Package ‘PLmixed’

December 14, 2020

Title Estimate (Generalized) Linear Mixed Models with Factor Structures

Version 0.1.5

Description Utilizes the 'lme4' and 'optimx' packages (previously the optim() function from 'stats') to estimate (generalized) linear mixed models (GLMM) with factor structures using a profile likelihood approach, as outlined in Jeon and Rabe-Hesketh (2012) <doi:10.3102/1076998611417628> and Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>. Factor analysis and item response models can be extended to allow for an arbitrary number of nested and crossed random effects, making it useful for multilevel and cross-classified models.

Depends R (>= 3.2.2)
Imports lme4, Matrix (>= 1.1.1), numDeriv, stats, optimx
Suggests knitr, rmarkdown, irttoys
VignetteBuilder knitr
Encoding UTF-8
License GPL (>= 2)
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Author Minjeong Jeon [aut], Nicholas Rockwood [aut, cre]
Maintainer Nicholas Rockwood <nrockwood@llu.edu>
Repository CRAN
Date/Publication 2020-12-14 05:20:02 UTC

R topics documented:

PLmixed-package ... 2
coeff.PLmod ... 2
fitted.PLmod ... 3
PLmixed-package

PLmixed: A package for estimating GLMMs with factor structures.

Description

The PLmixed package’s main function is `PLmixed`, which estimates the model through nested maximizations using the `lme4` and `optimx` packages (previously the `optim` function). This extends the capabilities of `lme4` to allow for estimated factor structures, making it useful for estimating multilevel factor analysis and item response theory models with an arbitrary number of hierarchical levels or crossed random effects.

References

coef.PLmod

Description

Obtain coefficients for a model of class PLmod.
Usage

S3 method for class 'PLmod'
coef(object, ...)

Arguments

object an object of class PLmod
... Additional arguments from coef.merMod.

Value

sum of the random and fixed effects coefficients for each explanatory variable for each level of the grouping factor.

Description

Obtain fitted values for a model of class PLmod.

Usage

S3 method for class 'PLmod'
fitted(object, ...)

Arguments

object an object of class PLmod
... Additional arguments from fitted.merMod.

Description

Obtain fixed effect estimates for a model of class PLmod.

Usage

S3 method for class 'PLmod'
fixef(object, ...)

Arguments

object an object of class PLmod
... Additional arguments from fixef.merMod.
Description

A simulated dataset that replicates the dataset from CITO.

Usage

`IRTsim`

Format

A data frame with 2500 rows and 4 variables:

- `sid` Student ID
- `school` School ID
- `item` Item ID
- `y` Response

iterPlot

Description

Plot parameter estimates at each `optim` iteration.

Usage

`iterPlot(object)`

Arguments

- `object` an object of class `PLmod`
JUDGEsim
Simulated Multi-rater Multi-response dataset.

Description
A simulated dataset that replicates the dataset from a multi-rater multi-response study where teachers and students provided responses about two student traits.

Usage
JUDGEsim

Format
A data frame with 54462 rows and 7 variables:
- **item** Item ID
- **method** 1 = teacher response, 2 = student response
- **trait** 1 = trait 1, 2 = trait 2
- **stu** Student ID
- **class** Classroom ID
- **tch** Teacher ID
- **response** Item response

KYPSitemsim
Simulated KYPS item-level dataset.

Description
A simulated dataset that replicates the dataset item-level data from KYPS.

Usage
KYPSitemsim

Format
A data frame with 66947 rows and 6 variables:
- **id** Student ID
- **time** Time Identifier
- **item** Item ID
- **mid** Middle School ID
- **hid** High School ID
- **response** Item Response
KYPsim

Simulated KYPs dataset.

Description
A simulated dataset that replicates the dataset from KYPs.

Usage
KYPsim

Format
A data frame with 11494 rows and 5 variables:

mid Middle School ID
hid High School ID
sid Student ID
time Time Identifier
esteem Self Esteem

PLmixed

Fit GLMM with Factor Structure

Description
Fit a (generalized) linear mixed effects model (GLMM) with factor structures. Utilizes both the lme4 package and optim function for estimation using a profile-likelihood based approach.

