Package ‘Opt5PL’

October 6, 2018

Type Package
Title Optimal Designs for the 5-Parameter Logistic Model
Version 0.1.1
Author Seung Won Hyun, Weng Kee Wong, and Yarong Yang
Maintainer Seung Won Hyun <yellowatom9@gmail.com>
Description Obtain and evaluate various optimal designs for the 3, 4, and 5-parameter logistic models. The optimal designs are obtained based on the numerical algorithm in Hyun, Wong, Yang (2018) <doi:10.18637/jss.v083.i05>.
License GPL-2
Encoding UTF-8
LazyData true
Imports Rcpp (>= 0.12.18), matrixcalc
LinkingTo Rcpp
RoxygenNote 6.1.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-10-06 21:00:15 UTC

R topics documented:

c_weight .. 2
c_weight_1 .. 3
c_weight_2 .. 4
D1 ... 4
d11 ... 5
DD1 ... 5
dd11 ... 6
DD_weight ... 6
DD_weight_1 ... 7
DD_weight_2 ... 7
Deff ... 8
c_weight

One iteration to run Newton Raphson to get c-optimal weights

Description

This is a sub-part of running Newton Raphson method to search c-optimal weights for the given design points. This is function probvides the obtained c-optimal weights after one iteration of Newton Raphson method.

Usage

```c
  c_weight(W, T, X, d, p, order, UB, I)
```
c_weight_1

Arguments

- **w**
 A numeric vector. The first K-1 weights for a given design

- **t**
 A numeric vector. Model parameter values

- **x**
 A numeric vector. K dose levels for a given design

- **d**
 Numeric. Step adjustment

- **p**
 Numeric. Define EDp

- **order**
 Numeric. The number of model parameters

- **UB**
 Numeric. The upper bound of the design points

- **I**
 A numeric matrix. Identity matrix.

Description

The first derivative of the c-optimality criterion with respect to the model parameters. This is a sub-function of c_weight to run one iteration of Newton-Raphson method.

Usage

```
c_weight_1(w, t, x, inv, p, order)
```
c_weight_2

The second derivative of the c-optimality criterion with respect to the model parameters

Description

The second derivative of the c-optimality criterion with respect to the model parameters. This is a sub-function of c_weight to run one iteration of Newton-Raphson method.

Usage

```r
c_weight_2(W, T, X, inv, p, order)
```

Arguments

- **W**: A numeric vector. The first K-1 weights for a given design
- **T**: A numeric vector. Model parameter values
- **X**: A numeric vector. K dose levels for a given design
- **inv**: A numeric matrix. Inverse of the information matrix.
- **p**: A numeric. Define EDp
- **order**: numeric. The number of model parameters

D1

Computing each element of the function c_weight_1

Description

This function computes each element of the vector function c_weight_1 which is the first derivative of the c-optimality criterion with respect to the model parameters.

Usage

```r
D1(T, x, xl, inv, p, order)
```

Arguments

- **T**: A numeric vector. Model parameter values
- **x**: A numeric. ith dose level for a given design
- **xl**: A numeric. last dose level for a given design
- **inv**: A numeric matrix. Inverse of the information matrix
- **p**: A numeric. Define EDp
- **order**: numeric. The number of model parameters
Computing each element of the function DD_weight_1

Description
This function computes each element of the vector function DD_weight_1 which is the first derivative of the Ds-optimality criterion with respect to the model parameters.

Usage
d11(t, x, xl, inv, invL, order)

Arguments
- t: A numeric vector. Model parameter values
- x: A numeric. ith dose level for a given design
- xl: A numeric. last dose level for a given design
- inv: A numeric matrix. Inverse of the information matrix for the 5PL model
- inv1: A numeric matrix. Inverse of the information matrix for the 4PL model
- order: numeric. The number of model parameters

Computing each element of the function c_weight_2

Description
This function computes each element of the matrix function c_weight_2 which is the second derivative of the c-optimality criterion with respect to the model parameters.

