Package ‘NlsyLinks’

Type Package
Title Utilities and Kinship Information for Research with the NLSY
Version 2.2.1
Description Utilities and kinship information for behavior genetics and developmental research using the National Longitudinal Survey of Youth (NLSY; <https://www.nlsinfo.org/>).
BugReports https://github.com/nlsy-links/NlsyLinks/issues
Depends R (>= 3.5.0), stats
Imports lavaan, methods
Suggests covr, devtools, dplyr, spelling, ggplot2, knitr, rmarkdown, scales, testit, testthat (>= 2.0.0), xtable
License GPL
LazyData TRUE
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.2.3
Language en-US
Config/testthat/edition 2
NeedsCompilation no
Author William Howard Beasley [aut] (<https://orcid.org/0000-0002-5613-5006>), Joseph Lee Rodgers [ctb] (<https://orcid.org/0000-0002-8615-6713>), David Bard [ctb], Michael D. Hunter [ctb] (<https://orcid.org/0000-0002-3651-6709>), Patrick O'Keefe [ctb] (<https://orcid.org/0000-0002-5343-0130>), Kelly Meredith Williams [ctb], S. Mason Garrison [aut, cre] (<https://orcid.org/0000-0002-4804-6003>)
Maintainer S. Mason Garrison <garrissm@wfu.edu>
Repository CRAN
Date/Publication 2023-09-22 07:50:05 UTC
Utilities and kinship information for Behavior Genetics and Developmental research using the NLSY.

Description

Utilities and kinship information for Behavior Genetics and Developmental research using the NLSY. Researchers and grad students interested using the NLSY for Behavior Genetics and family research, please start with our 2016 article, 'The NLSY Kinship Links: Using the NLSY79 and NLSY-Children Data to Conduct Genetically-Informed and Family-Oriented Research.'

Note

This package considers both Gen1 and Gen2 subjects. "Gen1" refers to subjects in the original NLSY79 sample (https://www.nlsinfo.org/content/cohorts/nlsy79). "Gen2" subjects are the biological children of the Gen1 females - ie, those in the NLSY79 Children and Young Adults sample (https://www.nlsinfo.org/content/cohorts/nlsy79-children).

The release version is available through CRAN by running `install.packages("NlsyLinks")`. The most recent development version is available through GitHub by running `devtools::install_github(repo = "nlsy-links/NlsyLinks")` (make sure devtools is already installed). If you’re having
trouble with the package, please install the development version. If this doesn’t solve your problem, please create a new issue, or email Will.

Author(s)

William Howard Beasley (Howard Live Oak LLC, Norman)
Joseph Lee Rodgers (Vanderbilt University, Nashville)
David Bard (University of Oklahoma Health Sciences Center, OKC)
Michael D. Hunter (Pennsylvania State University)
Patrick O’Keefe (Oregon Health and Science University)
Kelly Meredith Williams (Oklahoma City University, OKC)
S. Mason Garrison (Wake Forest University)

Maintainer: S. Mason Garrison garrissm@wfu.edu

References

This package’s development was largely supported by the NIH Grant 1R01HD65865, "NLSY Kinship Links: Reliable and Valid Sibling Identification" (PI: Joe Rodgers). A more complete list of research articles using NLSY Kinship Links is maintained on our package’s website.

Examples

library(NlsyLinks) # Load the package into the current R session.
summary(Links79Pair) # Summarize the five variables.
hist(Links79Pair$R) # Display a histogram of the Relatedness values.
table(Links79Pair$R) # Create a table of the Relatedness values for the whole sample.
Ace

Estimates the heritability of additive traits using a single variable.

Description

An ACE model is the foundation of most behavior genetic research. It estimates the additive heritability (with a), common environment (with c) and unshared heritability/environment (with e).

Usage

```r
AceUnivariate(
    method = c("DeFriesFulkerMethod1","DeFriesFulkerMethod3"),
    dataSet, oName_S1, oName_S2, rName = "R",
    manifestScale = "Continuous"
)
```

DeFriesFulkerMethod1(dataSet, oName_S1, oName_S2, rName="R")

DeFriesFulkerMethod3(dataSet, oName_S1, oName_S2, rName="R")

Arguments

- `method`: The specific estimation technique.
- `dataSet`: The `base::data.frame` that contains the two outcome variables and the relatedness coefficient (corresponding to `oName_S1`, `oName_S2`, and `rName`).
- `oName_S1`: The name of the outcome variable corresponding to the first subject in the pair. This should be a character value.
- `oName_S2`: The name of the outcome variable corresponding to the second subject in the pair. This should be a character value.
- `rName`: The name of the relatedness coefficient for the pair (this is typically abbreviated as R). This should be a character value.
- `manifestScale`: Currently, only `continuous` manifest/outcome variables are supported.
Details

The `AceUnivariate()` function is a wrapper that calls `DeFriesFulkerMethod1()` or `DeFriesFulkerMethod3()`. Future versions will incorporate methods that use latent variable models.

Value

Currently, a list is returned with the arguments `ASquared`, `CSquared`, `ESquared`, and `RowCount`. In the future, this may be changed to an S4 class.

Author(s)

Will Beasley

References

Examples

```r
library(NlsyLinks) # Load the package into the current R session.
dSOutcomes <- ExtraOutcomes79
dSOutcomes$SubjectTag <- CreateSubjectTag(
  subjectID = dsOutcomes$SubjectID,
  generation = dsOutcomes$Generation
)
dSLinks <- Links79Pair
dSLinks <- dSLinks[dSLinks$RelationshipPath == "Gen2Siblings", ] # Only Gen2 Sibs (ie, NLSY79C)
dSDF <- CreatePairLinksDoubleEntered(
  outcomeDataset = dsOutcomes,
  linksPairDataset = dSLinks,
  outcomeNames = c("MathStandardized", "HeightZGenderAge", "WeightZGenderAge")
)
estimatedAdultHeight <- DeFriesFulkerMethod3(
  dataSet = dSDF,
  oName_S1 = "HeightZGenderAge_S1",
  oName_S2 = "HeightZGenderAge_S2"
)
estimatedAdultHeight # ASquared and CSquared should be 0.60 and 0.10 for this rough analysis.

estimatedMath <- DeFriesFulkerMethod3(
  dataSet = dSDF,
  oName_S1 = "MathStandardized_S1",
  oName_S2 = "MathStandardized_S2"
)
estimatedMath # ASquared and CSquared should be 0.85 and 0.045.

class(GetDetails(estimatedMath))
summary(GetDetails(estimatedMath))
```
Class AceEstimate

Description

A class containing information about a single univariate ACE model.
A generic function for extracting the Details slot of an AceEstimation object.

Usage

S4 method for signature 'AceEstimate'
GetDetails(object)

Arguments

object ACE object

Objects from the Class

Objects can be created by calls of the form: new("AceEstimate", aSquared, cSquared, eSquared, caseCount, unity, withinBounds, details, ...)

Note

The contents of the Details list depends on the underlying estimation routine. For example, when the ACE model is estimated with a DF analysis, the output is an stats::lm() object, because the stats::lm() function was used (ie, the basic general linear model). Alternatively, if the user specified the lavaan::lavaan() package should estimate that ACE model, the output is a lavaan::lavaan() object.

Author(s)

Will Beasley

Examples

library(NlsyLinks) # Load the package into the current R session.

showClass("AceEstimate")
est <- CreateAceEstimate(.5, .2, .3, 40)
est
print(est)
Description

This function uses the lavaan package to estimate a univariate ACE model, using multiple groups. Each group has a unique value of R (i.e., the Relatedness coefficient).

Usage

AceLavaanGroup(
 dsClean,
 estimateA = TRUE,
 estimateC = TRUE,
 printOutput = FALSE
)

Arguments

dsClean The base::data.frame containing complete cases for the R groups to be included in the estimation.
estimateA Should the A variance component be estimated? A^2 represents the proportion of variability due to a shared genetic influence.
estimateC Should the C variance component be estimated? C^2 represents the proportion of variability due to a shared environmental influence.
printOutput Indicates if the estimated parameters and fit statistics are printed to the console.

Details

The variance component for E is always estimated, while the A and C estimates can be fixed to zero (when estimateA and/or estimateC are set to FALSE).

Value

An AceEstimate object.

