Package ‘PBD’

October 12, 2022

Type Package
Title Protracted Birth-Death Model of Diversification
Version 1.4
Date 2017-5-4
Depends R (>= 3.0)
Imports deSolve, ade4, ape, DDD, phytools, graphics, stats, utils
Author Rampal S. Etienne
Maintainer Rampal S. Etienne <r.s.etienne@rug.nl>
Description Conducts maximum likelihood analysis and simulation of the
protracted birth-death model of diversification. See
License GPL-2
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-05-04 16:32:06 UTC

R topics documented:

- PBD-package .. 2
- pbd_bootstrap .. 3
- pbd_brts_density .. 6
- pbd_durspec_cumdensity 7
- pbd_durspec_density 8
- pbd_durspec_mean 9
- pbd_durspec_mode 10
- pbd_durspecMoment 11
This package computes the (maximum) likelihood of the protracted speciation model for a given set of branching times. This package is a likelihood-based statistical package to estimate parameters under the protracted speciation model.

First version: 0.8
- Bug fix for stem age
New in version 0.9
- Reports loglik = -Inf on an error in the deSolve package (function ode)
New in version 0.91
- Correcting order of parameters of pbd_sim
New in version 0.93
- pbd_sim produces a tree, a matrix containing all events in the simulation, and a tree with one sample per species.
New in version 1.0
- Conditioning is also possible on a range of values of the number of species.
New in version 1.1
- Simulation of the protracted speciation tree has more features.
New in version 1.2
- Optimization can make use of subplex (default) and simplex (older versions).
New in version 1.3
- Contains a function to carry out a bootstrap likelihood ratio test.
- Vignette and test added.
- Reports an error if exteq = TRUE and initparsopt contains 4 parameters.
- Option to limit a simulation to a certain maximum number of species; if exceeded, the simulation is ignored.
New in version 1.4:
- Includes all special cases in pbd_durspec_mean
- Fixes a bug in conditioning on a range of values of the number of species
pbd_loglik computes the likelihood of the protracted birth-death model of diversification, given a set of parameters and a data set of phylogenetic branching times.

pbd_ML finds the parameters that maximizes the likelihood computed by pbd_loglik.

pbd_bootstrap performs a maximum likelihood analysis and simulates with the maximum likelihood parameters. The ML parameters of the simulated data sets are then estimated, providing an uncertainty distribution for the original ML estimate on the original data.

Author(s)

Rampal S. Etienne Maintainer: Rampal S. Etienne <r.s.etienne@rug.nl>

References

See Also

DDD

Description

Likelihood maximization for protracted birth-death model of diversification followed by simulations of the model using the maximum likelihood parameter estimates to compute an estimate of the error in these estimates and to assess the goodness-of-fit of the model by comparing maximum likelihoods of the simulated data sets to the maximum likelihood of the real data set.
Usage

```r
pbd_bootstrap(
  brts, 
  initparsopt = c(0.2,0.1,1), 
  idparsopt = 1:length(initparsopt), 
  idparsfix = NULL, 
  parsfix = NULL, 
  exteq = (length(initparsopt) < 4), 
  parsfunc = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]}, function(t,pars) {pars[3]}, function(t,pars) {pars[4]}), 
  missnumspec = 0, 
  cond = 1, 
  btoprh = 0, 
  soc = 2, 
  plotltt = 1, 
  methode = "lsoda", 
  n_low = 0, 
  n_up = 0, 
  tol = c(1E-4, 1E-4, 1E-6), 
  maxiter = 1000 * round((1.25)^length(idparsopt)), 
  endmc = 100, 
  seed = 42
)
```

Arguments

- **brts**: A set of branching times of a phylogeny, all positive
- **initparsopt**: The initial values of the parameters that must be optimized
- **idparsopt**: The ids of the parameters that must be optimized, e.g. 1:4 for all parameters. The ids are defined as follows:
 - `id == 1` corresponds to `b` (speciation-initiation rate)
 - `id == 2` corresponds to `mu_1` (extinction rate of good species)
 - `id == 3` corresponds to `la_1` (speciation-completion rate)
 - `id == 4` corresponds to `mu_2` (extinction rate of incipient species)
- **idparsfix**: The ids of the parameters that should not be optimized, e.g. c(2,4) if `mu_1` and `mu_2` should not be optimized, but only `b` and `la_1`. In that case `idparsopt` must be c(1,3).
- **parsfix**: The values of the parameters that should not be optimized
- **exteq**: Sets whether incipient species have the same (1) or different (0) extinction rate as good species. If `exteq = 0`, then `idparsfix` and `idparsopt` should together have all parameters 1:4
- **parsfunc**: Specifies functions how the rates depend on time, default functions are constant functions
- **missnumspec**: The number of species that are in the clade but missing in the phylogeny
cond Conditioning:
cond == 0 : conditioning on stem or crown age
cond == 1 : conditioning on stem or crown age and non-extinction of the phylogeny

