. URL http://www.jstatsoft.org/v63/i08/.

Examples

simulate fractional brownian motion
fbm_raster <- nlm_fbm(ncol = 20, nrow = 30, fract_dim = 0.8)

Not run:
visualize the NLM

landscapetools: : show_landscape(fbm_raster)

End(Not run)

nlm_gaussianfield nlm_gaussianfield

Description

Simulates a spatially correlated random fields (Gaussian random fields) neutral landscape model.

Usage

nlm_gaussianfield(ncol, nrow, resolution = 1, autocorr_range = 10,
mag_var = 5, nug = 0.2, mean = 0.5, user_seed = NULL,
rescale = TRUE)

nlm_gaussianfield

Arguments

ncol

nrow

resolution

autocorr_range

mag_var

nug

mean

user_seed

rescale

Details

[numerical(1)]
Number of columns forming the raster.

[numerical(1)]
Number of rows forming the raster.

[numerical(1)]
Resolution of the raster.

[numerical(1)]
Maximum range (raster units) of spatial autocorrelation.

[numerical(1)]
Magnitude of variation over the entire landscape.

[numerical(1)]
Magnitude of variation in the scale of autocorr_range, smaller values lead to
more homogeneous landscapes.

[numerical(1)]
Mean value over the field.

[numerical(1)]
Set random seed for the simulation

[numeric(1)]
If TRUE (default), the values are rescaled between 0-1.

Gaussian random fields are a collection of random numbers on a spatially discrete set of coordinates
(landscape raster). Natural sciences often apply them with spatial autocorrelation, meaning that
objects which distant are more distinct from one another than they are to closer objects.

References

Kéry & Royle (2016) Applied Hierarachical Modeling in Ecology Chapter 20

Examples

simulate random gaussian field
gaussian_field <- nlm_gaussianfield(ncol = 90, nrow = 90,

Not run:

autocorr_range = 60,
mag_var = 8,
nug = 5)

visualize the NLM
landscapetools: : show_landscape(gaussian_field)

End(Not run)

10 nlm_mosaicfield

nlm_mosaicfield nlm_mosaicfield

Description

Simulates a mosaic random field neutral landscape model.

Usage

nlm_mosaicfield(ncol, nrow, resolution = 1, n = 20,
mosaic_mean = 0.5, mosaic_sd = 0.5, collect = FALSE,
infinit = FALSE, rescale = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
n [numerical(1)]
Number of steps over which the mosaic random field algorithm is run
mosaic_mean [numerical(1)]
Mean value of the mosaic displacement distribution
mosaic_sd [numerical(1)]
Standard deviation of the mosaic displacement distribution
collect [logical(1)]
return RasterBrick of all steps 1:n
infinit [logical(1)]
return raster of the random mosaic field algorithm with infinite steps
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
Value

RasterLayer or List with RasterLayer/s and/or RasterBrick

References

Schwab, Dimitri, Martin Schlather, and Jiirgen Potthoff. "A general class of mosaic random fields."
arXiv preprint arXiv:1709.01441 (2017).

Baddeley, Adrian, Ege Rubak, and Rolf Turner. Spatial point patterns: methodology and applica-
tions with R. CRC Press, 2015.

nlm_mosaicgibbs 11
Examples

simulate mosaic random field
mosaic_field <- nlm_mosaicfield(ncol = 100,

nrow = 200,

n = NA,

infinit = TRUE,
collect = FALSE)

Not run:
visualize the NLM
landscapetools: : show_landscape(mosaic_field)

End(Not run)

nlm_mosaicgibbs nlm_mosaicgibbs

Description

Simulate a neutral landscape model using the Gibbs algorithm introduced in Gaucherel (2008).

Usage

nlm_mosaicgibbs(ncol, nrow, resolution = 1, germs, R, patch_classes,
rescale = TRUE)

Arguments

ncol [numerical(1)]

Number of columns forming the raster.
nrow [numerical(1)]

Number of rows forming the raster.
resolution [numerical(1)]

Resolution of the raster.
germs [numerical(1)]

Intensity parameter (non-negative integer).
R [numerical(1)]

Interaction radius (non-negative integer) for the fitting of the spatial point pattern
process - the min. distance between germs in map units.

patch_classes [numerical(1)]
Number of classes for germs.

rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.

