Package ‘OOR’

March 23, 2020

Type Package
Title Optimistic Optimization in R
Version 0.1.3
Date 2020-03-23
Description Implementation of optimistic optimization methods for global optimization of deterministic or stochastic functions. The algorithms feature guarantees of the convergence to a global optimum. They require minimal assumptions on the (only local) smoothness, where the smoothness parameter does not need to be known. They are expected to be useful for the most difficult functions when we have no information on smoothness and the gradients are unknown or do not exist. Due to the weak assumptions, however, they can be mostly effective only in small dimensions, for example, for hyperparameter tuning.

License LGPL
Depends methods
URL http://github.com/mbinois/OOR
BugReports http://github.com/mbinois/OOR/issues
RoxygenNote 7.1.0
NeedsCompilation no

Author M. Binois [cre, aut, trl] (R port),
A. Carpentier [aut] (Matlab original),
J.-B. Grill [aut] (Python original),
R. Munos [aut] (Python and Matlab original),
M. Valko [aut, ctb] (Python and Matlab original)

Maintainer M. Binois <mickael.binois@inria.fr>
Repository CRAN
Date/Publication 2020-03-23 11:30:13 UTC

R topics documented:

OOR ... 2
POO ... 3
StoSOO ... 5
Test functions ... 7
Description

This package implements optimistic optimization methods [1,2,3] for global optimization of deterministic or stochastic functions. The algorithms feature guarantees of the convergence to a global optimum. They require minimal assumptions on the (only local) smoothness, where the smoothness parameter does not need to be known. They are expected to be useful for the most difficult functions when we have no information on smoothness and the gradients are unknown or do not exist. Due to the weak assumptions, however, they can be mostly effective only in small dimensions, for example, for hyperparameter tuning [4].

Details

Important functions:
- StoSOO
- POO

Note

This package is based on the Matlab and Python implementations from the corresponding publications, available from the following webpage: https://team.inria.fr/sequel/software/.

References

Examples

```r
# Example 1: Deterministic optimization with SOO
#------------------------------------------------------------
# Define objective
fun1 <- function(x) return(-guirland(x))
```
Optimization

```r
# Example 1: Stochastic optimization with StoSOO
Sol1 <- StoSOO(par = NA, fn = fun1, nb_iter = 1000, control = list(type = "det", verbose = 1))

# Display objective function and solution fund
curve(fun1, n = 1001)
abline(v = Sol1$par, col = "red")
```

```r
# Example 2: Stochastic optimization with StoSOO
set.seed(42)
fun2 <- function(x){return(-sin1(x[1]) * sin1(1 - x[2]) + runif(1, min = -0.05, max = 0.05))}
Sol2 <- StoSOO(par = rep(NA, 2), fn = fun2, upper = rep(pi/4, 2), nb_iter = 1000)

# Display solution
xgrid <- seq(0, pi/4, length.out = 101)
Xgrid <- expand.grid(xgrid, xgrid)
ref <- apply(Xgrid, 1, function(x){(-sin1(x[1]) * sin1(1 - x[2]))})
filled.contour(xgrid, xgrid, matrix(ref, 101), color.palette = terrain.colors,
plot.axes = {axis(1); axis(2); points(Xgrid[which.min(ref),, drop = FALSE], pch = 21);
points(Sol2$par[1], Sol2$par[2], pch = 13)})
```

```r
# Example 3: Stochastic optimization with POO
set.seed(10)
noise.level <- 0.05
fun3 <- function(x){return(double_sine(x) + runif(1, min = -noise.level, max = noise.level))}
Sol3 <- POO(fun3, horizon = 1000, noise.level = noise.level)

# Display result
abline(v = Sol3$par)
```

Parallel Optimistic Optimization

```
POO
```

Parallel Optimistic Optimization
Description

Global optimization of a blackbox function given a finite budget of noisy evaluations, via the Parallel Optimistic Optimization algorithm. The knowledge of the function’s smoothness is not required.

Usage

POO(f, horizon = 100, noise.level, rhomax = 20, nu = 1)

Arguments

- **f**: function to maximize.
- **horizon**: maximum number of function evaluations.
- **noise.level**: scalar bound on the noise value.
- **rhomax**: number of equidistant rho values in [0,1], that are used by the corresponding HOO subroutines, see Details.
- **nu**: scalar (> 0) assessing the complexity of the function, along with rho (see the near optimality definition in the reference below).

Details

Only 1-dimensional functions defined on [0, 1] are handled so far. POO uses Hierarchical Optimistic Optimisation (HOO) as a subroutine, whose number is set by rhomax. POO handles more difficult functions than StoSOO.

Value

Random point evaluated by the best HOO, in the form of a list with elements:

- par parameter value at this point,
- value noisy value at par,
- best_rho best rho value.

Author(s)

M. Binois (translation in R code), J.-B. Grill, M. Valko and R. Munos (Python code)

References

J.-B. Grill, M. Valko and R. Munos (2015), Black-box optimization of noisy functions with unknown smoothness, NIPS, 667-675 https://hal.inria.fr/hal-01222915. Python code: https://team.inria.fr/sequel/software/POO.
StoSOO

Examples

```r
## Not run:
#------------------------------------------------------------
# Maximization with POO
#------------------------------------------------------------
set.seed(10)
noise.level <- 0.05
## Define and display objective
ftest <- function(x){return(double_sine(x) + runif(1, min = -noise.level, max = noise.level))}
xgrid <- seq(0, 1, length.out = 1000)
plot(xgrid, sapply(xgrid, double_sine), type = "l", ylab = "double_sine(x)", xlab = 'x')
## Optimization
Sol <- POO(ftest, horizon = 1000, noise.level = noise.level)
## Display result
abline(v = Sol$par)
## End(Not run)
```

StoSOO and SOO algorithms

Description

Global optimization of a blackbox function given a finite budget of noisy evaluations, via the Stochastic-Simultaneous Optimistic Optimisation algorithm. The deterministic-SOO method is available for noiseless observations. The knowledge of the function's smoothness is not required.