btorphe Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
sock Sets whether the first element of the branching times is the stem (1) or the crown (2) age
plotltt Sets whether the lineage-through-time plot should be plotted (1) or not (0)
metode Sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.
n_low Sets the lower bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)
n_up Sets the upper bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)
tol Sets the tolerances in the optimization. Consists of:
reltolx = relative tolerance of parameter values in optimization
reltolf = relative tolerance of function value in optimization
abstolx = absolute tolerance of parameter values in optimization
maxiter Sets the maximum number of iterations in the optimization
endmc Sets the number of simulations for the bootstrap
seed Sets the seed for the simulations of the bootstrap

Value
A list of three dataframes. The first dataframe contains the maximum likelihood results of the real data set, the second contains the simulated trees, and the third dataframe, with number of rows equal to endmc, contain the maximum likelihood results for the simulated data. The columns of both frames contains the following elements for each simulated data set:

ntips gives the number of tips
bgives the maximum likelihood estimate of b
mu_1 gives the maximum likelihood estimate of mu_1
la_1 gives the maximum likelihood estimate of la_1
mu_2 gives the maximum likelihood estimate of mu_2
loglik gives the maximum loglikelihood
dfgives the number of estimated parameters, i.e. degrees of feedom
conv gives a message on convergence of optimization; conv = 0 means convergence
exp_durspec gives the expected duration of speciation
median_durspec gives the median duration of speciation
Author(s)
Rampal S. Etienne

See Also
pbd_ML

pbd_brts_density
Node depth probability density for protracted birth-death model of diversification

Description
pbd_brts_density computes the probability density of node depths under the protracted speciation model given a set of parameters

Usage
pbd_brts_density(
pars1,
pars1f = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
methode = "lsoda",
brts
)

Arguments
pars1 Vector of parameters:
pars1[1] corresponds to b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate
pars1[2] corresponds to mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species
pars1[3] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate
pars1[4] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species
When rates depend on time this time dependence should be specified in pars1f and pars1 then becomes the parameters used in pars1f

pars1f Vector of functions how the rates depend on time, default functions are constant functions of the parameters in pars1:
pars1f[1] corresponds to time-dependence of b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate
pars1[2] corresponds to time-dependence of mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species
pars1[3] corresponds to time-dependence of la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate
pars1[4] corresponds to time-dependence of mu_2 (= mu_i in ER2012) = extinction rate of incipient species

methode sets which method should be used in the ode-solver. Default is ‘lsoda’. See package deSolve for details.

brts A set of branching times of a phylogeny, all positive, for which the density must be computed

Value
The probability density for all branching times

Author(s)
Rampal S. Etienne

See Also
pbd_ML

Examples
pbd_brts_density(pars1 = c(0.2,0.1,1,0.1), methode = "lsoda", brts = 1:10)

pbd_durspec_cumdensity
Cumulative density of duration of speciation under protracted birth-death model of diversification

Description
pbd_durspec_cumdensity computes the cumulative density of the duration of speciation under the protracted speciation model for a given set of parameters

Usage
pbd_durspec_cumdensity(
 pars,
 tau
)
Arguments

- **pars** Vector of parameters:

 - `pars[1]` corresponds to \(b (= l_a_3 \text{ in Etienne & Rosindell R2012}) = \) speciation initiation rate

 - `pars[2]` corresponds to \(l_a_1 (= l_a_2 \text{ in Etienne & Rosindell 2012}) = \) speciation completion rate

 - `pars[3]` corresponds to \(mu_2 (= mu_i \text{ in ER2012}) = \) extinction rate of incipient species

- **tau** Value of the duration of speciation at which the cumulative density must be computed

Value

The cumulative density of the duration of speciation

Author(s)