Usage
PLmixed(
 formula,
 data,
 family = gaussian,
 load.var = NULL,
 lambda = NULL,
 factor = NULL,
 init = 1,
 nlp = NULL,
 init.nlp = 1,
 nAGQ = 1,
 method = "L-BFGS-B",
 lower = -Inf,
 upper = Inf,
lme4.optimizer = "bobyqa",
lme4.start = NULL,
lme4.optCtrl = list(),
opt.control = NULL,
REML = FALSE,
SE = 1,
ND.method = "simple",
check = "stop",
est = TRUE,
iter.count = TRUE
)

Arguments

formula A formula following that of \texttt{lme4}, with the addition that factors can be specified as random effects. Factor names should not be names of variables in the data set, and are instead defined with the factor argument.
data A data frame containing the variables used in the model (but not factor names).
family A GLM family, see \texttt{glm} and \texttt{family}.
load.var A variable in the dataframe identifying what the factors load onto. Each unique element in \texttt{load.var} will have a unique factor loading. All rows in the dataset with the same value for \texttt{load.var} will have the same factor loading.
lambda A matrix or list of matrices corresponding to the loading matrices. A value of NA indicates the loading is freely estimated, while a numeric entry indicates a constraint.
factor A list of factors corresponding to the loading matrices and factors specified in model.
init A scalar (default = 1) or vector of initial lambda values. If a scalar, the value is applied to all lambda parameters. If a vector, the values apply in row by column by matrix order.
nlp A character vector containing the names of additional nonlinear parameters that are in the model formula.
init.nlp A scalar (default = 1) or vector of initial nlp values. If a scalar, the value is applied to all nlp parameters. If a vector, the values apply in the order listed.
nAGQ If family is non-gaussian, the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation. See \texttt{glmer}.
method The \texttt{optimx} optimization method. Defaults to L-BFGS-B.
lower Lower bound on lambda parameters if applicable.
upper Upper bound on lambda parameters if applicable.
lme4.optimizer The \texttt{lme4} optimization method.
lme4.start Start values used for \texttt{lme4}.
lme4.optCtrl A list controlling the lme4 optimization. See \texttt{lmerControl} or \texttt{glmerControl}.
opt.control Controls for the \texttt{optimx} optimization.
REML Use REML if model is linear? Defaults to FALSE.
SE Method of calculating standard errors for fixed effects.
ND.method Method of calculating numerical derivatives.
check Check number of observations vs. levels and number of observations vs. random effects.
est Return parameter estimates.
iter.count Print the iteration counter during optimization.

Details
Factors are listed within the formula in the same way that random effects are specified in lme4. The grouping variable listed after | defines what the factor values randomly vary over, just as | does for other random effects. The names of factors and other random effect terms can be listed within the same set of parentheses, allowing the covariance between the factor(s) and random effect(s) to be estimated. The same factor may be specified for multiple grouping variables, allowing for multilevel or crossed effects.

The factor argument must list any factor that appears in the formula. The ordering will depend on the ordering of the matrices listed within lambda. The matrices in lambda specify the factor loading matrices. The number of matrices in lambda should equal the number of character vectors in factor and the number of elements in load.var. The number of rows in the kth matrix listed in lambda should correspond to the number of unique elements in the dataset for the kth variable listed in load.var, and the number of columns in the kth matrix should correspond to the number of factors listed in the kth character vector of factor.

Within the kth matrix, the (i, j) cell corresponds to the factor loading for the ith unique element of the kth variable listed in load.var on the jth factor listed in the kth character vector of factor. Each element of the matrix should be either a number or NA. If the element is a number, the loading will be constrained to that value. If the element is an NA, the loading will be freely estimated. For identification, it is necessary (but not sufficient) for at least one element in each column to be constrained.

The nlp argument can be viewed as a special case of the factor argument, where the character vector listed in nlp is automatically linked to 1 x p lambda matrix, where p is the number of elements in nlp. The load.var for these parameters is viewed as a constant, so that the nlp parameters are equivalent for all rows in the dataset. Thus, nlp simplifies the process of adding additional nonlinear parameters to the model without having to specify corresponding lambda and load.var values.

Value
An object of class PLmod, which contains an object of class merMod as one of its elements. Some functions for class merMod have been adapted to work with class PLmod. Others can be utilized using object$'lme4 Model', where object is an object of class PLmod.

