Package ‘OCA’

February 12, 2021

Type Package
Title Optimal Capital Allocations
Version 0.4
Date 2021-02-11
Author Jilber Urbina
Maintainer Jilber Urbina <jurbina@cipadla.com>
Description Computes optimal capital allocations based on some standard principles such as Haircut, Overbeck type II and the Covariance Allocation Principle. It also provides some short-cuts for obtaining the Value at Risk and the Expectation Shortfall, using both the normal and the t-student distribution, see Urbina and Guil-lén (2014)<doi:10.1016/j.eswa.2014.05.017> and Urbina (2013)<http://hdl.handle.net/2099.1/19443>.
License GPL-2
Encoding UTF-8
RoxygenNote 7.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2021-02-12 05:10:02 UTC

R topics documented:

  cap ................................................................. 2
dat1 ............................................................... 3
dat2 ............................................................... 4
ES ................................................................. 4
hap ................................................................. 6
Overbeck2 ....................................................... 8
Risk .............................................................. 9
VaR .............................................................. 11

Index 13
Description

This function implements the covariance allocation principle for optimal capital allocation.

Usage

cap(Loss, Capital)

Arguments

Loss  A matrix containing the individual losses in each column
Capital  A scalar representing the capital to be allocated to each loss.

Details

The Covariance Allocation Principle correspond to the following expression:

\[ K_i = \frac{K}{\text{Var}(S)} \text{Cov}(X_i, S), \quad i = 1, \ldots, n, \]

where \( K_i \) is the capital to be allocated to the \( i \)th loss, \( K \) is the total capital to be allocated, \( X_i \) is the individual unit loss and \( S \) is the total (aggregate) loss, this comes from \( \sum_i X_i \). \( \text{Cov}(X_i, S) \) is the covariance between the individual loss \( X_i \) and the aggregate loss \( S \); and \( \text{Var}(S) \) is the variance of the aggregate loss.

Value

A vector containing each asset and the corresponding capital allocation. If Capital=1, then the returned value will be the proportions of capital required by each loss to be faced.


Author(s)

Jilber Urbina
Examples

```r
data(dat1, dat2)
Loss <- cbind(Loss1=dat1[1:400, ], Loss2=unname(dat2))
# Proportions of capital to be allocated to each business unit
cap(Loss, Capital=1)

# Capital allocation,
# capital is determined as the empirical VaR of the losses at 99%
K <- quantile(rowSums(Loss), probs = 0.99)
cap(Loss, Capital=K)
```

---

**dat1**

*Public data risk no. 1*

---

**Description**

Dataset named Public data risk no. 1 consisting in 1000 of simulated data.

**Usage**

```r
data(dat1)
```

**Format**

A data frame with 1000 observations on the following variable.

- **y** a numeric vector

**References**


**Examples**

```r
data(dat1)
```
dat2 Public data risk no. 2

Description
Dataset named Public data risk no. 1 consisting in 400 of simulated data.

Usage
data(dat2)

Format
A data frame with 400 observations on the following variable.

y a numeric vector

References

Examples
data(dat2)

ES Expected Shortfall

Description
Computes the Expected Shortfall of a given amount of loss based on variance-covariance method.

Usage
ES(
  variance,
  alpha = 0.95,
  weights = NULL,
  model = c("normal", "t-student", "both"),
  df = NULL,
  percentage = FALSE
)

**Arguments**

- **variance**: It could be either a scalar or a matrix containing the variances and covariances of the losses. Provide a covariance matrix when analyzing correlated losses or a scalar when dealing with a single loss.

- **alpha**: A numeric value (either a single one or a vector) consisting of the significance level at which ES has to be computed, it can either be a single numeric value or a vector of numeric values.

- **weights**: A vector of weights of size $N$ for weighting the variance of losses. When weights=NULL variances used to compute ES are the original values supplied to variance with no weighting scheme.

- **model**: A character string indicating which distribution is to be used for computing the ES, the default value is the normal distribution, the other alternative is t-student distribution with $\nu$ degrees of freedom. When model='both' 'normal' as well as 't-student' are used when computing the ES, see examples.

- **df**: An integer indicating the degrees of freedom for the t-student distribution when setting model='t-student' and model='both'. df must be greater than 2.

- **percentage**: Logical indicating whether the file names in the VaR table should be presented in percentage or decimal.

**Details**

ES computes the Expected Shortfall (ES) of a certain amount of loss based upon the following general formulation:

$$ES_\alpha = \frac{1}{1 - \alpha} \int_\alpha^1 VaR_\alpha(X) du = E[X | X > F_X^{-1}(\alpha)].$$

where $\alpha$ is the significance level, $VaR_\alpha(X)$ is the Value-at-Risk of $X$.

