Package ‘PMCMRplus’

July 6, 2023

Type Package

Title Calculate Pairwise Multiple Comparisons of Mean Rank Sums

Version 1.9.7

Date 2023-07-04

Description For one-way layout experiments the one-way ANOVA can be performed as an omnibus test. All-pairs multiple comparisons tests (Tukey-Kramer test, Scheffe test, LSD-test) and many-to-one tests (Dunnett test) for normally distributed residuals and equal within variance are available. Furthermore, all-pairs tests (Games-Howell test, Tamhane's T2 test, Dunnett T3 test, Ury-Wiggins-Hochberg test) and many-to-one (Tamhane-Dunnett Test) for normally distributed residuals and heterogeneous variances are provided. Van der Waerden's normal scores test for omnibus, all-pairs and many-to-one tests is provided for non-normally distributed residuals and homogeneous variances. The Kruskal-Wallis, BWS and Anderson-Darling omnibus test and all-pairs tests (Nemenyi test, Dunn test, Conover test, Dwass-Steele-Critchlow-Flinger test) as well as many-to-one (Nemenyi test, Dunn test, U-test) are given for the analysis of variance by ranks. Non-parametric trend tests (Jonckheere test, Cuzick test, Johnson-Mehrotra test, Spearman test) are included. In addition, a Friedman-test for one-way ANOVA with repeated measures on ranks (CRBD) and Skillings-Mack test for unbalanced CRBD is provided with consequent all-pairs tests (Nemenyi test, Siegel test, Miller test, Conover test, Exact test) and many-to-one tests (Nemenyi test, Demsar test, Exact test). A trend can be tested with Page's test. Durbin's test for a two-way balanced incomplete block design (BIBD) is given in this package as well as Gore's test for CRBD with multiple observations per cell is given. Outlier tests, Mandel's k- and h statistic as well as functions for Type I error and Power analysis as well as generic summary, print and plot methods are provided.
Depends R (>= 3.5.0)
Imports mvtnorm (>= 1.0), multcompView, gmp, Rmpfr, SuppDists,
 kSamples (>= 1.2.7), BWTest (>= 0.2.1), MASS, stats
Suggests xtable, graphics, knitr, rmarkdown, car, e1071, multcomp,
 pwr, NSM3
SystemRequirements gmp (>= 4.2.3), mpfr (>= 3.0.0) | file README.md
SystemRequirementsNote see >> README.md
SysDataCompression gzip
VignetteBuilder knitr, rmarkdown
NeedsCompilation yes
Encoding UTF-8
LazyData true
RoxygenNote 7.2.2
License GPL (>= 3)
Author Thorsten Pohlert [aut, cre] (<https://orcid.org/0000-0003-3855-3025>)
Maintainer Thorsten Pohlert <thorsten.pohlert@gmx.de>
Repository CRAN
Date/Publication 2023-07-06 00:14:18 UTC

R topics documented:

adAllPairsTest 5
adKSAMPLESTest 7
adManyOneTest 9
algae 11
barPlot 12
bwsAllPairsTest 12
bwsKSampleTest 15
bwsManyOneTest 17
bwsTrendTest 20
chAAllPairsNashimotoTest 23
chackoTest 26
chenJanTest 29
chenTest 31
Cochran 34
cochranTest 35
cuzickTest 37
DGrubbs 39
doubleGrubbsTest 40
dscfAllPairsTest 42
duncanTest 43
dunnettT3Test 45
<table>
<thead>
<tr>
<th>Topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>topics documented:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dunnettTest</td>
<td>47</td>
</tr>
<tr>
<td>durbinAllPairsTest</td>
<td>49</td>
</tr>
<tr>
<td>durbinTest</td>
<td>51</td>
</tr>
<tr>
<td>flignerWolfeTest</td>
<td>52</td>
</tr>
<tr>
<td>frdAllPairsConoverTest</td>
<td>55</td>
</tr>
<tr>
<td>frdAllPairsExactTest</td>
<td>58</td>
</tr>
<tr>
<td>frdAllPairsMillerTest</td>
<td>60</td>
</tr>
<tr>
<td>frdAllPairsNemenyiTest</td>
<td>62</td>
</tr>
<tr>
<td>frdAllPairsSiegelITest</td>
<td>65</td>
</tr>
<tr>
<td>frdHouseTest</td>
<td>67</td>
</tr>
<tr>
<td>frdManyOneDemsarTest</td>
<td>70</td>
</tr>
<tr>
<td>frdManyOneExactTest</td>
<td>72</td>
</tr>
<tr>
<td>frdManyOneNemenyiTest</td>
<td>74</td>
</tr>
<tr>
<td>friedmanTest</td>
<td>76</td>
</tr>
<tr>
<td>gamesHowellITest</td>
<td>78</td>
</tr>
<tr>
<td>gresdTest</td>
<td>80</td>
</tr>
<tr>
<td>goreTest</td>
<td>81</td>
</tr>
<tr>
<td>Grubbs</td>
<td>83</td>
</tr>
<tr>
<td>grubbsTest</td>
<td>84</td>
</tr>
<tr>
<td>GSTTest</td>
<td>85</td>
</tr>
<tr>
<td>hartleyTest</td>
<td>87</td>
</tr>
<tr>
<td>hayterStoneTest</td>
<td>89</td>
</tr>
<tr>
<td>hsAllPairsTest</td>
<td>92</td>
</tr>
<tr>
<td>johnsonTest</td>
<td>95</td>
</tr>
<tr>
<td>jonckheereTest</td>
<td>97</td>
</tr>
<tr>
<td>kruskalTest</td>
<td>100</td>
</tr>
<tr>
<td>kwAllPairsConoverTest</td>
<td>103</td>
</tr>
<tr>
<td>kwAllPairsDunnTest</td>
<td>105</td>
</tr>
<tr>
<td>kwAllPairsNemenyiTest</td>
<td>107</td>
</tr>
<tr>
<td>kwManyOneConoverTest</td>
<td>110</td>
</tr>
<tr>
<td>kwManyOneDunnTest</td>
<td>112</td>
</tr>
<tr>
<td>kwManyOneNdwTest</td>
<td>115</td>
</tr>
<tr>
<td>leTest</td>
<td>118</td>
</tr>
<tr>
<td>lsdTest</td>
<td>120</td>
</tr>
<tr>
<td>mackWolfeTest</td>
<td>122</td>
</tr>
<tr>
<td>Mandel-h</td>
<td>124</td>
</tr>
<tr>
<td>Mandel-k</td>
<td>125</td>
</tr>
<tr>
<td>mandelhTest</td>
<td>126</td>
</tr>
<tr>
<td>mandelkTest</td>
<td>127</td>
</tr>
<tr>
<td>manyOneUTest</td>
<td>129</td>
</tr>
<tr>
<td>mrrTest</td>
<td>131</td>
</tr>
<tr>
<td>MTest</td>
<td>134</td>
</tr>
<tr>
<td>normalScoresAllPairsTest</td>
<td>136</td>
</tr>
<tr>
<td>normalScoresManyOneTest</td>
<td>138</td>
</tr>
<tr>
<td>normalScoresTest</td>
<td>140</td>
</tr>
<tr>
<td>NPMTest</td>
<td>141</td>
</tr>
<tr>
<td>osrtTest</td>
<td>145</td>
</tr>
<tr>
<td>pageTest</td>
<td>147</td>
</tr>
</tbody>
</table>
R topics documented:

- Pentosan
- plot.mandel
- plot.PMCMR
- power.dunnett.test
- power.tukey.test
- power.williams.test
- powerMCTests
- powerOneWayTests
- print.gesdTest
- print.mandel
- print.osrt
- print.PMCMR
- print.powerOneWayPMCMR
- print.powerPMCMR
- print.trendPMCMR
- qDunnett
- qPCR
- quadeAllPairsTest
- reviewers
- scheffeTest
- shanTest
- shirleyWilliamsTest
- siegelTukeyTest
- skillingsMackTest
- snkTest
- spearmanTest
- steelsKSampTest
- steelTest
- stepDownTrendTest
- summary.gesdTest
- summary.mandel
- summary.osrt
- summary.PMCMR
- summary.trendPMCMR
- summaryGroup
- tamhaneDunnettTest
- tamhaneT2Test
- toTidy
- trout
- tukeyTest
- uryWigginsHochbergTest
- vanWaerdenAllPairsTest
- vanWaerdenManyOneTest
- vanWaerdenTest
- welchManyOneTTest
- williamsTest

Index
Description

Performs Anderson-Darling all-pairs comparison test.

Usage

adAllPairsTest(x, ...)
Default S3 method:
adAllPairsTest(x, g, p.adjust.method = p.adjust.methods, ...)
S3 method for class 'formula'
adAllPairsTest(
 formula,
 data,
 subset,
 na.action,
 p.adjust.method = p.adjust.methods,
 ...
)

Arguments

x
a numeric vector of data values, or a list of numeric data vectors.

...
further arguments to be passed to or from methods.

g
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

p.adjust.method
method for adjusting p values (see p.adjust).

formula
a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data
an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset
an optional vector specifying a subset of observations to be used.

na.action
a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Anderson-Darling’s all-pairs comparison test can be used. A total of \(m = k(k-1)/2\) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x)\) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j\).