Note

Currently, the variables in dsClean must be named O1, O2 and R; the letter 'O' stands for Outcome. This may not be as restrictive as it initially seems, because dsClean is intended to be produced by CleanSemAceDataset(). If this is too restrictive for your uses, we'd like to here about it (please email wibeasley at hotmail period com).

Author(s)

Will Beasley
References

The lavaan package is developed by Yves Rosseel at Ghent University. Three good starting points are the package website (http://lavaan.ugent.be/), the package documentation (https://cran.r-project.org/package=lavaan) and the JSS paper.

See Also

CleanSemAceDataset(). Further ACE model details are discussed in our package’s vignettes.

Examples

library(NlsyLinks) # Load the package into the current R session.
dsLinks <- Links79PairExpanded # Start with the built-in data.frame in NlsyLinks
dsLinks <- dsLinks[dsLinks$RelationshipPath == "Gen2Siblings",] # Use only Gen2 Siblings (NLSY79-C)

oName_S1 <- "MathStandardized_S1" # Stands for Outcome1
oName_S2 <- "MathStandardized_S2" # Stands for Outcome2

dsGroupSummary <- RGroupSummary(dsLinks, oName_S1, oName_S2)
dsClean <- CleanSemAceDataset(dsDirty = dsLinks, dsGroupSummary, oName_S1, oName_S2)

ace <- AceLavaanGroup(dsClean)
ace

Should produce:
[1] "Results of ACE estimation: [show]"
ASquared CSquared ESquared CaseCount
0.6681874 0.1181227 0.2136900 8390.0000000

library(lavaan) # Load the package to access methods of the lavaan class.
GetDetails(ace)

Exmaine fit stats like Chi-Squared, RMSEA, CFI, etc.
fitMeasures(GetDetails(ace)) # The function 'fitMeasures' is defined in the lavaan package.

Examine low-level details like each group's individual parameter estimates and standard errors.
summary(GetDetails(ace))

Extract low-level details. This may be useful when programming simulations.
inpect(GetDetails(ace), what = "converged") # The lavaan package defines 'inspect'.
inpect(GetDetails(ace), what = "coef")

CleanSemAceDataset Produces a cleaned dataset that works well with when using SEM to estimate a univariate ACE model.
Description

This function takes a `GroupSummary` base::data.frame (which is created by the `RGroupSummary()` function) and returns a base::data.frame that is used by the `Ace()` function.

Usage

```r
CleanSemAceDataset(dsDirty, dsGroupSummary, oName_S1, oName_S2, rName = "R")
```

Arguments

- `dsDirty` This is the base::data.frame to be cleaned.
- `dsGroupSummary` The base::data.frame containing information about which groups should be included in the analyses. It should be created by the `RGroupSummary()` function.
- `oName_S1` The name of the manifest variable (in `dsDirty`) for the first subject in each pair.
- `oName_S2` The name of the manifest variable (in `dsDirty`) for the second subject in each pair.
- `rName` The name of the variable (in `dsDirty`) indicating the pair’s relatedness coefficient.

Details

The function takes `dsDirty` and produces a new base::data.frame with the following features:

1. Only three existing columns are retained: O1, O2, and R. They are assigned these names.
2. A new column called `GroupID` is created to reflect their group membership (which is based on the R value). These values are sequential integers, starting at 1. The group with the weakest R is 1. The group with the strongest R has the largest `GroupID` (this is typically the MZ twins).
3. Any row is excluded if it has a missing data point for O1, O2, or R.
4. The base::data.frame is sorted by the R value. This helps program against the multiple-group SEM API sometimes.

Value

A base::data.frame with one row per subject pair. The base::data.frame contains the following variables (which can NOT be changed by the user through optional parameters):

- **R** The pair’s R value.
- **O1** The outcome variable for the first subject in each pair.
- **O2** The outcome variable for the second subject in each pair.
- **GroupID** Indicates the pair’s group membership.

Author(s)

Will Beasley
ColumnUtilities

A collection of functions that helps data management data.frames, particularly those derived from NLSY Extracts.

Description
A collection of functions that helps data management base::data.frames, particularly those derived from NLSY Extracts.

Usage
VerifyColumnExists(dataFrame, columnName)

RenameColumn(dataFrame, oldColumnName, newColumnName)

RenameNlsyColumn(dataFrame, nlsyRNumber, newColumnName)

Arguments
dataFrame The base::data.frame whose columns are to be verified or renamed.
columnName The name of the column to verify is present in the base::data.frame.
nlsyRNumber The name of the column to change.
oldColumnName The name of the column to change.
newColumnName The desired name of the column.

Details
The RNumber assigned by the NLS has a pattern. In the Nlsy79 Gen1 dataset, the names start with a 'R' or 'T' and are followed by seven digits (eg, R0000100). In the Nlsy79 Gen2 dataset, the names start with 'C' or 'Y' and are followed by seven digits (eg, C0007030, Y1994600).
In the NLS Investigator, a decimal is present in the RNumber (eg, R00001.00). When the Investigator saves the dataset as a CSV, the decimal is removed (eg, R0000100).
CreateAceEstimate

Value

IMPORTANT The `RenameColumn()` and `RenameNlsyColumn()` functions do not use side-effects to rename the `base::data.frame`. Instead, it returns a new `base::data.frame`. In the example below, notice the assignment to `ds`: `ds <- RenameNlsyColumn(...)`. The `VerifyColumnExists()` function check that exactly one column exists with the specified `columnName`. If so, the index of the column is returned. If not, an exception is thrown.

Author(s)

Will Beasley

CreateAceEstimate

Instantiate an AceEstimate object.

Description

Creates an instance of the S4 class, `AceEstimate` instantiating arguments set the parameter values estimated by the ACE model.

Usage

```r
CreateAceEstimate(
  aSquared,  # The proportion of variability due to a shared genetic influence (typically represented as a^2, or sometimes h^2).
  cSquared,  # The proportion of variability due to shared common environmental influence.
  eSquared,  # The proportion of variability due to unexplained/residual/error influence.
  caseCount, # The number of cases used to estimate the model.
  details = list(), # A list that contains the modeling output and details.
  unityTolerance = 1e-11 # Specifies how close the the sum of the ACE components should be to one, to be considered properly scaled to one.
)
```

Arguments

- `aSquared`
- `cSquared`
- `eSquared`
- `caseCount`
- `details`
- `unityTolerance`

Details

The contents of the `details` list depends on the underlying estimation routine. For example, when the ACE model is estimated with a DF analysis, the output is a `stats::lm` object, because the `stats::lm` function was used (ie, the basic general linear model). Alternatively, if the user specified the `lavaan` package should estimate that ACE model, the output is a `lavaan::lavaan` object.
CreatePairLinks

Value

An S4 object of \texttt{AceEstimate}.

Author(s)

Will Beasley

\begin{itemize}
 \item CreatePairLinks
 \textit{Creates a pairs linking file.}
 \end{itemize}

\section*{Description}

Creates a linking file for BG designs using this file structure (e.g., DF analysis, other ACE modeling). DF analysis requires a double-entered file that contains the \texttt{R} value for the pair, and their two outcome variable values.

\texttt{CreatePairLinksDoubleEnteredWithNoOutcomes()} is intended to be a primarily a helper function for \texttt{CreateSpatialNeighbours()}.

\section*{Usage}

\begin{verbatim}
CreatePairLinksDoubleEntered(
 outcomeDataset,
 linksPairDataset,
 outcomeNames,
 linksNames = c("ExtendedID", "R", "RelationshipPath"),
 validateOutcomeDataset = TRUE,
 subject1Qualifier = "_S1",
 subject2Qualifier = "_S2"
)

CreatePairLinksSingleEntered(
 outcomeDataset,
 linksPairDataset,
 outcomeNames,
 linksNames = c("ExtendedID", "R", "RelationshipPath"),
 validateOutcomeDataset = TRUE,
 subject1Qualifier = "_S1",
 subject2Qualifier = "_S2"
)

CreatePairLinksDoubleEnteredWithNoOutcomes(
 linksPairDataset,
 linksNames = c("ExtendedID", "R", "RelationshipPath")
)
\end{verbatim}
Arguments
outcomeDataset A data frame containing the outcome variable(s)
linksPairDataset A data frame containing the SubjectTags of each subject in the pair and their R
coefficient.
outcomeNames The column names of the outcome variable(s)
linksNames The column names desired to be present in the newly created data frame. SubjectTag_S1
and SubjectTag_S2 are included automatically.
validateOutcomeDataset Indicates if characteristics of the outcomeDataset should be validated.
subeject1Qualifier Indicates how the outcome variable for the pair’s first subject is distinguished
from the other subject. The default is _S1.
subeject2Qualifier Indicates how the outcome variable for the pair’s second subject is distinguished
from the other subject. The default is _S2.