12 nlm_mosaictess

Details

nlm_mosaicgibbs offers the second option of simulating a neutral landscape model described in
Gaucherel (2008). The method works in principal like the tessellation method (n1m_mosaictess),
but instead of a random point pattern the algorithm fits a simulated realization of the Strauss process.
The Strauss process starts with a given number of points and uses a minimization approach to fit
a point pattern with a given interaction parameter (0 - hardcore process; 1 - Poission process) and
interaction radius (distance of points/germs being apart).

Value

RasterLayer

References

Gaucherel, C. (2008) Neutral models for polygonal landscapes with linear networks. Ecological
Modelling, 219, 39 - 48.

Examples

simulate polygonal landscapes
mosaicgibbs <- nlm_mosaicgibbs(ncol = 40,

nrow = 30,
germs = 20,
R =0.02,

patch_classes = 12)
Not run:
visualize the NLM

landscapetools: : show_landscape(mosaicgibbs)

End(Not run)

nlm_mosaictess nlm_mosaictess

Description

Simulate a neutral landscape model using the tesselation approach introduced in Gaucherel (2008).

Usage

nlm_mosaictess(ncol, nrow, resolution = 1, germs, rescale = TRUE)

nlm_mpd 13

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
germs [numerical(1)]
Intensity parameter (non-negative integer).
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
Details

nlm_mosaictess offers the first option of simulating a neutral landscape model described in Gaucherel
(2008). It generates a random point pattern (germs) with an independent distribution and uses the
Voronoi tessellation to simulate mosaic landscapes.

Value

RasterLayer

References

Gaucherel, C. (2008) Neutral models for polygonal landscapes with linear networks. Ecological
Modelling, 219, 39 - 48.

Examples

simulate polygonal landscapes
mosaictess <- nlm_mosaictess(ncol = 30, nrow = 60, germs = 200)

Not run:
visualize the NLM

landscapetools: : show_landscape(mosaictess)

End(Not run)

nlm_mpd nlm_mpd

Description

Simulates a midpoint displacement neutral landscape model.

14 nlm_mpd

Usage

nlm_mpd(ncol, nrow, resolution = 1, roughness = 0.5, rand_dev = 1,
rescale = TRUE, verbose = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical (1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
roughness [numerical(1)]
Controls the level of spatial autocorrelation (!= Hurst exponent)
rand_dev [numerical(1)]
Initial standard deviation for the displacement step (default == 1), sets the scale
of the overall variance in the resulting landscape.
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
verbose [logical(1)]
If TRUE (default), the user gets a warning that the functions changes the dimen-
sions to an appropriate one for the algorithm.
Details

The algorithm is a direct implementation of the midpoint displacement algorithm. It performs the
following steps:

* Initialization: Determine the smallest fit of max(ncol, nrow) in n"2 + [and assign value to
n. Setup matrix of size (n"2 + 1)*(n2 + 1). Afterwards, assign a random value to the four
corners of the matrix.

» Diamond Step: For each square in the matrix, assign the average of the four corner points plus
a random value to the midpoint of that square.

» Diamond Step: For each diamond in the matrix, assign the average of the four corner points
plus a random value to the midpoint of that diamond.

At each iteration the roughness, an approximation to common Hurst exponent, is reduced.

Value

RasterLayer

References

https://en.wikipedia.org/wiki/Diamond-square_algorithm

https://en.wikipedia.org/wiki/Diamond-square_algorithm

nlm_neigh 15
Examples

simulate midpoint displacement

midpoint_displacememt <- nlm_mpd(ncol = 100,
nrow = 100,
roughness = 0.3)

Not run:
visualize the NLM
landscapetools: : show_landscape(midpoint_displacememt)

End(Not run)

nlm_neigh nlm_neigh

Description

Create a neutral landscape model with categories and clustering based on neighborhood character-
istics.

Usage

nlm_neigh(ncol, nrow, resolution = 1, p_neigh, p_empty, categories = 3,
neighbourhood = 4, proportions = NA, rescale = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
p_neigh [numerical(1)]
Probability of a cell will turning into a value if there is any neighbor with the
same or a higher value.
p_empty [numerical(1)]
Probability a cell receives a value if all neighbors have no value (i.e. zero).
categories [numerical(1)]

Number of categories used.

neighbourhood [numerical(1)]
The neighbourhood used to determined adjacent cells: ‘8 ("Moore")* takes the
eight surrounding cells, while ‘4 ("Von-Neumann")‘ takes the four adjacent cells
(i.e. left, right, upper and lower cells).