Usage

```r
StoSOO(par, fn, ..., lower = rep(0, length(par)), upper = rep(1, length(par)), nb_iter, control = list(VERBOSE = 0, type = "sto", max = FALSE, light = TRUE))
```

Arguments

- **par**: vector with length defining the dimensionality of the optimization problem. Providing actual values of `par` is not necessary (NAs are just fine). Included primarily for compatibility with `optim`.
- **fn**: scalar function to be minimized, with first argument to be optimized over.
optional additional arguments to \(fn \).
lower, upper vectors of bounds on the variables.
nb_iter number of function evaluations allocated to optimization.
control list of control parameters:
 • verbose: verbosity level, either 0 (default), 1 or greater than 1,
 • type: either 'det' for optimizing a deterministic function or 'sto' for a stochastic one,
 • k_max: maximum number of evaluations per leaf (default: from analysis),
 • h_max: maximum depth of the tree (default: from analysis),
 • delta: confidence (default: \(1/\sqrt{\text{nb}_\text{iter}} \) - from analysis),
 • light: set to FALSE to return the search tree,
 • max: if TRUE, performs maximization.

Value

list with components:
 • par best set of parameters (for a stochastic function, it corresponds to the minimum reached over the deepest unexpanded node),
 • value value of \(fn \) at par,
 • tree search tree built during the execution, not returned unless control$light == TRUE.

Author(s)

M. Binois (translation in R code), M. Valko, A. Carpentier, R. Munos (Matlab code)

References

M. Valko, A. Carpentier and R. Munos (2013), Stochastic Simultaneous Optimistic Optimization, \textit{ICML}, 19-27 \url{http://hal.inria.fr/hal-00789606}. Matlab code: \url{https://team.inria.fr/sequel/software/StoSOO}.

Examples

```r
# Example 1 : Deterministic optimization with SOO
#-------------------------------------------------------------
# Define objective
fun1 <- function(x) return(-guirland(x))

# Optimization
Sol1 <- StoSOO(par = NA, fn = fun1, nb_iter = 1000, control = list(type = "det", verbose = 1))
```
Display objective function and solution found

curve(fun1, n = 1001)
abline(v = Sol1$par, col = 'red')

Example 2: Stochastic optimization with StoSOO

set.seed(42)

Same objective function with uniform noise
fun2 <- function(x){return(fun1(x) + runif(1, min = -0.1, max = 0.1))}

Optimization
Sol2 <- StoSOO(par = NA, fn = fun2, nb_iter = 1000, control = list(type = "sto", verbose = 1))

Display solution
abline(v = Sol2$par, col = 'blue')

Example 3: Stochastic optimization with StoSOO, 2-dimensional function

set.seed(42)

2-dimensional noisy objective function, defined on [0, pi/4]^2
fun3 <- function(x){return(-sin1(x[1]) * sin1(1 - x[2]) + runif(1, min = -0.05, max = 0.05))}

Optimizing
Sol3 <- StoSOO(par = rep(NA, 2), fn = fun3, upper = rep(pi/4, 2), nb_iter = 1000)

Display solution
xgrid <- seq(0, pi/4, length.out = 101)
Xgrid <- expand.grid(xgrid, xgrid)
ref <- apply(Xgrid, 1, function(x){(-sin1(x[1]) * sin1(1 - x[2])))})
filled.contour(xgrid, xgrid, matrix(ref, 101), color.palette = terrain.colors, plot.axes = {axis(1); axis(2); points(Xgrid[which.min(ref),, drop = FALSE], pch = 21); points(Sol3$par[1],Sol3$par[2], pch = 13)})

Test functions

Description

Several test functions of varying complexity are available. They are defined on [0,1].
Usage

guirland(x)

sin1(x)

difficult(x)

difficult2(x)

double_sine(x, rho1 = 0.3, rho2 = 0.8, tmax = 0.5)

Arguments

x vector specifying the location where the function is to be evaluated.
rho1, rho2, tmax additional parameters for double_sine.

Details

These test functions are translated from the Matlab and Python codes in the references.

References

Examples

par(mfrow = c(2,3))

curve(guirland, n = 501)
curve(sin1)
curve(difficult, xlim = c(1e-8, 1), n = 1001)
xgrid <- seq(0, 1, length.out = 500)
plot(xgrid, sapply(xgrid, difficult2), type = 'l', ylab = "difficult2(x)")
plot(xgrid, sapply(xgrid, double_sine), type = 'l', ylab = "double_sine(x) (default)")
double_sine2 <- function(x) double_sine(x, rho1 = 0.8, rho2 = 0.3)
plot(xgrid, sapply(xgrid, double_sine2), type = 'l', ylab = "double_sine(x) (modified)")

par(mfrow = c(1,1))
Index

difficult (Test functions), 7
difficult2 (Test functions), 7
double_sine (Test functions), 7
guirland (Test functions), 7
OOR, 2
optim, 5
POO, 2, 3
sin1 (Test functions), 7
StoSOO, 2, 4, 5

Test functions, 7