Package ‘OSTE’

November 19, 2021

Type Package
Title Optimal Survival Trees Ensemble
Version 1.0
Date 2021-11-07
Maintainer Naz Gul <nazgul@awkum.edu.pk>
The survival trees grown are assessed for both individual and collective performances. The ensemble can give promising results on fewer survival trees selected in the final ensemble.

Imports ranger, pec, stats, survival, prodlim
LazyLoad yes
License GPL (>= 3.5.0)
NeedsCompilation no
Author Naz Gul [aut, cre], Nosheen Faiz [ctb], Zardad Khan [aut], Berthold Lausen [aut]

Repository CRAN
Date/Publication 2021-11-19 14:50:09 UTC

R topics documented:

OSTE-package ... 2
OSTE ... 2
VETERAN ... 5
Index 7
Description

This package consists of function for growing survival trees ensemble, that are grown by the method of random survival forest. The survival trees grown are assessed for both individual and collective performances. The ensemble can give promising results on fewer survival trees selected based on their individual and collective performance in the final ensemble.

Details

Package: OSTE
Type: Package
Version: 1.0
Date: 2021-11-07
License: GPL (>= 3.5.0)

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.
Maintainer: Naz Gul <nazgul@awkum.edu.pk>

References

Description

Optimal survival trees ensemble is the main function of OSTE package that grows a sufficiently large number, \(t_{\text{initial}} \), of survival trees and selects optimal survival trees from the total trees grown by random survival forest. Number of survival trees in the initial set, \(t_{\text{initial}} \), is chosen by the user. If not chosen, then the default \(t_{\text{initial}} = 500 \) is used. Based on empirical investigation, \(t_{\text{initial}} = 1000 \) is recommended.
Usage

OSTE(formula = NULL, data, t.initial = NULL, v.size = NULL, mtry = NULL, M = NULL,
minimum.node.size = NULL, always.split.features = NULL, replace = TRUE,
splitting.rule = NULL, info = TRUE)

Arguments

formula Object of class formula describing the required model to be fitted. Interaction
terms are not supported in the current version.
data A nxd matrix or data frame of n observations on d features along with response
variables that are described by the formula.
t.initial Number of survival trees to be grown initially. If equal to NULL then the default
of t.initial = 500 is taken. A recommended value is t.initial = 1000.
v.size Portion of data used for validation in the second phase i.e. for assessing survival
trees performance in the ensemble. If equal to NULL then the default v.size=0.1
mtry Number of features selected at random at each node of the survival trees for
splitting. If equal to NULL then the default sqrt(d) is taken.
M Percent of the best t.initial survival trees to be selected on the basis of their
performance on out-of-bag observations. For selecting 20% of trees, take M=0.2.
minimum.node.size Minimal node size. If equal to NULL then the default minimum.node.size = 3 is
executed.
always.split.features Vector of variable names if desired to be always selected in addition to the mtry
variables tried for splitting.
replace Whether sampling should be done with or without replacement.
splitting.rule Splitting rule."logrank","C" or "maxstat" are suported with default "logrank".
info If TRUE, displays process status.

Details

Large values are recommended for t.initial for better performance as possible under the available
computational resources. The log-rank test statistic is used as default, A C-index based splitting
rule (Schmid et al. 2015) and maximally selected rank statistics (Wright et al. 2016) are available.
The C-index shows better predictive performance in case of high censoring rate, where logrank is
best for situations where the data are noisy (Schmid et al. 2015).

Value

unique.death.times Unique death times.
CHF Estimated cumulative hazard function for each observation.
Survival_Prob Estimated survival probability for each observation.
trees_selected Number of trees selected.
mtry Value of mtry used.
forest Saved forest for prediction purposes.
Note

In the case of missing values in any dataset prior action needs to be taken as the function cannot handle them at the current version. Moreover, the status/delta variable in the data must be coded as 0, 1.

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.

References

See Also

VETERAN

Examples

```r
# Load the data
data(VETERAN)
library(survival)
library(prodlim)
library(ranger)
library(pec)

# Divide the data into training and test parts

predictSurvProb.ranger <- function (object, newdata, times, ...) {
    ptemp <- ranger:::predict.ranger(object, data = newdata, importance = "none")$survival
```
pos <- sindex(jump.times = object$unique.death.times, eval.times = times)
p <- cbind(1, ptemp[, pos + 1, drop = FALSE]
if (NROW(p) != NROW(newdata) || NCOL(p) != length(times)) stop(paste("Prediction matrix has wrong dimensions: \
Requested newdata x times: ", NROW(dts[trainind,]), " x ", length(1), "
Provided prediction matrix: ", NROW(p), " x ", NCOL(p), "
\n\n", sep = ""))
p
}n <- nrow(VETERAN)
trainind <- sample(1:n,n*0.7)
testind <- (1:n)[-trainind]

Grow OSTE on the training data
OSTE.fit <- OSTE(Surv(time,status)~.,data=VETERAN[trainind,],t.initial=100)

Predict on the test data
pred <- ranger:::predict.ranger(OSTE.fit$forest,data=VETERAN[testind,])

Index various values
pred$survival
pred$survival

#etc.

To calculate IBS
Create formula
frm <- as.formula(Surv(time, status) ~ trt + celltype + karno + diagtime + age + prior)
PredError <- pec(object=OSTE.fit$forest, exact=TRUE, formula = frm, cens.model="marginal", data=VETERAN[testind,], verbose=F)
IBS <- crps(object = PredError, times =100, start = PredError$start)[2,1]
IBS

VETERAN

Data on randomized trial of two treatment procedures for lung cancer.

Description

The data set consist of a total 137 observations on 8 variables. The variables consist of the type of lung cancer treatment i.e 1 (standard) and 2 (test drug), cell Type, Status, that denotes the status of the patient as 1 (dead) or 0 (alive), survival time in days since the treatment, Diag, the time since diagnosis in months, age in years, the Karnofsky score, therapy that denotes any prior therapy 0 (none), 1 (yes).
Usage

data("VETERAN")

Format

A data frame with 137 observations on the following 8 variables.

- **trt**: a numeric vector denoting type of lung cancer treatment i.e 1 (standard) and 2 (test drug).
- **celltype**: a factor with levels squamous, smallcell, adeno and large.
- **time**: a numeric vector denoting survival time in days since the treatment.
- **status**: a numeric vector that denotes the status of the patient as 1 (dead) or 0 (alive).
- **karno**: a numeric vector denoting the Karnofsky score.
- **diagtime**: a numeric vector denoting the time since diagnosis in months.
- **age**: age in years.
- **prior**: a numeric vector denoting prior therapy; 0 (none), 1 (yes).

References

Examples

```r
#To load the data
data(VETERAN)
# To see the structure
str(VETERAN)
#etc.
```
Index

* Ensemble
 OSTE, 2
* OSTE
 OSTE, 2
 OSTE-package, 2
* Optimal
 OSTE, 2
* Survival
 OSTE, 2
* Trees
 OSTE, 2
* datasets
 VETERAN, 5
 OSTE, 2
 OSTE-package, 2
 VETERAN, 4, 5