ES for the normal case is based on the following expression:

$$ES_\alpha = \mu + \sigma \frac{\phi^{-1}(\alpha)}{1 - \alpha}$$

Meanwhile, ES for the t-student distribution takes comes from:

$$ES_\alpha(\tilde{X}) = \frac{g_\nu(t^{-1}_\nu(\alpha))}{1 - \alpha} \left( \frac{\nu + (t^{-1}_\nu(\alpha))^2}{\nu - 1} \right)$$

**Author(s)**

Jilber Urbina
References


Examples

# Exercise 2.21, page 46 in McNeil et al (2005)
alpha <- c(.90, .95, .975, .99, .995)
(ES(variance=(0.2/sqrt(250))^2, alpha=alpha, model="normal"))*10000
(ES(variance=(0.2/sqrt(250))^2, alpha=alpha, model="t-student", df=4))*10000

# Both type of models at once.
(ES(variance=(0.2/sqrt(250))^2, alpha=alpha, model="both", df=4))*10000

# A vector of losses
variance <- matrix(c(100,150,150,900), 2) # covariance matrix
w <- c(0.5, 0.5) # a vector weights
ES(variance=variance, weights=w, alpha=0.95)

hap

Haircut Allocation Principle

Description

Capital allocation based on the Haircut Allocation Principle.

Usage

hap(Loss, Capital, alpha = 0.95, model = "normal", df = NULL)

Arguments

Loss
Either a scalar or a vector of size $N$ containing the mean losses.

Capital
A scalar representing the capital to be allocated to each loss.

alpha
A numeric value (either a single one or a vector) consisting of the significance level at which ES has to be computed, it can either be a single numeric value or a vector of numeric values.

model
A character string indicating which distribution is to be used for computing the VaR underlying the Haircut Allocation Principle (HAP), the default value is the normal distribution, the other alternative is t-student distribution with $\nu$ degrees of freedom. When model='both' 'normal' as well as 't-student' are used when computing the HAP, see examples.
df  An integer indicating the degrees of freedom for the t-student distribution when setting model='t-student' and model='both'. df must be greater than 2.

Details

This function computes the capital allocation based on the so-called Haircut Allocation Principle whose expression is as follows:

\[ K_i = \frac{K}{\sum_{j=1}^{n} F_{X_j}^{-1}(p)} F_{X_i}^{-1}(p) \]

For \( i = 1, \ldots, n \), where \( K_i \) represents the optimal capital to be allocated to each individual loss for the \( i \)-th business unit, \( K \) is the total capital to be allocated, \( F_{X_i}^{-1}(p) \) is the quantile function (VaR) for the \( i \)-th loss.

Value

A vector containing the optimal capital allocation, if Capital is set to 1, then the returned matrix will consist of the proportions of capital each individual loss needs to be optimally faced.


See Also

Overbeck2, cap

# @author Jilber Urbina

Examples

data(dat1, dat2)
Loss <- cbind(Loss1=dat1[1:400, ], Loss2=unname(dat2))
# Proportions of capital to be allocated to each business unit
hap(Loss, Capital=1)

# Capital allocation,
# capital is determined as the empirical VaR of the losses at 99%-
K <- quantile(rowSums(Loss), probs = 0.99)
hap(Loss, Capital=K)
Overbeck2

Overbeck type II Allocation Principle

Description

This function implements the Overbeck type II allocation principle for optimal capital allocation.

Usage

Overbeck2(
  Loss,  # Either a scalar or a vector of size N containing the mean losses.
  Capital,  # A scalar representing the capital to be allocated to each loss.
  alpha = 0.95,  # A numeric value (either a single one or a vector) consisting of the significance level at which the allocation has to be computed, it can either be a single numeric value or a vector of numeric values.
  model = c("normal", "t-student", "both"),  # A character string indicating which distribution is to be used for computing the VaR underlying the Overbeck type II principle, the default value is the normal distribution, the other alternative is t-student distribution with \( \nu \) degrees of freedom. When model=’both’ ‘normal’ as well as ‘t-student’ are used when computing the allocations, see examples.
  df = NULL  # An integer indicating the degrees of freedom for the t-student distribution when setting model=’t-student’ and model=’both’. df must be greater than 2.
)

Arguments

Loss  
Capital  
alpha  
model  
df  

Details

Overbeck2 computes the capital allocation based on the following formulation:

\[
K_i = \frac{K}{CTE_p[S]} E \left[ X_i | S > F_{X,s}^{-1}(p) \right], \quad i = 1, \ldots, n.
\]

Where

- \( K \) is the aggregate capital to be allocated,
- \( CTE_p[S] \) is the Conditional Tail Expectation of the aggregate loss at level \( p \),
- \( X_i \) is the individual loss,
- \( S \) is the aggregate loss and \( F_{X}^{-1}(p) \) is the quantile function of \( X \) at level \( p \).
Value

A vector containing the optimal capital allocation, if Capital is set to 1, then the returned matrix will consist of the proportions of capital each individual loss needs to be optimally faced.


