Package ‘NetOrigin’

January 20, 2022

Title Origin Estimation for Propagation Processes on Complex Networks

Description Performs network-based source estimation. Different approaches are available: effective distance median (Manitz et al., 2014; <doi:10.1371/currents.outbreaks.f3fdeb08c5b9de7e09ed9cbcef5f01f2>), recursive backtracking (Manitz et al., 2016; <doi:10.1111/rssc.12176>), and centrality-based source estimation (Li et al., 2021; <doi:10.1371/journal.pcbi.1008545>). Additionally, we provide public transportation network data as well as methods for data preparation, source estimation performance analysis and visualization.

Version 1.1-4

Depends R (>= 3.2.2)

Imports igraph, Hmisc, colorspace, mvtnorm, corpcor, plyr

License GPL-3

LazyData true

RoxygenNote 7.1.2

Collate '0_helper_net.r' 'NetOrigin.r' 'compute_mu_lambda.R'
 'origin_helper.r' 'origin_methods.r' 'distance.r' 'data.r'
 'data_handling.r' 'initial_condition_sib_model.R'
 'robustness.r' 'stochastic_sib_model.R'

NeedsCompilation no

Author Juliane Manitz [aut, cre],
 Jonas Harbering [ctb],
 Jun Li [ctb]

Maintainer Juliane Manitz <r@manitz.org>

Repository CRAN

URL https://netorigin.manitz.org/

BugReports https://github.com/jmanitz/NetOrigin/issues

Date/Publication 2022-01-20 08:32:42 UTC
R topics documented:

- `aggr_data` .. 2
- `analyze_ptn` .. 3
- `compute_mu_lambda` ... 4
- `delay-data` .. 5
- `eff_dist` ... 6
- `initial_condition_sib_model` 8
- `NetOrigin` ... 9
- `origin` .. 10
- `origin-methods` ... 13
- `origin_multiple` ... 15
- `performance` .. 16
- `plot_performance` .. 16
- `plot_ptn` ... 17
- `ptn-data` ... 18
- `read_DB_data` .. 20
- `robustness` ... 20
- `robustness-methods` ... 22
- `stochastic_sib_model` 23
- `var_wtd_mean_cochran` 25

Index .. 26

`aggr_data`
convert individual event information to aggregated information per network node

Description

convert individual event information to aggregated information per network node

Usage

`aggr_data(dat, from = NULL, cumsum = TRUE)`

Arguments

- `dat`
data.frame with variables 'node', 'time', 'delay', events data with single events with count magnitude
- `from`
character in `strptime` format, e.g. "2014-06-12 16:15", data is subsetted accordingly before aggregation
- `cumsum`
logical indicating whether data is aggregated by cumulative sum, default is TRUE
Value

data.frame of dimension (TxK), where T is the number of observation times and K the number of network nodes. Thus, each row represents a snapshot of the spreading process at a specific observation time with the event magnitude observed at the network nodes. Rownames are observation times, colnames are node names.

See Also

Other data_handling: read_DB_data()

analyze_ptn

analyze public transportation network characteristics

Description

analyze public transportation network characteristics

Usage

analyze_ptn(g)

Arguments

g igraph object, network graph representing the public transportation network, vertices represent stations, which are linked by an edge if there is a direct transfer between them

Value

'data.frame': 1 obs. of 7 variables:

- `vcount` number of nodes,
- `ecount` number of edges,
- `density` network graph density,
- `av_deg` average degree,
- `av_cent` average unit betweenness,
- `diam` diameter, and
- `trans` transitivity.

References

Details to the computation and interpretation can be found in:

compute_mu_lambda

Compute Mu and Lambda for Source Detection Function

Description

compute_mu_lambda computes 'mu' and 'lambda' from training data and selected observers, for Gaussian source estimation with prior information.

