Solving the N-Queens Problem with Local Search

Enrico Schumann
es@enricoschumann.net

This vignette provides example code for a combinatorial problem: the N-Queens Problem.

\section{The problem}

The goal is to place N queens on a chess-board of size $N \times N$ in such a way that no queen is attacked. A queen may move vertically, horizontally and on a diagonal. So whenever there is more than one queen on any row, column or diagonal, the position is invalid. To solve the problem with an Local Search (LS), we need three components:

1. a way to represent a solution (i.e. a position on the chessboard);

2. a way to evaluate such a solution;

3. and, since we use a LS, a method to modify a solution.

We start by attaching the package and fixing a seed.

\begin{verbatim}\mtext{\> library("NMOF") \> set.seed(134577)}\end{verbatim}

\section{Representing a solution}

Since on any row there cannot be more than one queen, we may store a position as a vector of columns on which the queens are placed. (In chess, rows would be called ranks and columns would be files, but we prefer matrix terminology.) Thus, a candidate solution p (p for position) could look as follows:

\begin{verbatim}\mtext{\> N <- 8 \> p <- sample.int(N) \> data.frame(row = 1:N, column = p)}\end{verbatim}

\begin{verbatim}\begin{tabular}{ll}
row & column \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7 \\
8 & 8 \\
\end{tabular}\end{verbatim}

Or (a very bad solution):

\begin{verbatim}\mtext{\> p <- rep(1, N) \> data.frame(row = 1:N, column = p)}\end{verbatim}

\begin{verbatim}\begin{tabular}{ll}
row & column \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4 \\
5 & 5 \\
6 & 6 \\
7 & 7 \\
8 & 8 \\
\end{tabular}\end{verbatim}
We may also want to visualise a position, for which may use the function `print_board`.

```r
> print_board <- function(p, q.char = "Q", sep = " ") {
  n <- length(p)
  row <- rep("-", n)
  for (i in seq_len(n)) {
    row_i <- row
    row_i[p[i]] <- q.char
    cat(paste(row_i, collapse = sep))
  }
  cat("\n")
}

> print_board(p)
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -
```

3 Evaluating a solution

We need to compute on what row, column, diagonal (top left to bottom right) or reverse diagonal (top right to bottom left) a queen stands. Rows and columns are simple; we label the diagonals as follows.

```r
> mat <- array(NA, dim = c(N,N)) ## diagonals
> for (r in 1:N) # diagonals
  for (c in 1:N)
    mat[r,c] <- c - r

> mat
[1,]  0  1  2  3  4  5  6  7
[2,] -1  0  1  2  3  4  5  6
[3,] -2 -1  0  1  2  3  4  5
[4,] -3 -2 -1  0  1  2  3  4
[5,] -4 -3 -2 -1  0  1  2  3
[6,] -5 -4 -3 -2 -1  0  1  2
[7,] -6 -5 -4 -3 -2 -1  0  1
[8,] -7 -6 -5 -4 -3 -2 -1  0
```

```r
> mat <- array(NA, dim = c(N,N)) ## reverse diagonals
> for (r in 1:N) # reverse diagonals
  for (c in 1:N)
    mat[r,c] <- c + r - (N + 1)

> mat
[1,] -7 -6 -5 -4 -3 -2 -1  0
[2,] -6 -5 -4 -3 -2 -1  0  1
[3,] -5 -4 -3 -2 -1  0  1  2
[4,] -4 -3 -2 -1  0  1  2  3
[5,] -3 -2 -1  0  1  2  3  4
[6,] -2 -1  0  1  2  3  4  5
[7,] -1  0  1  2  3  4  5  6
[8,]  0  1  2  3  4  5  6  7
```
Note that for reverse diagonals, the $N + 1$ would not be necessary; it serves only to shift the diagonal labels so that the main diagonal is zero.

Thus for a given solution p, we know the row, column, diagonal and reverse diagonal for each queen. We define the quality of a solution by the number of attacks that happen: for a valid solution, that number should be zero.

```r
> n_attacks <- function(p) {
  ## more than one Q on a column?
  sum(duplicated(p)) +

  ## more than one Q on a diagonal?
  sum(duplicated(p - seq_along(p))) +

  ## more than one Q on a reverse diagonal?
  sum(duplicated(p + seq_along(p)))
}
```

```r
> n_attacks(p)
[1] 7
```

4 Changing a solution

A given position may be modified by picking one row randomly and then moving the queen there to the left or right. We allow for moves up to step squares, which we set to 3 in the example.

```r
> neighbour <- function(p) {
  step <- 3
  i <- sample.int(N, 1)
  p[i] <- p[i] + sample(c(1:step, -(1:step)), 1)

  if (p[i] > N)
    p[i] <- 1
  else if (p[i] < 1)
    p[i] <- N
  p
}
```

```r
> print_board(p)
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -

> print_board(p <- neighbour(p))
  Q - - - - - - -
  Q - - - - - - -
  - - - Q - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
  Q - - - - - - -
```
\section{Solving the model}

We use three different LS methods: a ‘classical’ Stochastic Local Search (LSopt), Threshold Accepting (TAopt) and Simulated Annealing (SAopt).

\begin{verbatim}
> p0 <- rep(1, N) ## or a random initial solution: p0 <- sample.int(N)
> print_board(p0)

Q - - - - - - -
Q - - - - - - -
- - - Q - - -
Q - - - - - - -
Q - - - - - - -
- - - - - - - Q
Q - - - - - - -
Q - - - - - - -
Q - - - - - - -

> sol <- LSopt(n_attacks, list(x0 = p0,
neighbour = neighbour,
printBar = FALSE,
nS = 10000))
Local Search.
Initial solution: 7
Finished.
Best solution overall: 0

> print_board(sol$xbest)

- Q - - - - -
- - - - - - Q-
- - Q - - - -
- - - - - - Q-
- - - - - - Q-
Q - - - - - - -
- - Q - - - -

> sol <- TAopt(n_attacks, list(x0 = p0,
neighbour =ighbour,
printBar = FALSE,
nS = 1000))
Threshold Accepting
Computing thresholds ... OK
Estimated remaining running time: 0.23 secs
Running Threshold Accepting ...
Initial solution: 7
\end{verbatim}
Finished.
Best solution overall: 0

> print_board(sol$xbest)

- - - - Q - - -
- - - - - - Q -
- Q - - - - - -
- - - Q - - - -
- - - - - - - Q
 Q - - - - - - -
- - Q - - - - -
- - - - - - Q -
- - - - - - - Q

> sol <- SAopt(n_attacks, list(x0 = p0,
neighbour = neighbour,
printBar = FALSE,
nS = 1000))

Simulated Annealing.
Calibrating acceptance criterion ... OK
Estimated remaining running time: 0.225 secs.

Running Simulated Annealing ...
Initial solution: 7
Finished.
Best solution overall: 0

> print_board(sol$xbest)

- - - - Q - - -
- - - - - - Q -
- Q - - - - - -
- - - Q - - - -
- - - - - - - Q
 Q - - - - - - -
- - Q - - - - -
- - - - - - Q -
- - - - - - - Q

References