Rampal S. Etienne

See Also

- `pbd_durspec_density`
- `pbd_durspec_mean`
- `pbd_durspec_mode`
- `pbd_durspec_quantile`
- `pbd_durspec_mode`
- `pbd_durspec_var`

Examples

```r
pbd_durspec_cumdensity(pars = c(0.5,0.3,0.1),3)
```

Description

`pbd_durspec_density` computes the probability density of the duration of speciation under the protracted speciation model for a given set of parameters

Usage

```r
pbd_durspec_density(
  pars,
  tau
)
```
Arguments
pars Vector of parameters:
pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate
pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate
pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species

tau The duration of speciation for which the density must be computed

Value
The probability density

Author(s)
Rampal S. Etienne

See Also
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment
pbd_durspec_var

Examples
pbd_durspec_density(pars = c(0.5,0.3,0.1), tau = 1)

pbd_durspec_mean Mean duration of speciation under protracted birth-death model of diversification

Description
pbd_durspec_mean computes the mean duration of speciation under the protracted speciation model for a given set of parameters

Usage
pbd_durspec_mean(
 pars
)
pbd_durspec_mode

Arguments

pars Vector of parameters:

pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate
pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate
pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species

Value

The expected duration of speciation

Author(s)

Rampal S. Etienne

See Also

pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment
pbd_durspec_var

Examples

pbd_durspec_mean(pars = c(0.5,0.3,0.1))

Description

pbd_durspec_mode computes the mode of the duration of speciation under the protracted speciation model for a given set of parameters

Usage

pbd_durspec_mode(
 pars
)
Arguments

- **pars** Vector of parameters:

 - `pars[1]` corresponds to \(b \) (= \(la_3 \) in Etienne & Rosindell R2012) = speciation initiation rate
 - `pars[2]` corresponds to \(la_1 \) (= \(la_2 \) in Etienne & Rosindell 2012) = speciation completion rate
 - `pars[3]` corresponds to \(mu_2 \) (= \(mu_i \) in ER2012) = extinction rate of incipient species

Value

The expected duration of speciation

Author(s)

Rampal S. Etienne

See Also

- `pbd_durspec_density`
- `pbd_durspec_cumdensity`
- `pbd_durspec_mean`
- `pbd_durspec_quantile`
- `pbd_durspec_moment`
- `pbd_durspec_var`

Examples

```r
pbd_durspec_mode(pars = c(0.5,0.3,0.1))
```

Description

`pbd_durspec_moment` computes the moments of the duration of speciation under the protracted speciation model for a given set of parameters

Usage

```r
pbd_durspec_moment(  
  pars,  
  order  
)
```
Arguments

pars Vector of parameters:

pars[1] corresponds to b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate
pars[2] corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate
pars[3] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species

order order of the moment to compute (1 is first moment, giving the mean)

Value

The moment of the duration of speciation

Author(s)

Rampal S. Etienne

See Also

pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_var

Examples

pbd_durspec_moment(pars = c(0.5,0.3,0.1),2)

Description

pbd_durspec_quantile computes a quantile of the duration of speciation under the protracted speciation model for a given set of parameters

Usage

pbd_durspec_quantile(
 pars,
 p
)
Arguments

- **pars**
 Vector of parameters:
 - `pars[1]` corresponds to `b (= la_3 in Etienne & Rosindell R2012) = speciation initiation rate`
 - `pars[2]` corresponds to `la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate`
 - `pars[3]` corresponds to `mu_2 (= mu_i in ER2012) = extinction rate of incipient species`

- **p**
 Quantile (e.g., `p = 0.5 gives the median`)

Value

The quantile of the duration of speciation

Author(s)

Rampal S. Etienne

See Also

- `pbd_durspec_density`
- `pbd_durspec_cumdensity`
- `pbd_durspec_mean`
- `pbd_durspec_mode`
- `pbd_durspec_moment`
- `pbd_durspec_var`

Examples

```r
pbd_durspec_quantile(pars = c(0.5, 0.3, 0.1), 0.5)
```

Description

`pbd_durspec_var` computes the variance in the duration of speciation under the protracted speciation model for a given set of parameters

Usage

```r
pbd_durspec_var(pars)
```
pbd_loglik

Arguments

pars Vector of parameters:

\(\text{pars}[1] \) corresponds to \(b (= \text{la}_3 \text{ in Etienne \& Rosindell R2012}) = \text{speciation initiation rate} \)
\(\text{pars}[2] \) corresponds to \(\text{la}_1 (= \text{la}_2 \text{ in Etienne \& Rosindell 2012}) = \text{speciation completion rate} \)
\(\text{pars}[3] \) corresponds to \(\mu_2 (= \mu_i \text{ in ER2012}) = \text{extinction rate of incipient species} \)

Value

The variance in the duration of speciation

Author(s)

Rampal S. Etienne

See Also

pbd_durspec_density
pbd_durspec_cumdensity
pbd_durspec_mean
pbd_durspec_mode
pbd_durspec_quantile
pbd_durspec_moment

Examples

pbd_durspec_var(pars = c(0.5,0.3,0.1))

pbd_loglik

Loglikelihood for protracted birth-death model of diversification

Description

pbd_loglik computes the loglikelihood of the parameters of the protracted speciation model given a set of branching times and number of missing species

Usage

pbd_loglik(
pars1,
pars1f = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
pars2 = c(1,1,2,1,"lsoda",0,0),

brts,
misnums = 0

Arguments

pars1 Vector of parameters:

pars1[1] corresponds to b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate
pars1[2] corresponds to mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species
pars1[3] corresponds to la_1 (= la_1 in Etienne & Rosindell 2012) = speciation completion rate
pars1[4] corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species

When rates depend on time this time dependence should be specified in pars1f and pars1 then becomes the parameters used in pars1f

pars1f Vector of functions how the rates depend on time, default functions are constant functions of the parameters in pars1:

pars1f[1] corresponds to time-dependence of b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate
pars1f[2] corresponds to time-dependence of mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species
pars1f[3] corresponds to time-dependence of la_1 (= la_1 in Etienne & Rosindell 2012) = speciation completion rate
pars1f[4] corresponds to time-dependence of mu_2 (= mu_i in ER2012) = extinction rate of incipient species

pars2 Vector of model settings:

pars2[1] set the conditioning on non-extinction of the clade (1) or not (0)

pars2[2] sets whether the likelihood is for the branching times (0) or the phylogeny (1)

pars2[3] sets whether the first element of the branching times is the stem (1) or the crown (2) age

pars2[4] sets whether the parameters and likelihood should be shown on screen (1) or not (0)

pars2[5] sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.
pars2[6] Sets the lower bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)

pars2[7] Sets the upper bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)

brts A set of branching times of a phylogeny, all positive
missnumspec The number of species that are in the clade but missing in the phylogeny

Value
The loglikelihood

Author(s)
Rampal S. Etienne

See Also
pbd_ML

Examples

pbd_loglik(pars1 = c(0.2,0.1,1,0.1), pars2 = c(1,1,2,0,"lsoda"),brts = 1:10)

pbd_LR Bootstrap likelihood ratio test of protracted birth-death model of diversification

Description
This function computes the maximum likelihood and the associated estimates of the parameters of a protracted birth-death model of diversification for a given set of phylogenetic branching times. It then performs a bootstrap likelihood ratio test of the protracted birth-death (PBD) model against the constant-rates (CR) birth-death model. Finally, it computes the power of this test.

Usage

pbd_LR(
 brts,
 initparsoptPBD,
 initparsoptCR,
 missnumspec,
outputfilename = NULL,
seed = 42,
endmc = 1000,
alpha = 0.05,
plotit = TRUE,
parsfunc = c(function(t,pars) {pars[1]},
function(t,pars) {pars[2]},
function(t,pars) {pars[3]},
function(t,pars) {pars[4]}),
cond = 1,
btorph = 1,
soc = 2,
methode = 'lsoda',
n_low = 0,
n_up = 0,
tol = c(1E-6,1E-6,1E-6),
maxiter = 2000,
optimmethod = 'subplex',
verbose = FALSE
)

Arguments

brts A set of branching times of a phylogeny, all positive
initparsoptPBD The initial values of the parameters that must be optimized for the protracted birth-death (PBD) model: b, mu and lambda
initparsoptCR The initial values of the parameters that must be optimized for the constant-rates (CR) model: b and mu
missnumspec The number of species that are in the clade but missing in the phylogeny
outputfilename The name (and location) of the file where the output will be saved. Default is no save.
seed The seed for the pseudo random number generator for simulating the bootstrap data
endmc The number of bootstraps
alpha The significance level of the test
plotit Boolean to plot results or not
parsfunc Specifies functions how the rates depend on time, default functions are constant functions
cond Conditioning:
 cond == 0 : conditioning on stem or crown age
 cond == 1 : conditioning on stem or crown age and non-extinction of the phylogeny
 cond == 2 : conditioning on stem or crown age and on the total number of extant taxa (including missing species)
 cond == 3 : conditioning on the total number of extant taxa (including missing species)

btorph
Sets whether the likelihood is for the branching times (0) or the phylogeny (1)

soc
Sets whether stem or crown age should be used (1 or 2)

methode
The numerical method used to solve the master equation, such as 'lsoda' or 'ode45'.

