1 Introduction

There are several approaches for including constraints into heuristics; see Chapter 12 of Gilli et al. [2011]. The notes in this vignette give examples for simple repair mechanisms. These can be called in DEopt, GAopt and PSopt through the repair function; in LSopt/TAopt, they could be included in the neighbourhood function.

```r
> set.seed(112233)
> options(digits = 3)
```

2 Upper and lower limits

Suppose the solution \(x \) is to satisfy \(\text{all}(x \geq lo) \) and \(\text{all}(x \leq up) \), with \(lo \) and \(up \) being vectors of length(\(x \)).

2.1 Setting values to the boundaries

One strategy is to replace elements of \(x \) that violate a constraint with the boundary value. Such a repair function can be implemented very concisely. An example:

```r
> up <- rep(1, 4L)
> lo <- rep(0, 4L)
> x <- rnorm(4L)
> x
[1] 2.127 -0.380 0.167 1.600

Three of the elements of \( x \) actually violate the constraints.

```r
> repair1a <- function(x, up, lo) pmin(up, pmax(lo, x))
```

```r
> x
[1] 2.127 -0.380 0.167 1.600

We see that indeed all values greater than 1 are replaced with 1, and those smaller than 0 become 0. Two other possibilities that achieve the same result:

```r
> repair1b <- function(x, up, lo) {
  ii <- x > up
  x[ii] <- up[ii]
  ii <- x < lo
  x[ii] <- lo[ii]
}
> repair1b(x, up, lo)
[1] 1.000 0.000 0.167 1.000
```
\[
x
\]

\[
> \text{repair1c} \leftarrow \text{function(x, up, lo) \{}
> \quad \text{xadjU} \leftarrow x - \text{up}
> \quad \text{xadjU} \leftarrow \text{xadjU} + \text{abs(xadjU)}
> \quad \text{xadjL} \leftarrow \text{lo} - x
> \quad \text{xadjL} \leftarrow \text{xadjL} + \text{abs(xadjL)}
> \quad x = (\text{xadjU} - \text{xadjL})/2
> \}}
\]

The function repair1b uses comparisons to replace only the relevant elements in \(x\). The function repair1c uses the ‘trick’ that

\[
\begin{align*}
\text{pmax}(x, y) &= \frac{x+y}{2} + \frac{|x-y|}{2}, \\
\text{pmin}(x, y) &= \frac{x+y}{2} - \frac{|x-y|}{2}.
\end{align*}
\]

\[
> \text{repair1a(x, up, lo)}
\]

\[
[1,] 1.000 0.000 0.167 1.000
\]

\[
> \text{repair1b(x, up, lo)}
\]

\[
[1,] 1.000 0.000 0.167 1.000
\]

\[
> \text{repair1c(x, up, lo)}
\]

\[
[1,] 1.000 0.000 0.167 1.000
\]

\[
> \text{trials} \leftarrow 5000L
> \text{strials} \leftarrow \text{seq_len(trials)}
> \text{system.time(for(i in strials) y1} \leftarrow \text{repair1a(x, up, lo)}
\]

\[
\begin{array}{lll}
\text{user} & \text{system} & \text{elapsed} \\
0.049 & 0.000 & 0.050
\end{array}
\]

\[
> \text{system.time(for(i in strials) y2} \leftarrow \text{repair1b(x, up, lo)}
\]

\[
\begin{array}{lll}
\text{user} & \text{system} & \text{elapsed} \\
0.013 & 0.000 & 0.013
\end{array}
\]

\[
> \text{system.time(for(i in strials) y3} \leftarrow \text{repair1c(x, up, lo)}
\]

\[
\begin{array}{lll}
\text{user} & \text{system} & \text{elapsed} \\
0.013 & 0.000 & 0.013
\end{array}
\]

The third of these functions would also work on matrices if \(up\) or \(lo\) were scalars.

\[
> X \leftarrow \text{array(rnorm(25L), dim = c(5L, 5L))}
> X
\]

\[
\begin{array}{c}
\begin{array}{cccccc}
[1,] & [2,] & [3,] & [4,] & [5,] \\
[1,] & 0.1962 & 0.434 & -2.155 & -1.5881 & -1.029 \\
[2,] & 0.2284 & 1.231 & 0.975 & 0.0682 & 1.818 \\
[3,] & -1.1492 & 0.580 & -0.711 & -0.4457 & -1.315 \\
[4,] & -0.0712 & 0.246 & 0.628 & 1.4662 & 0.511 \\
[5,] & -0.5619 & 0.388 & -0.136 & -0.8412 & 1.337
\end{array}
\end{array}
\]
The speedup comes at a price, of course, since there is no checking (e.g., for NA values) in repair1b and repair1c. We could also define new functions pmin2 and pmax2.

```r
> pmax2 <- function(x1, x2) ((x1 + x2) + abs(x1 - x2)) / 2
> pmin2 <- function(x1, x2) ((x1 + x2) - abs(x1 - x2)) / 2
```