References

See Also

lme4
glmer
lmer

Examples

data("IRTsim") # Load the IRTsim data

IRTsub <- IRTsim[IRTsim$item < 4,] # Select items 1-3
set.seed(12345)
IRTsub <- IRTsub[sample(nrow(IRTsub), 300),] # Randomly sample 300 responses

IRTsub <- IRTsub[order(IRTsub$item),] # Order by item
irt.lam = c(1, NA, NA) # Specify the lambda matrix

Below, the # in front of family = binomial can be removed to change the response distribution
to binomial, where the default link function is logit.

irt.model <- PLmixed(y ~ 0 + as.factor(item) + (0 + abil.sid | sid) + (0 + abil.sid | school),
 data = IRTsub, load.var = c("item"), factor = list(c("abil.sid")), lambda = list(irt.lam))
summary(irt.model)

Not run:
A more time-consuming example.
~ 5-10 minutes

data("KYPSsim") # Load the KYPSsim data

kyps.lam <- rbind(c(1, 0),
 c(NA, 0),
 c(NA, 1),
 c(NA, NA))

kyps.model <- PLmixed(esteem ~ as.factor(time) + (0 + hs | hid) + (0 + ms | mid) + (1 | sid), data = KYPSsim,
 factor = list(c("ms", "hs")), load.var = c("time"),
 lambda = list(kyps.lam))
summary(kyps.model)

data("JUDGEsim")
JUDGEsim <- JUDGEsim[order(JUDGEsim$item),] # Order by item
unique(JUDGEsim$item)

Specify Lambda matrix
judge.lam <- rbind(c(1, 0, 1, 0, 0, 0),
 c(NA, NA, 1, 0, 0, 0))
c(NA, 0, NA, 0, 0, 0),
c(NA, 0, NA, 0, 0, 0),
c(0, 1, 0, 1, 0, 0),
c(0, NA, 0, NA, 0, 0),
c(0, NA, 0, NA, 0, 0),
c(0, 0, 0, 0, 1, 0),
c(0, 0, 0, 0, NA, 0),
c(0, 0, 0, 0, NA, 0),
c(0, 0, 0, 0, 0, 1),
c(0, 0, 0, 0, 0, NA),
c(0, 0, 0, 0, 0, NA))

Conduct analysis
judge.example <- PLmixed(response ~ 0 + as.factor(item) + (1 | class)
+ (0 + trait1.t + trait2.t + trait1.s + trait2.s | stu)
+ (0 + teacher1 + teacher2 | tch), data = JUDGEsim,
lambda = list(judge.lam), load.var = "item",
factor = list(c("teacher1", "teacher2", "trait1.t",
"trait2.t", "trait1.s", "trait2.s")))

summary(judge.example)

data("KYPSitemsim")

time.lam <- rbind(c(1, 0),
c(NA, 0),
c(NA, 1),
c(NA, NA)) # Specify time lambda matrix

item.lam <- c(1, NA, NA, NA, NA, NA) # Specify item lambda matrix

KYPSitemsim$time2 <- (KYPSitemsim$time == 2) * 1
KYPSitemsim$time3 <- (KYPSitemsim$time == 3) * 1
KYPSitemsim$time4 <- (KYPSitemsim$time == 4) * 1

kyps.item.model <- PLmixed(response ~ 0 + as.factor(item) + lat.var:time2
+ lat.var:time3 + lat.var:time4 + (0 + hs:lat.var | hid)
+ (0 + ms:lat.var | mid) + (0 + lat.var:as.factor(time) | id),
data = KYPSitemsim, lambda = list(time.lam, item.lam),
factor = list(c("ms", "hs"), "lat.var"),
load.var = c("time", "item"))

summary(kyps.item.model)

End(Not run)
predict.PLmod

Description
Diagnostic plots for a model of class PLmod.

Usage
```r
## S3 method for class 'PLmod'
plot(x, ...)
```

Arguments
- `x`: an object of class PLmod
- `...`: Additional arguments from `plot.merMod`.

predict.PLmod

Description
Predict response values from a model of class PLmod.