Author(s)

Jilber Urbina

See Also

hap, cap

Examples

data(dat1, dat2)
Loss <- cbind(Loss1=dat1[1:400, ], Loss2=unname(dat2))
# Proportions of capital to be allocated to each business unit
Overbeck2(Loss, Capital=1)

# Capital allocation,
# capital is determined as the empirical VaR of the losses at 99%
K <- quantile(rowSums(Loss), probs = 0.99)
Overbeck2(Loss, Capital=K)

Description

Risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) with normal and t-student distributions based on variance-covariance method. It is a shortcut for VaR and ES.

Usage

Risk(
  variance,
  alpha = 0.95,
  measure = c("both", "VaR", "ES"),
  weights = NULL,
  model = c("both", "normal", "t-student"),
  df = NULL,
  percentage = FALSE
)
Arguments

variance  It could be either a scalar or a matrix containing the variances and covariances of the losses. Provide a covariance matrix when analyzing correlated losses or a scalar when dealing with a single loss.

alpha  The confidence level at which either the VaR or the ES will be computed, by default alpha is set to 0.95.

measure  An optional character string giving a measure for computing the risk. "VaR" stands for Value at Risk, "ES" stands for Expected Shortfall, and if both is chosen, then the function returns both the VaR and the ES as a result. By default measure is set to be "both".

weights  A vector containing the weights. It is only needed if variance is a matrix, if it is not then weights is set to 1.

model  A character string indicating which probability model has to be used for computing the risk measures, it could only be a normal distribution or a t-student distribution with v degrees of freedom. The normal distribution is the default model for this function. model default value is set to 'both' to show normal and t-student VaR and ES. See example below.

df  An integer (df>2) denoting the degrees of freedom, only required if model='t-student'. Otherwise it has to be NULL.

percentage  Logical indicating whether the file names in the VaR table should be presented in percentage or decimal.

Value


Author(s)

Jilber Urbina

See Also

VaR, ES

Examples

# Reproducing Table 2.1 in page 47 of
alpha <- c(.90, .95, .975, .99, .995)
(Risk(variance=(0.2/sqrt(250))^2, alpha=alpha, measure='both', model='both', df=4))*10000

# only VaR results
(Risk(variance=(0.2/sqrt(250))^2, alpha=alpha, measure='VaR', model='both', df=4))*10000
# only SE based on a 4 degrees t-student.
(Risk(variance=(0.2/sqrt(250))^2, alpha=alpha, measure='ES', model='t-student', df=4))*10000

<table>
<thead>
<tr>
<th>VaR</th>
<th>Value at Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Description**

Analytical approach for calculating VaR based on Variance-Covariance Method based on both normal and t-student distribution.

**Usage**

```r
VaR(
  variance,
  alpha = 0.95,
  weights = NULL,
  model = c("normal", "t-student", "both"),
  df = NULL,
  percentage = FALSE
)
```

**Arguments**

- `variance`: It could be either a scalar or a matrix containing the variances and covariances of the losses. Provide a covariance matrix when analyzing correlated losses or a scalar when dealing with a single loss.
- `alpha`: The confidence level at which either the VaR will be computed, by default alpha is set to 0.95.
- `weights`: A vector of weights of size $N$ for weighting the variance of losses. When weights=NULL, variances used to compute VaR are the original values supplied to variance with no weighting scheme.
- `model`: A character string indicating which probability model has to be used for computing the risk measures, it could be a normal distribution or a t-student distribution with $v$ degrees of freedom. The normal distribution is the default model for this function. model also allows the user to set 'both' if she wishes both normal and t-student VaR or ES depending on what she choses in measure. See example below.
- `df`: An integer (df>2) denoting the degrees of freedom, only required if model='t-student'. Otherwise it has to be NULL.
- `percentage`: Logical indicating whether the file names in the VaR table should be presented in percentage or decimal.
Value

A data.frame containing the VaR at its corresponding confidence level.

Author(s)

Jilber Urbina

References


See Also

Risk, ES

Examples

# Reproducing VaR from Table 2.1 in page 47 of

alpha <- c(.90, .95, .975, .99, .995)
VaR(variance=(10000*0.2/sqrt(250))^2, alpha=alpha, model='both', df=4)

# only normal VaR results
VaR(variance=(10000*0.2/sqrt(250))^2, alpha=alpha)
Index

* datasets
  dat1, 3
  dat2, 4

cap, 2, 7, 9

dat1, 3
dat2, 4

ES, 4, 10, 12

hap, 6, 9

Overbeck2, 7, 8

Risk, 9, 12

VaR, 10, 11