A test follows.

```r
> x1 <- rnorm(100L)
> x2 <- rnorm(100L)
> t1 <- system.time(for (i in strials) z1 <- pmax(x1,x2) )
> t2 <- system.time(for (i in strials) z2 <- pmax2(x1,x2))
> t1[[3L]]/t2[[3L]] ## speedup
[1] 2.91
> all.equal(z1, z2)
[1] TRUE
```

```r
> t1 <- system.time(for (i in strials) z1 <- pmin(x1,x2) )
> t2 <- system.time(for (i in strials) z2 <- pmin2(x1,x2))
> t1[[3L]]/t2[[3L]] ## speedup
[1] 2.8
> all.equal(z1, z2)
[1] TRUE
```

One downside of this repair mechanism is that a solution may quickly become stuck at the boundaries (but of course, in some cases this is exactly what we want).

2.2 Reflecting values into the feasible range

The function `repair2` reflects a value that is too large or too small around the boundary. It restricts the change in a variable `x[i]` to the range `up[i] - lo[i].`

```r
> repair2 <- function(x, up, lo) {
    done <- TRUE
    e <- sum(x - up + abs(x - up) + lo - x + abs(lo - x))
    if (e > 1e-12)
        done <- FALSE
    r <- up - lo
    while (!done) {
```
adjU <- x - up
adjU <- adjU + abs(adjU)
adjU <- adjU + r - abs(adjU - r)

adjL <- lo - x
adjL <- adjL + abs(adjL)
adjL <- adjL + r - abs(adjL - r)

x <- x - (adjU - adjL)/2
e <- sum(x - up + abs(x - up) + lo - x + abs(lo - x))
if (e < 1e-12)
 done <- TRUE

2.3 Adjusting a cardinality limit
Let x be a logical vector.

T <- 20L
x <- logical(T)
x[runif(T) < 0.4] <- TRUE

Suppose we want to impose a minimum and maximum cardinality, kmin and kmax.

kmax <- 5L
kmin <- 3L

We could use an approach like the following (for the definition of resample, see ?sample):

resample <- function(x, ...) x[sample.int(length(x), ...)]

repairK <- function(x, kmax, kmin) {
sx <- sum(x)
 if (sx > kmax) {
 i <- resample(which(x), sx - kmax)
x[i] <- FALSE
 } else if (sx < kmin) {
 i <- resample(which(!x), kmin - sx)

4
x[i] <- TRUE
}
x
>
> printK <- function(x)
> cat(paste(ifelse(x, "o", "."), collapse = ""),
> "-- cardinality", sum(x), "\n")

For kmax:
>
for (i in 1:10) {
 if (i==1L) printK(x)
 x1 <- repairK(x, kmax, kmin)
 printK(x1)
}

.oo.oo. oo...oo o. -- cardinality 8
.oo.oo.o oo....oo o. -- cardinality 5
.o...oo oo...oo o. -- cardinality 5
.oo.oo.. oo++++oo o. -- cardinality 5
.o....oo oo+++oo o. -- cardinality 5
.o..oo oo++++oo o. -- cardinality 5
.o oo oo++++oo o. -- cardinality 5
.o oo oo++++oo o. -- cardinality 5
.o oo oo+++oo o. -- cardinality 5
.o oo oo+++oo o. -- cardinality 5

For kmin:
>
> x <- logical(T); x[10L] <- TRUE
> for (i in 1:10) {
 if (i==1L) printK(x)
 x1 <- repairK(x, kmax, kmin)
 printK(x1)
}

........oo........ oo... o. -- cardinality 1
...oo...oo ooo oo... o. -- cardinality 3
........oo oo ooo oo... o. -- cardinality 3
...oo oo ooo oo ooo oo... o -- cardinality 3
...oo oo ooo oo ooo oo ooo oo... o -- cardinality 3
...oo oo ooo oo ooo oo ooo oo ooo oo... o -- cardinality 3
...oo oo ooo oo ooo oo ooo oo ooo oo ooo oo... o -- cardinality 3

References