Author(s)
Will Beasley

References
For more information about a DF analysis, see Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. Behavior Genetics, 35 (2), 211-217.

Examples
dsSingleLinks <- data.frame(
 ExtendedID = c(1, 1, 1, 2),
 SubjectTag_S1 = c(101, 101, 102, 201),
 SubjectTag_S2 = c(102, 103, 103, 202),
 R = c(.5, .25, .25, .5),
 RelationshipPath = rep("Gen2Siblings", 4)
)
dsSingleOutcomes <- data.frame(
 SubjectTag = c(101, 102, 103, 201, 202),
 DV1 = c(11, 12, 13, 41, 42),
 DV2 = c(21, 22, 23, 51, 52)
)
dsDouble <- CreatePairLinksDoubleEntered(
 outcomeDataset = dsSingleOutcomes,
 linksPairDataset = dsSingleLinks,
 outcomeNames = c("DV1", "DV2"),
 validateOutcomeDataset = TRUE
)
dsDouble # Show the 8 rows in the double-entered pair links
summary(dsDouble) # Summarize the variables

ValidatePairLinksAreSymmetric(dsDouble) # Should return TRUE.
CreateSpatialNeighbours

Distances between related family members, formatted for spatial analysis.

Description

This helper function formats the LinksPair datasets so it can be used in some types of spatial analyses. The `spdep` (Spatial Dependence) uses a sparse matrix (actually a `base::data.frame`) to represent neighbours.

Usage

`CreateSpatialNeighbours(linksPairsDoubleEntered)`

Arguments

- `linksPairsDoubleEntered`: A `base::data.frame` containing the links, preferably created by a function like `CreatePairLinksDoubleEntered()`.

Details

There is one row per unique pair of subjects, respecting order. This has twice as many rows as `Links79Pair` and `Links79PairExpanded` (which have one row per unique pair of subjects, irrespective of order).

`CreateSpatialNeighbours()` accepts any paired relationships in a `base::data.frame`, as long as it contains the columns `SubjectTag_S1`, `SubjectTag_S2`, and R. See `Links79Pair` for more details about these columns.

Value

An S3 `spdep::spatial.neighbours` object to work with functions in the `spdep` package.

- `SubjectTag_S1` is renamed 'from'.
- `SubjectTag_S2` is renamed 'to'.
- R is renamed 'weight'.

The attribute `region.id` specifies each unique `SubjectTag`.

The attribute `n` specifies the number of unique subjects.

Note

Notice the British variant of 'neighbours' is used, to be consistent with the `spdep::spatial.neighbour` class.
Author(s)

Will Beasley and David Bard

References

The spdep package documentation: spdep: Spatial dependence: weighting schemes, statistics and models.

Examples

dSLinksAll <- Links79Pair
dSLinksGen1Housemates <- dsLinksAll[dsLinksAll$RelationshipPath == "Gen1Housemates",]
dSLinksGen2Siblings <- dsLinksAll[dsLinksAll$RelationshipPath == "Gen2Siblings",]

spGen1 <- CreateSpatialNeighbours(dsLinksGen1Housemates)
spGen2 <- CreateSpatialNeighbours(dsLinksGen2Siblings)

head(spGen2)
Returns:
from to weight
3 201 202 0.50
6 301 302 0.50
7 301 303 0.50
9 302 303 0.50
24 401 403 0.25
28 801 802 0.50

table(spGen2$weight)
Returns:
0.25 0.375 0.5 0.75 1
3442 610 6997 12 27

CreateSubjectTag

Creates a SubjectTag. This value uniquely identifies subjects, when both generations are included in the same dataset.
CreateSubjectTag

Description
A SubjectTag uniquely identify subjects. For Gen2 subjects, the SubjectTag is identical to their CID (ie, C00001.00 -the SubjectID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (ie, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 becomes 4300. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.

Usage
CreateSubjectTag(subjectID, generation)

Arguments

subjectID The ID assigned by the NLSY. For Gen1 subjects, this will be their CaseID (ie, R00001.00). For Gen2 subjects, this will be their CID (ie, C00001.00).

generation The generation of the subject. Values are either 1 or 2, representing Gen1 and Gen2.

Details
For a fuller explanation of SubjectTag in context, see the Links79Pair dataset documentation.

Value
A integer value under normal circumstances. An error is thrown if the vectors subjectID and generation are different lengths. If either input vector has NA values, the respective output element(s) will be NA too.

Author(s)
Will Beasley

See Also
Links79Pair

Examples
library(NlsyLinks) # Load the package into the current R session.

Typically these two vectors will come from a data frame.
subjectIDs <- c(71:82, 10001:10012)
generation <- c(rep(1, 12), rep(2, 12))

CreateSubjectTag(subjectIDs, generation)
Returns 7100, ..., 8200, 10001, ..., 10012

Use the ExtraOutcomes79 dataset, with numeric variables 'SubjectID' and 'Generation'.
ExtraOutcomes79$SubjectTag <- CreateSubjectTag(
 subjectID = ExtraOutcomes79$SubjectID,
ExtraOutcomes79

```r

  generation = ExtraOutcomes79$Generation

```

ExtraOutcomes79
Extra outcome variables in the NLSY79

Description

This dataset is provided primarily to facilitate documentation examples.

Format

A data frame with 11,495 observations on the following 6 variables. There is one row per subject.

- **SubjectTag** The ID value assigned by NLS to the first subject. For Gen1 Subjects, this is their "CaseID" (ie, R00001.00). For Gen2 subjects, this is their "CID" (ie, C00001.00).
- **SubjectID** The ID value assigned by NLS to the first subject. For Gen1 Subjects, this is their "CaseID" (ie, R00001.00). For Gen2 subjects, this is their "CID" (ie, C00001.00).
- **Generation** The generation of the subject. Values are either 1 or 2, representing Gen1 and Gen2. Note that this variable is not a factor (in contrast with data frames like Links79Pair). This dataset is supposed to mimic the dataset provided by the researcher, which typically will not have been converted to a factor.
- **HeightZGenderAge** The subject’s height, standardized by gender and age (see Details).
- **WeightZGenderAge** The subject’s weight, standardized by gender and age (see Details).
- **AfqtRescaled2006Gaussified** Armed Forces Qualification Test Score (Gen1 only; see Details).
- **Afi** Self-reported age of first intercourse (Gen1 only; see Details).
- **Afm** Self-reported age of first menstruation (Gen1 only; see Details).
- **MathStandardized** Standardized PIAT Math scores (Gen2 only; see Details).

Details

The SubjectTag variable uniquely identify subjects. For Gen2 subjects, the SubjectTag is identical to their CID (ie, C00001.00 -the SubjectID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (ie, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 has a SubjectTag of 4303. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.

For Gen2, an NLSY79 variable of MathStandardized is C05801.00.

Afi and Afm, values were simplified (to one value per subject) by Kelly Williams in Sept 2010.

The variables for height and weight were manipulated in R files available in a repository available to the public. Find the appropriate subfolder, and view the HTML report for more details.

Download CSV If you’re using the NlsyLinks package in R, the dataset is automatically available. However to use the kinship information in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-79.yml documents the dataset version information.
Author(s)
Will Beasley

Source
Gen1 information comes from the Summer 2013 release of the NLSY79 sample. Gen2 information comes from the Summer 2013 release of the NLSY79 Children and Young Adults sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

Examples

```r
library(NlsyLinks) # Load the package into the current R session.
gen2Outcomes <- subset(ExtraOutcomes79, Generation == 2) # Create a dataset of only Gen2 subjects.

# plot(ExtraOutcomes79) #Uncomment to see a large scatterplot matrix.
summary(ExtraOutcomes79)

oldPar <- par(mfrow = c(3, 2))
hist(ExtraOutcomes79$Generation)
hist(ExtraOutcomes79$MathStandardized)
hist(ExtraOutcomes79$HeightZGenderAge)
hist(ExtraOutcomes79$WeightZGenderAge)
hist(ExtraOutcomes79$Afi)
hist(ExtraOutcomes79$Afmi)
par(oldPar)
```

Description
GetDetails-methods

Usage
GetDetails(object)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>ACE object</td>
</tr>
</tbody>
</table>
Description

This dataset specifies the relatedness coefficient (ie, 'R') between subjects in the same extended family. Each row represents a unique relationship pair.