Usage
dD1(T, x1, x2, xl, inv, p, order)

Arguments
- T: A numeric vector. Model parameter values
- x1: A numeric. ith dose level for a given design
- x2: A numeric. jth dose level for a given design
- xl: A numeric. last dose level for a given design
- inv: A numeric matrix. Inverse of the information matrix
- p: A numeric. Define EDp
- order: numeric. The number of model parameters
dd11

Computing each element of the function DD_weight_2

Description

This function computes each element of the matrix function DD_weight_2 which is the second derivative of the Ds-optimality criterion with respect to the model parameters.

Usage

```
dd11(T, x1, x2, x1, inv, inv1, order)
```

Arguments

- `T` A numeric vector. Model parameter values
- `x1` A numeric. ith dose level for a given design
- `x2` A numeric. jth dose level for a given design
- `x1` A numeric. last dose level for a given design
- `inv` A numeric matrix. Inverse of the information matrix for the 5PL model
- `inv1` A numeric matrix. Inverse of the information matrix for the 4PL model
- `order` numeric. The number of model parameters

DD_weight

One iteration to run Newton Raphson to get Ds-optimal weights

Description

This is a sub-part of running Newton Raphson method to search Ds-optimal weights for the given design points. This is function provides the obtained Ds-optimal weights after one iteration of Newton Raphson method.

Usage

```
DD_weight(W, T, X, d, I4, I5, order)
```

Arguments

- `W` A numeric vector. The first K-1 weights for a given design
- `T` A numeric vector. Model parameter values
- `X` A numeric vector. K dose levels for a given design
- `d` Numeric. Step adjustment
- `I4` A numeric matrix. Information matrix for the 4PL model
- `I5` A numeric matrix. Information matrix for the 5PL model
- `order` Numeric. The number of model parameters
DD_weight_1

The first derivative of the Ds-optimality criterion with respect to the model parameters

Description

The first derivative of the Ds-optimality criterion with respect to the model parameters. This is a sub-function of D_weight to run one iteration of Newton-Raphson method.

Usage

DD_weight_1(W, T, X, inv, inv1, order)

Arguments

- **W**: A numeric vector. The first K-1 weights for a given design
- **T**: A numeric vector. Model parameter values for the 5PL model
- **X**: A numeric vector. K dose levels for a given design
- **inv**: A numeric matrix. Inverse information matrix for the 5PL model
- **inv1**: A numeric matrix. Inverse information matrix for the 4PL model
- **order**: numeric. The number of model parameters

DD_weight_2

The second derivative of the Ds-optimality criterion with respect to the model parameters

Description

The second derivative of the Ds-optimality criterion with respect to the model parameters. This is a sub-function of D_weight to run one iteration of Newton-Raphson method.

Usage

DD_weight_2(W, T, X, inv, inv1, order)

Arguments

- **W**: A numeric vector. The first K-1 weights for a given design
- **T**: A numeric vector. Model parameter values for the 5PL model
- **X**: A numeric vector. K dose levels for a given design
- **inv**: A numeric matrix. Inverse information matrix for the 5PL model
- **inv1**: A numeric matrix. Inverse information matrix for the 4PL model
- **order**: numeric. The number of model parameters
Obtaining D-efficiency for estimating model parameters

Description
Obtaining D-efficiency for estimating model parameters for a given design under the 3, 4, 5-parameter logistic models. For the output, the function shows three things: 1. the obtained D-optimal design for the given parameter values; 2. the D-efficiency of the given design; and 3. the number of subjects required for the given design in order to provide the same performance as the D-optimal design does.

Usage
Deff(weight, dose, model, P, LB, UB, grid, N_dose)

Arguments
- **weight**: A numeric vector. The first K-1 weights for a given design with K design points (K dose levels). The weights represent the proportional allocations of subjects to the dose levels in a given design.
- **dose**: A numeric vector. K dose levels for a given design.
- **model**: Numeric. The number of parameters in the model. This is used to specify the model to check the D-efficiency.
- **P**: A numeric vector. Solicited information on nominal values for the vector for the 5PL model. P=(p1, p2, p3, p4, p5), where p1 is the upper limit of the response, p2 is the slope that control the stiffness of the response curve, p3 is the position of the transition region in dose (this is the ED50 under the 3PL and the 4PL model), p4 is the lower limit of the response, and p5 is the asymmetric factor. When a user computes the D-efficiency under the 3PL or 4PL model, P is the vector of model parameter values for each model with setting p4 and p5 differently. Details are given in the examples.
- **LB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **UB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **grid**: Numeric. The grid density to discretize the predetermined dose interval. Default is 0.01.
- **N_dose**: Set to TRUE if the original dose levels take negative values. Set to FALSE if the original dose levels take positive values. Default is FALSE

