Package ‘NNMIS’

October 18, 2017

Type Package
Title Nearest Neighbor Based Multiple Imputation for Survival Data
 with Missing Covariates
Version 1.0.0
Date 2017-10-17
Author Di Ran, Chiu-Hsieh Hsu, Mandi Yu
Maintainer Paul Hsu <pablo1639@gmail.com>
License LGPL (>= 2)
Depends R (>= 2.14.0)
Imports stats, graphics, parallel, survival
LazyData TRUE
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-10-18 13:08:54 UTC

R topics documented:

 coxph.pool .. 2
 km.pool .. 3
 nnmi ... 4
 NNMIS ... 5
 plotKM ... 8
 print.nnmi ... 9

Index 10
Estimate Cox regression model pooling over the imputed datasets

Description
This function estimates Cox regression model, taking into account the additional uncertainty that arises due to a finite number of imputations of the missing data.

Usage
```r
coxph.pool(obj, time, status, Z, forceNumeric = FALSE, setRef = NULL)
```

Arguments
- `obj`: A `nnmi` object, that contains a finite number of imputations of the missing data.
- `time`: A vector contains the observed time.
- `status`: A vector contains the event indicator.
- `Z`: A vector or matrix that contains other covariates.
- `forceNumeric`: Logical, if it is True, the class of imputed variable will force to be numeric. The default is FALSE.
- `setRef`: Optional, a reference group can be set for binary or categorical variable.

Value
A data frame contains pooled estimation of Cox regression model.

Examples
```r
# load required packages
library(NNMISS)
library(survival)

# load data set - stanford2 in package 'survival'
data("stanford2")
head(stanford2)
attach(stanford2)

# performance multiple imputation on missing covariate t5
imp.dat <- NNMISS(t5, xa=age, xb=age, time=time, event=status, Seed = 1234)

# this program can impute survival times for censored observations based
# on the imputed missing covariate values

## Not run:
imp.dat <- NNMISS(t5, xa=age, xb=age, time=time, event=status, imputeCT=TRUE, Seed = 1234)
#check imputation results
```
Perform Kaplan-Meier estimation over the multiply imputed survival data sets

Description

This function estimates Kaplan-Meier estimates based on Rubin’s rules (multiple imputation algorithms) (Rubin, 2004).

Usage

km.pool(obj, time, status)

Arguments

obj A 'nnmi' object, that contains imputed data for the missing covariate and the censored observations.
time A vector contains the observed time.
status A vector contains the event indicator.

Value

A data frame contains pooled Kaplan-Meier estimates.

References

Examples

```r
# load required packages
library(nnmi)
library(survival)

# load data set - stanford2 in package 'survival'
data("stanford2")
head(stanford2)
attach(stanford2)

# performance multiple imputation on missing covariate t5 and
censored observations based on the imputed missing covariates
imp.dat <- nnmis(t5, xa=age, xb=age, time=time, event=status, imputeCT=TRUE, Seed = 1234)

# check imputation results
head(imp.dat$dat.T.nnmi)

# combine inference from imputed data sets using Rubin's rules
# Kaplan-Meier estimates
kmfit <- km.pool(imp.dat, time, status)
plotKM(kmfit)
```

nnmi

A `nnmi` class

Description

A list-based S3 class for storing imputation results from nearest neighbor based multiple imputation

Usage

`nnmi(dat, ...)`

Arguments

- `dat` a list of imputed data set.
- `...` further arguments passed to or from other methods.

Examples

```r
# load required packages
library(nnmi)
library(survival)

# load data set - stanford2 in package 'survival'
data("stanford2")
head(stanford2)
```
NNMIS

Nearest Neighbor Based Multiple Imputation for Survival Data with Missing Covariates (NNMIS)

Description

This function performs the nearest neighbor based multiple imputation approach proposed by Hsu et al. (2006), Long et al. (2012) and Hsu and Yu (2017) to impute for missing covariates and censored observations (optional). To perform imputation for missing covariates, the approach requires one to fit two working models: one for predicting the missing covariate values and the other for predicting the missing probabilities based on the observed data. The distribution of the working model for predicting the missing covariate values will be automatically decided by the data type of the missing covariate. A logistic regression model will be fitted to predict the missing probabilities. The estimation results of the two working models are then used to select a nearest neighborhood for each missing covariate observation. Once the nearest neighborhood is chosen, multiple imputation is then performed on the neighborhood non-parametrically. The detailed procedures can be found in Long et al. (2012) and Hsu and Yu (2017). Similarly, to perform imputation for censored observations, one has to fit two working models first: one for predicting the survival time and the other for predicting the censoring time. These two working models are derived using Cox regression. The estimation results of the two working models are then used to select a nearest neighborhood for each censored observation. Once the nearest neighborhood is chosen, multiple imputation is then performed on the neighborhood non-parametrically. The detailed procedures can be found in Hsu et al. (2006).

Note that the current version can only perform imputation for a situation with only one missing covariate. Before you use this package, please check the input covariates matrix to see if there is more than one missing covariate.

