This vignette provides the code for some of the examples from Gilli et al. [2011]. For more details, please see Chapter 13 of the book; the code in this vignette uses the scripts exampleSquaredRets.R, exampleSquaredRets2.R and exampleRatio.R.

We start by attaching the package. We will later on need the function resample (see ?sample).

```r
> require("NMOF")
> resample <- function(x, ...)
  x[sample.int(length(x), ...)]
> set.seed(112233)
```

1 Minimising squares

1.1 A first implementation

This problem serves as a benchmark: we wish to find a long-only portfolio w (weights) that minimises squared returns across all return scenarios. These scenarios are stored in a matrix R of size number of scenarios ns times number of assets na. More formally, we want to solve the following problem:

$$
\min_w \Phi \\
\text{s.t. } \quad w'1 = 1, \quad 0 \leq w_j \leq w_{j,\sup} \quad \text{for } j = 1, 2, \ldots, n_A.
$$

We set $w_{j,\sup}$ to 5% for all assets. Φ is the squared return of the portfolio, $w'R'Rw$, which is similar to the portfolio return’s variance. We have

$$
\frac{1}{n_S}R'R = \text{Cov}(R) + mm'
$$

in which Cov is the variance–covariance matrix operator, which maps the columns of R into their variance–covariance matrix; m is a column vector that holds the column means of R, i.e., $m' = \frac{1}{n}R$. For short time horizons, the mean of a column is small compared with the average squared return of the column. Hence, we ignore the matrix mm', and variance and squared returns become equivalent.

For testing purposes we use the matrix `fundData` for R.

```r
> na <- dim(fundData)[2L]
> ns <- dim(fundData)[1L]
> winf <- 0.0; wsup <- 0.05
> data <- list(R = t(fundData),
  RR = crossprod(fundData),
  na = na,
  ns = ns,
  eps = 0.5/100,
  winf = winf,
  wsup = wsup,
  resample = resample)
```

The neighbourhood function automatically enforces the budget constraint.

```r
> neighbour <- function(w, data){
  eps <- runif(1L) * data$eps
  toSell <- w > data$winf
```

1
toBuy <- w < data$wsup
i <- data$resample(which(toSell), size = 1L)
j <- data$resample(which(toBuy), size = 1L)
eps <- min(w[i] - data$winf, data$wsup - w[j], eps)
w[i] <- w[i] - eps
w[j] <- w[j] + eps
w

The objective function.

OF1 <- function(w, data) {
 Rw <- crossprod(data$R, w)
crossprod(Rw)
}

OF2 <- function(w, data) {
 aux <- crossprod(data$RR, w)
crossprod(w, aux)
}

OF2 uses $R'R$; thus, it does not depend on the number of scenarios. But this is only possible for this very specific problem.

We specify a random initial solution w_0 and define all settings in a list algo.

w0 <- runif(na); w0 <- w0/sum(w0)
algo <- list(x0 = w0,
 neighbour = neighbour,
 nS = 2000L,
 nT = 10L,
 nD = 5000L,
 q = 0.20,
 printBar = FALSE,
 printDetail = FALSE)

We can now run TAopt, first with OF1 . . .

> system.time(res <- TAopt(OF1,algo,data))

user system elapsed
21.547 23.035 3.973

> 100 * sqrt(crossprod(fundData %*% res$xbest)/ns)

[,1]
[1,] 0.33635

...and then with OF2.

> system.time(res <- TAopt(OF2,algo,data))

user system elapsed
15.061 16.016 2.605

> 100*sqrt(crossprod(fundData %*% res$xbest)/ns)

[,1]
[1,] 0.33655

Note that we have rescaled the results (see the book for details). Both results are similar, but OF2 typically requires less time. We check the contraints.

> min(res$xbest) ## should not be smaller than data$winf

[1] 0
> max(res$xbest) ## should not be greater than data$wsup
[1] 0.05

> sum(res$xbest) ## should be one
[1] 1

The problem can actually be solved quadratic programming; we use the quadprog package [Turlach and Weingessel, 2019].