16 nlm_percolation

proportions [vector(1)]
The algorithm uses uniform proportions for each category by default. A vector
with as many proportions as categories and that sums up to 1 can be used for
other distributions.

rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.

Details

The algorithm draws a random cell and turns it into a given category based on the probabilities
p_neigh and p_empty, respectively. The decision is based on the probability p_neigh, if there is
any cell in the Moore- (8 cells) or Von-Neumann-neighborhood (4 cells), otherwise it is based on
p_empty. To create clustered neutral landscape models, p_empty should be (significantly) smaller
than p_neigh. By default, the Von-Neumann-neighborhood is used to check adjacent cells. The
algorithm starts with the highest categorial value. If the proportion of cells with this value is reached,
the categorial value is reduced by 1. By default, a uniform distribution of the categories is applied.

Value

RasterLayer

References

Scherer, Cédric, et al. "Merging trait-based and individual-based modelling: An animal functional
type approach to explore the responses of birds to climatic and land use changes in semi-arid African
savannas." Ecological Modelling 326 (2016): 75-89.

Examples

simulate neighborhood model
neigh_raster <- nlm_neigh(ncol = 50, nrow = 50, p_neigh = 0.7, p_empty = 0.1,
categories = 5, neighbourhood = 4)

Not run:
visualize the NLM
landscapetools: :show_landscape(neigh_raster)

End(Not run)

nlm_percolation nlm_percolation

Description

Generates a random percolation neutral landscape model.

nlm_percolation 17

Usage

nlm_percolation(ncol, nrow, resolution = 1, prob = 0.5)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
prob [numerical(1)]
Probability value for setting a cell to 1.
Details

The simulation of a random percolation map is accomplished in two steps:

* Initialization: Setup matrix of size (ncol*nrow)

* Map generation: For each cell in the matrix a single uniformly distributed random number is
generated and tested against a probability prob. If the random number is smaller than prob,
the cell is set to TRUE - if it is higher the cell is set to FALSE.

Value

RasterLayer

References

1. Gardner RH, O’Neill R V, Turner MG, Dale VH. 1989. Quantifying scale-dependent effects of
animal movement with simple percolation models. Landscape Ecology 3:217 - 227.

2. Gustafson, E.J. & Parker, G.R. (1992) Relationships between landcover proportion and indices
of landscape spatial pattern. Landscape Ecology , 7, 101 - 110.

Examples

simulate percolation model

percolation <- nlm_percolation(ncol = 100, nrow = 100, prob = 0.5)
Not run:

visualize the NLM

landscapetools: : show_landscape(percolation)

End(Not run)

18 nlm_planargradient

nlm_planargradient nlm_planargradient

Description

Simulates a planar gradient neutral landscape model.

Usage

nlm_planargradient(ncol, nrow, resolution = 1, direction = NA,
rescale = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
direction [numerical(1)]
Direction of the gradient in degrees, if unspecified the direction is randomly
determined.
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
Details

Simulates a linear gradient sloping in a specified or random direction.

Value

RasterLayer

References
Palmer, M.W. (1992) The coexistence of species in fractal landscapes. The American Naturalist,
139, 375 - 397.

See Also

nlm_distancegradient, nlm_edgegradient

nlm_random 19

Examples

simulate planar gradient
planar_gradient <- nlm_planargradient(ncol = 200, nrow = 200)

Not run:
visualize the NLM

landscapetools: : show_landscape(planar_gradient)

End(Not run)

nlm_random nlm_random

Description

Simulates a spatially random neutral landscape model with values drawn a uniform distribution.

Usage

nlm_random(ncol, nrow, resolution = 1, rescale = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
Details

The function takes the number of columns and rows as input and creates a RasterLayer with the
same extent. Each raster cell is randomly assigned a value between 0 and 1 drawn from an uniform
distribution (runif(1,0,1)).

Value

RasterLayer

20 nlm randomcluster

Examples

simulate spatially random model
random <- nlm_random(ncol = 200, nrow = 100)

Not run:
visualize the NLM
landscapetools: : show_landscape (random)

End(Not run)

nlm_randomcluster nlm_randomcluster

Description

Simulates a random cluster nearest-neighbour neutral landscape.