n_low
Sets the lower bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)

n_up
Sets the upper bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)

tol
Sets the tolerances in the optimization. Consists of:
reltolx = relative tolerance of parameter values in optimization
reltolf = relative tolerance of function value in optimization
abstolx = absolute tolerance of parameter values in optimization

maxiter
Sets the maximum number of iterations in the optimization

optimmethod
Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex'.

verbose
if TRUE, explanatory text will be shown

Details
The output is a list with 3 elements:

Value

- **brtsCR**
a list of sets of branching times generated under the constant-rates model using the ML parameters under the CR model

- **brtsDD**
a list of sets of branching times generated under the protracted birth-death model using the ML parameters under the PBD model

- **out**
a dataframe with the parameter estimates and maximum likelihoods for protracted birth-death and constant-rates models

 - $model$ - the model used to generate the data. 0 = unknown (for real data), 1 = CR, 2 = PBD
 - mc - the simulation number for each model
 - b_{CR} - speciation rate estimated under CR
 - mu_{CR} - extinction rate estimated under CR
 - LL_{CR} - maximum likelihood estimated under CR
 - $conv_{CR}$ - convergence code for likelihood optimization; conv = 0 means convergence
 - b_{PBD1} - speciation-initiation rate estimated under PBD for first set of initial values
 - mu_{PB1} - extinction rate estimated under DD for first set of initial values
 - $lambda_{PB1}$ - speciation-completion rate estimated under PBD for first set of initial values
LL_{PBD1} - maximum likelihood estimated under DD for first set of initial values
conv_{PBD1} - convergence code for likelihood optimization for first set of initial values; conv = 0 means convergence
b_{PBD2} - speciation-initiation rate estimated under PBD for second set of initial values
μ_{PB2} - extinction rate estimated under DD for second set of initial values
λ_{PB2} - speciation-completion rate estimated under PBD for second set of initial values
LL_{PBD2} - maximum likelihood estimated under DD for second set of initial values
conv_{PBD2} - convergence code for likelihood optimization for second set of initial values; conv = 0 means convergence
LR - likelihood ratio between DD and CR

pvalue p-value of the test
LRalpha Likelihood ratio at the significance level alpha
powerofalpha power of the test for significance level alpha

Author(s)
Rampal S. Etienne

References

See Also
pbd_loglik, pbd_ML

pbd_ML

Maximization of loglikelihood under protracted birth-death model of diversification

Description

Likelihood maximization for protracted birth-death model of diversification

Usage

```
pbd_ML(brts,
   initparsopt = c(0.2,0.1,1),
   idparsopt = 1:length(initparsopt),
   idparsfix = NULL,
   parsfix = NULL,
```
exteq = 1,
 parsfunc = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
 function(t,pars) {pars[3]}, function(t,pars) {pars[4]}),
 missnumspec = 0,
 cond = 1,
 btorph = 1,
 soc = 2,
 methode = "lsoda",
 n_low = 0,
 n_up = 0,
 tol = c(1E-6, 1E-6, 1E-6),
 maxiter = 1000 * round((1.25)^length(idparsopt)),
 optimmethod = 'subplex',
 verbose = TRUE)

