NScluster: Simulation and Estimation of the Neyman-Scott Type Spatial Cluster Models

Simulation and estimation for Neyman-Scott spatial cluster point process models and their extensions, based on the methodology in Tanaka, Ogata, and Stoyan (2008) <doi:10.1002/bimj.200610339>. To estimate parameters by the simplex method, parallel computation using 'OpenMP' application programming interface is available. For more details see Tanaka, Saga and Nakano <doi:10.18637/jss.v098.i06>.

Version: 1.3.5
Depends: R (≥ 3.0.0)
Imports: graphics
Published: 2021-05-28
Author: Ushio Tanaka [aut] (Fortran original), Masami Saga [aut, cre], Junji Nakano [aut]
Maintainer: Masami Saga <msaga at mtb.biglobe.ne.jp>
MailingList: Please send bug reports to ismrp@jasp.ism.ac.jp
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Copyright: see file COPYRIGHTS
NeedsCompilation: yes
Citation: NScluster citation info
CRAN checks: NScluster results

Downloads:

Reference manual: NScluster.pdf
Vignettes: A Guide to NScluster
Package source: NScluster_1.3.5.tar.gz
Windows binaries: r-devel: NScluster_1.3.5.zip, r-devel-UCRT: NScluster_1.3.5.zip, r-release: NScluster_1.3.5.zip, r-oldrel: NScluster_1.3.5.zip
macOS binaries: r-release (arm64): NScluster_1.3.5.tgz, r-release (x86_64): NScluster_1.3.5.tgz, r-oldrel: NScluster_1.3.5.tgz
Old sources: NScluster archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=NScluster to link to this page.