Package ‘PASSED’

October 16, 2023

Title Calculate Power and Sample Size for Two Sample Mean Tests

Version 1.2-2

Date 2023-10-12

Description Power calculations are a critical component of any research study to determine the minimum sample size necessary to detect differences between multiple groups. Here we present an 'R' package, ‘PASSED’, that performs power and sample size calculations for the test of two-sample means or ratios with data following beta, gamma (Chang et al. (2011), <doi:10.1007/s00180-010-0209-1>), normal, Poisson (Gu et al. (2008), <doi:10.1002/bimj.200710403>), binomial, geometric, and negative binomial (Zhu and Lakkis (2014), <doi:10.1002/sim.5947>) distributions.

Depends R (>= 4.0)

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.2.3

Imports betareg, stats, rootSolve

VignetteBuilder knitr, rmarkdown

Suggests knitr, rmarkdown, MKmisc

NeedsCompilation no

Author Jinpu Li [aut, cre],
 Ryan Knigge [aut],
 Emily Leary [aut]

Maintainer Jinpu Li <lijinp@health.missouri.edu>

Repository CRAN

Date/Publication 2023-10-16 04:20:07 UTC

R topics documented:

 power_Beta ... 2
 power_Binomial .. 3
 power_Gamma ... 4
 power_Geometric .. 5
Description

Compute the power for a test of two sample means with beta distributions, or determine the minimum sample size to obtain a target power.

Usage

```r
power_Beta(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
           mu1 = NULL, sd1 = NULL, mu2 = NULL, equal.sample = TRUE,
           trials = 100, equal.precision = TRUE, sd2 = NULL,
           link.type = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"))
```

Arguments

- `n1`: sample size in group 1, or sample size in each group if `equal.sample = TRUE`
- `n2`: sample size in group 2
- `power`: power of test (1 minus Type II error probability)
- `sig.level`: significance level (Type I error probability)
- `mu1`: sample mean of group 1
- `sd1`: standard deviation for group 1
- `mu2`: sample mean of group 2
- `equal.sample`: equal sample sizes for two groups, see details
- `trials`: number of trials in simulation
- `equal.precision`: equal dispersion parameter assumption in simulation
- `sd2`: standard deviation for group 2. Only applicable when `equal.precision = FALSE`
- `link.type`: type of link used in the beta regression, see details

Details

Exactly one of the parameters `n1`, `n2` and `power` must be passed as `NULL`, and that parameter is determined from the others.

This function allows you to set the number of trials in the simulation to control the result accuracy, and type of link used in the beta regression. You can choose one of the following: "logit", "probit", "cloglog", "cauchit", "log", "loglog".
Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method and note elements.

Examples

calculate power
power_Beta(mu1 = 0.5, mu2 = 0.80, sd1 = 0.25, n1 = 60)
calculate sample size for both groups
power_Beta(mu1 = 0.5, mu2 = 0.80, sd1 = 0.25, power=0.8)

power_Binomial

Power Calculations for Two-Sample Test for Proportions

Description

Compute power of test, or determine parameters to obtain target power for equal and unequal sample sizes.

Usage

power_Binomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, p1 = 0.5, p2 = 0.5, equal.sample = TRUE, alternative = c("two.sided", "one.sided"))

Arguments

n1 sample size in group 1, or sample size in each group if equal.sample = TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
p1 probability in group 1
p2 probability in group 2
equal.sample equal sample sizes for two groups, see details
alternative one- or two-sided test

Details

Exactly one of the parameters n1, n2, p1, p2, power, and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that p1, p2, sig.level have non-NULL defaults, so NULL must be explicitly expressed if you want to compute them.

If equal.sample = TRUE is used, N in output will denote the number in each group.
Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

Examples

calculate power, equal sizes
power_Binomial(n1 = 100, p1 = 0.5, p2 = 0.7)
calculate power, unequal sizes
power_Binomial(n1 = 150, n2 = 100, p1 = 0.5, p2 = 0.7)
calculate n2
power_Binomial(n1 = 100, p1 = 0.5, p2 = 0.7, power = 0.9, equal.sample = FALSE)

Description

Compute the power for a test of two sample means with Gamma distributions, or determine parameters to obtain a target power.