Arguments

brts A set of branching times of a phylogeny, all positive
initparsopt The initial values of the parameters that must be optimized
idparsopt The ids of the parameters that must be optimized, e.g. 1:4 for all parameters.
The ids are defined as follows:
 id == 1 corresponds to b (speciation-initiation rate)
 id == 2 corresponds to mu_1 (extinction rate of good species)
 id == 3 corresponds to la_1 (speciation-completion rate)
 id == 4 corresponds to mu_2 (extinction rate of incipient species)
idparsfix The ids of the parameters that should not be optimized, e.g. c(2,4) if mu_1 and
 mu_2 should not be optimized, but only b and la_1. In that case idparsopt must
 be c(1,3).
parsfix The values of the parameters that should not be optimized
exteq Sets whether incipient species have the same (1) or different (0) extinction rate
 as good species. If exteq = 0, then idparsfix and idparsopt should together have
 all parameters 1:4
parsfunc Specifies functions how the rates depend on time, default functions are constant
 functions
missnumspec The number of species that are in the clade but missing in the phylogeny
cond Conditioning:
 cond == 0 : conditioning on stem or crown age
 cond == 1 : conditioning on stem or crown age and non-extinction of the phylo-
 geny
 cond == 2 : conditioning on stem or crown age and number of extant taxa
btorph Sets whether the likelihood is for the branching times (0) or the phylogeny (1)
soc Sets whether the first element of the branching times is the stem (1) or the crown
 (2) age
methode
Sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.

n_low
Sets the lower bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)

n_up
Sets the upper bound of the number of species on which conditioning should be done when cond = 2. Set this to 0 when conditioning should be done on precisely the number of species (default)

tol
Sets the tolerances in the optimization. Consists of:
reltolx = relative tolerance of parameter values in optimization
reltof = relative tolerance of function value in optimization
abstolx = absolute tolerance of parameter values in optimization

maxiter
Sets the maximum number of iterations in the optimization

optimmethod
Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous versions)

verbose
if TRUE, explanatory text will be shown

Value
A data frame with the following components:

b
gives the maximum likelihood estimate of b
mu_1
gives the maximum likelihood estimate of mu_1
la_1
gives the maximum likelihood estimate of la_1
mu_2
gives the maximum likelihood estimate of mu_2
loglik
gives the maximum loglikelihood
df
gives the number of estimated parameters, i.e. degrees of freedom
conv
gives a message on convergence of optimization; conv = 0 means convergence

Author(s)
Rampal S. Etienne

See Also
pbd_loglik

Examples
pbd_ML(1:10,initparsopt = c(4.640321,4.366528,0.030521), exteq = 1)
pbd_sim

Function to simulate the protracted speciation process

Description

Simulating the protracted speciation process using the Doob-Gillespie algorithm. This function differs from pbd_sim_cpp that 1) it does not require that the speciation-initiation rate is the same for good and incipient species, and 2) that it simulates the exact protracted speciation process, and not the approximation made by the coalescent point process. This function provides also the conversion to the approximation as output.

Usage

pbd_sim(
 pars,
 age,
 soc = 2,
 plotit = FALSE,
 limitsize = Inf
)

Arguments

pars Vector of parameters:

pars[1] corresponds to b_1, the speciation-initiation rate of good species
pars[2] corresponds to la_1, the speciation-completion rate
pars[3] corresponds to b_2, the speciation-initiation rate of incipient species
pars[4] corresponds to mu_1, the extinction rate of good species
pars[5] corresponds to mu_2, the extinction rate of incipient species

age Sets the age for the simulation
soc Sets whether this age is the stem (1) or crown (2) age
plotit Sets whether the various trees produced by the function should be plotted or not
limitsize Sets a maximum to the number of incipient + good species that are created during the simulation; if exceeded, the simulation is aborted and removed.

Value

out A list with the following elements:

tree is the tree of extant species in phylo format
stree_random is a tree with one random sample per species in phylo format
stree_oldest is a tree with the oldest sample per species in phylo format
stree_youngest is a tree with the youngest sample per species in phylo format
L is a matrix of all events in the simulation where
- the first column is the incipient-level label of a species
- the second column is the incipient-level label of the parent of the species
- the third column is the time at which a species is born as incipient species
- the fourth column is the time of speciation-completion of the species
If the fourth element equals -1, then the species is still incipient.
- the fifth column is the time of extinction of the species
If the fifth element equals -1, then the species is still extant.
- The sixth column is the species-level label of the species

sL_random is a matrix like L but for stree_random
sL_oldest is a matrix like L but for stree_oldest
sL_youngest is a matrix like L but for stree_youngest
igtree.extinct is the tree in simmap format with incipient and good flags and including extinct species
igtree.extant is the tree in simmap format with incipient and good flags without extinct species
recontree is the reconstructed tree in phylo format, reconstructed using the approximation in Lambert et al. 2014
reconL is the matrix corresponding to recontree
L0 is a matrix where the crown age is at 0; for internal use only