NOTE: Two variable names changed in November 2013. Subject1Tag and Subject2Tag became SubjectTag_S1 and SubjectTag_S2.

Format

A data frame with 42,773 observations on the following 5 variables. There is one row per unique pair of subjects, irrespective of order.

- ExtendedID Identity of the extended family of the pair; it corresponds to the HHID in the NLSY79. See References below.
- SubjectTag_S1 Identity of the pair’s first subject. See Details below.
- SubjectTag_S2 Identity of the pair’s second subject. See Details below.
- R The pair’s Relatedness coefficient. See Details below.
- RelationshipPath Specifies the relationship category of the pair. This variable is a factor, with levels Gen1Housemates=1, Gen2Siblings=2, Gen2Cousins=3, ParentChild=4, AuntNiece=5.

Details

The dataset contains Gen1 and Gen2 subjects. "Gen1" refers to subjects in the original NLSY79 sample (https://www.nlsinfo.org/content/cohorts/nlsy79). "Gen2" subjects are the biological children of the Gen1 females -ie, those in the NLSY79 Children and Young Adults sample (https://www.nlsinfo.org/content/cohorts/nlsy79-children).

Subjects will be in the same extended family if either:

1. they are Gen1 housemates,
2. they are Gen2 siblings,
3. they are Gen2 cousins (ie, they have mothers who are Gen1 sisters in the NLSY79,
4. they are mother and child (in Gen1 and Gen2, respectively), or
5. they are aunt|uncle and niece|nephew (in Gen1 and Gen2, respectively).

The variables SubjectTag_S1 and SubjectTag_S2 uniquely identify subjects. For Gen2 subjects, the SubjectTag is identical to their CID (ie, C00001.00 -the SubjectID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (ie, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 has a SubjectTag of 4300. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.
Level 5 of RelationshipPath (ie, AuntNiece) is gender neutral. The relationship could be either Aunt-Niece, Aunt-Nephew, Uncle-Niece, or Uncle-Nephew. If there’s a widely-accepted gender-neutral term, please tell me.

An extended family with \(k\) subjects will have \(k(k-1)/2\) rows. Typically, Subject1 is older while Subject2 is younger.

MZ twins have \(R=1\). DZ twins and full-siblings have \(R=.5\). Half-siblings have \(R=.25\). Typical first cousins have \(R=.125\). Unrelated subjects have \(R=0\) (this occasionally happens for Gen1Housemates, but never for the other paths). Other \(R\) coefficients are possible.

There are several other uncommon possibilities, such as half-cousins \(R=.0625\) and ambiguous aunt-nieces \(R=.125\), which is an average of \(1/4\) and \(0/4\). The variable coding for genetic relatedness, \(R\), in Links79Pair contains only the common values of \(R\) whose groups are likely to have stable estimates. However the variable RFull in Links79PairExpanded contains all \(R\) values. We strongly recommend using \(R\) in this base::data.frame. Move to RFull (or some combination) only if you have a good reason, and are willing to carefully monitor a variety of validity checks. Some of these excluded groups are too small to be estimated reliably.

Furthermore, some of these groups have members who are more strongly genetically related than their items would indicate. For instance, there are 41 Gen1 pairs who explicitly claim they are not biologically related (ie, RExplicit=0), yet their correlation for Adult Height is \(r=0.24\). This is much higher than would be expected for two people sampled randomly; it is nearly identical to the \(r=0.26\) we observed among the 268 Gen1 half-sibling pairs who claim they share exactly 1 biological parent.

The LinksPair79 dataset contains columns necessary for a basic BG analysis. The Links79PairExpanded dataset contains further information that might be useful in more complicated BG analyses.

A tutorial that produces a similar dataset is http://www.nlsinfo.org/childya/nlsdocs/tutorials/linking_mothers_and_children/linking_mothers_and_children_tutorial.html. It provides examples in SAS, SPSS, and STATA.

RelationshipPath variable. Code written using this dataset should NOT assume it contains only Gen2 sibling pairs. See below for an example of filtering the relationship category in the in Links79Pair documentation.

The specific steps to determine the \(R\) coefficient will be described in an upcoming publication. The following information may influence the decisions of an applied researcher.

A distinction is made between Explicit and Implicit information. Explicit information comes from survey items that directly address the subject's relationships. For instance in 2006, surveys asked if the sibling pair share the same biological father (eg, Y19940.00 and T00020.00). Implicit information comes from items where the subject typically isn’t aware that their responses may be used to determine genetic relatedness. For instance, if two siblings have biological fathers with the same month of death (eg, R37722.00 and R37723.00), it may be reasonable to assume they share the same biological father.

Interpolation is our lingo when other siblings are used to leverage insight into the current pair. For example, assume Subject 101, 102, and 103 have the same mother. Further assume 101 and 102 report they share a biological father, and that 101 and 103 share one too. Finally, assume that we don’t have information about the relationship between 102 and 103. If we are comfortable with our level of uncertainty of these determinations, then we can interpolate/infer that 102 and 103 are full-siblings as well.

The math and height scores are duplicated from ExtraOutcomes79, but are included here to make some examples more concise and accessible.
Author(s)

Will Beasley

Source

Gen1 information comes from the Summer 2013 release of the NLSY79 sample. Gen2 information comes from the Summer 2013 release of the NLSY79 Children and Young Adults. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/). The internal version for the links is Links2011V84.

References

The NLSY79 variable HHID (ie, R00001.49) is the source for the ExtendedID variable. This is discussed at http://www.nlsinfo.org/nlsy79/docs/79html/79text/hhc.htm.

For more information on R (ie, the Relatedness coefficient), please see Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. Behavior Genetics, 35 (2), 211-217.

See Also

The LinksPair79 dataset contains columns necessary for a basic BG analysis. The LinksPairExpanded dataset contains further information that might be useful in more complicated BG analyses.

A tutorial that produces a similar dataset is http://www.nlsinfo.org/childya/nlsdocs/tutorials/linking_mothers_and_children/linking_mothers_and_children_tutorial.html. It provides examples in SAS, SPSS, and STATA.

The current dataset (ie, Links79Pair) can be saved as a CSV file (comma-separated file) and imported into other programs and languages. In the R console, type the following two lines of code:

```
library(NlsyLinks)
write.csv(Links79Pair, "C:/BGDirectory/Links79Pair.csv")
```

where "C:/BGDirectory/" is replaced by your preferred directory. Remember to use forward slashes instead of backslashes; for instance, the path "C:\BGDirectory\Links79Pair.csv" can be misinterpreted.

Download CSV If you’re using the NlsyLinks package in R, the dataset is automatically available. To use it in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-79.yml documents the dataset version information.

Examples

```
library(NlsyLinks) # Load the package into the current R session.
summary(Links79Pair) # Summarize the five variables.
hist(Links79Pair$R) # Display a histogram of the Relatedness coefficients.
table(Links79Pair$R) # Create a table of the Relatedness coefficients for the whole sample.

# Create a dataset of only Gen2 sibs, and display the distribution of R.
gen2Siblings <- subset(Links79Pair, RelationshipPath == "Gen2siblings")
table(gen2Siblings$R) # Create a table of the Relatedness coefficients for the Gen2 sibs.
```
Description

Please first read the documentation for Links79Pair. That dataset contains the same pairs/rows, but only a subset of the variables/columns.

NOTE: In Nov 2013, the variable naming scheme changed in order to be more consistent across variables. For variables that are measured separately for both subjects (eg, Gender), the subjects’ variable name will have an _S1 or _S2 appended to it. For instance, the variables LastSurvey_S1 and LastSurvey_S2 correspond to the last surveys completed by the pair’s first and second subject, respectively. Similarly, the functions `CreatePairLinksDoubleEntered()` and `CreatePairLinksSingleEntered()` now by default append _S1 and _S2, instead of _1 and _2. However this can be modified using the 'subject1Qualifier' and 'subject2Qualifier' parameters.