This function is a wrapper function that sequentially calls `adKSampleTest` for each pair. The calculated p-values for \(Pr(|T2N|)\) can be adjusted to account for Type I error multiplicity using any method as implemented in `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

`adKSampleTest, adManyOneTest, ad.pval`.

Examples

```r
adKSampleTest(count ~ spray, InsectSprays)

out <- adAllPairsTest(count ~ spray, InsectSprays, p.adjust="holm")
summary(out)
summaryGroup(out)
```
AdKSampelTest

Anderson-Darling k-Sample Test

Description

Performs Anderson-Darling k-sample test.

Usage

adKSampelTest(x, ...)
Default S3 method:
adKSampelTest(x, g, ...)
S3 method for class 'formula'
adKSampelTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

The null hypothesis, \(H_0 : F_1 = F_2 = \ldots = F_k \) is tested against the alternative, \(H_A : F_i \neq F_j \) (\(i \neq j \)), with at least one inequality beeing strict.

This function only evaluates version 1 of the k-sample Anderson-Darling test (i.e. Eq. 6) of Scholz and Stephens (1987). The p-values are estimated with the extended empirical function as implemented in ad.pval of the package kSamples.

Value

A list with class "htest" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.

References

See Also
adAllPairsTest, adManyOneTest, ad.pval.

Examples
```r
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2)  # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4)       # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
g <- factor(x = c(rep(1, length(x)),
                  rep(2, length(y)),
                  rep(3, length(z)) ),
             labels = c("ns", "oad", "a"))
dat <- data.frame(
      g = g,
      x = c(x, y, z))

## AD-Test
adKSampleTest(x ~ g, data = dat)

## BWS-Test
bwsKSampleTest(x ~ g, data = dat)

## Kruskal-Test
## Using incomplete beta approximation
kruskalTest(x ~ g, dat, dist="KruskalWallis")
## Using chisquare distribution
kruskalTest(x ~ g, dat, dist="Chisquare")

## Not run:
## Check with kruskal.test from R stats
kruskal.test(x ~ g, dat)
```
adManyOneTest

End(Not run)
Using Conover's F
kruskalTest(x ~ g, dat, dist="FDist")

Not run:
Check with aov on ranks
anova(aov(rank(x) ~ g, dat))
Check with oneway.test
oneway.test(rank(x) ~ g, dat, var.equal = TRUE)

End(Not run)

adManyOneTest

Anderson-Darling Many-To-One Comparison Test

Description

Performs Anderson-Darling many-to-one comparison test.

Usage

```r
adManyOneTest(x, ...)
```  

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `p.adjust.method` method for adjusting p values (see `p.adjust`).
- `formula` a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Anderson-Darling’s non-parametric test can be performed. Let there be \(k\) groups including the control, then the number of treatment levels is \(m = k - 1\). Then \(m\) pairwise comparisons can be performed between the \(i\)-th treatment level and the control. \(H_i : F_0 = F_i\) is tested in the two-tailed case against \(A_i : F_0 \neq F_i\), \(1 \leq i \leq m\).

This function is a wrapper function that sequentially calls `adKSampleTest` for each pair. The calculated \(p\)-values for \(Pr(>|T2N|)\) can be adjusted to account for Type I error inflation using any method as implemented in `p.adjust`.

Value

A list with class “PMCMR” containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the \(p\)-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for \(p\)-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

Note

Factor labels for \(g\) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \(k\) or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order`, `factor`).

References

See Also

`adKSampleTest`, `adAllPairsTest`, `ad.pval`.
Examples

```r
## Data set PlantGrowth
## Global test
adKSampleTest(weight ~ group, data = PlantGrowth)

##
ans <- adManyOneTest(weight ~ group,
  data = PlantGrowth,
  p.adjust.method = "holm")
summary(ans)
```

algae

Algae Growth Inhibition Data Set

Description

A dose-response experiment was conducted using Atrazine at 9 different dose-levels including the zero-dose control and the biomass of algae (*Selenastrum capricornutum*) as the response variable. Three replicates were measured at day 0, 1 and 2. The fluorescence method (Mayer et al. 1997) was applied to measure biomass.

Format

A data frame with 22 observations on the following 10 variables.

- **concentration** a numeric vector of dose value in mg / L
- **Day.0** a numeric vector, total biomass
- **Day.0.1** a numeric vector, total biomass
- **Day.0.2** a numeric vector, total biomass
- **Day.1** a numeric vector, total biomass
- **Day.1.1** a numeric vector, total biomass
- **Day.1.2** a numeric vector, total biomass
- **Day.2** a numeric vector, total biomass
- **Day.2.1** a numeric vector, total biomass
- **Day.2.2** a numeric vector, total biomass

Source

References

See Also

demo(algae)
Description

Plots a bar-plot for objects of class "PMCMR".

Usage

barPlot(x, alpha = 0.05, ...)

Arguments

x an object of class "PMCMR".
alpha the selected alpha-level. Defaults to 0.05.
... further arguments for method barplot.

Value

A barplot where the height of the bars corresponds to the arithmetic mean. The extend of the whiskers are ±z_{1−α/2} × s_{E,i}, where the latter denotes the standard error of the ith group. Symbolic letters are depicted on top of the bars, whereas different letters indicate significant differences between groups for the selected level of alpha.

Note

The barplot is strictly spoken only valid for normal data, as the depicted significance intervall implies symmetry.

Examples

```r
## data set chickwts
ans <- tukeyTest(weight ~ feed, data = chickwts)
barPlot(ans)
```

bwsAllPairsTest
BWS All-Pairs Comparison Test

Description

Performs Baumgartner-Weiβ-Schindler all-pairs comparison test.
Usage

bwsAllPairsTest(x, ...)

Default S3 method:
bwsAllPairsTest(
 x,
 g,
 method = c("BWS", "Murakami"),
 p.adjust.method = p.adjust.methods,
 ...
)

S3 method for class 'formula'
bwsAllPairsTest(
 formula,
 data,
 subset,
 na.action,
 method = c("BWS", "Murakami"),
 p.adjust.method = p.adjust.methods,
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x".
Ignored with a warning if "x" is a list.
method a character string specifying the test statistic to use. Defaults to BWS.
p.adjust.method method for adjusting p values (see p.adjust).
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Baumgartner-Weiß-Schindler all-pairs comparison test can be used. A total of $m = k(k - 1)/2$ hypotheses can
be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \).

This function is a wrapper function that sequentially calls \texttt{bws_test} for each pair. The default test method ("BWS") is the original Baumgartner-Weiß-Schindler test statistic \(B \). For \texttt{method} == "Murakami" it is the modified BWS statistic denoted \(B^* \). The calculated p-values for \(\Pr(>\mid B \mid) \) or \(\Pr(>\mid B^* \mid) \) can be adjusted to account for Type I error inflation using any method as implemented in \texttt{p.adjust}.

Value

A list with class "PMCMR" containing the following components:

- \texttt{method} a character string indicating what type of test was performed.
- \texttt{data.name} a character string giving the name(s) of the data.
- \texttt{statistic} lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- \texttt{p.value} lower-triangle matrix of the p-values for the pairwise tests.
- \texttt{alternative} a character string describing the alternative hypothesis.
- \texttt{p.adjust.method} a character string describing the method for p-value adjustment.
- \texttt{model} a data frame of the input data.
- \texttt{dist} a string that denotes the test distribution.

References

See Also

\texttt{bws_test}.

Examples

```r
out <- bwsAllPairsTest(count ~ spray, InsectSprays, p.adjust="holm")
summary(out)
summaryGroup(out)
```
bwsKSampleTest

Murakami’s k-Sample BWS Test

Description

Performs Murakami’s k-Sample BWS Test.

Usage

bwsKSampleTest(x, ...)

Default S3 method:
bwsKSampleTest(x, g, nperm = 1000, ...)

S3 method for class 'formula'
bwsKSampleTest(formula, data, subset, na.action, nperm = 1000, ...)

Arguments

x
 a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

nperm number of permutations for the assymptotic permutation test. Defaults to 1000.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

Let X_{ij} ($1 \leq i \leq k$, $1 \leq 1 \leq n_i$) denote an identically and independently distributed variable that is obtained from an unknown continuous distribution $F_i(x)$. Let R_{ij} be the rank of X_{ij}, where X_{ij} is jointly ranked from 1 to N, $N = \sum_{i=1}^{k} n_i$. In the k-sample test the null hypothesis, H: $F_i = F_j$ ($i \neq j$) with at least one inequality beeing strict. Murakami (2006) has generalized the two-sample Baumgartner-Weiß-Schindler test (Baumgartner et al. 1998) and proposed a modified statistic B_k^* defined by

$$ B_k^* = \frac{1}{k} \sum_{i=1}^{k} \left(\frac{1}{n_i} \sum_{j=1}^{n_i} \frac{(R_{ij} - E[R_{ij}])^2}{\text{Var}[R_{ij}]} \right)^2, $$
where
\[
E[R_{ij}] = \frac{N + 1}{n_i + 1} j
\]

and
\[
\text{Var}[R_{ij}] = \frac{j}{n_i + 1} \left(1 - \frac{j}{n_i + 1} \right) \frac{(N - n_i) (N + 1)}{n_i + 2}.
\]

The p-values are estimated via an asymptotic boot-strap method. It should be noted that the B_k^* detects both differences in the unknown location parameters and / or differences in the unknown scale parameters of the k-samples.

Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Note

One may increase the number of permutations to e.g. nperm = 10000 in order to get more precise p-values. However, this will be on the expense of computational time.

References

See Also

`sample, bwsAllPairsTest, bwsManyOneTest`.
Examples

```r
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
##
x <- c(2.9, 3.0, 2.5, 2.6, 3.2)  # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4)       # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0)  # with asbestosis

# Create a factor
labels = c("ns", "oad", "a")
g <- factor(x = c(rep(1, length(x)),
                  rep(2, length(y)),
                  rep(3, length(z))),
             labels = labels)

dat <- data.frame(g = g,
x = c(x, y, z))

# AD-Test
adKSampleTest(x ~ g, data = dat)

# BWS-Test
bwsKSampleTest(x ~ g, data = dat)

# Kruskal-Test
# Using incomplete beta approximation
kruskalTest(x ~ g, dat, dist="KruskalWallis")
# Using chisquare distribution
kruskalTest(x ~ g, dat, dist="Chisquare")

# Not run:
# Check with kruskal.test from R stats
kruskal.test(x ~ g, dat)

# End(Not run)
# Using Conover's F
kruskalTest(x ~ g, dat, dist="FDist")

# Not run:
# Check with aov on ranks
anova(aov(rank(x) ~ g, dat))
# Check with oneway.test
oneway.test(rank(x) ~ g, dat, var.equal = TRUE)

# End(Not run)
```

Description

Performs Baumgartner-Weiß-Schindler many-to-one comparison test.
Usage

bwsManyOneTest(x, ...)

Default S3 method:
bwsManyOneTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 method = c("BWS", "Murakami", "Neuhauser"),
 p.adjust.method = p.adjust.methods,
 ...
)

S3 method for class 'formula'
bwsManyOneTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 method = c("BWS", "Murakami", "Neuhauser"),
 p.adjust.method = p.adjust.methods,
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to two.sided.

method a character string specifying the test statistic to use. Defaults to BWS.

p.adjust.method method for adjusting p values (see p.adjust).

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Baumgartner-Weiβ-Schindler's non-parametric test can be performed. Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). Then \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : F_0 = F_i \) is tested in the two-tailed case against \(A_i : F_0 \neq F_i \), \((1 \leq i \leq m) \).

This function is a wrapper function that sequentially calls `bws_stat` and `bws_cdf` for each pair. For the default test method ("BWS") the original Baumgartner-Weiβ-Schindler test statistic \(B \) and its corresponding \(\Pr(>|B|) \) is calculated. For \(\text{method} = \"BWS\" \) only a two-sided test is possible.

For \(\text{method} = \"Murakami\" \) the modified BWS statistic denoted \(B^* \) and its corresponding \(\Pr(>|B^*|) \) is computed by sequentially calling `murakami_stat` and `murakami_cdf`. For \(\text{method} = \"Murakami\" \) only a two-sided test is possible.

If \(\text{alternative} = \"greater\" \) then the alternative, if one population is stochastically larger than the other is tested: \(H_i : F_0 = F_i \) against \(A_i : F_0 \geq F_i \), \((1 \leq i \leq m) \). The modified test-statistic \(B^* \) according to Neuhäuser (2001) and its corresponding \(\Pr(>B^*) \) or \(\Pr(<B^*) \) is computed by sequentially calling `murakami_stat` and `murakami_cdf` with `flavor = 2`.

The \(p \)-values can be adjusted to account for Type I error inflation using any method as implemented in `p.adjust`.

Value

A list with class \"PMCMR\" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the \(p \)-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for \(p \)-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

Note

Factor labels for \(g \) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \(k \) or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order`, `factor`).

References

See Also
murakami_stat, murakami_cdf, bws_stat, bws_cdf.

Examples

```r
out <- bwsManyOneTest(weight ~ group, PlantGrowth, p.adjust="holm")
summary(out)

## A two-sample test
set.seed(1245)
x <- c(rnorm(20), rnorm(20,0.3))
g <- gl(2, 20)
summary(bwsManyOneTest(x ~ g, alternative = "less", p.adjust="none"))
summary(bwsManyOneTest(x ~ g, alternative = "greater", p.adjust="none"))

## Not run:
## Check with the implementation in package BWStest
BWStest::bws_test(x=x[g==1], y=x[g==2], alternative = "less")
BWStest::bws_test(x=x[g==1], y=x[g==2], alternative = "greater")

## End(Not run)
```

bwsTrendTest

Testing against Ordered Alternatives (Murakami's BWS Trend Test)

Description

Performs Murakami's modified Baumgartner-Weiß-Schindler test for testing against ordered alternatives.

Usage

```r
bwsTrendTest(x, ...)
```

Default S3 method:
bwsTrendTest(x, g, nperm = 1000, ...)

S3 method for class 'formula'
bwsTrendTest(formula, data, subset, na.action, nperm = 1000, ...)
Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

nperm number of permutations for the asymptotic permutation test. Defaults to 1000.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, $H_0 : F_1(u) = F_2(u) = \ldots = F_k(u), \ u \in R$ is tested against a simple order hypothesis, $H_A : F_1(u) \leq F_2(u) \leq \ldots \leq F_k(u), \ F_1(u) < F_k(u), \ u \in R$.

The p-values are estimated through an asymptotic boot-strap method using the function `sample`.

Value

A list with class "htest" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated quantile of the test statistic.
- p.value the p-value for the test.
- parameter the parameters of the test statistic, if any.
- alternative a character string describing the alternative hypothesis.
- estimates the estimates, if any.
- null.value the estimate under the null hypothesis, if any.

Note

One may increase the number of permutations to e.g. `nperm = 10000` in order to get more precise p-values. However, this will be on the expense of computational time.

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order, factor`).
References

See Also

sample, bwsAllPairsTest, bwsManyOneTest.

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
     110, 125, 143, 148, 151,
     136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)
```
Description

Performs Nashimoto and Wright's all-pairs comparison procedure for simply ordered mean ranksums (NPT'-test and NPY'-test).

According to the authors, the procedure shall only be applied after Chacko's test (see `chackoTest`) indicates global significance.

Usage

```r
chaAllPairsNashimotoTest(x, ...)
```

Default S3 method:

```r
chaAllPairsNashimotoTest(
  x,
  g,
  p.adjust.method = c(p.adjust.methods),
  alternative = c("greater", "less"),
  dist = c("Normal", "h"),
  ...
)
```

S3 method for class 'formula'

```r
chaAllPairsNashimotoTest(
  formula,
  data,
  subset,
  na.action,
  p.adjust.method = c(p.adjust.methods),
  alternative = c("greater", "less"),
  dist = c("Normal", "h"),
  ...
)
```

Arguments

- **x**
 a numeric vector of data values, or a list of numeric data vectors.
- **...**
 further arguments to be passed to or from methods.
- **g**
 a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
- **p.adjust.method**
 method for adjusting p values. Ignored if dist = "h".
alternative the alternative hypothesis. Defaults to greater.
dist the test distribution. Defaults to Normal.
formula a formula of the form \(\text{response } \sim \text{group} \) where \(\text{response} \) gives the data values and \(\text{group} \) a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see \text{model.frame}) containing the variables in the formula \text{formula}. By default the variables are taken from \text{environment(formula)}.
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to \text{getOption("na.action")}.

Details
The modified procedure uses the property of a simple order, \(\theta'_m - \theta_m \leq \theta_j - \theta_i \leq \theta'_l - \theta_l \) (\(l \leq i \leq m \) and \(m' \leq j \leq l' \)). The null hypothesis \(H_{ij} : \theta_i = \theta_j \) is tested against the alternative \(A_{ij} : \theta_i < \theta_j \) for any \(1 \leq i < j \leq k \).

Let \(R_{ij} \) be the rank of \(X_{ij} \), where \(X_{ij} \) is jointly ranked from \(\{1, 2, \ldots, N\} \), \(N = \sum_{i=1}^{k} n_i \), then the test statistics for all-pairs comparisons and a balanced design is calculated as

\[
\hat{T}_{ij} = \max_{i \leq m < m' \leq j} \frac{(\bar{R}_{m'} - \bar{R}_m)}{\sigma_a / \sqrt{n}},
\]

with \(n = n_i; N = \sum_{i=1}^{k} n_i \) (\(1 \leq i \leq k \)), \(\bar{R}_i \) the mean rank for the \(i \)th group, and the expected variance (without ties) \(\sigma_a^2 = N(N+1)/12 \).

For the NPY'-test (\(\text{dist} = \text{"h"} \)), if \(T_{ij} > h_{k-1,\alpha,\infty} \).

For the unbalanced case with moderate imbalance the test statistic is

\[
\hat{T}_{ij} = \max_{i \leq m < m' \leq j} \frac{(\bar{R}_{m'} - \bar{R}_m)}{\sigma_a (1/n_{m} + 1/n_{m'})^{1/2}},
\]

For the NPY'-test (\(\text{dist} = \text{"h"} \)) the null hypothesis is rejected in an unbalanced design, if \(\hat{T}_{ij} > h_{k,\alpha,\infty}/\sqrt{2} \). In case of a NPY'-test, the function does not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for \(\alpha = 0.05 \) (one-sided) are looked up according to the number of groups \((k-1) \) and the degree of freedoms \((v = \infty) \).

For the NPT'-test (\(\text{dist} = \text{"Normal"} \)), the null hypothesis is rejected, if \(T_{ij} > \sqrt{2}t_{\alpha,\infty} = \sqrt{2}z_{\alpha} \).

Although Nashimoto and Wright (2005) originally did not use any p-adjustment, any method as available by \text{p.adjust.methods} can be selected for the adjustment of p-values estimated from the standard normal distribution.

Value
Either a list of class \text{"osrt"} if \text{dist} = \text{"h"} or a list of class \text{"PMCMR"} if \text{dist} = \text{"Normal"}.

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated statistic(s)
crit.value critical values for \(\alpha = 0.05 \).
alternative a character string describing the alternative hypothesis.
parameter the parameter(s) of the test distribution.
dist a string that denotes the test distribution.

There are print and summary methods available.
A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

Note

The function will give a warning for the unbalanced case and returns the critical value \(h_{k-1,\alpha,\infty}/\sqrt{2} \) if applicable.

References

See Also

Normal, chackoTest, NPMTest

Examples