Usage

compute_mu_lambda(train.data, obs.vec, candidate.thres)

Arguments

train.data
 training data for 'mu' and 'lambda' list computation format-list, length-number of cities/nodes format of train.data[i]-number of simulated scenarios x number of cities/nodes, each entry is minimum arrival time

obs.vec
 list of cities ids used as observers

candidate.thres
 threshold to determine if a node/city could be a candidate for source e.g. if we set this number to be 0.2, if in [x] simulated scenarios, there are only 10 percent scenarios a node [a] is infected, we do not think [a] is a potential source

Value

a list, consisting of 3 variables: mu.mat, lambda.list, poss.candidate.vec

mu.mat: matrix- number of cities/nodes x number of observers, each row represents- if this node is the source, the mean of arrival time vector

lambda.list: a length-number of cities/nodes list, each element is a number of observers x number of observers matrix- if a node is the source, the covariance matrix for arrival time vector

poss.candidate.vec: a boolean vector indicating if a node has the potential to be the source

Author(s)

Jun Li

See Also

Other network helper: plot_ptn()
delay-data

References

Examples

```r
# fake training data, indicating format
nnodes <- 851
max.day <- 1312
nsimu <- 20
train.data.fake <- list()
for (j in 1:nnodes) {
  train.data.fake[[j]] <- matrix(sample.int(max.day,
    size = nsimu*nnodes, replace = TRUE), nrow = nsimu, ncol = nnodes)
}
obs.vec <- (1:9)
candidate.thres <- 0.3
mu.lambda.list <- compute_mu_lambda(train.data.fake, obs.vec, candidate.thres)
```

delay-data

Delay propagation data examples simulated by LinTim software

Description

Delay propagation data examples simulated by LinTim software

delayAth Delay propagation data generated on the Athens metro network by LinTim software
delayGoe Delay propagation data generated on the Goettingen bus system by LinTim software

Details

delayAth Delay data on the Athens metro network. Propagation simulation under consideration of security distances and fixed-waiting time delay management. ‘data.frame’ with 510 observations (10 sequential time pictures for delay spreading pattern from 51 stations) of 53 variables (k0 true source, time, delays at 51 stations).
delayGoe Delay data on the directed Goettingen bus system. Propagation simulation under consideration of security distances and fixed-waiting time delay management. ‘data.frame’ with 2570 observations (10 sequential time pictures for delay spreading pattern from 257 stations) of 259 variables (k0 true source, time, delays at 257 stations).

Author(s)

Jonas Harbering
Source

References

See Also

ptn-data

Examples

```r
# compute effective distance
data(ptnAth)
athnet <- igraph::as_adjacency_matrix(ptnAth, sparse=FALSE)
p <- athnet/rowSums(athnet)
eff <- eff_dist(p)
# apply source estimation
data(delayAth)
res <- plyr::.alply(.data=delayAth[-c(1:2)], .margins=1, .fun=origin edm, distance=eff,
    silent=TRUE, .progress='text')
perfAth <- plyr::.ldply(Map(performance, x = res, start = as.list(delayAth$k0),
    list(graph = ptnAth)))

# compute effective distance
data(ptnGoe)
goenet <- igraph::as_adjacency_matrix(ptnGoe, sparse=FALSE)
p <- goenet/rowSums(goenet)
eff <- eff_dist(p)
# apply source estimation
data(delayGoe)
res <- plyr::.alply(.data=delayGoe[-c(1:2)], .margins=1, .fun=origin edm, distance=eff,
    silent=TRUE, .progress='text')
perfGoe <- plyr::.ldply(Map(performance, x = res, start = as.list(delayGoe$k0),
    list(graph = ptnGoe)))
```

eff_dist **Computation of effective path distance**

description

eff_dist computes the effective distance between all nodes in the network.
Usage

```r
eff_dist(p)
eff_dijkstra(p, start)
spd_dijkstra(p, start)
```

Arguments

- `p`: numeric matrix, representing the transition probability matrix for the network graph.
- `start`: start of path.

Value

A numeric matrix, representing the effective distance between all nodes in the network graph.

References

Examples

```r
# compute effective shortest path distance
data(ptnAth)
require(igraph)
net <- igraph::as_adjacency_matrix(ptnAth, sparse=FALSE)
p <- net/rowSums(net)
eff <- eff_dist(p)

# compute shortest path distance
data(ptnAth)
athnet <- as_adj(ptnAth, sparse=FALSE)
spd <- spd_dijkstra(athnet, start=1)

# compare calculations with the one from igraph
spd_igraph <- igraph::distances(ptnAth, v=1, algorithm='dijkstra')
all(spd[[1]] == spd_igraph)
```
initial_condition_sib_model

Provide Initial Condition for Function SIB_SS

Description

initial_condition_sib_model Compute Initial Condition for Function SIB SS

Usage

initial_condition_sib_model(
 POP_node,
 sigma,
 mu_B,
 theta,
 node_in,
 in_prevalence = 0.001
)

