Package ‘PAC’

March 20, 2020

Type Package
Title Partition-Assisted Clustering and Multiple Alignments of Networks
Version 1.1.2
Date 2020-03-19
Author Ye Henry Li, Dangna Li
Maintainer Ye Henry Li <h1owl2@gmail.com>
Description Implements partition-assisted clustering and multiple alignments of networks. It 1) utilizes partition-assisted clustering to find robust and accurate clusters and 2) discovers coherent relationships of clusters across multiple samples. It is particularly useful for analyzing single-cell data set. Please see Li et al. (2017) <doi:10.1371/journal.pcbi.1005875> for detail method description.

URL https://doi.org/10.1371/journal.pcbi.1005875
License GPL-3
Imports Rcpp (>= 0.12.2), igraph, parmigene, infotheo, dplyr, Rtsne, ggplot2, ggrepel
Suggests knitr
VignetteBuilder knitr
LinkingTo Rcpp
RoxygenNote 5.0.1
NeedsCompilation yes
SystemRequirements C++11
Repository CRAN
Date/Publication 2020-03-20 09:50:21 UTC

R topics documented:
aggregateData .. 2
annotateClades .. 3
annotationMatrix_withSubpopProp 4
aggregateData

Aggregates results from the clustering and merging step.

Description

Aggregates results from the clustering and merging step.

Usage

aggregateData(dataInput, labelsInput)

Arguments

dataInput Data matrix, with first column being SampleID.
labelsInput cluster labels from PAC.

Value

The aggregated data of dataInput, with average signal levels for all clusters and sample combinations.
Examples

```r
n = 5e3 # number of observations
p = 1 # number of dimensions
K = 3 # number of clusters
w = rep(1,K)/K # component weights
mu <- c(0,2,4) # component means
sd <- rep(1,K)/K # component standard deviations
g <- sample(1:K,prob=w,size=n,replace=TRUE) # ground truth for clustering
X <- as.matrix(rnorm(n=n,mean=mu[g],sd=sd[g]))
y <- PAC(X, K)
X2<-as.matrix(rnorm(n=n,mean=mu[g],sd=sd[g]))
y2<-PAC(X2,K)
X<-cbind("Sample1", as.data.frame(X)); colnames(X)<-c("SampleID", "Value")
X2<-cbind("Sample2", as.data.frame(X2)); colnames(X2)<-c("SampleID", "Value")
aggregateData(rbind(X,X2),c(y,y2))
```

annotateClades

Creates annotation matrix for the clades in aggregated format. The matrix contains average signals of each dimension for each clade in each sample.

Description

Creates annotation matrix for the clades in aggregated format. The matrix contains average signals of each dimension for each clade in each sample.

Usage

```r
annotateClades(sampleIDs, topHubs)
```

Arguments

- `sampleIDs` - sampleID vector
- `topHubs` - number of top ranked genes to output for annotation; annotation is a concatenated list of top ranked genes.

Value

Annotated clade matrix
annotationMatrix_withSubpopProp

Add subpopulation proportion for the annotation matrix for the clades

Description

Add subpopulation proportion for the annotation matrix for the clades

Usage

```
annotationMatrix_withSubpopProp(aggregateMatrix_withAnnotation)
```

Arguments

- `aggregateMatrix_withAnnotation`:
 - the annotated clade matrix

Value

Annotated clade matrix with subpopulation proportions

BSPLLeaveCenter

Finds N Leaf centers in the data

Description

Finds N Leaf centers in the data

Usage

```
BSPLLeaveCenter(data, N = 40, method = "dsp")
```

Arguments

- `data`:
 - a n x p data matrix
- `N`:
 - number of leaves centers
- `method`:
 - partition method, either "dsp (discrepancy based partition)", or "ll (bayesian sequential partition limited-look ahead)"

Value

leafctr N leaves centers
constellationPlot

Makes constellation plot, in which the centroids are clusters are embedded in the t-SNE 2D plane and the cross-sample relationships are plotted as lines connecting related sample clusters (clades).

Description

Makes constellation plot, in which the centroids are clusters are embedded in the t-SNE 2D plane and the cross-sample relationships are plotted as lines connecting related sample clusters (clades).