```r
## Example from Shirley (1977)
## Reaction times of mice to stimuli to their tails.
x <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3,
     2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8,
     7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 8.8, 3.4,
     9, 8.4, 2.4, 7.8)
g <- gl(4, 10)

## Shirley's test
## one-sided test using look-up table
shirleyWilliamsTest(x ~ g, alternative = "greater")
```
Chacko's global hypothesis test for 'greater'
`chackoTest(x, g)`

post-hoc test, default is standard normal distribution (NPT'-test)
`summary(chaaAllPairsNashimotoTest(x, g, p.adjust.method = "none"))`

same but h-distribution (NPY'-test)
`chaAllPairsNashimotoTest(x, g, dist = "h")`

NPM-test
`NPMTest(x, g)`

Hayter-Stone test
`hayterStoneTest(x, g)`

all-pairs comparisons
`hsAllPairsTest(x, g)`

Description

Performs Chacko's test for testing against ordered alternatives.

Usage

`chackoTest(x, ...)`

Default S3 method:
`chackoTest(x, g, alternative = c("greater", "less"), ...)`

S3 method for class 'formula'
`chackoTest(formula, data, subset, na.action, alternative = alternative, ...)`

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to greater.
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar; see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
subset an optional vector specifying a subset of observations to be used.
a function which indicates what should happen when the data contain NAs. De-
defaults to getOption("na.action").

Details
The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k$, $\theta_1 < \theta_k$.
Let R_{ij} be the rank of X_{ij}, where X_{ij} is jointly ranked from $\{1, 2, \ldots, N\}$, $N = \sum_{i=1}^{k} n_i$, then the test statistic is calculated as

$$H = \frac{1}{\sigma_R^2} \sum_{i=1}^{k} n_i (\bar{R}^* - \bar{R}),$$

where \bar{R}^*_i is the isotonic mean of the i-th group and $\sigma_R^2 = N(N+1)/12$ the expected variance (without ties). H_0 is rejected, if $H > \chi^2_v, \alpha$ with $v = k - 1$ degree of freedom. The p-values are estimated from the chi-square distribution.

Value
A list with class "htest" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.

Source
The source code for the application of the pool adjacent violators theorem to calculate the isotonic means was taken from the file "pava.f", which is included in the package Iso:
The file "pava.f" is a Ratfor modification of Algorithm AS 206.1:
The Algorithm AS 206 is available from StatLib http://lib.stat.cmu.edu/apstat/. The Royal Statistical Society holds the copyright to these routines, but has given its permission for their distribution provided that no fee is charged.
Note

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

The function does neither check nor correct for ties.

References

See Also

`kruskalTest` and `shirleyWilliamsTest` of the package PMCMRplus, `kruskal.test` of the library stats.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
      110, 125, 143, 148, 151,
      136, 139, 149, 160, 174)
g <- gl(3, 5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)
```
Shan-Young-Kang test

\[\text{shanTest}(x, g) \]

chenJanTest
Chen and Jan Many-to-One Comparisons Test

Description

Performs Chen and Jan nonparametric test for contrasting increasing (decreasing) dose levels of a treatment in a randomized block design.

Usage

\[
\text{chenJanTest}(y, \ldots)
\]

Default S3 method:

\[
\text{chenJanTest}(y, \text{groups, blocks, alternative = c("greater", "less"), p.adjust.method = c("single-step", "SD1", p.adjust.methods), \ldots})
\]

Arguments

- **y**
 - a numeric vector of data values, or a list of numeric data vectors.

- **groups**
 - a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- **blocks**
 - a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- **alternative**
 - the alternative hypothesis. Defaults to greater.

- **p.adjust.method**
 - method for adjusting p values (see `p.adjust`)

- **...**
 - further arguments to be passed to or from methods.

Details

Chen’s test is a non-parametric step-down trend test for testing several treatment levels with a zero control. Let there be \(k \) groups including the control and let the zero dose level be indicated with \(i = 0 \) and the highest dose level with \(i = m \), then the following \(m = k - 1 \) hypotheses are tested:
$H_m : \theta_0 = \theta_1 = \ldots = \theta_m, \quad A_m = \theta_0 \leq \theta_1 \leq \ldots \theta_m, \theta_0 < \theta_m$

$H_{m-1} : \theta_0 = \theta_1 = \ldots = \theta_{m-1}, \quad A_{m-1} = \theta_0 \leq \theta_1 \leq \ldots \theta_{m-1}, \theta_0 < \theta_{m-1}$

\[\vdots \]

$H_1 : \theta_0 = \theta_1, \quad A_1 = \theta_0 < \theta_1$

Let $Y_{ij1}, Y_{ij2}, \ldots, Y_{ijn}$, where $i = 1, 2, \ldots, b$, $j = 0, 1, \ldots, k$ and $n_{ij} \geq 1$, be a i.i.d. random variable of at least ordinal scale. Further, the zero dose control is indicated with $j = 0$.

The Mann-Whitney statistic is

\[T_{ij} = \sum_{u=0}^{j-1} \sum_{s=1}^{n_{is}} \sum_{r=1}^{n_{ir}} I(Y_{ijs} - Y_{iur}), \quad i = 1, 2, \ldots, b, \quad j = 1, 2, \ldots, k, \]

where the indicator function returns $I(a) = 1$, if $a > 0$, 0.5 if $a = 0$ otherwise 0.

Let $N_{ij} = \sum_{s=0}^{j} n_{is}$, where $i = 1, 2, \ldots, b$, $j = 1, 2, \ldots, k$,

and

\[T_j = \sum_{i=1}^{b} T_{ij} \quad j = 1, 2, \ldots, k. \]

The mean and variance of T_j are

\[\mu(T_j) = \sum_{i=1}^{b} n_{ij} N_{ij-1}/2 \quad \text{and} \]

\[\sigma(T_j) = \sum_{i=1}^{b} n_{ij} N_{ij-1} \left[(N_{ij} + 1) - \sum_{u=1}^{g_i} (t_u^3 - t_u) / \{ N_{ij} (N_{ij} - 1) \} \right] / 2, \]

with g_i the number of ties in the ith block and t_u the size of the tied group u.

The test statistic T_j^* is asymptotically multivariate normal distributed.

\[T_j^* = \frac{T_j - \mu(T_j)}{\sigma(T_j)} \]

If `p.adjust.method = "single-step"` then the p-values are calculated with the probability function of the multivariate normal distribution with $\Sigma = I_k$. Otherwise, the standard normal distribution is used to calculate p-values and any method as available by `p.adjust` or by the step-down procedure as proposed by Chen (1999), if `p.adjust.method = "SD1"` can be used to account for α-error inflation.
Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

- `Normal.pmvnorm`

Examples

```r
## Example from Chen and Jan (2002, p. 306)
## MED is at dose level 2 (0.5 ppm SO2)

y <- c(0.2, 6.2, 0.3, 0.3, 4.9, 1.8, 3.9, 2, 0.3, 2.5, 5.4, 2.3, 12.7,
-0.2, 2.1, 6, 1.8, 3.9, 1.1, 3.8, 2.5, 1.3, -0.8, 13.1, 1.1,
12.8, 18.2, 3.4, 13.5, 4.4, 6.1, 2.8, 4, 10.6, 9, 4.2, 6.7, 35,
9, 12.9, 2, 7.1, 1.5, 10.6)

groups <- gl(4, 11, labels = c("0", "0.25", "0.5", "1.0"))
blocks <- structure(rep(1:11, 4), class = "factor",
levels = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"))

summary(chenJanTest(y, groups, blocks, alternative = "greater"))
summary(chenJanTest(y, groups, blocks, alternative = "greater", p.adjust = "SD1"))
```

chenTest

Chen’s Many-to-One Comparisons Test

Description

Performs Chen’s nonparametric test for contrasting increasing (decreasing) dose levels of a treatment.
Usage

chenTest(x, ...)

