Package ‘OBMbpkg’

September 22, 2017

Type Package

Title Estimate the Population Size for the Mb Capture-Recapture Model

Version 1.0.0

Date 2017-09-22

Author Dan Zheng

Maintainer John Snyder <jcs8v6@mail.missouri.edu>

Description Applies an objective Bayesian method to the Mb capture-recapture model to estimate the population size N. The Mb model is a class of capture-recapture methods used to account for variations in capture probability due to animal behavior. Under the Mb formulation, the initial capture of an animal may effect the probability of subsequent captures due to their becoming "trap happy" or "trap shy."

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1

Suggests stats

NeedsCompilation no

Repository CRAN

Date/Publication 2017-09-22 16:53:15 UTC

R topics documented:

 OBMb ... 2

Index 4
Objective Bayesian Analysis for the Mb Capture-Recapture Model

Description

Applies an objective Bayesian method on to the Mb capture-recapture model to estimate the population size N.

Usage

OBMb(k, n, M, x, CI1 = 0.025, CI2 = 0.975, max = 10000, IFMLE = TRUE)

Arguments

k Number of sampling occasions
n Total number of distinct animals captured
M Number of marked animals captured in all sampling occasions
x The number of new animals captured at each sampling occasion
CI1 Lower confidence level
CI2 Upper confidence level
max The maximum of function evaluations used for computing the integrated likelihood L(N|X)
IFMLE Logical, will also print MLE results if TRUE

Value

• EMEAN: Posterior mean for N
• EMEDIAN: Posterior median for N
• OBCI: Credible interval values based on the quantiles specified by CI1 and CI2
• MLE: If IFMLE==TRUE, this is the frequentist MLE for N
• Ep: If IFMLE==TRUE, the frequentist estimate of the initial capture probability p
• MLECI: If IFMLE==TRUE, confidence interval for the MLE quantile specified by CI2

Examples

Data simulation example
k=10
N=600 #True N
p=.06
JN=rep(0,k+1)
N=rep(0,k)
x=rep(0,k)
for (j in 1:k){
 N[j]=tN-JN[j]
 x[j]=rbinom(1,N[j],p)
 JN[j+1]=JN[j]*x[j]
}
M=sum(JN[1:k])
n=JN[k+1]

OBMb(k=k,n=n,M=M,x=x)

#Deer mouse example from Otis et al 1978
Data<-c(15, 8, 6, 3, 3) #new animals captured at each sampling occasion

OBMb(k=6,n=38,M=134,x=Data)
Index

OBMb, 2