Usage

```
NNMIS(y, xa = NULL, xb = NULL, time, event, MI = 10, NN = 5, w1 = 0.8,
    w2 = 0.2, xc = NULL, Seed = NA, imputeCT = FALSE, NN.t = 10,
    mc.cores = 1, verbose = TRUE)
```

Arguments

- **y**
 Can be any vector of covariate, which contains missing values to be imputed. Missing values are coded as NA.
Can be any vector or matrix, which will be used as the covariates along with the estimated cumulative baseline hazard and the observed censoring indicator for the working model of predicting the missing covariate values. Note that no missing values are allowed for this.

Can be any vector or matrix, which will be used as the covariates along with the estimated cumulative baseline hazard and the observed censoring indicator for the working model of predicting the missing probabilities. Note that no missing values are allowed for this.

This is the observed time.

This is the censoring indicator, i.e. 0: censored; 1: event.

Number of imputation. The default is MI=10.

Size of the nearest neighborhood considered for imputing missing covariate. Default is NN=5.

Weight will be used in the working model of predicting the missing covariate values. The default is w1=0.8.

Weight will be used in the working model of predicting the missing probabilities. The default is w2=0.2.

Can be any vector or matrix, which will be used as the covariates along with the estimated cumulative baseline hazard and the observed censoring indicator for the working model of imputing survival times for censored observations.

An integer that is used as argument by the set.seed() for offsetting the random number generator. Default is to leave the random number generator alone.

Logical. If TRUE, survival times for censored observations will be imputed and exported as part of output. (optional)

Size of the nearest neighborhood considered for imputing survival times for each censored observation. Default is NN,t=10.

Number of cpu cores to be used. This option depends on package "parallel". The default is mc.cores=1.

If True, print messages.

An object of class "nnmi" is a list containing parameters used in multiple imputation and all outputs.

Number of observations.

Number of imputation.

Size of the nearest neighborhood considered for imputing missing covariate.

Weight in the working model for predicting the missing covariate values/survival times.

Weight in the working model for predicting the missing probabilities/censoring times.

Distribution family used in the working model for predicting the missing covariate values.
NNMIS

\begin{verbatim}
imputeCT Logical, whether to impute survival times for censored observations or not.
dat.NNMI data frame containing imputed missing covariate values.
dat.T.NNMI data frame containing imputed survival times.
dat.Id.NNMI data frame containing censoring indicator.
\end{verbatim}

References

Long Q, Hsu CH, Li Y. Doubly robust nonparametric multiple imputation for ignorable missing data. *Statistica Sinica* 2012; **22**: 149-172.

Examples

```r
# load required packages
library(NNMIS)
library(survival)

# load data set - stanford2 in package 'survival'
data("stanford2")
head(stanford2)
attach(stanford2)

# performance multiple imputation on missing covariate t5
imp.dat <- NNMIS(t5, xa=age, xb=age, time=time, event=status, Seed = 1234, mc.core=1)

# check imputation results
head(imp.dat$dat.NNMI)

# this program can impute survival times for censored observations based
# on the imputed missing covariate values

## Not run:
imp.dat <- NNMIS(t5, xa=age, xb=age, time=time, event=status, imputeCT=TRUE, Seed = 1234)
# check imputation results
head(imp.dat$dat.NNMI)  # imputed missing covariate values
head(imp.dat$dat.T.NNMI)  # imputed survival times
head(imp.dat$dat.Id.NNMI)  # censoring indicator

## End(Not run)
```
plotKM

Plot function for pooled Kaplan-Meier estimates

Description

A plot of survival curves is produced.

Usage

plotKM(x, ...)

Arguments

x a data.frame contains pooled estimates of survival function generated from function 'km.pool'.

... further arguments passed to 'plot' function

See Also

km.pool

Examples

load required packages
library(NNMI)
library(survival)

load data set - stanford2 in package 'survival'
data("stanford2")
head(stanford2)
attach(stanford2)

performance multiple imputation on missing covariate t5 and
censored observations based on the imputed missing covariates
imp.dat <- NNMI(t5, xa=age, xb=age, time=time, event=status, imputeCT=TRUE, Seed = 1234)

check imputation results
head(imp.dat$dat.T.NNMI)

combine inference from imputed data sets using Rubin's rules
Kaplan-Meier estimates
kmfit <- km.pool(imp.dat, time, status)

Kaplan-Meier plot with pooled estimates
plotKM(kmfit)
Description

print basic information for an object of class 'nnmi'

Usage

S3 method for class 'nnmi'
print(x, ...)

Arguments

x
a 'nnmi' object
...
 further arguments passed to function

Examples

load required packages
library(NNemIS)
library(survival)

load data set - stanford2 in package 'survival'
data("stanford2")
head(stanford2)
attach(stanford2)

performance multiple imputation on missing covariate t5
imp.dat <- NNemIS(t5, xa=age, xb=age, time=time, event=status, Seed = 1234, mc.core=1)

print
imp.dat
Index

coxph.pool, 2
km.pool, 3
nnmi, 4
NNMIS, 5
plotKM, 8
print.nnmi, 9