Default S3 method:
chenTest(
 x,
 g,
 alternative = c("greater", "less"),
 p.adjust.method = c("SD1", p.adjust.methods),
 ...
)

S3 method for class 'formula'
chenTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 p.adjust.method = c("SD1", p.adjust.methods),
 ...
)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to `two.sided`.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`)
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

Chen’s test is a non-parametric step-down trend test for testing several treatment levels with a zero control. Let X_{0j} denote a variable with the j-th realization of the control group ($1 \leq j \leq n_0$) and X_{ij} the j-the realization in the i-th treatment group ($1 \leq i \leq k$). The variables are i.i.d. of a least
ordinal scale with $F(x) = F(x_0) = F(x_i)$, ($1 \leq i \leq k$). A total of $m = k$ hypotheses can be tested:

\[
\begin{align*}
H_m : \theta_0 = \theta_1 = \ldots = \theta_m, & \quad A_m = \theta_0 \leq \theta_1 \leq \ldots \leq \theta_m, \theta_0 < \theta_m \\
H_{m-1} : \theta_0 = \theta_1 = \ldots = \theta_{m-1}, & \quad A_{m-1} = \theta_0 \leq \theta_1 \leq \ldots \leq \theta_{m-1}, \theta_0 < \theta_{m-1} \\
\vdots & \quad \vdots \\
H_1 : \theta_0 = \theta_1, & \quad A_1 = \theta_0 < \theta_1
\end{align*}
\]

The statistics T_i are based on a Wilcoxon-type ranking:

\[
T_i = \sum_{j=0}^{n_i} \sum_{u=1}^{n_j} \sum_{v=1}^{n_i} I(x_{iu} - x_{jv}), \quad (1 \leq i \leq k),
\]

where the indicator function returns $I(a) = 1$, if $a > 0$, 0.5 if $a = 0$ otherwise 0.

The expected ith mean is

\[
\mu(T_i) = n_i N_{i-1}/2,
\]

with $N_j = \sum_{j=0}^{i} n_j$ and the ith variance:

\[
\sigma^2(T_i) = n_i N_{i-1}/12 \left\{ N_i + 1 - \sum_{j=1}^{g} t_j^2 (t_j^2 - 1) / [N_i (N_i - 1)] \right\}.
\]

The test statistic T_i^* is asymptotically standard normal

\[
T_i^* = \frac{T_i - \mu(T_i)}{\sqrt{\sigma^2(T_i)}}, \quad (1 \leq i \leq k).
\]

The p-values are calculated from the standard normal distribution. The p-values can be adjusted with any method as available by `p.adjust` or by the step-down procedure as proposed by Chen (1999), if `p.adjust.method` = "SD1".

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.
Note

Factor labels for \(g \) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \(k \) or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see \texttt{order.factor}).

References

See Also

\texttt{wilcox.test}, \texttt{Normal}

Examples

Chen, 1999, p. 1237,
Minimum effective dose (MED)
is at 2nd dose level
\[
\begin{align*}
\text{df} & \leftarrow \text{data.frame(x = c(23, 22, 14, 27, 23, 21, 28, 37, 35, 41, 37, 43, 28, 21, 30, 16, 19, 13)),} \\
g & \leftarrow \text{gl(6, 3))} \\
\text{levels(df$g)} & \leftarrow 0:5 \\
\text{ans} & \leftarrow \text{chenTest(x ~ g, data = df, alternative = "greater",} \\
& \text{p.adjust.method = "SD1")} \\
\text{summary(ans)}
\end{align*}
\]

Cochran

\textit{Cochran’s distribution}

Description

Distribution function and quantile function for Cochran’s distribution.

Usage

\begin{verbatim}
qcochran(p, k, n, lower.tail = TRUE, log.p = FALSE)
pcochran(q, k, n, lower.tail = TRUE, log.p = FALSE)
\end{verbatim}
Arguments

- `p` vector of probabilities.
- `k` number of groups.
- `n` (average) sample size of the `k` groups.
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
- `log.p` logical; if TRUE, probabilities `p` are given as log(p).
- `q` vector of quantiles.

Value

`pcochran` gives the distribution function and `qcochran` gives the quantile function.

References

See Also

- `FDist`

Examples

````
qcochran(0.05, 7, 3)
```

Description

Performs Cochran’s test for testing an outlying (or inlying) variance.

Usage

````
cochranTest(x, ...)
```

Default S3 method:
cochranTest(x, g, alternative = c("greater", "less"), ...)

S3 method for class 'formula'
cochranTest(
 formula,
 data,
 subset,
)
cochranTest

na.action,
alternative = c("greater", "less"),
...
)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to "greater"
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar; see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For normally distributed data the null hypothesis, $H_0 : \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2$ is tested against the alternative (greater) $H_A : \sigma_p > \sigma_i$ ($i \leq k, i \neq p$) with at least one inequality being strict.

The p-value is computed with the function `pcochran`.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

References

cuzickTest

See Also

bartlett.test, fligner.test.

Examples

data(Pentosan)
cochranTest(value ~ lab, data = Pentosan, subset = (material == "A"))

Description

Performs Cuzick’s test for testing against ordered alternatives.

Usage

cuzickTest(x, ...)

Default S3 method:
cuzickTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 scores = NULL,
 continuity = FALSE,
 ...
)

S3 method for class 'formula'
cuzickTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 scores = NULL,
 continuity = FALSE,
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
 further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "two.sided".

scores numeric vector of scores. Defaults to NULL.

continuity logical indicator whether a continuity correction shall be performed. Defaults to FALSE.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details
The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k$.

The p-values are estimated from the standard normal distribution.

Value
A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Note
Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

References
Dgrubbs

See Also

`kruskalTest` and `shirleyWilliamsTest` of the package `PMCMRplus`, `kruskal.test` of the library `stats`.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
     110, 125, 143, 148, 151,
     136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)
```

Dgrubbs

Grubbs D distribution

Description

Distribution function for Grubbs D* distribution.
Usage

```
pdgrubbs(q, n, m = 10000, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `q`: vector of quantiles.
- `n`: total sample size.
- `m`: number of Monte-Carlo replicates. Defaults to 10,000.
- `lower.tail`: logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
- `log.p`: logical; if TRUE, probabilities p are given as log(p).

Value

`pdgrubbs` gives the distribution function.

References

See Also

Grubbs

Examples

```
pdgrubbs(0.62, 7, 1E4)
```

doubleGrubbsTest

Grubbs Double Outlier Test

Description

Performs Grubbs double outlier test.

Usage

```
doubleGrubbsTest(x, alternative = c("two.sided", "greater", "less"), m = 10000)
```

Arguments

- `x`: a numeric vector of data.
- `alternative`: the alternative hypothesis. Defaults to "two.sided".
- `m`: number of Monte-Carlo replicates.
Details

Let X denote an identically and independently distributed continuous variate with realizations $x_i \ (1 \leq i \leq k)$. Further, let the increasingly ordered realizations denote $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$. Then the following model for testing two maximum outliers can be proposed:

$$
x_{(i)} = \begin{cases}
\mu + \epsilon_{(i)}, & i = 1, \ldots, n - 2 \\
\mu + \Delta + \epsilon_{(j)}, & j = n - 1, n
\end{cases}
$$

with $\epsilon \approx N(0, \sigma)$. The null hypothesis, $H_0 : \Delta = 0$ is tested against the alternative, $H_A : \Delta > 0$.

For testing two minimum outliers, the model can be proposed as

$$
x_{(i)} = \begin{cases}
\mu + \Delta + \epsilon_{(j)}, & j = 1, 2 \\
\mu + \epsilon_{(i)}, & i = 3, \ldots, n
\end{cases}
$$

The null hypothesis is tested against the alternative, $H_A : \Delta < 0$.

The p-value is computed with the function `pdgrubbs`.

Value

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the p-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.

References

Examples

```r
data(Pentosan)
dat <- subset(Pentosan, subset = (material == "A"))
labMeans <- tapply(dat$value, dat$lab, mean)
doubleGrubbsTest(x = labMeans, alternative = "less")
```
dscfAllPairsTest

Multiple Comparisons of Mean Rank Sums

Description
Performs the all-pairs comparison test for different factor levels according to Dwass, Steel, Critchlow and Fligner.

Usage

```r
dscfAllPairsTest(x, ...)  
## Default S3 method:  
dscfAllPairsTest(x, g, ...)  
## S3 method for class 'formula'

dscfAllPairsTest(formula, data, subset, na.action, ...)
```

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details
For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals the DSCF all-pairs comparison test can be used. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \). As opposed to the all-pairs comparison procedures that depend on Kruskal ranks, the DSCF test is basically an extension of the U-test as re-ranking is conducted for each pairwise test.

The p-values are estimated from the studentized range distribution.
Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

- Tukey, pairwise.wilcox.test

Duncan's Multiple Range Test

Description

Performs Duncan’s all-pairs comparisons test for normally distributed data with equal group variances.