Usage

power_Gamma(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, mu1 = NULL, mu2 = NULL, gmu1 = NULL, gmu2 = NULL, trials = 100, M = 10000, equal.sample = TRUE, equal.shape = NULL, trace = FALSE)

Arguments

n1 sample size in group 1, or sample size in each group if equal.sample = TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
mu1 arithmetic mean of group 1
mu2 arithmetic mean of group 2
gmu1 geometric mean of group 1
gmu2 geometric mean of group 2
trials number of trials in simulation
M number of simulations used in CAT method, see Chang (2011)
equal.sample equal sample sizes for two groups, see details
equal.shape assume the shape parameters are equal for two groups, see details
trace if positive, sample size and power are printed during the running of each simulation
Details

Exactly one of the parameters \(n_1, n_2, \) and \(\text{power} \) must be passed as NULL, and that parameter is determined from the others. Notice that \(\text{sig.level} \) has non-NULL defaults, so NULL must be explicitly passed if you want to compute it.

If \(\text{equal.sample} = \text{TRUE} \) is used, \(N \) in output will denote the number in each group.

The equal shape parameter assumption will be tested automatically; otherwise it could be set manually with \(\text{equal.shape} \).

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method element.

References

Examples

Calculate power, equal sizes
power_Gamma(n1 = 50, mu1 = 1, mu2 = 1.5, gmu1 = 0.6, gmu2 = 0.6, M = 100)

Description

Compute sample size or power for comparing two geometric rates.

Usage

power_Geometric(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, duration = 1, equal.sample = TRUE,
alternative = c("two.sided", "one.sided"), approach = 3)

Arguments

\(n_1 \) sample size in group 1, or sample size in each group if \(\text{equal.sample} = \text{TRUE} \)
\(n_2 \) sample size in group 2
\(\text{power} \) power of test (1 minus Type II error probability)
\(\text{sig.level} \) significance level (Type I error probability)
\(\mu_1 \) expected rate of events per time unit for group 1
\(\mu_2 \) expected rate of events per time unit for group 2
power_NegativeBinomial

Power Calculation for Comparing Two Negative Binomial Rates

Description

Compute sample size or power for comparing two negative binomial rates.

Usage

```r
power_NegativeBinomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, 
mu1 = NULL, mu2 = NULL, duration = 1, theta = NULL, equal.sample = TRUE, 
alternative = c("two.sided", "one.sided"), approach = 3)
```
power_NegativeBinomial

Arguments

- **n1**: sample size in group 1, or sample size in each group if `equal.sample = TRUE`
- **n2**: sample size in group 2
- **power**: power of test (1 minus Type II error probability)
- **sig.level**: significance level (Type I error probability)
- **mu1**: expected rate of events per time unit for group 1
- **mu2**: expected rate of events per time unit for group 2
- **duration**: (average) treatment duration
- **theta**: theta parameter of negative binomial distribution; see `rnegbin`
- **equal.sample**: equal sample sizes for two groups, see details
- **alternative**: one- or two-sided test
- **approach**: 1, 2, or 3; see Zhu and Lakkis (2014).

Details

- Exactly one of the parameters `n1`, `n2`, and `power` must be passed as NULL, and that parameter is determined from the others.
- If `equal.sample = TRUE` is used, N in output will denote the number in each group.
- The computations are based on the formulas given in Zhu and Lakkis (2014). See `power.nb.test` for more details.

Value

- Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.

References

Examples

- # calculate power, equal sizes
 `power_NegativeBinomial(n1 = 20, mu1 = 1, mu2 = 2, theta = 0.8)`
- # calculate power, unequal sizes
 `power_NegativeBinomial(n1 = 80, n2 = 40, mu1 = 1, mu2 = 2, theta = 0.8)`
- # calculate n
 `power_NegativeBinomial(mu1 = 1, mu2 = 2, theta = 0.8, power = 0.8)`
Description

Compute power of t test, or determine parameters to obtain target power.

