
PINSPlus: Clustering Algorithm for Data Integration
and Disease Subtyping

Hung Nguyen, Sangam Shrestha, and Tin Nguyen∗

Department of Computer Science and Engineering
University of Nevada, Reno, NV 89557

2018-10-17

Abstract
PINS+ provides a robust approach for data integration and disease subtyping. It allows for unsupervised

clustering using multi-omics data. The method automatically determines the optimal number of clusters
and then partitions the samples in a way such that the results are robust to noise and data perturbation.
PINS+ has been validated on thousands of cancer samples obtained from the Gene Expression Omnibus, the
Broad Institute, The Cancer Genome Atlas (TCGA), and the European Genome-Phenome Archive. The
approach can accurately identify known subtypes and discover novel groups of patients with significantly
different survival profiles. The software is extremely fast and able to cluster hundreds of matched samples
in minutes.

Contents
Introduction 2

PerturbationClustering 2

SubtypingOmicsData 5

References 8

1

Introduction

In a recent paper published in Genome Research, Nguyen et al. [1] proposed a robust approach for multi-omics
data integration and disease subtyping called PINS. The framework was tested upon many datasets obtained
from the Gene Expression Omnibus, the Broad Institute, The Cancer Genome Atlas (TCGA), and the
European Genome-Phenome Archive. In the analysis, PINS outperforms state-of-the-art clustering methods
like Similarity Network Fusion (SNF) [2], Consensus Clustering (CC) [3], and iClusterPlus [4] in identifying
known subtypes and in discovering novel groups of patients with significantly different survival profiles. Please
consult Nguyen et al. [1], [5] for the mathematical description.

PINS+ offers many improvements of PINS from practical perspectives. One outstanding feature is that the
package is extremely fast. For example, it takes PINS+ only five minutes using a single core to analyze the
Glioblastoma dataset (273 patients with three data types, mRNA, miRNA, and methylation) while it takes
PINS 175 minutes (almost three hours) to analyze the same dataset (see Supplemental Table S14 in Nguyen
et al. [1] for running time of PINS). PINS+ also allows for parallelization on any of the three platforms:
Windows, Linux, and Mac OS. In addition, PINS+ provides users with more flexibility, including customized
basic clustering algorithms, distance metrics, noise levels, subsampling, data perturbation, etc.

This document provides a tutorial on how to use the PINS+ package. PINS+ is designed to be
convenient for users and uses two main functions: PerturbationClustering and SubtypingOmicsData.
PerturbationClustering allows users to cluster a single data type while SubtypingOmicsData allows users
to cluster multiple types of data.

PerturbationClustering

The PerturbationClustering function automatically determines the optimal number of clusters and the
membership of each item (patient or sample) from a single data type in an unsupervised analysis.

Preparing data

The input of the function PerturbationClustering is a numerical matrix or data frame in which the rows
represent items while the columns represent features.

Load example data AML2004

library(PINSPlus)
data(AML2004)

Run PerturbationClustering

Run PerturbationClustering with default parameters
system.time(result <- PerturbationClustering(data = AML2004$Gene, verbose = FALSE))

user system elapsed
2.280 0.351 2.596

PerturbationClustering supports parallel computing using the ncore parameter (default ncore = 2):
result <- PerturbationClustering(data = AML2004$Gene, ncore = 8)

Print out the number of clusters:
result$k

[1] 4

2

Print out the cluster membership:
result$cluster

ALL_Bcell_1 ALL_Bcell_2 ALL_Bcell_3 ALL_Bcell_4 ALL_Bcell_5
3 3 1 3 3
ALL_Bcell_6 ALL_Bcell_7 ALL_Bcell_8 ALL_Bcell_9 ALL_Bcell_10
3 1 1 1 1
ALL_Bcell_11 ALL_Bcell_12 ALL_Bcell_13 ALL_Bcell_14 ALL_Bcell_15
3 3 1 3 3
ALL_Bcell_16 ALL_Bcell_17 ALL_Bcell_18 ALL_Bcell_19 ALL_Tcell_1
1 3 3 3 2
ALL_Tcell_2 ALL_Tcell_3 ALL_Tcell_4 ALL_Tcell_5 ALL_Tcell_6
2 2 2 2 2
ALL_Tcell_7 ALL_Tcell_8 AML_1 AML_2 AML_3
2 2 4 3 4
AML_4 AML_5 AML_6 AML_7 AML_8
4 4 4 4 4
AML_9 AML_10 AML_11
4 4 4

Compare the result with the known sutypes [6]:
condition <- seq(unique(AML2004$Group[, 2]))
names(condition) = unique(AML2004$Group[, 2])
plot(prcomp(AML2004$Gene)$x, col = result$cluster,

pch = condition[AML2004$Group[, 2]], main = "AML2004")
legend("bottomright", legend = paste("Cluster ", sort(unique(result$cluster)), sep = ""),

fill = sort(unique(result$cluster)))
legend("bottomleft", legend = names(condition), pch = condition)

−60 −40 −20 0 20 40 60

−
40

−
20

0
20

40

AML2004

PC1

P
C

2

Cluster 1
Cluster 2
Cluster 3
Cluster 4

ALL_Bcell
ALL_Tcell
AML

By default, PerturbationClustering runs with kMax = 10 and kmeans as the basic algorithm.