Usage

```r
duncanTest(x, ...)
```

Default S3 method:
```
duncanTest(x, g, ...)
```

S3 method for class 'formula'
```
duncanTest(formula, data, subset, na.action, ...)
```

S3 method for class 'aov'
```
duncanTest(x, ...)
```
Arguments

- **x**: a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an `aov` fit.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Duncan’s multiple range test can be performed. Let X_{ij} denote a continuous random variable with the j-th realization ($1 \leq j \leq n_i$) in the i-th group ($1 \leq i \leq k$). Furthermore, the total sample size is $N = \sum_{i=1}^{k} n_i$. A total of $m = k(k - 1)/2$ hypotheses can be tested: The null hypothesis is $H_{ij} : \mu_i = \mu_j$ ($i \neq j$) is tested against the alternative $A_{ij} : \mu_i \neq \mu_j$ (two-tailed). Duncan’s all-pairs test statistics are given by

$$ t_{(i)(j)} = \frac{\bar{X}_{(i)} - \bar{X}_{(j)}}{s_{in}(r)^{1/2}}, \quad (i < j) $$

with s_{in}^2 the within-group ANOVA variance, $r = k/\sum_{i=1}^{k} n_i$ and $\bar{X}_{(i)}$ the increasingly ordered means $1 \leq i \leq k$. The null hypothesis is rejected if

$$ \Pr \left\{ \left| t_{(i)(j)} \right| \geq q_{vm'\alpha/|H|}(i)(j) \right\} = \alpha' = \min \left\{ 1, 1 - (1 - \alpha)^{(1/(m'-1))} \right\}, $$

with $v = N - k$ degree of freedom, the range $m' = 1 + |i - j|$ and α' the Bonferroni adjusted alpha-error. The p-values are computed from the Tukey distribution.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.
dunnettT3Test

References

See Also
Tukey, *TukeyHSD* *tukeyTest*

Examples
```r
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts)
anova(fit)

# also works with fitted objects of class aov
res <- duncanTest(fit)
summary(res)
summaryGroup(res)
```

dunnettT3Test
* Dunnett’s T3 Test

Description
Performs Dunnett’s all-pairs comparison test for normally distributed data with unequal variances.

Usage
```r
dunnettT3Test(x, ...)
```

Arguments

x
a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.

...
further arguments to be passed to or from methods.

g
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the T3 test of Dunnett can be performed. Let X_{ij} denote a continuous random variable with the j-the realization ($1 \leq j \leq n_i$) in the i-th group ($1 \leq i \leq k$). Furthermore, the total sample size is $N = \sum_{i=1}^{k} n_i$. A total of $m = k(k - 1)/2$ hypotheses can be tested: The null hypothesis is $H_{ij}: \mu_i = \mu_j$ ($i \neq j$) is tested against the alternative $A_{ij}: \mu_i \neq \mu_j$ (two-tailed).

Dunnett T3 all-pairs test statistics are given by

$$t_{ij} = \frac{X_i - X_j}{\left(s_j^2/n_j + s_i^2/n_i \right)^{1/2}}, \quad (i \neq j)$$

with s_i^2 the variance of the i-th group. The null hypothesis is rejected (two-tailed) if

$$\Pr \left\{ |t_{ij}| \geq T_{v_{ij}, \rho_{ij}, \alpha'/2} |H \right\}_{ij} = \alpha,$$

with Welch’s approximate solution for calculating the degree of freedom.

$$v_{ij} = \frac{(s_i^2/n_i + s_j^2/n_j)^2}{s_i^4/n_i^2(n_i - 1) + s_j^4/n_j^2(n_j - 1)}.$$

The p-values are computed from the studentized maximum modulus distribution that is the equivalent of the multivariate t distribution with $\rho_{ii} = 1, \rho_{ij} = 0$ ($i \neq j$). The function pmvt is used to calculate the p-values.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.
References

See Also

pmvt

Examples

```r
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts)
anova(fit)

## also works with fitted objects of class aov
res <- dunnettT3Test(fit)
summary(res)
summaryGroup(res)
```

dunnettTest
Dunnett’s Many-to-One Comparisons Test

Description

Performs Dunnett’s multiple comparisons test with one control.

Usage

dunnettTest(x, ...)

Default S3 method:
dunnettTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

S3 method for class 'formula'
dunnettTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 ...
)

S3 method for class 'aov'
dunnettTest(x, alternative = c("two.sided", "greater", "less"), ...)
```
dunnettTest

Arguments

x a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to two.sided.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For many-to-one comparisons in an one-factorial layout with normally distributed residuals Dunnett’s test can be used. Let $X_{0j}$ denote a continuous random variable with the $j$-the realization of the control group ($1 \leq j \leq n_0$) and $X_{ij}$ the $j$-the realization in the $i$-th treatment group ($1 \leq i \leq k$). Furthermore, the total sample size is $N = n_0 + \sum_{i=1}^{k} n_i$. A total of $m = k$ hypotheses can be tested: The null hypothesis is $H_i : \mu_i = \mu_0$ is tested against the alternative $A_i : \mu_i \neq \mu_0$ (two-tailed). Dunnett’s test statistics are given by

$$t_i = \frac{X_i - \bar{X}_0}{s_{in} \left(1/n_0 + 1/n_i\right)^{1/2}}, \quad (1 \leq i \leq k)$$

with $s_{in}^2$ the within-group ANOVA variance. The null hypothesis is rejected if $|t_{ij}| > |T_{kv,\rho}\text{er}|$ (two-tailed), with $v = N - k$ degree of freedom and $\rho \text{er}$ the correlation:

$$\rho_{ij} = \sqrt{\frac{n_i n_j}{(n_i + n_0)(n_j + n_0)}} \quad (i \neq j).$$

The p-values are computed with the function pDunnett that is a wrapper to the the multivariate-t distribution as implemented in the function pmvt.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
DurbinAllPairsTest

**alternative**  a character string describing the alternative hypothesis.

**p.adjust.method**  a character string describing the method for p-value adjustment.

**model**  a data frame of the input data.

**dist**  a string that denotes the test distribution.

**References**


**See Also**

pmvt pDunnett

**Examples**

```r
fit <- aov(Y ~ DOSE, data = trout)
shapiro.test(residuals(fit))
bartlett.test(Y ~ DOSE, data = trout)

works with fitted object of class aov
summary(dunnettTest(fit, alternative = "less"))
```

---

**durbinAllPairsTest**  *All-Pairs Comparisons Test for Balanced Incomplete Block Designs*

**Description**

Performs Conover-Iman all-pairs comparison test for a balanced incomplete block design (BIBD).

**Usage**

```r
durbinAllPairsTest(y, ...)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>a numeric vector of data values, or a list of numeric data vectors.</td>
</tr>
<tr>
<td>groups</td>
<td>a vector or factor object giving the group for the corresponding elements of &quot;x&quot;. Ignored with a warning if &quot;x&quot; is a list.</td>
</tr>
<tr>
<td>blocks</td>
<td>a vector or factor object giving the block for the corresponding elements of &quot;x&quot;. Ignored with a warning if &quot;x&quot; is a list.</td>
</tr>
</tbody>
</table>
p.adjust.method

method for adjusting p values (see **p.adjust**)

... further arguments to be passed to or from methods.

Details

For all-pairs comparisons in a balanced incomplete block design the proposed test of Conover and Imam can be applied. A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \( H_{ij}: \theta_i = \theta_j \) is tested in the two-tailed test against the alternative \( A_{ij}: \theta_i \neq \theta_j, \ i \neq j. \)

The p-values are computed from the t distribution. If no p-value adjustment is performed (\( p.adjust.method = \text{"none"} \)), than a simple protected test is recommended, i.e. the all-pairs comparisons should only be applied after a significant **durbinTest**. However, any method as implemented in **p.adjust.methods** can be selected by the user.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References


See Also

**durbinTest**

Examples

```r
Example for an incomplete block design:
Data from Conover (1999, p. 391).
y <- matrix(c(2,NA,NA,NA,3, NA, 3, 3, NA, NA, 3, NA, NA, 3, NA, NA,
 1, 2, NA, NA, NA, 1, 1, NA, 1, 1, NA, 1, 1,
 NA, NA, NA, NA, 2, NA, 2, 1, NA, NA, NA, NA,
 3, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 2),
ncol=7, nrow=7, byrow=FALSE, dimnames=list(1:7, LETTERS[1:7]))
durbinAllPairsTest(y)
```
Description

Performs Durbin’s tests whether k groups (or treatments) in a two-way balanced incomplete block design (BIBD) have identical effects.

Usage

durbinTest(y, ...)

## Default S3 method:
durbinTest(y, groups, blocks, ...)

Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **...**: further arguments to be passed to or from methods.

Details

For testing a two factorial layout of a balanced incomplete block design whether the k groups have identical effects, the Durbin test can be performed. The null hypothesis, \( H_0 : \theta_i = \theta_j \ (1 \leq i < j \leq k) \), is tested against the alternative that at least one \( \theta_i \neq \theta_j \).

The p-values are computed from the chi-square distribution.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.
flignerWolfeTest

**Note**

The function does not test whether it is a true BIBD. This function does not test for ties.

**References**


**Examples**

```r
Example for an incomplete block design:
Data from Conover (1999, p. 391).

y <- matrix(c(
 2, NA, NA, NA, 3, NA, 3, NA, NA, 3, NA, NA,
 1, 2, NA, NA, NA, 1, 1, NA, 1, 1, NA, NA,
 NA, NA, NA, 2, NA, 2, 1, NA, NA, NA, NA, NA,
 3, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 2
), ncol=7, nrow=7, byrow=FALSE,
dimnames=list(1:7, LETTERS[1:7]))

durbinTest(y)
```

**Description**

Performs Fligner-Wolfe non-parametric test for simultaneous testing of several locations of treatment groups against the location of the control group.

