Package ‘PCFAM’

March 24, 2017

Type Package
Title Computation of Ancestry Scores with Mixed Families and Unrelated Individuals
Version 1.0
Date 2017-03-20
Author Yi-Hui Zhou
Maintainer Yi-Hui Zhou <yihui_zhou@ncsu.edu>
Description We provide several algorithms to compute the genotype ancestry scores (such as eigenvector projections) in the case where highly correlated individuals are involved.
License GPL-2
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2017-03-24 19:10:36 UTC

R topics documented:

PCFAM-package ... 2
colcenter ... 3
cov.function .. 3
familyave ... 4
fastcov ... 5
findfamilies ... 6
gr.pca .. 6
ms.pca ... 7
mysqrm ... 8
perfectwhiten .. 9
residualize ... 10
rowcol ... 11
rowscale .. 12
Index 13

1
Description

This package provides ancestry scores based on genotype data, and is robust to the presence of close-degree family members. Four main novel algorithms are represented: (i) Geometric rotation (within-family data orthogonalization); (ii) matrix substitution based on the decomposition of a target family-orthogonalized covariance matrix; (iii) covariance-preserving whitening, retaining covariances between unrelated pairs while orthogonalizing family members (Note: the function `perfectwhiten` generates a new dataset which keeps the same covariance structure as the original set); (iv) using family-averaged data to obtain loadings for projection of family members.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>PCFAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2016-10-11</td>
</tr>
<tr>
<td>License</td>
<td>GPL 2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Yi-Hui Zhou
Maintainer: Yi-Hui Zhou <yihui_zhou@ncsu.edu>

References

Computation of ancestry scores with mixed families and unrelated individuals. arXiv:1606.08416

Examples

```r
X <- matrix(rbinom(1000*20,2,0.4),1000,20)
X[,1]=X[,2]*0.9
X=rowscale(X)
Xresid=residualize(X)
corXresid=cor(Xresid)
myfam=findfamilies(corXresid,0.1)
K=3
myms.pca=ms.pca(X,corXresid,0.1,K)
familyave.result=familyave(X,myfam,top=K)
```
colcenter

Description
This function centerizes each column of the data matrix

Usage
```
colcenter(X)
```

Arguments
- `X` input data matrix

Value
return the data matrix with each column centered

Author(s)
Yi-Hui Zhou

References

cov.function

Description
Obtain a sample covariance matrix

Usage
```
cov.function(data.matrix)
```

Arguments
- `data.matrix` Input mxn data matrix

Value
return the nxn sample covariance matrix
Author(s)
Yi-Hui Zhou

References

Examples
```r
X <- matrix(rbinom(1000*20, 2, 0.4), 1000, 20)
cov.X=cov.function(X)
```

familyave

Family average approach

Description
This function implements the family-averaging algorithm, with loadings based on the combined data from singletons and family averages, then projected to all.

Usage
```r
familyave(Xall, myfam, top = 5)
```

Arguments
- `Xall` The original input genotype dataset
- `myfam` The identified family IDs. Each singleton forms his/her own family.
- `top` The number ancestry scores desired.

Details
The function averages the genotype information in each family, re-inflates to have appropriate variability, and treats as a 'singleton' for the purpose of loading calculation. Ancestry scores are obtained by projection to all.

Value
Output the top ancestry scores by combining family data with singletons

Author(s)
Yi-Hui Zhou

References
Examples

```r
X <- matrix(rbinom(1000*20,2,0.4),1000,20)
X[,1]=X[,2]*0.9
X=rowscale(X)
Xresid=residualize(X)
corXresid=cor(Xresid)
myfam=findfamilies(corXresid,0.1)
K=3
familyave.result=familyave(X,myfam,top=K)
```

Description

This function can generate covariance matrix faster than the regular `cov()` function.

Usage

```r
fastcov(X)
```

Arguments

- **X**: input mxn data matrix

Value

Output nxn covariance matrix

Note

The input data matrix has to be column scaled in advance.

Author(s)

Yi-Hui Zhou

References

findfamilies

Description

This function searches for pairs of individuals with high kinship based on the genotype correlation matrix.

Usage

```r
findfamilies(x, threshold = 0.4)
```

Arguments

- `x` The nxn correlation matrix of the input dataset.
- `threshold` This threshold is used to identify close-degree relatives. Recommended values are 0.4 to identify first-degree relatives, and 0.15 to identify first- and second-degree relatives.

Value

Output numerical family ID for each individual. Individuals with the same ID are judged to be family members.

Author(s)

Yi-Hui Zhou

References

gr.pca

The geometric rotation approach

Description

This algorithm rotates scaled genotypes among family members so that they are mutually orthogonal.

Usage

```r
gpca(data.input, index.family, myfam, weight, top, family.size, inflation)
```
Arguments

- `data.input` Input dataset, each row is for a genetic feature (SNP), each column is for individual. Data are typically number of minor alleles, possibly imputed.
- `index.family` Index vector to indicate the family id of each individual.
- `myfam` This value comes directly from the output of `findfamilies()`.
- `weight` Weight is 0 by default. This is a deprecated weight value that can be used to control the amount of rotation performed. A weight of zero performs full orthogonalization, while a weight of 1 keeps the data unchanged.
- `top` The number of eigenvectors to be used.
- `family.size` The number of members in each family. Used to determine rotation angles.
- `inflation` The inflation of the data value is 0 under default. Deprecated.