Arguments

POP_node vector, length represents number of cities/nodes; vector represents population at each node

sigma symptomatic ratio, i.e., fraction of infected people that develop symptoms and are infective. (The remaining fraction enters directly the recovered compartment.)

mu_B death rate of V.cholerae in the aquatic environment (day^-1)

theta contamination rate

node_in index/indices for initial infected node(s)

in_prevalence initial prevalence of symptomatic infected in a node, default is 0.1%

Value

a 5 x number of nodes matrix, each row represents the following for all the nodes: Row 1: number of susceptible people, i.e., population except infected and recovered for each node; Row 2: number of infected people; Row 3: number of recovered people; Row 4: bacteria concentration in equilibrium with infected individuals; Row 2: number of infected people, but representing cumulative cases

Author(s)

Jun Li
Examples

```r
set.seed(2020)
popu <- rep(20000, 10)
sigma <- 0.05
mu_B <- 0.2
theta_max <- 16
theta <- runif(10, 0.1, 0.9) * theta_max
y0 <- initial_condition_sib_model(popu, sigma, mu_B, theta, c(3))
```

Description

Performs different approaches for network-based source estimation: effective distance median, recursive backtracking, and centrality-based source estimation. Additionally, we provide public transportation network data as well as methods for data preparation, source estimation performance analysis and visualization.

Details

The main function for origin estimation of propagation processes on complex network is `origin`. Different methods are available: effective distance median (`'edm'`), recursive backtracking (`'backtracking'`), and centrality-based source estimation (`'centrality'`). For more details on the methodological background, we refer to the corresponding publications.

Author(s)

Juliane Manitz with contributions by Jonas Harbering

References

Origin Estimation for Propagation Processes on Complex Networks

Description

This is the main function for origin estimation for propagation processes on complex networks. Different methods are available: effective distance median ('edm'), recursive backtracking ('backtracking'), and centrality-based source estimation ('centrality'). For details on the methodological background, we refer to the corresponding publications.

origin_edm for effective distance-median origin estimation (Manitz et al., 2016)

Usage

origin(events, type = c("edm", "backtracking", "centrality", "bayesian"), ...)

origin_edm(events, distance, silent = TRUE)

origin_backtracking(events, graph, start_with_event_node = TRUE, silent = TRUE)

origin_centrality(events, graph, silent = TRUE)

origin_bayesian(
 events,
 thres.vec,
 obs.vec,
 mu.mat,
 lambda.list,
 poss.candidate.vec,
 prior,
 use.prior = TRUE
)

Arguments

events numeric vector of event counts at a specific time point; if type is 'bayesian', 'events' is a matrix, number of nodes x time points; entries represent number of cases

type character specifying the method, 'edm', 'backtracking', 'centrality' and 'bayesian' are available.

... parameters to be passed to origin methods origin_edm, origin_backtracking, origin_centrality or origin_centrality
distance numeric matrix specifying the distance matrix (for type='edm')
silent logical, should the messages be suppressed?

type character specifying the method, 'edm', 'backtracking', 'centrality' and 'bayesian' are available.

... parameters to be passed to origin methods origin_edm, origin_backtracking, origin_centrality or origin_centrality
start_with_event_node

logical specifying whether backtracking only starts from nodes that experienced events (for type='backtracking')

thres.vec vector, length represents number of cities/nodes, representing thresholds for cities/nodes that they are infected

obs.vec list of cities ids used as observers

mu.mat matrix- number of cities/nodes x number of observers, each row represents - if this node is the source, the mean of arrival time vector

lambda.list a length-number of cities/nodes list, each element is a number of observers x number of observers matrix - if a node is the source, the covariance matrix for arrival time vector

poss.candidate.vec a boolean vector indicating if a node has the potential to be the source

prior vector, length - number of cities/nodes, prior for cities

use.prior boolean, TRUE or FALSE, if use prior, default TRUE

Value

origin_edm returns an object of class origin, list with

• est origin estimate
• aux data.frame with auxiliary variables
 – id as node identifier,
 – events for event magnitude,
 – wmean for weighted mean,
 – wvar for weighted variance, and
 – mdist mean distance from a node to all other nodes.
• type = 'edm' effective distance median origin estimation

origin_backtracking returns an object of class origin, list with

• est origin estimate
• aux data.frame with auxiliary variables
 – id as node identifier,
 – events for event magnitude, and
 – bcount for backtracking counts, how often backtracking identifies this source node.
• type = 'backtracking' backtracking origin estimation

origin_centrality returns an object of class origin, list with

• est origin estimate
• aux data.frame with auxiliary variables
 – id as node identifier,
 – events for event magnitude, and
 – cent for node centrality (betweenness divided degree).
• type = 'centrality' centrality-based origin estimation

a dataframe with columns 'nodes' and 'probab', indicating nodes indices and their posteriors
Author(s)