Format

A data frame with 11,075 observations on the following 22 variables. There is one row per unique pair of subjects, irrespective of order.

- **ExtendedID** see the variable of the same name in Links79Pair
- **SubjectTag_S1** see the variable of the same name in Links79Pair
- **SubjectTag_S2** see the variable of the same name in Links79Pair
- **R** see the variable of the same name in Links79Pair
- **RFull** This is a superset of R. This includes all the R values we estimated, while R (i.e., the variable above) excludes values like R=0 for Gen1Housemates, and the associated relationships based on this R value (i.e., Gen2Cousins and AuntNieces).
- **RelationshipPath** see the variable of the same name in Links79Pair
- **EverSharedHouse** Indicate if the pair likely live in the same house. This is TRUE for Gen1Housemates, Gen2Siblings, and ParentChild. This is FALSE for AuntNiece and Gen2Cousins
- **IsMz** Indicates if the pair is from the same zygote (ie, they are identical twins/triplets). This variable is a factor, with levels No=0, Yes=1, DoNotKnow=255.
- **LastSurvey_S1** The year of Subject1’s most recently completed survey. This may be different that the survey’s administration date.
- **LastSurvey_S2** The year of Subject2’s most recently completed survey. This may be different that the survey’s administration date.
- **RImplicitPass1** The pair’s R coefficient, using only implicit information. Interpolation was NOT used.
- **RImplicit** The pair’s R coefficient, using only implicit information. Interpolation was used.
- **RImplicit2004** The pair’s R coefficient released in our previous projects (need reference). This variable is provided primarily for previous users wishing to replicate previous analyses.
The specific steps to determine the R coefficient will be described in an upcoming publication. The following information may influence the decisions of an applied researcher.

A distinction is made between 'Explicit' and 'Implicit' information. Explicit information comes from survey items that directly address the subject's relationships. For instance in 2006, surveys asked if the sibling pair share the same biological father (e.g., Y19940.00 and T00020.00). Implicit information comes from items where the subject typically isn't aware that their responses may be used to determine genetic relatedness. For instance, if two siblings have biological fathers with the same month of death (e.g., R37722.00 and R37723.00), it may be reasonable to assume they share the same biological father.

'Interpolation' is our lingo when other siblings are used to leverage insight into the current pair. For example, assume Subject 101, 102, and 103 have the same mother. Further assume 101 and 102 report they share a biological father, and that 101 and 103 share one too. Finally, assume that we don’t have information about the relationship between 102 and 103. If we are comfortable with
our level of uncertainty of these determinations, then we can interpolate/infer that 102 and 103 are full-siblings as well.

The math and height scores are duplicated from ExtraOutcomes79, but are included here to make some examples more concise and accessible.

Author(s)

Will Beasley

Source

See Links79Pair.

See Also

Download CSV If you’re using the NlsyLinks package in R, the dataset is automatically available. To use it in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-79.yml documents the dataset version information.

Examples

```r
library(NlsyLinks) # Load the package into the current R session.

# olderR <- Links79PairExpanded$RExplicitOlderSibVersion # Declare a concise variable name.
# youngerR <- Links79PairExpanded$RExplicitYoungerSibVersion # Declare a concise variable name.

# plot(jitter(olderR), jitter(youngerR)) # Scatterplot the siblings' responses.
# table( youngerR, olderR ) # Table of the relationship between the siblings' responses.
# ftable(youngerR, olderR, dnn=c("Younger's Version", "Older's Version")) # A formatted table.

# write.csv(
#   Links79PairExpanded,
#   file = '~/NlsyLinksStaging/Links79PairExpanded.csv',
#   row.names = FALSE
# )
```

Links97Pair

Kinship linking file for pairs of relatives in the NLSY97

Description

This dataset specifies the relatedness coefficient (ie, 'R') between subjects in the same extended family. Each row represents a unique relationship pair.

NOTE: Two variable names changed in November 2013. Subject1Tag and Subject2Tag became SubjectTag_S1 and SubjectTag_S2.
Links97Pair

Format

A data frame with 2,519 observations on the following 5 variables. There is one row per unique pair of subjects, irrespective of order.

- **ExtendedID** Identity of the extended family of the pair; it corresponds to the HHID in the NLSY97. See References below.
- **SubjectTag_S1** Identity of the pair’s first subject. See Details below.
- **SubjectTag_S2** Identity of the pair’s second subject. See Details below.
- **R** The pair’s Relatedness coefficient. See Details below.
- **RelationshipPath** Specifies the relationship category of the pair. This variable is a factor, with level Housemates=1.

Details

The variable ExtendedID corresponds to the NLSY97 variable [SIDCODE] (e.g., R11930.00), which uniquely identifies a *household* that may contain multiple NLSY97 subjects.

The variables SubjectTag_S1 and SubjectTag_S2 uniquely identify subjects. It corresponds to the NLSY97 variable [PUBID], (e.g., R00001.00).

The RelationshipPath variable is not useful with this dataset, but is included to be consistent with the Links97Pair dataset.

An extended family with \(k \) subjects will have \(k(k-1)/2 \) rows. Typically, Subject1 is older while Subject2 is younger.

MZ twins have \(R=1 \). DZ twins and full-siblings have \(R=.5 \). Half-siblings have \(R=.25 \). Typical first cousins have \(R=.125 \). Unrelated subjects have \(R=0 \) (this occasionally happens for Housemates, but never for the other paths). Other \(R \) coefficients are possible.

There are several other uncommon possibilities, such as half-cousins \((R=.0625) \) and ambiguous aunt-nieces \((R=.125) \), which is an average of 1/4 and 0/4). The variable coding for genetic relatedness, \(R \), in Links97Pair contains only the common values of \(R \) whose groups are likely to have stable estimates. However the variable RFull in Links97PairExpanded contains all \(R \) values. We strongly recommend using \(R \) in this base::data.frame. Move to RFull (or some combination) only if you have a good reason, and are willing to carefully monitor a variety of validity checks. Some of these excluded groups are too small to be estimated reliably.

Author(s)

Will Beasley

Source

Information comes from the Summer 2018 release of the NLSY97 sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

References

For more information on \(R \) (ie, the Relatedness coefficient), please see Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. *Behavior Genetics, 35*(2), 211-217.
See Also

The LinksPair97 dataset contains columns necessary for a basic BG analysis. The Links97PairExpanded dataset contains further information that might be useful in more complicated BG analyses.

A tutorial that produces a similar dataset is http://www.nlsinfo.org/childya/nlsdocs/tutorials/linking_mothers_and_children/linking_mothers_and_children_tutorial.html. It provides examples in SAS, SPSS, and STATA.

The current dataset (ie, Links97Pair) can be saved as a CSV file (comma-separated file) and imported into other programs and languages. In the R console, type the following two lines of code:

```r
library(NlsyLinks) write.csv(Links97Pair,"C:/BGDirectory/Links97Pair.csv")
```

where "C:/BGDirectory/" is replaced by your preferred directory. Remember to use forward slashes instead of backslashes; for instance, the path "C:\BGDirectory\Links97Pair.csv" can be misinterpreted.

Download CSV If you’re using the NlsyLinks package in R, the dataset is automatically available. To use it in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-97.yml documents the dataset version information.

Examples

```r
library(NlsyLinks) # Load the package into the current R session.
summary(Links97Pair) # Summarize the five variables.
hist(Links97Pair$R) # Display a histogram of the Relatedness coefficients.
table(Links97Pair$R) # Create a table of the Relatedness coefficients for the whole sample.

# Create a dataset of only monozygotic sibs.
mz_sibs <- subset(Links97Pair, R > .9)
summary(mz_sibs) # Create a table MZ sibs.
```

Links97PairExpanded
Kinship linking file for pairs of relatives In the NLSY97. It builds upon the Links97Pair dataset.

Description

Please first read the documentation for Links97Pair. That dataset contains the same pairs/rows, but only a subset of the variables/columns.

For variables that are measured separately for both subjects (eg, Gender), the subjects’ variable name will have an _S1 or _S2 appended to it. For instance, the variables LastSurvey_S1 and LastSurvey_S2 correspond to the last surveys completed by the pair’s first and second subject, respectively. Similarly, the functions CreatePairLinksDoubleEntered() and CreatePairLinksSingleEntered() by default append _S1 and _S2. However this can be modified using the 'subject1Qualifier' and 'subject2Qualifier' parameters.
Links97PairExpanded

Format

A data frame with 11,075 observations on the following 22 variables. There is one row per unique pair of subjects, irrespective of order.