Value

- `data.new` The new datamatrix after the geometric rotation
- `topPCs` The top eigenvectors
- `topEigenvalue` The top eigenvalues.

Author(s)

Yi-Hui Zhou

References

Description

This function provides the matrix substitution algorithm. The main idea is to replace the high covariance value entries in the covariance matrix which are produced by family members by a small value (e.g. median covariance).

Usage

```r
ms.pca(X, corXresid, threshold, top)
```

Arguments

- `X` The input data matrix
- `corXresid` The correlation of the genotypes after residualization for any evidence of large scale ancestry. Used to identify close-degree family members in a manner robust to large-scale ancestry.
- `threshold` Covariance values of identified family members are set to the threshold.
- `top` The number of ancestry scores to obtain.
mysqrtm

Value

 eigenvector Eigenvectors after using the matrix substitution method
 myeigen The top eigenvalues and eigenvectors

Author(s)

 Yi-Hui Zhou

References

 mysqrtm Matrix square root function

Description

 This function can find the matrix square root, without requiring a new package and often faster than other code.

Usage

 mysqrtm(a, symmetric = F)

Arguments

 a The input matrix
 symmetric Default=FALSE. This argument indicates whether the input matrix is symmetric.

Details

 Matrix B is said to be a square root of A if the matrix product BB is equal to A.

Value

 returns the square root matrix B
perfectwhiten

The covariance preserving whitening function.

Description

This algorithm generates a new scaled 'genotype' dataset which keeps the same covariance structure as the original data, except that family members have been made orthogonal to each other, and singletons are unchanged.

Usage

```
perfectwhiten(Xun, Xfam, delta = 3e-04, threshold = 0.35, eta = NULL, addfuzz = FALSE)
```

Arguments

- **Xun**: A matrix of (possibly scaled) genotypes, (number of SNPs)*(number of singletons)
- **Xfam**: A matrix of (possibly scaled) genotypes, (number of SNPs)*(number of individuals belonging to families)
- **delta**: A slight offset used to ensure that the target covariance matrix is of full rank
- **threshold**: The correlation threshold used to determine pairs of relatives. The choice should be less than the degree desired. For example, 0.35 captures first degree relatives (expected correlation 0.5), 0.15 captures first and second degree relatives (expected correlation for second degree relatives is 0.25).
- **eta**: This argument is the replacement value used for matrix substitution. The default is NULL, resulting in substitution by the median.
- **addfuzz**: The default is FALSE. Deprecated.

Value

- **Xplusscaled**: The row-scaled full genotype data, including both singletons and family members
- **Y**: The (scaled) genotype matrix after whitening, and should have a covariance matrix very close to Mtarget. Column means are zero
- **Ynotcolcentered**: The same as Y, but with column means matching those of Xplusscaled
- **M**: The covariance matrix of the full data
- **Mtilde**: The covariance matrix after matrix substitution of all family pairs identified with correlations exceeding eta
- **whichbig**: The set of indexes of M that have correlation exceeding threshold
- **covY**: The covariance matrix of Y, useful to compare to M or to Mtarget

Author(s)

Yi-Hui ZHou, Fred A. Wright
References

Examples

```r
X <- matrix(rbinom(1000*20,2,0.4),1000,20)
X[,1]=X[,2]*0.9
X=rowscale(X)
Xresid=residualize(X)
library(PCFAM)
corXresid=cor(Xresid)
myfam=findfamilies(corXresid,0.1)
K=3
perfect.result=perfectwhiten(X[,which(myfam==0)],X[,which(myfam==1)])
```

residualize

Residualization and scale of the original genotype data

Description

This function performs a simple residualization of a row-scaled genotype dataset, removing large-scale population stratification. Output is a residualized dataset appropriate for computing correlations such that family members can be easily identified. The function assumes X is row-scaled.

Usage

```r
residualize(X)
```

Arguments

- `X` The original input genotype dataset

Details

This function pre-treatment the data before applying the findfamilies function.

Value

Outputs the new row-scaled genotype matrix after residualization

Author(s)

Yi-Hui Zhou

References

rowcol

Indicators for the row and column of the original matrix

Description

This function identifies the rows and columns of elements in a matrix, e.g. the family members identified based on the correlation matrix.

Usage

rowcol(I, J, elements)

Arguments

I The number of rows of the matrix (scalar)
J The number of columns of the matrix (scalar)
elements A vector of matrix element indexes

Value

whichrow The rows of elements in the matrix
whichcol The columns of elements in the matrix

Author(s)

Yi-Hui ZHou, Fred A. Wright

References

Examples

X <- matrix(rbinom(1000*20, 2, 0.4), 1000, 20)
X[,1]=X[,2]*0.9
X=rowscale(X)
rowscale

Scale each row of a matrix

Description

This function scales the input matrix so that each row mean is 0 and each row (sample) variance is 1.

Usage

```r
rowscale(X)
```

Arguments

- `X`
 input data matrix

Value

Output the row-scaled matrix.

Author(s)

Yi-Hui ZHou, Fred A. Wright

References

Index

colcenter, 3
cov.function, 3

familyave, 4
fastcov, 5
findfamilies, 6

gr.pca, 6

ms.pca, 7
mysqrtm, 8

PCFAM (PCFAM-package), 2
PCFAM-package, 2
perfectwhiten, 2, 9

residualize, 10
rowcol, 11
rowscale, 12