Usage

constellationPlot(pacman_results, perplexity, max_iter, seed,
plotTitle = "Constellations of Clades", nudge_x = 0.3, nudge_y = 0.3)

Arguments

pacman_results PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.
perplexity perplexity setting for running t-SNE
max_iter max_iter setting for running t-SNE
seed set seed to make t-SNE and constellation plot to be reproducible
plotTitle max_iter setting for running t-SNE
nudge_x nudge on x coordinate of centroid labels
nudge_y nudge on y coordinate of centroid labels

fmeasure

F-measure Calculation

Description

Compute the F measure between the ground truth and the estimated label

Usage

fmeasure(g, t)

Arguments

g the ground truth
t estimated labels

Value

f the F measure
getAverageSpreadOf2SubpopClades

Calculate the (global) average spread of subpopulations in clades with 2 subpopulations on the constellation plot.

Description

Calculate the (global) average spread of subpopulations in clades with 2 subpopulations on the constellation plot.

Usage

```r
getAverageSpreadOf2SubpopClades(tsneResults, pacman_results)
```

Arguments

- `tsneResults`: t-SNE output of clade centroids’ embedding.
- `pacman_results`: PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.

Value

Returns global average of 2-subpopulation clade spread on the constellation plot.

getExtraneousCladeSubpopulations

Calculates subpopulations in clades (with two or more subpopulations) that are too far away from other subpopulations (within the same clade) on the constellation plot; these far away subpopulations should be pruned away from the original clades.

Description

Calculates subpopulations in clades (with two or more subpopulations) that are too far away from other subpopulations (within the same clade) on the constellation plot; these far away subpopulations should be pruned away from the original clades.

Usage

```
getExtraneousCladeSubpopulations(tsneResults, pacman_results,
                                   threshold_multiplier, max_threshold)
```
Arguments

- `tsneResults` t-SNE output of clade centroids’ embedding.
- `pacman_results` PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.
- `threshold_multiplier` how many times the threshold ((a) spread from center of clade for clades with three or more sample subpopulations and (b) distance from each subpopulation centroid for clades with exactly two subpopulations).
- `max_threshold` the maximum distance (on t-SNE plane) allowed for sample subpopulations to be categorized into the same clade.

Value

Returns clade subpopulations to be pruned.

getRepresentativeNetworks

Representative Networks

Description

Outputs representative networks for clades/subpopulations larger than a size filter (very small subpopulations are not considered in downstream analyses)

Usage

`getRepresentativeNetworks(sampleIDs, dim_subset, SubpopSizeFilter, num_networkEdge)`

Arguments

- `sampleIDs` sampleID vector
- `dim_subset` a string vector of string names to subset the data columns for PAC; set to NULL to use all columns
- `SubpopSizeFilter` the cutoff for small subpopulations. Smaller subpopulations have unstable covariance structure, so no network structure is calculated
- `num_networkEdge` the number of edges to draw for each subpopulation mutual information network
heatmapInput

Description

Creates the matrix that can be easily plotted with a heatmap function available in an R package.

Usage

```r
heatmapInput(aggregateMatrix_withAnnotation)
```

Arguments

- `aggregateMatrix_withAnnotation`
 the annotated clade matrix

Value

the heatmap input matrix

JaccardSM

Description

Calculates the Jaccard similarity matrix.

Usage

```r
JaccardSM(network1, network2)
```

Arguments

- `network1`
 first network matrix input
- `network2`
 second network matrix input

Value

the alignment/co-occurence score
MAN

Creates network alignments using network constructed from subpopulations after PAC

Description

Creates network alignments using network constructed from subpopulations after PAC

Usage

```r
MAN(sampleIDs, num_PACSupop, smallSubpopCutoff, k_clades)
```

Arguments

- `sampleIDs`: sampleID vector
- `num_PACSupop`: number of subpopulations learned in PAC step for each sample
- `smallSubpopCutoff`: Population size cutoff for subpopulations in clade calculation. The small subpopulations will be considered in the refinement step.
- `k_clades`: number of clades to output before refinement

Value

- `clades_network_only`: only the clades constructed without small subpopulations (by cutoff) using mutual information network alignments

MINetworkPlot_topEdges

Plots mutual information network (mrnet algorithm) connection using the parmigene package. Mutual information calculated with infotheo package.

