Package ‘PLFD’

January 10, 2023

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Portmanteau Local Feature Discrimination for Matrix-Variate Data</td>
</tr>
<tr>
<td>Version</td>
<td>0.2.0</td>
</tr>
<tr>
<td>Date</td>
<td>2023-01-10</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Zengchao Xu <zengc.xu@aliyun.com></td>
</tr>
<tr>
<td>Description</td>
<td>The portmanteau local feature discriminant approach first identifies the local discriminant features and their differential structures, then constructs the discriminant rule by pooling the identified local features together. This method is applicable to high-dimensional matrix-variate data. See the paper by Xu, Luo and Chen (2021, <doi:10.1007/s13171-021-00255-2>).</td>
</tr>
<tr>
<td>Depends</td>
<td>R (>= 3.5.0)</td>
</tr>
<tr>
<td>Imports</td>
<td>Rcpp (>= 1.0.2), mathjaxr</td>
</tr>
<tr>
<td>LinkingTo</td>
<td>Rcpp (>= 1.0.2), RcppArmadillo (>= 0.9.800)</td>
</tr>
<tr>
<td>URL</td>
<td>https://github.com/paradoxical-rhapsody/PLFD</td>
</tr>
<tr>
<td>BugReports</td>
<td>https://github.com/paradoxical-rhapsody/PLFD/issues</td>
</tr>
<tr>
<td>License</td>
<td>GPL-3</td>
</tr>
<tr>
<td>Language</td>
<td>en-US</td>
</tr>
<tr>
<td>Roxygen</td>
<td>list(load=<code>source</code>, markdown=TRUE)</td>
</tr>
<tr>
<td>Encoding</td>
<td>UTF-8</td>
</tr>
<tr>
<td>RoxygenNote</td>
<td>7.2.2</td>
</tr>
<tr>
<td>Suggests</td>
<td>knitr, rmarkdown, markdown</td>
</tr>
<tr>
<td>RdMacros</td>
<td>mathjaxr</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
</tbody>
</table>

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>plfd</td>
<td>2</td>
</tr>
<tr>
<td>predict.plfd</td>
<td>3</td>
</tr>
<tr>
<td>print.plfd</td>
<td>4</td>
</tr>
</tbody>
</table>

Index

5
plfd

Description

A portmanteau local feature discrimination (PLFD) approach to the classification with high-dimensional matrix-variate data.

Usage

plfd(x, y, r0, c0, blockList, blockMode = NULL, permNum = 100, alpha = 0)

Arguments

- **x**: Array of \(r \times c \times n \).
- **y**: Vector of length-\(n \) with values 1 or 2.
- **r0, c0**: Row and column size of blocks. See details.
- **blockList**: List including the index set of pre-specified blocks. See details.
- **blockMode**: How the differential structure of \(M_1 - M_2 \) are detected. The default (blockMode=NULL) does NOT detect the structure of feature blocks. If blockMode="fd" (or "forward"), a forward stepwise procedure is conducted to detect the nonzero positions of feature blocks, wherein BIC serves as the stopping rule.
- **permNum**: Rounds of permutation.
- **alpha**: The upper-\(\alpha \) quantile of the permutation statistic.

Details

There are two ways to specify the blocks under consideration. In the case that the matrix-variate is partition into non-overlapping blocks that share the common row size and column size, these sizes can be specified by \(r0 \) and \(c0 \). Otherwise, the blocks can be flexibly specified by parameter blockList, which should be a list in which each element includes \(rIdx \) and \(cIdx \) corresponding to the row and column index set of a block. See examples.

Value

- List.
 - \(n1, n2, rDim, cDim, blockMode, permNum, alpha \);
 - \(blockNumber \): the number of identified feature blocks.
 - \(paras \): list(list(rIdx, cIdx, B, M), ...), list of the information of feature blocks.

References

Examples

```r
set.seed(2023)
rDim <- 20
cDim <- 20

n <- 100
y <- sample(1:2, n, TRUE, c(0.5, 0.5))
x <- array(rnorm(rDim*cDim*n), dim=c(rDim, cDim, n))
x[, , y==2] <- (x[, , y==2] + 1.0)

ntest <- 200
ytest <- sample(1:2, ntest, TRUE, c(0.5, 0.5))
xtest <- array(rnorm(rDim*cDim*ntest), dim=c(rDim, cDim, ntest))
xtest[, , ytest==2] <- (xtest[, , ytest==2] + 1.0)

## Uniform partition
print( plfd(x, y, r0=5, c0=5) )

## Pre-specify feature blocks
blockList <- list(list(rIdx=1:5, cIdx=1:5),
                  list(rIdx=6:10, cIdx=1:5),
                  list(rIdx=3:9, cIdx=2:8))
print( plfd.model <- plfd(x, y, blockList=blockList) )

## Predict
predict(plfd.model, xtest, ytest)
```

predict.plfd

Predict Method for plfd

Description

Predict Method for plfd

Usage

```r
## S3 method for class 'plfd'
predict(object, x, y, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>plfd object.</td>
</tr>
<tr>
<td>x</td>
<td>Array, matrix-variate data to be predicted.</td>
</tr>
<tr>
<td>y</td>
<td>Vector (optional), Labels of x with value 1 or 2.</td>
</tr>
<tr>
<td>...</td>
<td>Ignored currently.</td>
</tr>
</tbody>
</table>
Value

\[\text{list}(W, \text{y.hat}, \text{mcr}) \] with

- \(W \): discriminant scores;
- \(\text{y.hat} \): predicted labels;
- \(\text{mcr} \): misclassification rate if parameter \(y \) is available.

Description

Print Method for \(\text{plfd} \)

Usage

```r
## S3 method for class 'plfd'
print(x, ...)  
```

Arguments

- `x` : \(\text{plfd} \) object.
- `...` : Ignored currently.
Index

plfd, 2
predict.plfd, 3
print.plfd, 4