Juliane Manitz with contributions by Jonas Harbering
Jun Li

References

See Also

Other origin-est: origin_multiple()

Examples

data(delayGoe)
compute effective distance
data(ptnGoe)
goenet <- igraph::as_adjacency_matrix(ptnGoe, sparse=FALSE)
p <- goenet/rowSums(goenet)
eff <- eff_dist(p)
apply effective distance median source estimation
om <- origin(events=delayGoe[10,-c(1:2)], type='edm', distance=eff)
summary(om)
plot(om, 'mdist',start=1)
plot(om, 'wvar',start=1)
performance(om, start=1, graph=ptnGoe)

backtracking origin estimation (Manitz et al., 2016)
ob <- origin(events=delayGoe[10,-c(1:2)], type='backtracking', graph=ptnGoe)
summary(ob)
plot(ob, start=1)
performance(ob, start=1, graph=ptnGoe)

centrality-based origin estimation (Comin et al., 2011)
oc <- origin(events=delayGoe[,c(1:2)], type='centrality', graph=ptnGoe)
summary(oc)
plot(oc, start=1)
performance(oc, start=1, graph=ptnGoe)

fake training data, indicating format
nnodes <- 851
max.day <- 1312
nsimu <- 20
max.case.per.day <- 10
train.data.fake <- list()
for (j in 1:nnodes) {
 train.data.fake[[j]] <- matrix(sample.int(max.day, size = nsimu*nnodes, replace = TRUE), nrow = nsimu, ncol = nnodes)
}
obs.vec <- (1:9)
candidate.thres <- 0.3
mu.lambda.list <- compute_mu_lambda(train.data.fake, obs.vec, candidate.thres)
matrix representing number of cases per node per day
cases.node.day <- matrix(sample.int(max.case.per.day, size = nnodes*max.day, replace = TRUE), nrow = nnodes, ncol = max.day)
nodes <- dim(cases.node.day)[1] # number of nodes
fixed threshold for all nodes - 10 infected people
thres.vec <- rep(10, nnodes)
flat/non-informative prior
prior <- rep(1, nnodes)
result2.df <- origin(events = cases.node.day, type = "bayesian", thres.vec = thres.vec, obs.vec = obs.vec, mu.mat=mu.lambda.list$mu.mat, lambda.list = mu.lambda.list$lambda.list, poss.candidate.vec=mu.lambda.list$poss.candidate.vec, prior=prior, use.prior=TRUE)

Description

print produces an output for objects of class origin.

Usage

```r
## S3 method for class 'origin'
print(x, ...)

## S3 method for class 'origin'
summary(object, x = object, ...)
```
S3 method for class 'origin'
plot(x, y = "id", start, ...)

S3 method for class 'origin'
performance(x, start, graph = NULL, ...)

Arguments

- `x` object of class `origin`, origin estimation object from function `origin_xxx`
- `...` further arguments to be passed to default `plot` function
- `object` object of class `origin`, origin estimation object from function `origin_xxx`; passed to `x`
- `y` character specifying the variable being plotted at the y-axis; options are 'id' for node identifier (default), 'mdist' for mean distance (only available for `origin_edm`) or 'wvar' for weighted variance (only available for `origin_edm`)
- `start` numeric, giving the node of the true origin
- `graph` `igraph` object specifying the underlying network graph with attribute 'length' on edges for calculation of distance to the correct origin

Value

`performance.origin` returns a `data.frame` with variables

- `origin = start` representing the true origin,
- `est` the estimated node of origin,
- `hitt` logical indicating whether origin estimation is correct or not,
- `rank` rank of correct detection,
- `spj` number of segments from estimated origin to true origin (requires an `igraph` object),
- `dist` distance along the shortest path from estimated origin to true origin (`igraph` edge attribute 'length')