Author(s)
Seung Won Hyun, Weng Kee Wong, and Yarong Yang
References

Hyun, S. W., Wong, W. K., Yang, Y. Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. (submitted to Statistical Methods in Medical Research)

Examples

```r
## Under the SPL model with the parameter values
## T5=(30000,0.5,800,0.5,2) and the dose range [1.95,32000],
## find the D-efficiency of the broad range design.

## The broad range design
dose=c(1.95,7.8,31.25,125,500,2000,8000,32000)
dlength=length(dose)
weight=rep(1/dlength,dlength-1)

## Parameter values
T5=c(30000,0.5,800,0.5,2)

## Compute D-efficiency of the broad range design
Deff(weight,dose,model=5,P=T5,LB=1.95,UB=32000,grid=.01)
```

Dp

Target dose, EDp

Description

This finds the target dose level EDp which is the dose producing \(p \) percentage of the difference between the maximum and the minimum responses.

Usage

```r
Dp(T, p)
```

Arguments

- `T` A numeric vector. Model parameter values
- `p` A numeric. Define EDp
DS1

Sensitivity function of c-optimality criterion for the EDp

Description

This evaluates the sensitivity function of the c-optimality criterion for the EDp at the given value of x.

Usage

\[DS1(t, x, inv, p, order) \]

Arguments

- \(t \): A numeric vector. Model parameter values for the 5PL model
- \(x \): A numeric. A given dose level
- \(inv \): A numeric matrix. Inverse information matrix for the 5PL model
- \(p \): A numeric. Define EDp
- \(order \): numeric. The number of model parameters

ds11

Sensitivity function of Ds-optimality criterion

Description

This evaluates the sensitivity function of the Ds-optimality criterion at the given value of x.

Usage

\[ds11(T, x, inv, inv1, order) \]

Arguments

- \(T \): A numeric vector. Model parameter values for the 5PL model
- \(x \): A numeric. A given dose level
- \(inv \): A numeric matrix. Inverse information matrix for the 5PL model
- \(inv1 \): A numeric matrix. Inverse information matrix for the 4PL model
- \(order \): numeric. The number of model parameters
Obtaining Ds-efficiency for estimating the asymmetric factor under the 5-parameter logistic model.

Description

Obtaining Ds-efficiency for estimating the asymmetric factor for a given design under the 5-parameter logistic models. For the output, the function shows three things: 1. the obtained Ds-optimal design for the given parameter values; 2. the Ds-efficiency of the given design; and 3. the number of subjects required for the given design in order to provide the same performance as the Ds-optimal design does.

Usage

\[\text{Dseff}(\text{weight}, \text{dose}, \text{P}, \text{LB}, \text{UB}, r, \text{epsilon}, \text{grid}, \text{N_dose})\]

Arguments

- **weight**: A numeric vector. The first K-1 weights for a given design with K design points (K dose levels). The weights represent the proportional allocations of subjects to the dose levels in a given design.
- **dose**: A numeric vector. K dose levels for a given design.
- **P**: A numeric vector. Solicited information on nominal values for the vector for the 5PL model. \(P=(p_1, p_2, p_3, p_4, p_5)\), where \(p_1\) is the upper limit of the response, \(p_2\) is the slope that control the stiffness of the response curve, \(p_3\) is the position of the transition region in dose, \(p_4\) is the lower limit of the response, and \(p_5\) is the asymmetric factor.
- **LB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **UB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **r**: Numeric. The number of iterations to set an initial design to search the Ds-optimal design to compute the efficiency. Default is 30 and needed to be increased (for example, \(r=50\)) if the searched the Ds-optimal design is not a true optimal. It can be verified by the verification plot.
- **epsilon**: Numeric. Stopping criterion for the algorithm to search the Ds-optimal design. Default is 0.001.
- **grid**: Numeric. The grid density to discretize the predetermined dose interval. Default is 0.01.
- **N_dose**: Set to TRUE if the original dose levels take negative values. Set to FALSE if the original dose levels take positive values. Default is FALSE.