Usage
```r
## S3 method for class 'PLmod'
predict(object, newdata = NULL, ...)
```

Arguments
- `object`: an object of class PLmod
- `newdata`: data frame to obtain predictions for
- `...`: Additional arguments from `predict.merMod`.

print.PLmod

Description
Print the fitted PLmixed model object of class PLmod.

Usage
```r
## S3 method for class 'PLmod'
print(x, digits = 4, ...)
```
print.summary.PLmod

Arguments

x
an object of class PLmod
digits
minimal number of significant digits, see print.default.
...
Additional arguments.

Description

Print the output for a PLmixed model object of class PLmod.

Usage

S3 method for class 'summary.PLmod'
print(x, digits = 4, ...)

Arguments

x
an object of class PLmod
digits
minimal number of significant digits, see print.default.
...
Additional arguments.

ranef.PLmod

Description

Obtain conditional modes of the random effects for a model of class PLmod.

Usage

S3 method for class 'PLmod'
ranef(object, ...)

Arguments

object
an object of class PLmod
...
Additional arguments from ranef.merMod.
residuals.PLmod

Description

Obtain residuals for a model of class PLmod.

Usage

```r
## S3 method for class 'PLmod'
residuals(object, ...)
```

Arguments

- `object`: an object of class PLmod
- `...`: Additional arguments from `residuals.merMod`.

simulate.PLmod

Description

Simulate responses from a model of class PLmod.

Usage

```r
## S3 method for class 'PLmod'
simulate(object, ...)
```

Arguments

- `object`: an object of class PLmod
- `...`: Additional arguments from `simulate.merMod`.
Description

Obtain key output for a fitted PLmixed model object of class PLmod.

Usage

```r
# S3 method for class 'PLmod'
summary(object, ...)
```

Arguments

- `object` an object of class PLmod
- `...` Additional arguments.

Value

An object containing all parameter estimates and model characteristics.
Index

* **Factor**
 PLmixed, 6

* **GLLAMM**
 coef.PLmod, 2
 fitted.PLmod, 3
 fixef.PLmod, 3
 iterPlot, 4
 PLmixed, 6
 plot.PLmod, 10
 predict.PLmod, 11
 print.PLmod, 11
 print.summary.PLmod, 12
 ranef.PLmod, 12
 residuals.PLmod, 13
 simulate.PLmod, 13
 summary.PLmod, 14

* **GLMM**
 coef.PLmod, 2
 fitted.PLmod, 3
 fixef.PLmod, 3
 iterPlot, 4
 PLmixed, 6
 plot.PLmod, 10
 predict.PLmod, 11
 print.PLmod, 11
 print.summary.PLmod, 12
 ranef.PLmod, 12
 residuals.PLmod, 13
 simulate.PLmod, 13
 summary.PLmod, 14

* **IRT**
 coef.PLmod, 2
 fitted.PLmod, 3
 fixef.PLmod, 3
 iterPlot, 4
 PLmixed, 6
 plot.PLmod, 10
 predict.PLmod, 11
 print.PLmod, 11
 print.summary.PLmod, 12
 ranef.PLmod, 12
 residuals.PLmod, 13
 simulate.PLmod, 13
 summary.PLmod, 14

* **datasets**
 IRTsim, 4
 JUDGEsim, 5
 KYPSitemsim, 5
 KYPSsim, 6
 coef.merMod, 3
 coef.PLmod, 2
 family, 7
 fitted.merMod, 3
 fitted.PLmod, 3
 fixef.merMod, 3
 fixef.PLmod, 3
 glm, 7
 glmer, 7, 9
 glmerControl, 7
 IRTsim, 4
 iterPlot, 4
 JUDGEsim, 5
 KYPSitemsim, 5
 KYPSsim, 6
 lme4, 2, 6–9
 lmer, 9
 lmerControl, 7
 optim, 2, 4, 6
 optimx, 2, 7
 PLmixed, 2, 6
 PLmixed-package, 2
plot.merMod, 11
plot.PLmod, 10
predict.merMod, 11
predict.PLmod, 11
print.default, 12
print.PLmod, 11
print.summary.PLmod, 12

ranef.merMod, 12
ranef.PLmod, 12
residuals.merMod, 13
residuals.PLmod, 13

simulate.merMod, 13
simulate.PLmod, 13
summary.PLmod, 14