**Usage**

```r
flignerWolfeTest(x, ...)
```

## Default S3 method:

```r
flignerWolfeTest(
 x,
 ...,
 alternative = c("greater", "less"),
 dist = c("Wilcoxon", "Normal"),
)
```

## S3 method for class 'formula'

```r
flignerWolfeTest(
 formula,
 ...
)
```
flignerWolfeTest

Arguments

x  a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative  the alternative hypothesis. Defaults to "greater".

dist  the test distribution. Defaults to "Wilcoxon".

formula  a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data  an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset  an optional vector specifying a subset of observations to be used.

na.action  a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For a one-factorial layout with non-normally distributed residuals the Fligner-Wolfe test can be used.

Let there be \(k - 1\)-treatment groups and one control group, then the null hypothesis, \(H_0 : \theta_i - \theta_c = 0\) \((1 \leq i \leq k - 1)\) is tested against the alternative (greater), \(A_1 : \theta_i - \theta_c > 0\) \((1 \leq i \leq k - 1)\), with at least one inequality being strict.

Let \(n_c\) denote the sample size of the control group, \(N^t = \sum_{i=1}^{k-1} n_i\) the sum of all treatment sample sizes and \(N = N^t + n_c\). The test statistic without taken ties into account is

\[
W = \sum_{j=1}^{k-1} \sum_{i=1}^{n_j} r_{ij} - \frac{N^t (N^t + 1)}{2}
\]

with \(r_{ij}\) the rank of variable \(x_{ij}\). The null hypothesis is rejected, if \(W > W_{\alpha,m,n}\) with \(m = N^t\) and \(n = n_c\).

In the presence of ties, the statistic is

\[
\hat{z} = \frac{W - n_c N^t/2}{s_W},
\]
where
\[ s_W = \frac{n_c N^t}{12N(N-1)} \sum_{j=1}^{g} t_j (t_j^2 - 1), \]

with \( g \) the number of tied groups and \( t_j \) the number of tied values in the \( j \)th group. The null hypothesis is rejected, if \( \hat{z} > z_\alpha \) (as cited in EPA 2006).

If \( \text{dist} = \text{Wilcoxon} \), then the \( p \)-values are estimated from the Wilcoxon distribution, else the Normal distribution is used. The latter can be used, if ties are present.

**Value**

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the \( p \)-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.

**Note**

Factor labels for \( g \) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \( k \) or letters a, b, c, .... Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order`, `factor`).

**References**


**See Also**

`kruskalTest` and `shirleyWilliamsTest` of the package PMCMRplus, `kruskal.test` of the library stats.
Examples

```r
Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

Chacko's test
chackoTest(x, g)

Cuzick's test
cuzickTest(x, g)

Johnson-Mehrotra test
johnsonTest(x, g)

Jonckheere-Terpstra test
jonckheereTest(x, g)

Le's test
leTest(x, g)

Spearman type test
spearmanTest(x, g)

Murakami's BWS trend test
bwsTrendTest(x, g)

Fligner-Wolfe test
flignerWolfeTest(x, g)

Shan-Young-Kang test
shanTest(x, g)
```

Description

Performs Conover's all-pairs comparisons tests of Friedman-type ranked data.

Usage

```r
frdAllPairsConoverTest(y, ...)
```

## Default S3 method:
frdAllPairsConoverTest(
  y,
  groups,
  blocks,
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

Arguments

y          a numeric vector of data values, or a list of numeric data vectors.
groups     a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks     a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
p.adjust.method  method for adjusting p values (see p.adjust).
...         further arguments to be passed to or from methods.

Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Conover’s test can be performed on Friedman-type ranked data. A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis, \( H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \( A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

If \( p.adjust.method = \"single-step\" \) the p-values are computed from the studentized range distribution. Otherwise, the p-values are computed from the t-distribution using any of the p-adjustment methods as included in \( p.adjust \).

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References


frdAllPairsConoverTest

See Also

friedmanTest, friedman.test, frdAllPairsExactTest, frdAllPairsMillerTest, frdAllPairsNemenyiTest, frdAllPairsSiegelTest

Examples

## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
##
## y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
## 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
## 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
## 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
## 26.65), nrow=6, ncol=6,
## dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)

## Eisinga et al. 2017
frdAllPairsExactTest(y=y, p.adjust = "bonferroni")

## Conover's test
frdAllPairsConoverTest(y=y, p.adjust = "bonferroni")

## Nemenyi's test
frdAllPairsNemenyiTest(y=y)

## Miller et al.
frdAllPairsMillerTest(y)

## Siegel-Castellan
frdAllPairsSiegelTest(y=y, p.adjust = "bonferroni")

## Irrelevant of group order?
## x <- as.vector(y)
g <- rep(colnames(y), each = length(x)/length(colnames(y)))
b <- rep(rownames(y), times = length(x)/length(rownames(y)))
xDF <- data.frame(x, g, b) # grouped by colnames
frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b)
o <- order(xDF$b) # order per block increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])
o <- order(xDF$x) # order per value increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])

## formula method (only works for Nemenyi)
frdAllPairsNemenyiTest(x ~ g | b, data = xDF)
frdAllPairsExactTest  

**Exact All-Pairs Comparisons Test for Unreplicated Blocked Data**

### Description

Performs exact all-pairs comparisons tests of Friedman-type ranked data according to Eisinga et al. (2017).

### Usage

```r
frdAllPairsExactTest(y, ...)
Default S3 method:
frdAllPairsExactTest(
 y,
 groups,
 blocks,
 p.adjust.method = p.adjust.methods,
 ...
)
```

### Arguments

- `y`: a numeric vector of data values, or a list of numeric data vectors.
- `groups`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks`: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `...`: further arguments to be passed to or from methods.

### Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, an exact test can be performed on Friedman-type ranked data.

A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis, \( H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \( A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The exact p-values are computed using the code of "pexactfrsd.R" that was a supplement to the publication of Eisinga et al. (2017). Additionally, any of the p-adjustment methods as included in `p.adjust` can be selected, for p-value adjustment.
frdAllPairsExactTest

Value

A list with class "PMCMR" containing the following components:

- **method**  a character string indicating what type of test was performed.
- **data.name**  a character string giving the name(s) of the data.
- **statistic**  lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**  lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**  a character string describing the alternative hypothesis.
- **p.adjust.method**  a character string describing the method for p-value adjustment.
- **model**  a data frame of the input data.
- **dist**  a string that denotes the test distribution.

Source

The function `frdAllPairsExactTest` uses the code of the file `pexactfrsd.R` that was a supplement to:


References


See Also

`friedmanTest`, `friedman.test`, `frdAllPairsConoverTest`, `frdAllPairsMillerTest`, `frdAllPairsNemenyiTest`, `frdAllPairsSiegelTest`

Examples

```r
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
##
y <- matrix(c(
 3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)
```
frdAllPairsMillerTest

**Miller’s All-Pairs Comparisons Test for Unreplicated Blocked Data**

**Description**

Performs Miller’s all-pairs comparisons tests of Friedman-type ranked data.

**Usage**

frdAllPairsMillerTest(y, ...)

## Default S3 method:
frdAllPairsMillerTest(y, groups, blocks, ...)

**Arguments**

- **y**
  - a numeric vector of data values, or a list of numeric data vectors.
frdAllPairsMillerTest

- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **...**: further arguments to be passed to or from methods.

**Details**

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Miller’s test can be performed on Friedman-type ranked data.

A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis, \( H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \( A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The \( p \)-values are computed from the chi-square distribution.

**Value**

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the \( p \)-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for \( p \)-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

**References**


**See Also**

fridmanTest, friedman.test, frdAllPairsExactTest, frdAllPairsConoverTest, frdAllPairsNemenyiTest, frdAllPairsSiegelTest
Examples

## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
##
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,

## 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,

## 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,

## 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,

## 26.65), nrow=6, ncol=6,
## dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)

## Eisinga et al. 2017
frdAllPairsExactTest(y=y, p.adjust = "bonferroni")

## Conover's test
frdAllPairsConoverTest(y=y, p.adjust = "bonferroni")

## Nemenyi's test
frdAllPairsNemenyiTest(y=y)

## Miller et al.
frdAllPairsMillerTest(y=y)

## Siegel-Castellan
frdAllPairsSiegelTest(y=y, p.adjust = "bonferroni")

## Irrelevant of group order?
x <- as.vector(y)
g <- rep(colnames(y), each = length(x)/length(colnames(y)))
b <- rep(rownames(y), times = length(x)/length(rownames(y)))
xD <- data.frame(x, g, b) # grouped by colnames
frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b)
o <- order(xDF$b) # order per block increasingly
frdAllPairsNemenyiTest(xDF$x[o, groups = xDF$g[o], blocks = xDF$b[o])
o <- order(xDF$x) # order per value increasingly
frdAllPairsNemenyiTest(xDF$x[o, groups = xDF$g[o], blocks = xDF$b[o])

## formula method (only works for Nemenyi)
frdAllPairsNemenyiTest(x ~ g | b, data = xDF)

frdAllPairsNemenyiTest

*Nemenyi’s All-Pairs Comparisons Test for Unreplicated Blocked Data*
frdAllPairsNemenyiTest

Description

Performs Nemenyi’s all-pairs comparisons tests of Friedman-type ranked data.