- **ExtendedID** see the variable of the same name in Links97Pair
- **SubjectTag_S1** see the variable of the same name in Links97Pair
- **SubjectTag_S2** see the variable of the same name in Links97Pair
- **R** see the variable of the same name in Links97Pair
- **RFull** This is a superset of R. This includes all the R values we estimated, while R (i.e., the variable above) excludes values like R=0.
- **RelationshipPath** see the variable of the same name in Links97Pair
- **EverSharedHouse** Indicate if the pair likely live in the same house. This is TRUE for all pairs in this NLSY97 dataset.
- **IsMz** Indicates if the pair is from the same zygote (i.e., they are identical twins/triplets). This variable is a factor, with levels No=0, Yes=1, DoNotKnow=255.
- **LastSurvey_S1** The year of Subject1’s most recently completed survey. This may be different that the survey’s administration date.
- **LastSurvey_S2** The year of Subject2’s most recently completed survey. This may be different that the survey’s administration date.
- **RPass1** The pair’s estimated R coefficient, using both implicit and explicit information. Interpolation was NOT used. The variable R is identically constructed, but it did use interpolation.
- **SubjectID_S1** The ID value assigned by NLS to the first subject. For Gen1 Subjects, this is their “CaseID” (i.e, R00001.00). For Gen2 subjects, this is their “CID” (i.e, C00001.00).
- **SubjectID_S2** The ID value assigned by NLS to the second subject.

Details

Specifies the relatedness coefficient (i.e, ’R’) between subjects in the same extended family. Each row represents a unique relationship pair. An extended family with k subjects will have k(k-1)/2 rows. Typically, Subject1 is older while Subject2 is younger.

The specific steps to determine the R coefficient will be described in an upcoming publication. The following information may influence the decisions of an applied researcher.

Author(s)

Will Beasley

Source

See Links97Pair.

See Also

Download CSV If you’re using the NlsyLinks package in R, the dataset automatically is available. To use it in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-97.yml documents the dataset version information.
Examples

library(NlsyLinks) # Load the package into the current R session.
hist(Links97PairExpanded$R) # Declare a concise variable name.

write.csv(
Links97PairExpanded,
file = '~/NlsyLinksStaging/Links97PairExpanded.csv',
row.names = FALSE
)

Description

The function accepts a (file path to) CSV file and creates a base::data.frame. The base::data.frame is modified and augmented with columns to assist later routines.

Usage

ReadCsvNlsy79Gen1(filePath, dsExtract = utils::read.csv(filePath))

Arguments

filePath A path to the CSV file. Remember to use double back-slashes in Windows, or forward-slashes in Windows or Linux.
dsExtract A `data.frame` (containing the extract) can be passed instead of the file path if the data has already been read into R’s memory.

Details

The function does seven things.

1. Reads the CSV into a base::data.frame.
2. Checks that the NLSY variables C00001.00 and C00002.00 exist in the base::data.frame.
3. The NLSY variable C00001.00 is renamed SubjectID.
4. A variable named Generation is given a value of 2 for all subjects.
5. The SubjectTag variable is created.
6. The NLSY variable C00002.00 is multiplied by 100 and renamed SubjectTagOfMother.
7. The NLSY variable R00001.49 (ie, their Mother’s HHID is attached to each Gen2 record).

Value

A base::data.frame to facilitate biometric analysis.
RGroupSummary

Author(s)

Will Beasley

Examples

```r
## Not run:
filePathGen2 <- "~/Nlsy/Datasets/gen2-birth.csv"
ds <- ReadCsvNlsy79Gen2(filePath = filePathGen2)
## End(Not run)
```

RGroupSummary
Calculated summary statistics for each Relatedness Group in the sample.

Description

Before and after running ACE Models, it is important to examine the characteristics of the different groups. When the ACE is estimated with an SEM using multiple groups, it is even even more important. Groups may contain too few subjects to have a well-behaved covariance matrix.

If a group’s covariance matrix is not Positive Definite (or it’s misbehaving in some other way), it’s typically recommended to exclude that group from the SEM.

Usage

```r
RGroupSummary(
  ds,
  oName_S1,
  oName_S2,
  rName = "R",
  determinantThreshold = 1e-05
)
```

Arguments

- **ds**
The base::data.frame containing the following variables:

- **oName_S1**
The name of the outcome variable corresponding to the first subject in the pair.

- **oName_S2**
The name of the outcome variable corresponding to the first subject in the pair.

- **rName**
The name of the variable specifying the pair’s Relatedness coefficient.

- **determinantThreshold**
The minimum value the covariance matrix’s determinant (for the group) should exceed to be considered Positive Definite.
Details

This function isn’t specific to an ACE model and groups defined by R. It could be applied to any multiple-group SEM with two manifest/outcome variables. In the future, we may generalize it beyond two manifest variables.

To get summary stats for the entire sample, create a dummy indicator variable that assigns everyone to the same group. See the second example below.

The default determinantThreshold value is nonzero, in order to forgive slight numerical inaccuracies caused by fixed-precision arithmetic.

Value

A base::data.frame with one row per group. The base::data.frame contains the following variables:

- **R** The group’s R value. Note the name of this variable can be changed by the user, by specifying a non-default value to the rName argument.
- **Included** Indicates if the group should be included in a multiple-group SEM.
- **PairCount** The number of pairs in the group with complete data for R and the two outcome/manifest variables.
- **O1Mean** The mean (of the outcome variable) among the group’s first members, excluding the missing values.
- **O2Mean** The mean (of the outcome variable) among the group’s second members, excluding the missing values.
- **O1Variance** The variance (of the outcome variable) among the group’s first members.
- **O2Variance** The variance (of the outcome variable) among the group’s second members.
- **O1O2Covariance** The covariance (of the outcome variable) across the group’s first and second members.
- **Correlation** The correlation (of the outcome variable) across the group’s first and second members.
- **Determinant** The determinant of the group’s covariance matrix.
- **PosDefinite** Indicates if the group’s covariance matrix is positive definite.

Author(s)

Will Beasley and David Bard

References

Please see Neale & Maes for more information about SEM with multiple groups.

Examples

```r
library(NlsyLinks) # Load the package into the current R session.
dsLinks <- Links79PairExpanded # Load the dataset from the NlsyLinks package.
dsLinks <- dsLinks[dsLinks$RelationshipPath == "Gen2Siblings", ]
oName_S1 <- "MathStandardized_S1" # Stands for Outcome1
oName_S2 <- "MathStandardized_S2" # Stands for Outcome2
```
dsGroupSummary <- RGroupSummary(dsLinks, oName_S1, oName_S2)

dsGroupSummary

Should return:
| R Included PairCount | 01Mean | 02Mean | 01Variance | 02Variance | 01O2Covariance | Correlation |
|-----------------------|--------|--------|------------|------------|----------------|-------------|
| 1 | 0.250 | TRUE | 2718 | 94.6439 | 95.5990 | 207.842 | 41.0783 | 0.218761 |
| 2 | 0.375 | TRUE | 139 | 92.6043 | 93.1655 | 172.531 | 187.881 | 48.4790 | 0.225311 |
| 3 | 0.500 | TRUE | 5511 | 99.8940 | 100.1789 | 230.504 | 232.971 | 107.3707 | 0.463336 |
| 4 | 0.750 | FALSE | 2108.5000 | 106.0000 | 220.500 | 18.000 | 63.0000 | 1.000000 |
| 5 | 1.000 | TRUE | 22 | 98.6364 | 95.5455 | 319.195 | 343.117 | 277.5887 | 0.838789 |

Determinant PosDefinite
| 1 | 33573.0 | TRUE |
| 2 | 30638.7 | TRUE |
| 3 | 42172.2 | TRUE |
| 4 | 0.0 | FALSE |
| 5 | 32465.6 | TRUE |

To get summary stats for the whole sample, create one large inclusive group.
(dsSampleSummary <- RGroupSummary(dsLinks, oName_S1, oName_S2, rName = "Dummy"))

Should return:
| Dummy Included PairCount | 01Mean | 02Mean | 01Variance | 02Variance | 01O2Covariance |
|--------------------------|--------|--------|------------|------------|----------------|
| 1 | 1 | TRUE | 8392 | 98.87162 | 98.56864 | 216.466 | 229.2988 | 90.90266 |

ReadCsvNlsy79
Not run:
filePathGen2 <- "~/Nlsy/Datasets/gen2-birth.csv"
ds <- ReadCsvNlsy79Gen2(filePath = filePathGen2)

SubjectDetails79

Dataset containing further details of the Gen1 and Gen2 subjects.