Author(s)
Rampal S. Etienne

See Also
pbd_sim_cpp

Examples
pbd_sim(c(0.2,1,0.2,0.1,0.1),15)

Description
Simulating the protracted speciation process according to the approximate model of Lambert et al. 2014. This function differs from pbd_sim that 1) it requires that the speciation-initiation rate is the same for good and incipient species, and 2) that it does not simulate the exact protracted speciation process, but an approximation made by the coalescent point process.
Usage

```r
pbd_sim_cpp(
  pars,
  parsf = c(function(t,pars) {pars[1]},function(t,pars) {pars[2]},
            function(t,pars) {pars[3]},function(t,pars) {pars[4]}),
  age,
  soc = 2,
  plotltt = 1,
  methode = "lsoda"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pars</code></td>
<td>Vector of parameters:</td>
</tr>
<tr>
<td></td>
<td><code>pars[1]</code> corresponds to b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate</td>
</tr>
<tr>
<td></td>
<td><code>pars[2]</code> corresponds to mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species</td>
</tr>
<tr>
<td></td>
<td><code>pars[3]</code> corresponds to la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate</td>
</tr>
<tr>
<td></td>
<td><code>pars[4]</code> corresponds to mu_2 (= mu_i in ER2012) = extinction rate of incipient species</td>
</tr>
<tr>
<td></td>
<td>When rates depend on time this time dependence should be specified in pars1f and pars1 then becomes the parameters used in pars1f</td>
</tr>
<tr>
<td><code>parsf</code></td>
<td>Vector of functions how the rates depend on time, default functions are constant functions of the parameters in pars1:</td>
</tr>
<tr>
<td></td>
<td><code>parsf[1]</code> corresponds to time-dependence of b (= la_1 in Etienne & Rosindell R2012) = speciation initiation rate</td>
</tr>
<tr>
<td></td>
<td><code>parsf[2]</code> corresponds to time-dependence of mu_1 (= mu_g in Etienne & Rosindell 2012) = extinction rate of good species</td>
</tr>
<tr>
<td></td>
<td><code>parsf[3]</code> corresponds to time-dependence of la_1 (= la_2 in Etienne & Rosindell 2012) = speciation completion rate</td>
</tr>
<tr>
<td></td>
<td><code>parsf[4]</code> corresponds to time-dependence of mu_2 (= mu_i in ER2012) = extinction rate of incipient species</td>
</tr>
<tr>
<td><code>age</code></td>
<td>Sets the crown age for the simulation</td>
</tr>
<tr>
<td><code>soc</code></td>
<td>Determines whether the simulation should start at stem (1) or crown (2) age</td>
</tr>
<tr>
<td><code>plotltt</code></td>
<td>Sets whether the lineage-through-time plot should be plotted (1) or not (0)</td>
</tr>
<tr>
<td><code>methode</code></td>
<td>Sets which method should be used in the ode-solver. Default is 'lsoda'. See package deSolve for details.</td>
</tr>
</tbody>
</table>
Value
 A set of branching times

Author(s)
 Rampal S. Etienne

See Also
 pbd_sim

Examples
 pbd_sim_cpp(pars = c(0.2,1,0.2,0.1), age = 15)
Index

* models
 pbd_bootstrap, 3
 pbd_brts_density, 6
 pbd_durspec_cumdensity, 7
 pbd_durspec_density, 8
 pbd_durspec_mean, 9
 pbd_durspec_mode, 10
 pbd_durspec_moment, 11
 pbd_durspec_quantile, 12
 pbd_durspec_var, 13
 pbd_loglik, 14
 pbd_LR, 16
 pbd_ML, 19
 pbd_sim, 22
 pbd_sim_cpp, 23

* package
 PBD-package, 2
 PBD-Package, 2
 pbd_bootstrap, 3
 pbd_brts_density, 6
 pbd_durspec_cumdensity, 7, 9–14
 pbd_durspec_density, 8, 8, 10–14
 pbd_durspec_mean, 8, 9, 9, 11–14
 pbd_durspec_mode, 8–10, 10, 12–14
 pbd_durspec_moment, 8–11, 11, 13, 14
 pbd_durspec_quantile, 8–12, 12, 14
 pbd_durspec_var, 8–13, 13
 pbd_loglik, 14, 19, 21
 pbd_LR, 16
 pbd_ML, 6, 7, 16, 19, 19
 pbd_sim, 22, 25
 pbd_sim_cpp, 23, 23