Description

Plots mutual information network (mrnet algorithm) connection using the parmigene package. Mutual information calculated with infotheo package.

Usage

```r
MINetworkPlot_topEdges(dataMatrix, threshold)
```

Arguments

- `dataMatrix`: data matrix
- `threshold`: the maximum number of edges to draw for each subpopulation mutual information network
MINNetwork_matrix_topEdges

Mutual information network connection matrix generation (mrnet algorithm) using the parmigene package. Mutual information calculated with infotheo package.

Description

Mutual information network connection matrix generation (mrnet algorithm) using the parmigene package. Mutual information calculated with infotheo package.

Usage

```
MINNetwork_matrix_topEdges(dataMatrix, threshold)
```

Arguments

- `dataMatrix`: data matrix
- `threshold`: the number of edges to draw for each subpopulation mutual information network

Value

the mutual information network connection matrix with top edges

MINNetwork_simplified_topEdges

Outputs the vectorized summary of a network based on the number of edges connected to a node

Description

Outputs the vectorized summary of a network based on the number of edges connected to a node

Usage

```
MINNetwork_simplified_topEdges(dataMatrix, threshold)
```

Arguments

- `dataMatrix`: data matrix
- `threshold`: the number of edges to draw for each subpopulation mutual information network
outputNetworks_topEdges_matrix

Wrapper to output the mutual information networks for subpopulations with size larger than a desired threshold.

Description

Wrapper to output the mutual information networks for subpopulations with size larger than a desired threshold.

Usage

outputNetworks_topEdges_matrix(dataMatrix, subpopulationLabels, threshold)

Arguments

dataMatrix: data matrix with first column being the sample ID
subpopulationLabels: the subpopulation labels
threshold: the number of edges to draw for each subpopulation mutual information network

outputRepresentativeNetworks_topEdges

Outputs the representative/clade networks (plots and summary vectors) for subpopulations with size larger than a desired threshold. Saves the networks and the data matrices without the smaller subpopulations.

Description

Outputs the representative/clade networks (plots and summary vectors) for subpopulations with size larger than a desired threshold. Saves the networks and the data matrices without the smaller subpopulations.

Usage

outputRepresentativeNetworks_topEdges(dataMatrix, subpopulationLabels, threshold)

Arguments

dataMatrix: data matrix with first column being the sample ID
subpopulationLabels: the subpopulation labels
threshold: the number of edges to draw for each subpopulation mutual information network
Partition Assisted Clustering (PAC) 1) utilizes dsp or bsp-ll to recursively partition the data space and 2) applies a short round of kmeans style postprocessing to efficiently output clustered labels of data points.

Usage

PAC(data, K, maxlevel = 40, method = "dsp", max.iter = 50)

Arguments

data
a n x p data matrix
K
number of final clusters in the output
maxlevel
the maximum level of the partition
method
partition method, either "dsp(discrepancy based partition)", or "bsp(bayesian sequential partition)"
max.iter
maximum iteration for the kmeans step

Value

y cluter labels for the input

Examples

n = 5e3 # number of observations
p = 1 # number of dimensions
K = 3 # number of clusters
w = rep(1,K)/K # component weights
mu <- c(0,2,4) # component means
sd <- rep(1,K)/K # component standard deviations
g <- sample(1:K,prob=w,size=n,replace=TRUE) # ground truth for clustering
X <- as.matrix(rnorm(n=n,mean=mu[g],sd=sd[g]))
y <- PAC(X, K)
print(fmeasure(g,y))
recordWithinClusterSpread

Calculates the within cluster spread

Description

Calculates the within cluster spread

Usage

```r
recordWithinClusterSpread(sampleIDs, dim_subset = NULL, SubpopSizeFilter)
```

Arguments

- **sampleIDs**: A vector of sample names.
- **dim_subset**: a string vector of string names to subset the data columns for PAC; set to NULL to use all columns.
- **SubpopSizeFilter**: threshold to filter out very small clusters with too few points; these very small subpopulations may not be outliers and not biologically relevant.