Description

These variables are useful to many types of analyses (not just behavior genetics), and are provided to save users time.

Format

A data frame with 24,181 observations on the following 12 variables.

- **SubjectTag** see the variable of the same name in Links79Pair
- **ExtendedID** see the variable of the same name in Links79Pair
• **Generation** Indicates if the subject is in generation 1 or 2.

• **Gender** Indicates if the subject is Male or Female.

• **RaceCohort** Indicates if the race cohort is Hispanic, Black or Nbh (ie, Non-black, non-hispanic). This comes from the Gen1 variable R02147.00 and Gen2 variable C00053.00.

• **SiblingCountInNls** The number of the subject’s siblings, including himself/herself (a singleton has a value of one). This considers only the siblings in the NLSY. For Gen1, this can exclude anyone outside the age range. For Gen2, this excludes anyone who doesn’t share the same mother.

• **BirthOrderInNls** Indicates the subject’s birth order among the NLSY siblings.

• **SimilarAgeCount** The number of children who were born within roughly 30 days of the subject’s birthday, including the subject (for instance, even an only child will have a value of 1). For Gen2 subjects, this should reflect how many children the Gen1 mother gave birth to at the same time (1: singleton; 2: twins, 3: triplets). For Gen1 subjects, this is less certain, because the individual might have been living with a similarly-aged housemate, born to a different mother.

• **HasMzPossibly** Indicates if the subject might be a member of an MZ twin/triplet. This will be true if there is a sibling with a DOB within a month, and they are the same gender.

• **IsMz** Indicates if the subject has been identified as a member of an MZ twin/triplet.

• **KidCountBio** The number of biological children known to the NLSY (but not necessarily interviewed by the NLSY.

• **KidCountInNls** The number of children who belong to the NLSY. This is nonnull for only Gen1 subjects.

• **Mob** The subject’s month of birth. The exact day is not available to the public. By default, we set their birthday to the 15th day of the month.

• **LastSurveyYearCompleted** The year of the most recently completed survey.

• **AgeAtLastSurvey** The subject’s age at the most recently completed survey.

• **IsDead** ##This variable is not available yet## Indicates if the subject was alive for the last attempted survey.

• **DeathDate** ##This variable is not available yet## The subject’s month of death. The exact day is not available to the public. By default, we set their birthday to the 15th day of the month.

Author(s)

Will Beasley

Source

Gen1 information comes from the Summer 2013 release of the NLSY79 sample. Gen2 information comes from the Summer 2013 release of the NLSY79 Children and Young Adults sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

See Also

Download CSV If you’re using the NlsyLinks package in R, the dataset is automatically available. To use it in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-79.yml documents the dataset version information.
Examples

 library(NlsyLinks) # Load the package into the current R session.

 summary(SubjectDetails79)

 oldPar <- par(mfrow = c(3, 2), mar = c(2, 2, 1, 0), tcl = 0, mgp = c(1, 0, 0))
 hist(
 SubjectDetails79$SiblingCountInNls,
 main = "",
 breaks = seq(from = 0, to = max(SubjectDetails79$SiblingCountInNls, na.rm = TRUE), by = 1)
)
 hist(
 SubjectDetails79$BirthOrderInNls,
 main = "",
 breaks = seq(from = 0, to = max(SubjectDetails79$BirthOrderInNls, na.rm = TRUE), by = 1)
)
 hist(
 SubjectDetails79$SimilarAgeCount,
 main = "",
 breaks = seq(from = 0, to = max(SubjectDetails79$SimilarAgeCount, na.rm = TRUE), by = 1)
)
 hist(
 SubjectDetails79$KidCountBio,
 main = "",
 breaks = seq(from = 0, to = max(SubjectDetails79$KidCountBio, na.rm = TRUE), by = 1)
)
 hist(
 SubjectDetails79$KidCountInNls,
 main = "",
 breaks = seq(from = 0, to = max(SubjectDetails79$KidCountInNls, na.rm = TRUE), by = 1)
)
 # hist(SubjectDetails79$Mob, main="",
 # breaks=seq.Date(
 # from=min(SubjectDetails79$Mob, na.rm=TRUE),
 # to=max(SubjectDetails79$Mob, na.rm=TRUE),
 # by="year"
 #)
 par(oldPar)

Survey79

Dataset containing survey details for each subject, for each year

Description

Each row represents a survey that a subject completed (or didn’t complete). It can be very helpful when restructuring the NLS investigator extracts into a longitudinal dataset that’s aligned by age (instead of by survey wave). The Age variables can help to align other response variables across subjects. While the 'SurveySource' indicates where to look for their responses.
These variables are useful to many types of analyses (not just behavior genetics), and are provided to save users time.

Format

A data frame with 580,752 observations on the following 6 variables.

- **SubjectTag** see the variable of the same name in Links79Pair
- **SurveySource** The location of that subject’s survey responses that year. Values are NoInterview, Gen1, Gen2C or Gen2YA.
- **SurveyYear** The year/wave of the survey.
- **Survey79** The exact date of the administered survey.
- **Age** The subject’s age at the time of the survey, rounded to 1 decimal. See Details below.

Details

Age uses a variable called AgeCalculateYears (according to their own response, or their mother’s response) if it’s available, and uses AgeSelfReportYears (according to a their own response, or their mother’s response) if not. The values usually agree, but not always. These two separated variables are available for download, but withheld from the R package (otherwise we would exceed CRAN’s maximum size).

The exact date of birth isn’t public (only the subject’s month of birth). To balance the downward bias of two weeks, their birthday is set to the 15th day of the month to produce AgeCalculateYears.

In the Gen2 Child dataset, self-reported age is stated by month (eg, the child is 38 months old); a constant of 0.5 months has been added to balance the downward bias. In the Gen2 YA and Gen1 datasets, self-reported age is stated by year (eg, the subject is 52 years old); a constant of 0.5 years has been added.

Author(s)

Will Beasley

Download CSV If you’re using the NlsyLinks package in R, the dataset is automatically available. To use it in a different environment, download the csv, which is readable by all statistical software. links-metadata-2017-79.yml documents the dataset version information.

Source

Gen1 information comes from the Summer 2013 release of the NLSY79 sample. Gen2 information comes from the January 2015 release of the NLSY79 Children and Young Adults sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

Examples

library(NlsyLinks) # Load the package into the current R session.

summary(Survey79)

table(Survey79$SurveyYear, Survey79$SurveySource)

table(is.na(Survey79$AgeSelfReportYears), is.na(Survey79$AgeCalculateYears))
if (require(ggplot2) & require(dplyr)) {
 dsSourceYear <- Survey79 %>%
 dplyr::count(SurveyYear, SurveySource) %>%
 dplyr::filter(SurveySource != "NoInterview")

Survey79 %>%
 dplyr::filter(SurveySource != "NoInterview") %>%
 dplyr::group_by(SurveySource, SurveyYear) %>%
 dplyr::summarize(
 age_min = min(Age, na.rm = TRUE),
 age_max = max(Age, na.rm = TRUE)
) %>%
 dplyr::ungroup() %>%
 ggplot(aes(x = SurveyYear, ymin = age_min, ymax = age_max, color = SurveySource)) +
 geom_errorbar() +
 scale_color_brewer(palette = "Dark2") +
 theme_minimal() +
 theme(legend.position = c(0, 1), legend.justification = c(0, 1))
}

ValidateOutcomeDataset

Validates the schema of datasets containing outcome variables.

Description

The NlsyLinks handles a lot of the plumbing code needed to transform extracted NLSY datasets into a format that statistical routines can interpret. In some cases, a dataset of measured variables is needed, with one row per subject. This function validates the measured/outcome dataset, to ensure it posses an interpretable schema. For a specific list of the requirements, see Details below.