Author(s)

Seung Won Hyun, Weng Kee Wong, and Yarong Yang
References

Hyun, S. W., Wong, W.K., Yang, Y. Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. (submitted to Statistical Methods in Medical Research)

Examples

```r
## Under the 5PL model with the parameter values
## T5=(30000,0.5,800,0.5,2) and the dose range [1.95,32000],
## find the Ds-efficiency of the broad range design.

## The broad range design
dose=c(1.95,7.8,31.25,125,500,2000,8000,32000)
dlength=length(dose)
weight=rep(1/dlength,dlength-1)

## Parameter values for the 5PL model
T5=c(30000,0.5,800,0.5,2)

## Ds efficiency of the broad range design
Dseff(weight,dose,P=T5,LB=1.95,UB=32000,grid=.01)
```

DsOPT

Search Ds-optimal design for estimating the asymmetric factor under the 5-parameter logistic model.

Description

Obtain Ds-optimal design (i.e., optimal dose levels and corresponding optimal weights) for estimating the asymmetric factor under the 5-parameter logistic model.

Usage

`DsOPT(LB,UB,P,grid,r,epsilon,N_dose,log_scale)`

Arguments

- **LB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **UB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
A numeric vector. Solicited information on nominal values for the vector for the 5PL model. \(P = (p_1, p_2, p_3, p_4, p_5) \), where \(p_1 \) is the upper limit of the response, \(p_2 \) is the slope that control the stiffness of the response curve, \(p_3 \) is the position of the transition region in dose, \(p_4 \) is the lower limit of the response, and \(p_5 \) is the asymmetric factor.

grid

Numeric. The grid density to discretize the predetermined dose interval. Default is 0.01.

r

Numeric. The number of iterations to set an initial design to search the Ds-optimal design. Default is 30 and needed to be increased (for example, \(r=50 \)) if the searched optimal design is not a true optimal. It can be verified by the verification plot.

epsilon

Numeric. Stopping criterion for the algorithm to search the Ds-optimal design. Default is 0.001.

N_dose

Set to TRUE if the original dose levels take negative values. Set to FALSE if the original dose levels take positive values. Default is FALSE.

log_scale

Set to TRUE if a user wants to set the X-axis (dose level) on log scale in the verification plot of the optimal design. Otherwise, set to FALSE. Default is TRUE. Note: this need to set FALSE when the original dose levels take negative values.

Author(s)

Seung Won Hyun, Weng Kee Wong, and Yarong Yang

References

Hyun, S. W., Wong, W.K., Yang, Y. Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. (submitted to Statistical Methods in Medical Research)

Examples

```r
# Find the Ds-optimal design for estimating theta_5 under the 5PL model
# with the parameter values T5=(30000, 0.5, 800, 0.5, 2) and the dose range [1.95, 32000].

# Parameter values for the 5PL model
T5=c(30000, 0.5, 800, 0.5, 2)

# Find the Ds-optimal design
DsOPT(LB=1.95, UB=32000, P=T5, grid=.01, epsilon=.001)
```
D_weight

Description
This is a sub-part of running Newton Raphson method to search D-optimal weights for the given design points. This is a function that provides the obtained D-optimal weights after one iteration of Newton Raphson method.

Usage
D_weight(W, T, X, d, q)

Arguments
W A numeric vector. The first K-1 weights for a given design
T A numeric vector. Model parameter values
X A numeric vector. K dose levels for a given design
d Numeric. Step adjustment
q A numeric vector. User select weights defined in the function RDOPT

D_weight_1

Description
The first derivative of the D-optimality criterion with respect to the model parameters. This is a sub-function of D_weight to run one iteration of Newton-Raphson method.

Usage
D_weight_1(q, W, T1, T2, T3, X, inv1, inv2, inv3)

Arguments
q A numeric vector. User select weights defined in the function RDOPT
W A numeric vector. The first K-1 weights for a given design
T1 A numeric vector. Model parameter values for the 3PL model
T2 A numeric vector. Model parameter values for the 4PL model
T3 A numeric vector. Model parameter values for the 5PL model
X A numeric vector. K dose levels for a given design
inv1 A numeric matrix. Inverse information matrix for the 3PL model
inv2 A numeric matrix. Inverse information matrix for the 4PL model
inv3 A numeric matrix. Inverse information matrix for the 5PL model
D_weight_2

The second derivative of the D-optimality criterion w.r.t the model parameters

Description

The second derivative of the D-optimality criterion with respect to the model parameters. This is a sub-function of D_weight to run one iteration of Newton-Raphson method.

