Repairing solutions
Enrico Schumann
es@enricoschumann.net

1 Introduction

There are several approaches for including constraints into heuristics; see Chapter 12 of [Gilli et al. 2011]. The notes in this vignette give examples for simple repair mechanisms. These can be called in DEopt, GAopt and PSopt through the repair function; in LSopt/TAopt, they could be included in the neighbourhood function.

```r
> set.seed(112233)
> options(digits = 3)
```

2 Upper and lower limits

Suppose the solution \(x \) is to satisfy \(\text{all}(x >= \text{lo}) \) and \(\text{all}(x <= \text{up}) \), with \(\text{lo} \) and \(\text{up} \) being vectors of length(\(x \)).

2.1 Setting values to the boundaries

One strategy is to replace elements of \(x \) that violate a constraint with the boundary value. Such a repair function can be implemented very concisely. An example:

```r
> up <- rep(1, 4L)
> lo <- rep(0, 4L)
> x <- rnorm(4L)
> x
[1] 2.127 -0.380 0.167 1.600

Three of the elements of \( x \) actually violate the constraints.

```r
> repair1a <- function(x, up, lo)
 pmin(up, pmax(lo, x))
> x
[1] 2.127 -0.380 0.167 1.000
```

We see that indeed all values greater than 1 are replaced with 1, and those smaller than 0 become 0. Two other possibilities that achieve the same result:

```r
> repair1b <- function(x, up, lo) {
 ii <- x > up
 x[ii] <- up[ii]
 ii <- x < lo
 x[ii] <- lo[ii]
}
> repair1a(x, up, lo)
[1] 1.000 0.000 0.167 1.000
```
\begin{verbatim}
x
}\}
\end{verbatim}

The function \texttt{repair1b} uses comparisons to replace only the relevant elements in \texttt{x}. The function \texttt{repair1c} uses the 'trick' that
\begin{align*}
\text{pmax}(x, y) &= \frac{x + y}{2} + \frac{|x - y|}{2}, \\
\text{pmin}(x, y) &= \frac{x + y}{2} - \frac{|x - y|}{2}.
\end{align*}

\begin{verbatim}
> repair1a(x, up, lo)
[1] 1.000 0.000 0.167 1.000

> repair1b(x, up, lo)
[1] 1.000 0.000 0.167 1.000

> repair1c(x, up, lo)
[1] 1.000 0.000 0.167 1.000

> trials <- 5000L
> strials <- seq_len(trials)
> system.time(for(i in strials) y1 <- repair1a(x, up, lo))
user  system elapsed
0.041 0.001 0.043

> system.time(for(i in strials) y2 <- repair1b(x, up, lo))
user  system elapsed
0.011 0.000 0.011

> system.time(for(i in strials) y3 <- repair1c(x, up, lo))
user  system elapsed
0.010 0.000 0.011
\end{verbatim}

The third of these functions would also work on matrices if \texttt{up} or \texttt{lo} were scalars.

\begin{verbatim}
> X <- array(rnorm(25L), dim = c(5L, 5L))
> X
[1,] 0.1962 0.434 -2.155 -1.5881 -1.029
[2,] 0.2284 1.231  0.975  0.0682  1.818
[3,] -1.1492 0.580 -0.711 -0.4457 -1.315
[4,] -0.0712 0.246  0.628  1.4662  0.511
[5,] -0.5619 0.388 -0.136 -0.8412  1.337
\end{verbatim}

2
The speedup comes at a price, of course, since there is no checking (eg, for NA values) in \texttt{repair1b} and \texttt{repair1c}. We could also define new functions \texttt{pmin2} and \texttt{pmax2}.

\begin{verbatim}
> pmax2 <- function(x1, x2)
  ((x1 + x2) + abs(x1 - x2)) / 2
> pmin2 <- function(x1, x2)
  ((x1 + x2) - abs(x1 - x2)) / 2
\end{verbatim}

A test follows.

\begin{verbatim}
> x1 <- rnorm(100L)
> x2 <- rnorm(100L)
> t1 <- system.time(for (i in strials) z1 <- pmax(x1,x2) )
> t2 <- system.time(for (i in strials) z2 <- pmax2(x1,x2))
> t1[[3L]]/t2[[3L]] ## speedup
[1] 2.67
> all.equal(z1, z2)
[1] TRUE
\end{verbatim}

\begin{verbatim}
> t1 <- system.time(for (i in strials) z1 <- pmin(x1,x2) )
> t2 <- system.time(for (i in strials) z2 <- pmin2(x1,x2))
> t1[[3L]]/t2[[3L]] ## speedup
[1] 2.89
> all.equal(z1, z2)
[1] TRUE
\end{verbatim}

One downside of this repair mechanism is that a solution may quickly become stuck at the boundaries (but of course, in some cases this is exactly what we want).

### 2.2 Reflecting values into the feasible range

The function \texttt{repair2} reflects a value that is too large or too small around the boundary. It restricts the change in a variable \(x[i]\) to the range \(up[i] - lo[i]\).

\begin{verbatim}
> repair2 <- function(x, up, lo) {
  done <- TRUE
  e <- sum(x - up + abs(x - up) + lo - x + abs(lo - x))
  if (e > 1e-12)
    done <- FALSE
  r <- up - lo
  while (!done) {
    e <- sum(x - up + abs(x - up) + lo - x + abs(lo - x))
    if (e > 1e-12)
      done <- FALSE
    r <- up - lo
  }
\end{verbatim}
adjU <- x - up
adjU <- adjU + abs(adjU)
adjU <- adjU + r - abs(adjU - r)

adjL <- lo - x
adjL <- adjL + abs(adjL)
adjL <- adjL + r - abs(adjL - r)

x <- x - (adjU - adjL)/2
e <- sum(x - up + abs(x - up) + lo - x + abs(lo - x))
if (e < 1e-12)
  done <- TRUE

x

> x
[1] 2.127 -0.380 0.167 1.600

> repair2(x, up, lo)
[1] 0.873 0.380 0.167 0.600

> system.time(for (i in strials) y4 <- repair2(x,up,lo))
user  system elapsed
0.031  0.000  0.031

2.3 Adjusting a cardinality limit

Let x be a logical vector.

> T <- 20L
> x <- logical(T)
> x[runif(T) < 0.4] <- TRUE
> x

[1] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[12] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

Suppose we want to impose a minimum and maximum cardinality, kmin and kmax.

> kmax <- 5L
> kmin <- 3L

We could use an approach like the following (for the definition of resample, see ?sample):

> resample <- function(x, ...) x[sample.int(length(x), ...)]
> repairK <- function(x, kmax, kmin) {
  sx <- sum(x)
  if (sx > kmax) {
    i <- resample(which(x), sx - kmax)
    x[i] <- FALSE
  } else if (sx < kmin) {
    i <- resample(which(!x), kmin - sx)
  } else {
    x
  }
}

> repairK(x, kmax, kmin)
[1] FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[12] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
> printK <- function(x)
> cat(paste(ifelse(x, "o", "."), collapse = ""),
> "-- cardinality", sum(x), "\n")

For kmax:
> for (i in 1:10) {
> if (i==1L) printK(x)
> x1 <- repairK(x, kmax, kmin)
> printK(x1)
> }

For kmin:
> x <- logical(T); x[10L] <- TRUE
> for (i in 1:10) {
> if (i==1L) printK(x)
> x1 <- repairK(x, kmax, kmin)
> printK(x1)
> }

References