See Also

- `origin`
- `plot` function
- `performance`

Examples

```r
data(ptnGoe)
data(delayGoe)

res <- origin(events=delayGoe[10,-c(1:2)], type='centrality', graph=ptnGoe)
res

summary(res)
plot(res, start=1)
performance(res, start=1, graph=ptnGoe)
```
origin_multiple

Multiple origin estimation using community partitioning

Description
Multiple origin estimation using community partitioning

Usage

```
origin_multiple(
  events,
  type = c("edm", "backtracking", "centrality"),
  graph,
  no = 2,
  distance,
  fast = TRUE,
  ...
)
```

Arguments

- **events**: numeric vector of event counts at specific time point
- **type**: character specifying the method, 'edm', 'backtracking' and 'centrality' are available.
- **graph**: igraph object specifying the underlying network graph
- **no**: numeric specifying the number of supposed origins
- **distance**: numeric matrix specifying the distance matrix
- **fast**: logical specifying community partitioning algorithm, default is 'TRUE' that uses `fastgreedy.community`, 'FALSE' refers to `leading.eigenvector.community`
- **...**: parameters to be passed to origin methods `origin_edm`, `origin_backtracking` or `origin_centrality`

Value

origin_multiple returns an list object with objects of class `origin` of length no

References

See Also

Other origin-est: `origin()`
Examples

data(ptnAth)
backtracking
origin_multiple(events=delayAth[10,-c(1:2)], type='backtracking', graph=ptnAth, no=2)
edm
athnet <- igraph::as_adjacency_matrix(ptnAth, sparse=FALSE)
p <- athnet/rowSums(athnet)
eff <- eff_dist(p)
origin_multiple(events=delayAth[10,-c(1:2)], type='edm', graph=ptnAth, no=2, distance=eff)

performance

generic method for performance evaluation for objects of class origin

Description

generic method for performance evaluation for objects of class origin

Usage

performance(x, ...)

Arguments

x object
...

Value

none, there are no applicable methods available for other objects

See Also

origin-methods plot_performance

plot_performance

A plot method combining a time series of performance results.

Description

A plot method combining a time series of performance results.
Usage

plot_performance(
 x,
 var = "rank",
 add = FALSE,
 offset = NULL,
 log = FALSE,
 col = 1,
 ylim = NULL,
 text.padding = 0.9,
 ...
)

Arguments

x data.frame obtained by combined results from performance.origin with variables X1 for time point, start for true origin, est for estimated origin, and performance variables

var character, variable to be plotted, performance.origin returns rank, spj, and dist, default is 'rank'

add logical, should be added to another performance plot

offset POSIXct, starting time of spreading

log logical, should y-axis be logarithmized?

col numeric or character, color of lines

ylim numeric vector, range of y axis

text.padding a numeric value specifying the factor for the text position relative to the y values

... further graphical parameters passed to default plot function

Value

No return value

plot_ptn A plot method for public transportation networks (PTNs).

Description

A plot method for public transportation networks (PTNs).
Usage

```r
plot_ptn(
  g,
  color.coding = NULL,
  color.scheme = rev(sequential_hcl(5)),
  legend = FALSE,
  ...)
```

Arguments

- `g` - igraph object, network graph representing the public transportation network, vertices represent stations, which are linked by an edge if there is a direct transfer between them.
- `color.coding` - numeric vector with length equal to the number of network nodes.
- `color.scheme` - character vector of length 5 indicating the `vertex.color`, default is `rev(sequential_hcl(5))`.
- `legend` - logical indicating whether legend for color-coding should be added or not.
- `...` - further arguments to be passed to `plot.igraph`.

Value

No return value.

See Also

Other network helper: `analyze_ptn()`

Examples

```r
data(ptnAth)
plot_ptn(ptnAth)
data(ptnGoe)
plot_ptn(ptnGoe)
```

ptn-data
Public transportation network datasets from LinTim software (Integrated Optimization in Public Transportation)
Description

Public transportation network datasets from LinTim software (Integrated Optimization in Public Transportation)

ptnAth The data of the Athens Metro, consisting of 51 nodes and 52 edges.

- Vertex attributes: station name, additional station info.
- Edge attributes: track length (in meter), minimal and maximal time required to pass the track (in minutes).

ptnGoe The data of the Goettingen bus network, consisting of 257 nodes and 548 edges.