Value

Returns the sample within cluster spread

refineSubpopulationLabels

Refines the subpopulation labels from PAC using network alignment and small subpopulation information. Outputs a new set of files containing the representative labels.

Description

Refines the subpopulation labels from PAC using network alignment and small subpopulation information. Outputs a new set of files containing the representative labels.

Usage

```r
refineSubpopulationLabels(sampleIDs, dim_subset, clades_network_only, expressionGroupClamp)
```
renamePrunedSubpopulations

Prune away specified subpopulations in clades that are far away.

Arguments

sampleIDs sampleID vector

dim_subset a string vector of string names to subset the data columns for PAC; set to NULL to use all columns

clades_network_only the alignment results from MAN; used to translate the original sample-specific labels into clade labels

expressionGroupClamp clamps the subpopulations into desired number of expression groups for assigning small subpopulations into larger groups or their own groups.

Description

Prune away specified subpopulations in clades that are far away.

Usage

renamePrunedSubpopulations(pacman_results, subpopulationsToPrune)

Arguments

pacman_results PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.

subpopulationsToPrune A vector of clade IDs; these clades will be pruned.

Value

Returns PAC-MAN analysis result matrix with pruned clades. The pruning process creates new clades to replace the original clade ID of the specified subpopulations.
runElbowPointAnalysis Runs elbow point analysis to find the practical optimal number of clades to output. Outputs the average within sample cluster spread for all samples and the elbow point analysis plot with loess line fitted through the results.

Description

Runs elbow point analysis to find the practical optimal number of clades to output. Outputs the average within sample cluster spread for all samples and the elbow point analysis plot with loess line fitted through the results.

Usage

runElbowPointAnalysis(ks, sampleIDs, dim_subset, num_PACSupop, smallSubpopCutoff, expressionGroupClamp, SubpopSizeFilter)

Arguments

- **ks** Vector that is a sequence of clade sizes.
- **sampleIDs** A vector of sample names.
- **dim_subset** a string vector of string names to subset the data columns for PAC; set to NULL to use all columns.
- **num_PACSupop** Number of PAC subpopulation explored in each sample.
- **smallSubpopCutoff** Cutoff of minor subpopulation not used in multiple alignments of networks
- **expressionGroupClamp** clamps the subpopulations into desired number of expression groups for assigning small subpopulations into larger groups or their own groups.
- **SubpopSizeFilter** threshold to filter out very small clusters with too few points in the calculation of cluster spreads; these very small subpopulations may be outliers and not biologically relevant.

samplePass Run PAC for Specified Samples

Description

A wrapper to run PAC and output subpopulation mutual information networks. Please use the PAC function itself for individual samples or if the MAN step is not needed.
Usage

`samplePass(sampleIDs, dim_subset, hyperrectangles, num_PACSupop, max.iter, num_networkEdge)`

Arguments

- `sampleIDs` sampleID vector
- `dim_subset` a string vector of string names to subset the data columns for PAC; set to NULL to use all columns
- `hyperrectangles` number of hyperrectangles to learn for each sample
- `num_PACSupop` number of subpopulations to output for each sample using PAC
- `max.iter` postprocessing kmeans iterations
- `num_networkEdge` a threshold on the number of edges to output for each subpopulation mutual information network
Index

aggregateData, 2
annotateClades, 3
annotationMatrix_withSubpopProp, 4
BSPLeaveCenter, 4
constellationPlot, 5
fmeasure, 5
getAverageSpreadOf2SubpopClades, 6
getExtraneousCladeSubpopulations, 6
getRepresentativeNetworks, 7
heatmapInput, 8
JaccardSM, 8
MAN, 9
MINetwork_matrix_topEdges, 10
MINetwork_simplified_topEdges, 10
MINetworkPlot_topEdges, 9
outputNetworks_topEdges_matrix, 11
outputRepresentativeNetworks_topEdges, 11
PAC, 12
recordWithinClusterSpread, 13
refineSubpopulationLabels, 13
renamePrunedSubpopulations, 14
runElbowPointAnalysis, 15
samplePass, 15