> if (require("quadprog", quietly = TRUE)) {
 covMatrix <- crossprod(fundData)
 A <- rep(1, na); a <- 1
 B <- rbind(-diag(na), diag(na))
 b <- rbind(array(-data$wsup, dim = c(na, 1L)),
 array(data$winf, dim = c(na, 1L)))
 system.time({
 result <- solve.QP(Dmat = covMatrix,
 dvec = rep(0,na),
 Amat = t(rbind(A,B)),
 bvec = rbind(a,b),
 meq = 1L)
 })
 wqp <- result$solution

 cat("Compare results...
"
 cat("QP:", 100 * sqrt(crossprod(fundData %*% wqp)/ns),"\n")
 cat("TA:", 100 * sqrt(crossprod(fundData %*% res$xbest)/ns) ,"\n")

 cat("Check constraints ...
"
 cat("min weight:", min(wqp), "\n")
 cat("max weight:", max(wqp), "\n")
 cat("sum of weights:", sum(wqp), "\n")
}

Compare results...
QP: 0.33612
TA: 0.33655
Check constraints ...
min weight: -9.748e-17
max weight: 0.05
sum of weights: 1

1.2 Updating

Here we implement the updating of the objective function as described in Gilli et al. [2011].

> neighbourU <- function(sol, data){
 wn <- sol$w
 toSell <- wn > data$winf
 toBuy <- wn < data$wsup
 i <- data$resample(which(toSell), size = 1L)
 j <- data$resample(which(toBuy), size = 1L)
 eps <- runif(1) * data$eps
 eps <- min(wn[i] - data$winf, data$wsup - wn[j], eps)
 wn[i] <- wn[i] - eps
 wn[j] <- wn[j] + eps
 Rw <- sol$Rw + data$R[,c(i,j)] %*% c(-eps,eps)
 list(w = wn, Rw = Rw)
OF <- function(sol, data)
crossprod(sol$Rw)

Prepare the data list (we reuse several items used before).

```r
data <- list(R = fundData, na = na, ns = ns,
eps = 0.5/100, winf = winf, wsup = wsup,
resample = resample)
```

We start, again, with a random solution, and also use the same number of iterations as before.

```r
w0 <- runif(data$na); w0 <- w0/sum(w0)
x0 <- list(w = w0, Rw = fundData %*% w0)
algo <- list(x0 = x0,
neighbour = neighbourU,
nS = 2000L,
nT = 10L,
nD = 5000L,
q = 0.20,
printBar = FALSE,
printDetail = FALSE)
```

```r
system.time(res2 <- TAopt(OF, algo, data))
```

<table>
<thead>
<tr>
<th>user</th>
<th>system</th>
<th>elapsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.173</td>
<td>0.561</td>
<td>0.817</td>
</tr>
</tbody>
</table>

```r
100*sqrt(crossprod(fundData %*% res2$xbest$w)/ns)
```

[,1]
[1,] 0.33653

This should be faster, and we arrive at the same solution as before.

1.3 Redundant assets

We duplicate the last column of `fundData`.

```r
fundData <- cbind(fundData, fundData[, 200L])
```

Thus, while the dimension increases, the column rank stays unchanged.

```r
dim(fundData)
```

[1] 500 201

```r
qr(fundData)$rank
```

[1] 200

```r
qr(cov(fundData))$rank
```

[1] 200

Checking the weight of the last asset (which was zero), we know that the solution to our model must be unchanged, too.

```r
if (require("quadprog", quietly = TRUE))
wqp[200L]
```

[1] 2.0755e-17

We redo our example.
But a number of QP solvers have problems with such cases.

```r
if (require("quadprog", quietly = TRUE)) {
  covMatrix <- crossprod(fundData)
  A <- rep(1, na); a <- 1
  B <- rbind(-diag(na), diag(na))
  b <- rbind(array(-data$wsup, dim = c(na, 1L)),
              array(data$winf, dim = c(na, 1L)))
  try(result <- solve.QP(Dmat = covMatrix,
                         dvec = rep(0, na),
                         Amat = t(rbind(A, B)),
                         bvec = rbind(a, b),
                         meq = 1L))
}
```

> Error in solve.QP(Dmat = covMatrix, dvec = rep(0, na), Amat = t(rbind(A, B)),
>
> matrix D in quadratic function is not positive definite!

But TA can handle this case.

```r
w0 <- runif(data$na); w0 <- w0/sum(w0)
x0 <- list(w = w0, Rw = fundData %*% w0)
algo <- list(x0 = x0,
             neighbour = neighbourU,
             nS = 2000L,
             nT = 10L,
             nD = 5000L,
             q = 0.20,
             printBar = FALSE,
             printDetail = FALSE)

system.time(res3 <- TAopt(OF, algo, data))
```

> user system elapsed
> 1.136 0.555 0.753

> 100*sqrt(crossprod(fundData %*% res3$xbest$w)/ns)

> [,1]
> [1,] 0.33671

Final check: weights for asset 200 and its twin, asset 201.

```r
> res3$xbest$w[200:201]
```

> [1] 0 0

See Gilli et al. [2011, Section 13.2.5] for a discussion of rank-deficiency and its (computational and empirical) consequences for such problems.

References