Usage

ValidateOutcomeDataset(dsOutcome, outcomeNames)

Arguments

dsOutcome A base::data.frame with the measured variables
outcomeNames The column names of the measure variables that eventually will be used by a statistical procedure.

Details

The dsOutcome parameter must:

1. Have a non-missing value.
2. Contain at least one row.
3. Contain a column called 'SubjectTag' (case sensitive).
4. Have the SubjectTag column containing only positive numbers.
5. Have the SubjectTag column where all values are unique (i.e., two rows/subjects cannot have the same value).

The `outcomeNames` parameter must:
1. Have a non-missing value
2. Contain only column names that are present in the `dsOutcome` data frame.

Value

Returns TRUE if the validation passes. Returns an error (and associated descriptive message) if it false.

Author(s)

Will Beasley

Examples

```r
library(NlsyLinks) # Load the package into the current R session.

ds <- ExtraOutcomes79
outcomeNames <- c("MathStandardized", "WeightZGenderAge")
ValidateOutcomeDataset(dsOutcome = ds, outcomeNames = outcomeNames) # Returns TRUE.
outcomeNamesBad <- c("MathMisspelled", "WeightZGenderAge")
# ValidateOutcomeDataset(dsOutcome=ds, outcomeNames=outcomeNamesBad) # Throws error.
```

ValidatePairLinks

Validates the schema of a links for pairs of relatives

Description

A helper function that verifies the linking dataset contains (A) the essential columns exist, and (B) at least one row. It is called by `CreatePairLinks`.

Typical use of `NlsyLinks` will not require this function, since a valid paired links are supplied for each supported sample (i.e., `Links79Pair`).

The `NlsyLinks` uses several types of linking schemas. This function validates the type where each relative subject has their own row.

The following four columns must be present: (1) `Subject1Tag`, (2) `Subject2Tag`, (3) `R`, and (4) `MultipleBirth`. They must have a numeric mode/datatype.

Usage

ValidatePairLinks(linksPair)
ValidatePairLinksAreSymmetric

Arguments

linksPair The base::data.frame to validate.

Value

Returns TRUE if the validation passes. Returns an error (and associated descriptive message) if it false.

See Also

Links79Pair, Links79PairExpanded,

Examples

dsSingleLinks <- data.frame(
 ExtendedID = c(1, 1, 1, 2),
 SubjectTag_S1 = c(101, 101, 102, 201),
 SubjectTag_S2 = c(102, 103, 103, 202),
 R = c(.5, .25, .25, .5),
 RelationshipPath = rep("Gen2Siblings", 4)
)
dsSingleOutcomes <- data.frame(
 SubjectTag = c(101, 102, 103, 201, 202),
 DV1 = c(11, 12, 13, 41, 42),
 DV2 = c(21, 22, 23, 51, 52)
)
dsDouble <- CreatePairLinksDoubleEntered(
 outcomeDataset = dsSingleOutcomes,
 linksPairDataset = dsSingleLinks,
 outcomeNames = c("DV1", "DV2"),
 validateOutcomeDataset = TRUE
)
dsDouble # Show the 8 rows in the double-entered pair links
summary(dsDouble) # Summarize the variables

ValidatePairLinksAreSymmetric(dsDouble) # Should return TRUE.

ValidatePairLinksAreSymmetric

Verifies that the pair relationships are symmetric.

Description

For certain analyses, the pairs links (which can be considered a type of sparse matrix) need to be symmetric. For instance, if there is a row for Subjects 201 and 202 with R=0.5, there should be a second row for Subjects 202 and 201 with R=0.5.

This validation function is useful to some types of DF methods and some spatially-inspired methods.
ValidatePairLinksAreSymmetric

Usage

ValidatePairLinksAreSymmetric(linksPair)

Arguments

linksPair The base::data.frame object that should be symmetric

Value

Returns TRUE if symmetric. Throw an error with base::stop() if asymmetric.

Author(s)

Will Beasley

See Also

CreatePairLinksDoubleEntered()

Examples

dSSingleLinks <- data.frame(
 ExtendedID = c(1, 1, 1, 2),
 SubjectTag_S1 = c(101, 101, 102, 201),
 SubjectTag_S2 = c(102, 103, 103, 202),
 R = c(.5, .25, .25, .5),
 RelationshipPath = rep("Gen2Siblings", 4)
)
dSingleOutcomes <- data.frame(
 SubjectTag = c(101, 102, 103, 201, 202),
 DV1 = c(11, 12, 13, 41, 42),
 DV2 = c(21, 22, 23, 51, 52)
)
dDouble <- CreatePairLinksDoubleEntered(
 outcomeDataset = dSingleOutcomes,
 linksPairDataset = dSingleLinks,
 outcomeNames = c("DV1", "DV2"),
 validateOutcomeDataset = TRUE
)
dDouble # Show the 8 rows in the double-entered pair links
summary(dDouble) # Summarize the variables

ValidatePairLinksAreSymmetric(dDouble) # Should return TRUE.
Index

* ACE
 AceEstimate-class, 6
 AceLavaanGroup, 7
 CleanSemAceDataset, 8
 CreateAceEstimate, 11
 RGroupSummary, 29
* analysis
 CreateSpatialNeighbours, 14
* classes
 AceEstimate-class, 6
* datasets
 ExtraOutcomes79, 17
 Links79Pair, 19
 Links79PairExpanded, 22
 Links97Pair, 24
 Links97PairExpanded, 26
 SubjectDetails79, 31
 Survey79, 33
* methods
 AceEstimate-class, 6
* package
 NlsyLinks-package, 2
* spatial
 CreateSpatialNeighbours, 14
* validation
 ValidateOutcomeDataset, 35
 ValidatePairLinks, 36
 ValidatePairLinksAreSymmetric, 37

Ace, 4
Ace(), 9
AceEstimate, 11, 12
AceEstimate-class, 6
AceEstimate-method
 (GetDetails-methods), 18
AceLavaanGroup, 7
AceUnivariate(Ace), 4
AceUnivariate(), 5
base::data.frame, 4, 7, 9–11, 14, 20, 25,

28–30, 35, 37, 38
base::stop(), 38
CleanSemAceDataset, 8
CleanSemAceDataset(), 7, 8
ColumnUtilities, 10
CreateAceEstimate, 11
CreatePairLinks, 12
CreatePairLinksDoubleEntered
 (CreatePairLinks), 12
CreatePairLinksDoubleEntered(), 14, 22,
 26, 38
CreatePairLinksDoubleEnteredWithNoOutcomes
 (CreatePairLinks), 12
CreatePairLinksDoubleEnteredWithNoOutcomes()
CreatePairLinksSingleEntered
 (CreatePairLinks), 12
CreatePairLinksSingleEntered(), 12, 14
CreateSpatialNeighbours, 14
CreateSpatialNeighbours(), 12, 14
CreateSubjectTag, 15
DeFriesFulkerMethod1(Ace), 4
DeFriesFulkerMethod1(), 5
DeFriesFulkerMethod3(Ace), 4
DeFriesFulkerMethod3(), 5
ExtraOutcomes79, 17, 20, 23, 24
GetDetails(GetDetails-methods), 18
GetDetails, AceEstimate-method
 (AceEstimate-class), 6
GetDetails-methods, 18
lavaan::lavaan, 11
lavaan::lavaan(), 6
Links79Pair, 14, 16, 17, 19, 20, 22–24, 31,
 34, 36, 37
Links79PairExpanded, 14, 20, 21, 22, 37
Links97Pair, 24, 25–27
Links97PairExpanded, 25, 26, 26

NlsyLinks (NlsyLinks-package), 2
NlsyLinks-package, 2

ReadCsvNlsy79, 28
ReadCsvNlsy79Gen1 (ReadCsvNlsy79), 28
ReadCsvNlsy79Gen2 (ReadCsvNlsy79), 28
RenameColumn (ColumnUtilities), 10
RenameColumn(), 11
RenameNlsyColumn (ColumnUtilities), 10
RenameNlsyColumn(), 11
RGroupSummary, 29
RGroupSummary(), 9

stats::lm, 11
stats::lm(), 6
SubjectDetails79, 31
Survey79, 33

ValidateOutcomeDataset, 35
ValidatePairLinks, 36
ValidatePairLinksAreSymmetric, 37
VerifyColumnExists (ColumnUtilities), 10
VerifyColumnExists(), 11