Usage

```r
D_weight_2(q, w, T1, T2, T3, X, inv1, inv2, inv3)
```

Arguments

- `q`: A numeric vector. User select weights defined in the function RDOPT
- `w`: A numeric vector. The first K-1 weights for a given design
- `T1`: A numeric vector. Model parameter values for the 3PL model
- `T2`: A numeric vector. Model parameter values for the 4PL model
- `T3`: A numeric vector. Model parameter values for the 5PL model
- `X`: A numeric vector. K dose levels for a given design
- `inv1`: A numeric matrix. Inverse information matrix for the 3PL model
- `inv2`: A numeric matrix. Inverse information matrix for the 4PL model
- `inv3`: A numeric matrix. Inverse information matrix for the 5PL model

EDpeff

Obtaining c-efficiency for estimating the EDp under the 5-parameter logistic model.

Description

Obtaining c-efficiency for estimating the EDp for a given design under the 5-parameter logistic models. For the output, the function shows three things: 1. the obtained c-optimal design for the given parameter values; 2. the c-efficiency of the given design; and 3. the number of subjects required for the given design in order to provide the same performance as the c-optimal design does.

Usage

```r
EDpeff(weight, dose, P, EDp, LB, UB, r, epsilon, grid, N_dose)
```
Arguments

- **weight**: A numeric vector. The first \(K-1 \) weights for a given design with \(K \) design points (\(K \) dose levels). The weights represent the proportional allocations of subjects to the dose levels in a given design.

- **dose**: A numeric vector. \(K \) dose levels for a given design.

- **p**: A numeric vector. Solicited information on nominal values for the vector for the 5PL model. \(P=(p_1, p_2, p_3, p_4, p_5) \), where \(p_1 \) is the upper limit of the response, \(p_2 \) is the slope that control the stiffness of the response curve, \(p_3 \) is the position of the transition region in dose, \(p_4 \) is the lower limit of the response, and \(p_5 \) is the asymmetric factor.

- **EDp**: Numeric. An user select value to define the EDp. For example, EDp=.05 to define the ED50.

- **LB**: Numeric. Predetermined lower bound of the dose range for the original dose level.

- **UB**: Numeric. Predetermined lower bound of the dose range for the original dose level.

- **r**: Numeric. The number of iterations to set an initial design to search the c-optimal design for the EDp in order to compute the efficiency. Default is 30 and needed to be increased (for example, \(r=50 \)) if the searched the c-optimal design is not a true optimal. It can be verified by the verification plot.

- **epsilon**: Numeric. Stopping criterion for the algorithm to search the c-optimal design. Default is 0.001.

- **grid**: Numeric. The grid density to discretize the predetermined dose interval. Default is 0.01.

- **N_dose**: Set to TRUE if the original dose levels take negative values. Set to FALSE if the original dose levels take positive values. Default is FALSE

Author(s)

Seung Won Hyun, Weng Kee Wong, and Yarong Yang

References

Hyun, S. W., Wong, W.K., Yang, Y. Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. (submitted to Statistical Methods in Medical Research)

Examples

```r
# Under the 5PL model with the parameter values
# T5=(30000,0.5,800,0.5,2) and the dose range [1.95,20000],
# find the c-efficiency of the broad range design.
```
The broad range design

dose=c(1.95, 7.8, 31.25, 125, 500, 2000, 8000, 32000)
dlength=length(dose)
weight=rep(1/dlength, dlength-1)

Parameter values for the 5PL model
T5=c(30000, 0.5, 800, 0.5, 2)

Compute the c-efficiency of the broad range design
EDpeff(weight, dose, P=T5, EDp=.5, LB=1.95, UB=32000, grid=.01)

EDpOPT

Search c-optimal designs for estimating the EDp under the 5-parameter logistic model

Description

Obtain c-optimal design (i.e., optimal dose levels and corresponding optimal weights) for estimating the EDp under the 5-parameter logistic model. The EDp is the dose level that achieve the 100p% of the difference between the maximum and the minimum responses.