3

PerturbationClustering performs kmeans clustering to partition the input data with k ∈ [2, 10] and then
computes the optimal value of k.
result <- PerturbationClustering(data = AML2004$Gene, kMax = 10,

clusteringMethod = "kmeans")

To switch to other basic algorithms, use the clusteringMethod argument:
result <- PerturbationClustering(data = AML2004$Gene, kMax = 10,

clusteringMethod = "pam")

or
result <- PerturbationClustering(data = AML2004$Gene, kMax = 10,

clusteringMethod = "hclust")

By default, kmeans clustering runs with parameters nstart = 20 and iter.max = 1000. Users can pass
new values to clusteringOptions to change these values:
result <- PerturbationClustering(

data = AML2004$Gene,
clusteringMethod = "kmeans",
clusteringOptions = list(nstart = 100, iter.max = 500),
verbose = FALSE

)

Instead of using the built-in clustering algorithms such as kmeans, pam, and hclust, users can also pass their
own clustering algorithm via the clusteringFunction argument.
result <- PerturbationClustering(data = AML2004$Gene,

clusteringFunction = function(data, k){
this function must return a vector of cluster
kmeans(x = data, centers = k, nstart = k*10, iter.max = 2000)$cluster

})

In the above example, we use our version of kmeans instead of the built-in kmeans where the value of nstart
parameter is dependent on the number of clusters k. Note that the implementation of clusteringFunction
must accept two arguments: (1) data - the input matrix, and (2) k - the number of clusters. It must return a
vector indicating the cluster to which each item is allocated.

NOTE: Users should choose the clustering method depend on the data structure. ‘k-means‘ in general, can
detect small different between samples. However, ‘k-means‘ can be sensitive to ouliers, it is encourage to use
‘pam‘ if the dataset has outliers. ‘hclust‘ on another hand, will give it best performance if the input data has
hierarchical structure (such as a big group can contain other small groups).

By default, PerturbationClustering adds noise to perturbate the data before clustering. The noise
perturbation method by default accepts two arguments: noise = NULL and noisePercent = "median". To
change these parameters, users can pass new values to perturbOptions:
result <- PerturbationClustering(data = AML2004$Gene,

perturbMethod = "noise",
perturbOptions = list(noise = 1.23))

or
result <- PerturbationClustering(data = AML2004$Gene,

perturbMethod = "noise",
perturbOptions = list(noisePercent = 10))

If the noise parameter is specified, the noisePercent parameter will be skipped.

4

PerturbationClustering provides another built-in perturbation method called subsampling with a percent
parameter:
result <- PerturbationClustering(data = AML2004$Gene,

perturbMethod = "subsampling",
perturbOptions = list(percent = 80))

If users wish to use their own perturbation method, they can pass it to the perturbFunction parameter:
result <- PerturbationClustering(data = AML2004$Gene, perturbFunction = function(data){

rowNum <- nrow(data)
colNum <- ncol(data)
epsilon <-

matrix(
data = rnorm(rowNum * colNum, mean = 0, sd = 1.23456),
nrow = rowNum, ncol = colNum

)

list(
data = data + epsilon,
ConnectivityMatrixHandler = function(connectivityMatrix, iter, k) {

connectivityMatrix
}

)
})

The one argument perturbFunction takes is data - the original input matrix. The perturbFunction must
return a list object which contains the following entities:

• data: a matrix after perturbating from input data and is ready for clustering.
• ConnectivityMatrixHandler: a function that takes three arguments: i) connectivityMatrix - the

connectivity matrix generated after clustering, ii) iter - the current iteration, and iii) k - the number
of clusters. This function must return a compatible connectivity matrix with the original connectivity
matrix. It aims to correct the connectivityMatrix if needed and returns its corrected version.

PerturbationClustering provides several arguments to control stopping criterias:

• iterMax: the maximum number of iterations.
• iterMin: the minimum number of iterations that allows PerturbationClustering to calculate the

stability of the perturbed connectivity matrix based on its AUC (Area Under the Curve) with the
original one. If the perturbed connectivity matrix for current processing k is stable (based on madMin
and msdMin), the iteration for this k will be stopped.