Usage

```r
power_Normal(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
  delta = NULL, sd1 = 1, sd2 = 1, equal.sample = TRUE,
  alternative = c("two.sided", "one.sided"),
  type = c("two.sample", "one.sample", "paired"),
  df.method = c("welch", "classical"), strict = FALSE)
```

Arguments

- `n1`: sample size in group 1, or sample size in each group if `equal.sample = TRUE`
- `n2`: sample size in group 2
- `power`: power of test (1 minus Type II error probability)
- `sig.level`: significance level (Type I error probability)
- `delta`: true difference in means
- `sd1`: standard deviation for group 1
- `sd2`: standard deviation for group 2
- `equal.sample`: equal sample sizes for two groups, see details
- `alternative`: one- or two-sided test
- `type`: Type of t test
- `df.method`: Method for calculating the degrees of default. Possibilities are `welch` (the default) or classical.
- `strict`: Use strict interpretation in two-sided case

Details

Exactly one of the parameters `n1`, `n2`, `delta`, `sd1`, `sd2`, `power`, and `sig.level` must be passed as `NULL`, and that parameter is determined from the others. Notice that `sd1`, `sd2`, `sig.level` have non-NULL defaults, so `NULL` must be explicitly expressed if you want to compute them.

If `equal.sample = TRUE` is used, `N` in output will denote the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with note and method elements.
Note

'unroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

Examples

Calculate power, equal sizes
power_Normal(n1 = 150, delta = 5, sd1 = 20, sd2 = 10)
Calculate power, unequal sizes
power_Normal(n1 = 150, delta = 5, n2 = 120, sd1 = 10)
Calculate n1, equal sizes
power_Normal(delta = 5, power = 0.9, sd1 = 10, sd2 = 12)

power_Poisson

Power Calculations for Test of Two Poisson Ratios

Description

Compute the power for a test of two sample means with Poisson distributions, or determine parameters to obtain a target power.

Usage

power_Poisson(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, lambda1 = NULL, lambda2 = NULL, t1 = 1, t2 = 1, RR0 = 1, equal.sample = TRUE, alternative = c("two.sided", "one.sided"))

Arguments

n1 sample size in group 1, or sample size in each group if equal.sample = TRUE
n2 sample size in group 2
power power of test (1 minus Type II error probability)
sig.level significance level (Type I error probability)
lambda1 Poisson rate for group 1
lambda2 Poisson rate for group 2
t1 observed time period for group 1
t2 observed time period for group 2
RR0 the ratio of lambda2 and lambda1 under null hypothesis
equal.sample equal sample sizes for two groups, see details
alternative one- or two-sided test
Details

Exactly one of the parameters n1, n2, lambda1, lambda2, power, and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that sig.level has non-NULL defaults, so NULL must be explicitly passed if you want to compute them.

If equal.sample = TRUE is used, n2 would be ignored and N in output denotes the number in each group.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented with method element.

Note

'unroot' is used to solve power equation for unknowns, so you may see errors from it, notably about inability to bracket the root when invalid arguments are given.

References

Examples

Calculate power, equal sizes
power_Poisson(lambda1 = 0.0005, lambda2 = 0.003, n1 = 2000, t1 = 2, t2 = 2)
Calculate sample size, equal sizes
power_Poisson(lambda1 = 0.0005, lambda2 = 0.003, power = 0.8, t1 = 2, t2 = 2)
Calculate sample size for group 2, unequal sizes
power_Poisson(n1 = 2000, lambda1 = 0.0005, lambda2 = 0.003, power = 0.8, t1 = 2, t2 = 2, equal.sample = FALSE)
Index

power.nb.test, 6, 7
power_Beta, 2
power_Binomial, 3
power_Gamma, 4
power_Geometric, 5
power_NegativeBinomial, 6
power_Normal, 8
power_Poisson, 9
rnegbin, 7