Usage

EDpOPT(LB, UB, P, EDp, grid, r, epsilon, N_dose, log_scale)

Arguments

- **LB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **UB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **P**: A numeric vector. Solicited information on nominal values for the vector for the 5PL model. P=(p1, p2, p3, p4, p5), where p1 is the upper limit of the response, p2 is the slope that control the stiffness of the response curve, p3 is the position of the transition region in dose, p4 is the lower limit of the response, and p5 is the asymmetric factor.
- **EDp**: Numeric. An user select value to define the EDp. For example, EDp=.05 to define the ED50.
- **grid**: Numeric. The grid density to discretize the predetermined dose interval. Default is 0.01.
- **r**: Numeric. The number of iterations to set an initial design to search the c-optimal design. Default is 30 and needed to be increased (for example, r=50) if the searched optimal design is not a true optimal. It can be verified by the verification plot.
- **epsilon**: Numeric. Stopping criterion for the algorithm to search the c-optimal design. Default is 0.001.
N_dose: Set to TRUE if the original dose levels take negative values. Set to FALSE if the original dose levels take positive values. Default is FALSE.

log_scale: Set to TRUE if a user wants to set the X-axis (dose level) on log scale in the verification plot of the optimal design. Otherwise, set to FALSE. Default is TRUE. Note: this need to set FALSE when the original dose levels take negative values.

Author(s)
Seung Won Hyun, Weng Kee Wong, and Yarong Yang

References
Hyun, S. W., Wong, W.K., Yang, Y. Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. (submitted to Statistical Methods in Medical Research)

Examples
```r
## Search the c-optimal design for estimating the ED50 under the 5PL model

## Parameter values for the 5PL model
T5 <- c(30000, 0.5, 800, 0.5, 2)

## Dose range = [1.95, 32000]
EDpOPT(LB = 1.95, UB = 32000, P = T5, EDp = .5, grid = .01, r = 30, epsilon = .001)
```

\[f \] Gradient of the mean function

Description
This gives the first derivative of the mean response function (3, 4, or 5PL) with respect to the model parameters.

Usage
\[f(T, x, \text{order}) \]

Arguments
- \(T \): A numeric vector. Model parameter values
- \(x \): A numeric. A given dose level
- \(\text{order} \): numeric. The number of model parameters
g

Partial derivative of the EDp with respect to the model parameters

Description

Partial derivative of the EDp with respect to the model parameters

Usage

\[g(T, p) \]

Arguments

- \(T \) A numeric vector. Model parameter values
- \(p \) A numeric. Define EDp

ginv

Generalized Inverse Matrix

Description

Obtain generalized inverse of the given matrix \(X \).

Usage

\[\text{ginv}(X, \text{tol} = \text{sqrt}(\text{.Machine}\$\text{double}_\text{eps})) \]

Arguments

- \(X \) A numeric matrix
- \(\text{tol} \) Default
infor

Obtain a information matrix at a single design point

Description

Obtain a information matrix at a single given design point \(x \).

Usage

\[
\text{infor}(T, x, \text{order})
\]

Arguments

- \(T \): A numeric vector. Model parameter values
- \(x \): numeric. A single design point (dose level)
- \(\text{order} \): numeric. The number of model parameters

Inv

Adjusting inverse information matrix being not singular

Description

When the inverse matrix is a singular, it is adjusted to become nonsingular matrix.

Usage

\[
\text{Inv}(M, I)
\]

Arguments

- \(M \): A numeric matrix
- \(I \): Identity matrix
Minus

Matrix subtraction

Description
Matrix subtraction: M1-M2.

Usage
Minus(M1, M2)

Arguments
- M1: A numeric matrix
- M2: A numeric matrix

Multiple

Matrix multiplication

Description
Matrix multiplication: M1*M2.

Usage
Multiple(M1, M2)

Arguments
- M1: A numeric matrix
- M2: A numeric matrix

Plus

Matrix addition

Description
Matrix addition: M1+M2.

Usage
Plus(M1, M2)

Arguments
- M1: A numeric matrix
- M2: A numeric matrix
RDOPT
Search the robust D-optimal designs for estimating model parameters

Description

Obtain robust D-optimal design (i.e., optimal dose levels and corresponding optimal weights) for estimating the model parameters that works well under the 3, 4, 5-parameter logistic models. In addition, the function can be used to obtain D-optimal design for each of the three models.