• madMin: the minimum of Mean Absolute Deviation of AUC of Connectivity matrices.
• msdMin: the minimum of Mean Square Deviation of AUC of Connectivity matrices.

result <- PerturbationClustering(data = AML2004$Gene, iterMax = 200,
iterMin = 10, madMin = 1e-2, msdMin = 1e-4)

SubtypingOmicsData

SubtypingOmicsData automatically finds the optimum number of subtypes and its membership from multi-
omics data through two processing stages:

• Stage I: The algorithm first partitions each data type using the function PerturbationClustering and
then merges the connectivities across data types into similarity matrices. Similarity-based clustering
algorithms such as partitioning around medoids (pam) and hierarchical clustering (hclust) are used

5

to partition the built similarity. The algorithm returns the partitioning that agrees the most with
individual data types.

• Stage II: The algorithm attempts to split each discovered group if there is a strong agreement between
data types, or if the subtyping in Stage I is very unbalanced.

Preparing data
Load the kidney cancer carcinoma data
data(KIRC)
SubtypingOmicsData`'s input data must be a list of
numeric matrices or data frames that have the same number of rows:
dataList <- list (KIRC$GE, KIRC$ME, KIRC$MI)
names(dataList) <- c("GE", "ME", "MI")
Run `SubtypingOmicsData`:
result <- SubtypingOmicsData(dataList = dataList)

By default, SubtypingOmicsData runs with parameters agreementCutoff = 0.5 and kMax = 10.
SubtypingOmicsData uses the PerturbationClustering function to cluster each data type. The parameters
for PerturbationClustering are described above in the previous part of this document. If users wish to
change the parameters for PerturbationClustering, they can pass it directly to the function:
result <- SubtypingOmicsData(

dataList = dataList,
clusteringMethod = "kmeans",
clusteringOptions = list(nstart = 50)

)

Plot the Kaplan-Meier curves and calculate Cox p-value:
library(survival)
cluster1=result$cluster1;cluster2=result$cluster2
a <- intersect(unique(cluster2), unique(cluster1))
names(a) <- intersect(unique(cluster2), unique(cluster1))
a[setdiff(unique(cluster2), unique(cluster1))] <-

seq(setdiff(unique(cluster2), unique(cluster1))) + max(cluster1)
colors <- a[levels(factor(cluster2))]
coxFit <- coxph(

Surv(time = Survival, event = Death) ~ as.factor(cluster2),
data = KIRC$survival,
ties = "exact"

)
mfit <- survfit(Surv(Survival, Death == 1) ~ as.factor(cluster2), data = KIRC$survival)
plot(

mfit, col = colors, main = "Survival curves for KIRC, level 2",
xlab = "Days", ylab = "Survival",lwd = 2

)
legend("bottomright",

legend = paste(
"Cox p-value:", round(summary(coxFit)$sctest[3], digits = 5), sep = ""

)
)
legend(

"bottomleft",
fill = colors,
legend = paste("Group ", levels(factor(cluster2)), ": ",

6

Figure 1: KIRC result

table(cluster2)[levels(factor(cluster2))], sep =""
)

)

7

References

[1] T. Nguyen, R. Tagett, D. Diaz, and S. Draghici, “A novel approach for data integration and disease
subtyping,” Genome Research, vol. 27, no. 12, pp. 2025–2039, 2017.

[2] B. Wang, A. M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno, B. Haibe-Kains, and A. Goldenberg,
“Similarity network fusion for aggregating data types on a genomic scale,” Nature Methods, vol. 11, no. 3,
pp. 333–337, 2014.

[3] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus clustering: A resampling-based method for
class discovery and visualization of gene expression microarray data,” Machine Learning, vol. 52, nos. 1-2,
pp. 91–118, 2003.

[4] Q. Mo, S. Wang, V. E. Seshan, A. B. Olshen, N. Schultz, C. Sander, R. S. Powers, M. Ladanyi, and R.
Shen, “Pattern discovery and cancer gene identification in integrated cancer genomic data,” Proceedings
of the National Academy of Sciences, vol. 110, no. 11, pp. 4245–4250, 2013.

[5] T. Nguyen, “Horizontal and vertical integration of bio-molecular data,” PhD thesis, Wayne State University,
2017.

[6] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov, “Metagenes and molecular pattern discovery
using matrix factorization,” Proceedings of the National Academy of Sciences, vol. 101, no. 12, pp.
4164–4169, Mar. 2004.

8

	Introduction
	PerturbationClustering
	SubtypingOmicsData
	References