Usage

nlm_randomcluster(ncol, nrow, resolution =1, p, ai = c(0.5, 0.5),
neighbourhood = 4, rescale = TRUE)

Arguments
ncol [integer(1)]
Number of columns forming the raster.
nrow [integer(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
p [numerical(1)]
Defines the proportion of elements randomly selected to form clusters.
ai Vector with the cluster type distribution (percentages of occupancy). This di-

rectly controls the number of types via the given length.

neighbourhood [numerical(1)]
Clusters are defined using a set of neighbourhood structures, 4 (Rook’s or von
Neumann neighbourhood) (default), 8 (Queen’s or Moore neighbourhood).

rescale [logical(1)]
If TRUE (default), the values are rescaled between 0-1.
Details

This is a direct implementation of steps A - D of the modified random clusters algorithm by Saura
& Martinez-Millan (2000), which creates naturalistic patchy patterns.

nlm_randomrectangularcluster 21

Value

Raster with random values ranging from 0-1.

References

Saura, S. & Martinez-Milldn, J. (2000) Landscape patterns simulation with a modified random
clusters method. Landscape Ecology, 15, 661 — 678.

Examples

simulate random clustering
random_cluster <- nlm_randomcluster(ncol = 30, nrow = 30,
p = 0.4,
ai = c(0.25, 0.25, 0.5))
Not run:
visualize the NLM
landscapetools: : show_landscape(random_cluster)

End(Not run)

nlm_randomrectangularcluster
nlm_randomrectangularcluster

Description

Simulates a random rectangular clusters neutral landscape model with values ranging 0-1.

Usage

nlm_randomrectangularcluster(ncol, nrow, resolution = 1, minl, maxl,
rescale = TRUE)

Arguments
ncol [numerical(1)]
Number of columns forming the raster.
nrow [numerical(1)]
Number of rows forming the raster.
resolution [numerical(1)]
Resolution of the raster.
minl [numerical(1)]
The minimum possible width and height for each random rectangular cluster.
max1 [numerical(1)]
The maximum possible width and height for each random rectangular cluster.
rescale [logical(1)]

If TRUE (default), the values are rescaled between 0-1.

22 nlm_randomrectangularcluster

Details

The random rectangular cluster algorithm starts to fill a raster randomly with rectangles defined
by minl and maxl until the surface of the landscape is completely covered. This is one type of
realisation of a "falling/dead leaves" algorithm, for more details see Galerne & Goussea (2012).

Value

RasterLayer

References

Gustafson, E.J. & Parker, G.R. (1992). Relationships between landcover proportion and indices of
landscape spatial pattern. Landscape ecology, 7, 101-110. Galerne B. & Gousseau Y. (2012). The
Transparent Dead Leaves Model. Advances in Applied Probability, Applied Probability Trust, 44,
1-20.

Examples

simulate random rectangular cluster

randomrectangular_cluster <- nlm_randomrectangularcluster(ncol = 50,
nrow = 30,
minl = 5,
maxl = 10)

Not run:
visualize the NLM
landscapetools: : show_landscape(randomrectangular_cluster)

End(Not run)

Index

nlm_curds, 3
nlm_distancegradient, 5, 7, I8
nlm_edgegradient, 5, 6, 18
nlm_fbm, 7

nlm_gaussianfield, 8
nlm_mosaicfield, 10
nlm_mosaicgibbs, 11
nlm_mosaictess, 12

nlm_mpd, 13

nlm_neigh, 15

nlm_percolation, 16
nlm_planargradient, 5, 7, 18
nlm_polylands (nlm_mosaictess), 12
nlm_random, 19
nlm_randomcluster, 20
nlm_randomrectangularcluster, 21
NLMR (NLMR-package), 2
NLMR-package, 2

23

	NLMR-package
	nlm_curds
	nlm_distancegradient
	nlm_edgegradient
	nlm_fbm
	nlm_gaussianfield
	nlm_mosaicfield
	nlm_mosaicgibbs
	nlm_mosaictess
	nlm_mpd
	nlm_neigh
	nlm_percolation
	nlm_planargradient
	nlm_random
	nlm_randomcluster
	nlm_randomrectangularcluster
	Index