Usage

`RDOPT(LB, UB, P3, P4, P5, q, grid, r, epsilon, N_dose, log_scale)`

Arguments

- **LB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **UB**: Numeric. Predetermined lower bound of the dose range for the original dose level.
- **P3**: A numeric vector. Solicited information on nominal values for the vectors for the 3PL model. \(P3 = (p_1, p_2, p_3)\), where \(p_1\) is the upper limit of the response, \(p_2\) is the slope that control the stiffness of the response curve, and \(p_3\) is the ED50.
- **P4**: A numeric vector. Solicited information on nominal values for the vectors for the 4PL model. \(P4 = (p_1, p_2, p_3, p_4)\), where \(p_1\) is the upper limit of the response, \(p_2\) is the slope that control the stiffness of the response curve, \(p_3\) is the ED50, and \(p_4\) is the lower limit of the response.
- **P5**: A numeric vector. Solicited information on nominal values for the vectors for the 5PL model. \(P5 = (p_1, p_2, p_3, p_4, p_5)\), where \(p_1\) is the upper limit of the response, \(p_2\) is the slope that control the stiffness of the response curve, \(p_3\) is the position of the transition region in dose, \(p_4\) is the lower limit of the response, and \(p_5\) is the asymmetric factor. For searching the robust D-optimal design, the nominal values for \(P3, P4, P5\) need to be specified. However, when a user searches the D-optimal design for the 3PL, 4PL, or 5PL model, only \(P5\) needs to be specified. Details are given in the examples.
- **q**: A numeric vector. User select weights. \(q = (q_1, q_2, q_3)\), where \(q_1, q_2, q_3\) represent the relative importance of the 3, 4, 5PL models respectively. They are non-negative and \(q_1+q_2\leq1\). For example, \(q = (0, 0, 1)\) is used to find D-optimal design for the 5PL model only and \(q = (1/3, 1/3, 1/3)\) is used to find robust D-optimal design for the three models under the assumption that the three models are equally important.
- **grid**: Numeric. The grid density to discretize the predetermined dose interval. Default is 0.01.
- **r**: Numeric. The number of iterations to set an initial design to search the D-optimal design. Default is 30 and needed to be increased (for example, \(r = 50\)) if the searched optimal design is not a true optimal. It can be verified by the verification plot.
epsilone Numeric. Stopping criterion for the algorithm to search the D-optimal design. Default is 0.001.

N_dose Set to TRUE if the original dose levels take negative values. Set to FALSE if the original dose levels take positive values. Default is FALSE.

log_scale Set to TRUE if a user wants to set the X-axis (dose level) on log scale in the verification plot of the optimal design. Otherwise, set to FALSE. Default is TRUE. Note: this need to set FALSE when the original dose levels take negative values.

Author(s)

Seung Won Hyun, Weng Kee Wong, and Yarong Yang

References

Hyun, S. W., Wong, W.K., Yang, Y. Optimal designs for asymmetric sigmoidal response curves in bioassays and immunoassays. (submitted to Statistical Methods in Medical Research)

Examples

```r
#1. Search the robust D-optimal design for estimating the model parameters
#under the 3,4,5PL models

#Parameter values for the SPL model
T5=c(30000,0.5,800,0.5,2)

#Parameter values for the 4PL model
T4=c(27264.92,0.67,3340.95,-225.55)

#Parameter values for the 3PL model
T3=c(26715.52,0.70,3204.92)

#Dose range=[1.95,32000]
#Assuming the three models are equally important
RDOPT(LB=1.95,UB=32000,P3=T3,P4=T4,P5=T5,q=c(1/3,1/3,1/3))

#2. Search the D-optimal design for the 3PL model using
##the parameter values T3=(26715.52,0.70,3204.92)
##and the dose range [1.95,32000].

#Set the parameter values for the 3PL model in the form of P5
P5=c(26715.52,0.70,3204.92,0,1)
RDOPT(LB=1.95, UB=32000,P5=P5,q=c(1,0,0))

#3. Search the D-optimal design for the 4PL model using
##the parameter values T4=(27264.92,0.67,3340.95,-225.55)
##and the dose range [1.95,32000].

#Set the parameter values for the 4PL model in the form of P5.
```
Summation of diagonal elements in a matrix

Description

Summation of diagonal elements in a matrix M.