- Vertex attributes: station name.
- Edge attributes: track length (in meter), minimal and maximal time required to pass the track (in minutes).

Author(s)

Juliane Manitz and Jonas Harbering

Source

Public transportation network datasets are extracted from LinTim software (Integrated Optimization in Public Transportation; https://www.lintim.net/index.php?go=data&lang=en). Special thanks to Anita Schoebel for making the data available.

The Athens Metro data was collected by Konstantinos Gkoumas.

The Goettingen bus network data was collected by Barbara Michalski.

See Also

delay-data

Examples

Athens metro system
data(ptnAth)
plot_ptn(ptnAth)

Goettingen bus system
data(ptnGoe)
plot_ptn(ptnGoe)
read_DB_data

Reads a data file as provided by 'Deutsche Bahn' (for internal use).

Description

Reads a data file as provided by 'Deutsche Bahn' (for internal use).

Usage

read_DB_data(file)

Arguments

file character with path and file name containing the variables for 'stationID', 'date', 'hour', 'minutes', and 'delay'

Value
data.frame with variables 'node', 'time', 'delay'

See Also

Other data_handling: aggr_data()

robustness

run robustness analysis for a source estimate by subsampling individual events.

Description

run robustness analysis for a source estimate by subsampling individual events.

Usage

robustness(x, type = c("edm", "backtracking", "centrality"), prop, n = 100, ...)
Arguments

x data.frame, dataset with individual events and their magnitude, to be passed to `aggr_data`.

type character, specifying the method, 'edm', 'backtracking' and 'centrality' are available.

prop numeric, value between zero and one, proportion of events to be sampled

n numeric, number of resamplings

... parameters to be passed to origin methods `origin_edm`, `origin_backtracking` or `origin_centrality`

Details

We create subsamples of individual events and their magnitude using a sampling proportion \(p \) in \([0, 1]\). After aggregating the data, we apply the source estimation approach. Using this result, we deduce the relative frequency of how often the source estimate obtained with the complete data set can be recovered by source estimation based on the subsample. Thus, the estimate robustness is assessed by the proportion of estimate recovery.

Value

data.frame with columns

- `est` origin estimated when all data is evaluated
- `rob` estimate uncertainty, computed as the proportion of resamplings when origin estimate was recovered

See Also

`robustness-methods`

Examples

```r
# generate random delay data
data(ptnAth)
require(igraph)
dat <- data.frame(node = sample(size = 500, make.names(V(ptnAth)$name), replace = TRUE),
                 time = sample(size = 500, 1:10, replace = TRUE),
                 delay = rexp(500, rate=10))
# compute effective distance
net <- igraph::as_adjacency_matrix(ptnAth, sparse=FALSE)
p <- net/rowSums(net)
eff <- eff_dist(p)
colnames(eff) <- paste('x.',colnames(eff),sep='')
# run robustness analysis
r5 <- robustness(x=dat, type='edm', prop=0.5, n=10, distance=eff)
summary(r5)
plot(r5)
```
compare results
r9 <- robustness(x=dat, type='edm', prop=0.9, n=10, distance=eff)
plot(r9, add=TRUE, col='gray')

Description

print produces an output for objects of class robustness

Usage

```r
## S3 method for class 'robustness'
print(x, ...)

## S3 method for class 'robustness'
summary(object, x = object, ...)

## S3 method for class 'robustness'
plot(x, y = NULL, add = FALSE, ...)
```

Arguments

- `x` data.frame obtained by robustness, robustness estimation object for source estimation from function robustness
- `...` further arguments passed to the default print method
- `object` object of class origin, origin estimation object from function origin_xxx; passed to x
- `y` not used; default NULL
- `add` logical specifying whether this should be added to another robustness plot

Value

No return value

See Also

- robustness
stochastic_sib_model
Stochastic SIB model for infected cases simulation

Description

stochastic_sib_model Stochastic SIB model for infected cases simulation

Usage

```r
stochastic_sib_model(
    mu,
    beta,
    rho,
    sigma,
    gamma,
    alpha,
    mu_B,
    m = 0.3,
    theta,
    nnodes,
    POP_node,
    fluxes,
    time_sim,
    y0
)
```