Usage

```r
SDM(M)
```

Arguments

- **M** A numeric matrix

Sub-function of the function `D_weight_1`

Description

This computes the first derivative of the D-optimality criterion with respect to the model parameters for a specified model.

Usage

```r
smalld1(t, x, xl, inv, order)
```

Arguments

- **t** A numeric vector. Model parameter values
- **x** A numeric. ith dose level
- **xl** A numeric. last dose level
- **inv** A numeric matrix. Inverse infromation matrix
- **order** numeric. The number of model parameters: 3, 4, 5 for the 3, 4, 5PL models respectively

`P5=c(27264, 92, 0.67, 3340.95, -225.55, 1)`

`RDOPT(LB=1.95, UB=32000, P5=P5, q=c(0, 1, 0))`
smalldd1

Sub-function of the function D_weight_2

Description

This computes the second derivative of the D-optimality criterion with respect to the model parameters for a specified model.

Usage

```r
smalldd1(t, x1, x2, xL, inv, order)
```

Arguments

- `t` : A numeric vector. Model parameter values
- `x1` : A numeric. ith dose level
- `x2` : A numeric. jth dose level
- `xL` : A numeric. last dose level
- `inv` : A numeric matrix. Inverse information matrix
- `order` : numeric. The number of model parameters: 3, 4, 5 for the 3, 4, 5PL models respectively

smalllds1

Sensitivity function of D-optimality criterion

Description

This evaluates the sensitivity function of the D-optimality criterion at the given value of x for a specified model.

Usage

```r
smalllds1(t, x, inv, order)
```

Arguments

- `t` : A numeric vector. Model parameter values
- `x` : A numeric. A given dose level
- `inv` : A numeric matrix. Inverse information matrix
- `order` : numeric. The number of model parameters: 3, 4, 5 for the 3, 4, 5PL models respectively
s_multiple
Multiply a constant to a matrix

Description
Multiply a constant to a matrix: s*M.

Usage
s_multiple(s, M)

Arguments
- **s**: Numeric
- **M**: A numeric matrix

S_weight
Newton Raphson method to get optimal weights

Description
Newton Raphson method to get optimal weights for given design points "X".

Usage
S_weight(X, T, e1, f, ...)

Arguments
- **X**: A numeric vector. K dose levels for a given design
- **T**: A numeric vector. Model parameter values
- **e1**: Numeric. Threshold to stop the iteration.
- **f**: A character. D_weight for D-optimal weight; c_weight for c-optimal weight; DD_weight for Ds-optimal weight
- **...**: Default.
Trans

Transpose of a matrix

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpose of a matrix M.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>trans(M)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>M</code> A numeric matrix</td>
</tr>
</tbody>
</table>

upinfor

Obtain normalized Fisher information matrix

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain normalized Fisher information matrix for the 3, 4, 5PL models.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>upinfor(W, T, X, order)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>W</code> A numeric vector. The first K-1 weights for a given design</td>
</tr>
<tr>
<td><code>T</code> A numeric vector. Model parameter values</td>
</tr>
<tr>
<td><code>X</code> A numeric vector. K design points for a given design</td>
</tr>
<tr>
<td><code>order</code> numeric. The number of model parameters</td>
</tr>
</tbody>
</table>
Index

c_weight, 2
c_weight_1, 3
c_weight_2, 4

D1, 4
d11, 5
D_weight, 14
D_weight_1, 14
D_weight_2, 15
DD1, 5
dd11, 6
DD_weight, 6
DD_weight_1, 7
DD_weight_2, 7
Deff, 8
Dp, 9
DS1, 10
ds11, 10
Dseff, 11
DsOPT, 12

EDpeff, 15
EDpOPT, 17

f, 18
g, 19
ginv, 19

infor, 20
Inv, 20

Minus, 21
Multiple, 21

Plus, 21

RDOPT, 22

S_weight, 26
SDM, 24

smalld1, 24
smalldd1, 25
smallds1, 25
sMultiple, 26

Trans, 27

upinfor, 27