Arguments

- **mu**: population natality and mortality rate (day⁻¹)
- **beta**: contact rate
- **rho**: immunity loss rate (day⁻¹)
- **sigma**: symptomatic ratio, i.e., fraction of infected people that develop symptoms and are infective. (The remaining fraction enters directly the recovered compartment.)
- **gamma**: rate at which people recover from cholera (day⁻¹)
- **alpha**: cholera induced mortality rate (day⁻¹)
- **mu_B**: death rate of V.cholerae in the aquatic environment (day⁻¹)
- **m**: parameter for infection force, default value is 0.3
- **theta**: contamination rate
- **nnodes**: number of nodes/cities
- **POP_node**: vector, length represents number of cities/nodes; vector represents population at each node
- **fluxes**: vector, length represents number of cities/nodes; vector represents population at each node
fluxes matrix, number of nodes x number of nodes where each row contains the probabilities a person travels from the given city (by Row Index) to another city (by Column Index).

time_sim time steps for simulation, e.g., seq(0, 100, 0.1)

y0 initial condition for stochastic_sib_model, output of 'initial_condition_sib_model'

Value

a matrix, nnodes x number of time steps, representing number of new cases at each node, each time step

Author(s)

Jun Li

References

Examples

```r
set.seed(2020)
popu <- rep(20000, 10)
sigma <- 0.05
mu_B <- 0.2
theta_max <- 16
theta <- runif(10, 0.1, 0.9) * theta_max
y0 <- initial_condition_sib_model(popu, sigma, mu_B, theta, c(3))
time_sim <- seq(0, 1, by=0.1)
mu <- 4e-05
beta_max <- 1
rho <- 0
beta <- runif(10, 0.1, 0.9) * beta_max
gamma <- 0.2
alpha <- 0
humanmob.mass <- matrix(runif(100, 0.1, 0.9), 10, 10)
diag(humanmob.mass) <- 0
for (j in 1:10) {
  humanmob.mass[j, ] <- humanmob.mass[j, ]/sum(humanmob.mass[j, ])
}
simu.list = stochastic_sib_model(mu = mu, beta = beta, rho = rho, sigma = sigma, gamma = gamma, alpha = alpha, mu_B = mu_B, theta = theta, nnodes = 10, POP_node = popu, fluxes = humanmob.mass, time_sim = time_sim, y0 = y0)
```
var_wtd_mean_cochran

Computes the variance of a weighted mean following the definition by Cochran (1977; see Gatz and Smith, 1995)

Description

This is a helper method for weighted variance computation in *origin_edm*, which is the closest to the bootstrap.

Usage

```r
var_wtd_mean_cochran(x, w)
```

Arguments

- `x` numeric vector of values
- `w` numeric vector of weights

Value

numeric value of weighted variance

References

Index

* data_handling
 aggr_data, 2
 read_DB_data, 20
* data
 delay-data, 5
 ptn-data, 18
* distance
 eff_dist, 6
* network helper
 analyze_ptn, 3
 plot_ptn, 17
* origin-est
 origin, 10
 origin_multiple, 15

aggr_data, 2, 20, 21
analyze_ptn, 3, 18

compute_mu_lambda, 4
delay-data, 5
delayAth (delay-data), 5
delayGoe (delay-data), 5
eff_dijkstra (eff_dist), 6
eff_dist, 6
fastgreedy.community, 15
igraph, 3, 14, 18
initial_condition_sib_model, 8
leading.eigenvector.community, 15

NetOrigin, 9

origin, 9, 10, 14, 15, 22
origin-methods, 13
origin_backtracking, 10, 15, 21
origin_backtracking (origin), 10
origin_bayesian (origin), 10

origin_centrality, 10, 15, 21
origin_centrality (origin), 10
origin_edm, 10, 14, 15, 21, 25
origin_edm (origin), 10
origin_multiple, 12, 15

performance, 16
performance.origin, 17
performance.origin (origin-methods), 13
plot (robustness-methods), 22
plot.igraph, 18
plot.origin (origin-methods), 13
plot_performance, 14, 16, 16
plot_ptn, 4, 17
print.origin (origin-methods), 13
print.robustness (robustness-methods), 22
ptn-data, 18
ptnAth (ptn-data), 18
ptnGoe (ptn-data), 18

read_DB_data, 3, 20
robustness, 20, 22
robustness-methods, 22

spd_dijkstra (eff_dist), 6
stochastic_sib_model, 23
strftime, 2
summary (robustness-methods), 22
summary.origin (origin-methods), 13

var_wtd_mean_cochran, 25

26