Usage

frdAllPairsNemenyiTest(y, ...)

## Default S3 method:
frdAllPairsNemenyiTest(y, groups, blocks, ...)

## S3 method for class 'formula'
frdAllPairsNemenyiTest(formula, data, subset, na.action, ...)

Arguments

y  a numeric vector of data values, or a list of numeric data vectors.
groups  a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks  a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula  a formula of the form a ~ b | c where a, b and c give the data values and the corresponding groups and blocks, respectively.
data  an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset  an optional vector specifying a subset of observations to be used.
na.action  a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
...  further arguments to be passed to or from methods.

Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Nemenyi’s test can be performed on Friedman-type ranked data.

A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis, \( H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \( A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The \( p \)-values are computed from the studentized range distribution.

Value

A list with class "PMCMR" containing the following components:

- **method**  a character string indicating what type of test was performed.
- **data.name**  a character string giving the name(s) of the data.
- **statistic**  lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**  lower-triangle matrix of the \( p \)-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

References


See Also

friedmanTest, friedman.test, frdAllPairsExactTest, frdAllPairsConoverTest, frdAllPairsMillerTest, frdAllPairsSiegelTest

Examples

```r
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
##
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92, 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45, 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72, 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23, 26.65), nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)

Eisinga et al. 2017
frdAllPairsExactTest(y=y, p.adjust = "bonferroni")

Conover's test
frdAllPairsConoverTest(y=y, p.adjust = "bonferroni")

Nemenyi's test
frdAllPairsNemenyiTest(y=y)

Miller et al.
frdAllPairsMillerTest(y=y)

Siegel-Castellan
frdAllPairsSiegelTest(y=y, p.adjust = "bonferroni")
```
## Irrelevant of group order?

```r
x <- as.vector(y)
g <- rep(colnames(y), each = length(x)/length(colnames(y)))
b <- rep(rownames(y), times = length(x)/length(rownames(y)))
xD <- data.frame(x, g, b) # grouped by colnames

frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b)
o <- order(xDF$b) # order per block increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])
o <- order(xDF$x) # order per value increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])
```

## formula method (only works for Nemenyi)

```r
frdAllPairsNemenyiTest(x ~ g | b, data = xDF)
```

---

### Description

Performs Siegel and Castellan’s all-pairs comparisons tests of Friedman-type ranked data.

### Usage

```r
frdAllPairsSiegelTest(y, ...)
```

#### Default S3 method:

```r
frdAllPairsSiegelTest(
 y,
 groups,
 blocks,
 p.adjust.method = p.adjust.methods,
 ...
)
```

### Arguments

- `y`: a numeric vector of data values, or a list of numeric data vectors.
- `groups`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks`: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `...`: further arguments to be passed to or from methods.
Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Siegel and Castellan’s test can be performed on Friedman-type ranked data.

A total of \( m = \frac{k(k-1)}{2} \) hypotheses can be tested. The null hypothesis, \( H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \( A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The \( p \)-values are computed from the standard normal distribution. Any method as implemented in \texttt{p.adjust} can be used for \( p \)-value adjustment.

Value

A list with class "PMCMR" containing the following components:

- \textbf{method} a character string indicating what type of test was performed.
- \textbf{data.name} a character string giving the name(s) of the data.
- \textbf{statistic} lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- \textbf{p.value} lower-triangle matrix of the \( p \)-values for the pairwise tests.
- \textbf{alternative} a character string describing the alternative hypothesis.
- \textbf{p.adjust.method} a character string describing the method for \( p \)-value adjustment.
- \textbf{model} a data frame of the input data.
- \textbf{dist} a string that denotes the test distribution.

References


See Also

\texttt{friedmanTest}, \texttt{friedman.test}, \texttt{frdAllPairsExactTest}, \texttt{frdAllPairsConoverTest}, \texttt{frdAllPairsNemenyiTest}, \texttt{frdAllPairsMillerTest}

Examples

```r
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
##
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)
```
frdHouseTest

## Description

Performs House nonparametric equivalent of William’s test for contrasting increasing dose levels of a treatment in a complete randomized block design.

## Usage

frdHouseTest(y, ...)

## Default S3 method:
frdHouseTest(y, groups, blocks, alternative = c("greater", "less"), ...)
Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.

- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- **blocks**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- **alternative**: the alternative hypothesis. Defaults to greater.

- **...**: further arguments to be passed to or from methods.

Details

House test is a non-parametric step-down trend test for testing several treatment levels with a zero control. Let there be \( k \) groups including the control and let the zero dose level be indicated with \( i = 0 \) and the highest dose level with \( i = m \), then the following \( m = k - 1 \) hypotheses are tested:

\[
H_m: \theta_0 = \theta_1 = \ldots = \theta_m, \quad A_m = \theta_0 \leq \theta_1 \leq \ldots \leq \theta_m, \theta_0 < \theta_m \\
H_{m-1}: \theta_0 = \theta_1 = \ldots = \theta_{m-1}, \quad A_{m-1} = \theta_0 \leq \theta_1 \leq \ldots \leq \theta_{m-1}, \theta_0 < \theta_{m-1} \\
\vdots \\
H_1: \theta_0 = \theta_1, \quad A_1 = \theta_0 < \theta_1
\]

Let \( Y_{ij} (1 \leq i \leq n, 0 \leq j \leq k) \) be a i.i.d. random variable of at least ordinal scale. Further, let \( \bar{R}_0, \bar{R}_1, \ldots, \bar{R}_k \) be Friedman’s average ranks and set \( \bar{R}_0^*, \ldots \leq \bar{R}_k^* \) to be its isotonic regression estimators under the order restriction \( \theta_0 \leq \ldots \leq \theta_k \).

The statistics is

\[
T_j = (\bar{R}_j^* - \bar{R}_0) \left[ (V_j - H_j) (2/n) \right]^{-1/2} \quad (1 \leq j \leq k),
\]

with

\[
V_j = (j + 1) \frac{(j + 2)}{12}
\]

and

\[
H_j = \frac{(t^3 - t)}{(12jn)},
\]

where \( t \) is the number of tied ranks.

The critical \( t_{v, \alpha}^* \)-values as given in the tables of Williams (1972) for \( \alpha = 0.05 \) (one-sided) are looked up according to the degree of freedoms \( (v = \infty) \) and the order number of the dose level \( (j) \).

For the comparison of the first dose level \( (j = 1) \) with the control, the critical z-value from the standard normal distribution is used (Normal).

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value  lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

References


See Also

friedmanTest, friedman.test, frdManyOneExactTest, frdManyOneDemsarTest

Examples

## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
## Assume A is the control.

y <- matrix(c(
  3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
  23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
  26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
  32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
  26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))

## Global Friedman test
friedmanTest(y)

## Demsar's many-one test
summary(frdManyOneDemsarTest(y=y, p.adjust = "bonferroni",
                             alternative = "greater"))

## Exact many-one test
summary(frdManyOneExactTest(y=y, p.adjust = "bonferroni",
                            alternative = "greater"))

## Nemenyi's many-one test
summary(frdManyOneNemenyiTest(y=y, alternative = "greater"))

## House test
frdHouseTest(y, alternative = "greater")
frdManyOneDemsarTest  

**Demsar’s Many-to-One Test for Unreplicated Blocked Data**

**Description**

Performs Demsar’s non-parametric many-to-one comparison test for Friedman-type ranked data.

**Usage**

```r
frdManyOneDemsarTest(y, ...)
```

## Default S3 method:
```
frdManyOneDemsarTest(
 y,
 groups,
 blocks,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = p.adjust.methods,
 ...
)
```

**Arguments**

- `y`  
  a numeric vector of data values, or a list of numeric data vectors.

- `groups`  
  a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- `blocks`  
  a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- `alternative`  
  the alternative hypothesis. Defaults to `two.sided`.

- `p.adjust.method`  
  method for adjusting p values (see `p.adjust`).

- `...`  
  further arguments to be passed to or from methods.

**Details**

For many-to-one comparisons (pairwise comparisons with one control) in a two factorial unreplicated complete block design with non-normally distributed residuals, Demsar’s test can be performed on Friedman-type ranked data.

Let there be $k$ groups including the control, then the number of treatment levels is $m = k - 1$. A total of $m$ pairwise comparisons can be performed between the $i$-th treatment level and the control. $H_i : \theta_0 = \theta_i$ is tested in the two-tailed case against $A_i : \theta_0 \neq \theta_i$, ($1 \leq i \leq m$).

The $p$-values are computed from the standard normal distribution. Any of the $p$-adjustment methods as included in `p.adjust` can be used for the adjustment of $p$-values.
Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References


See Also

friedmanTest, friedman.test, frdManyOneExactTest, frdManyOneNemenyiTest.

Examples

```r
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
Global Friedman test
friedmanTest(y)

Demsar's many-one test
summary(frdManyOneDemsarTest(y=y, p.adjust = "bonferroni",
 alternative = "greater"))

Exact many-one test
summary(frdManyOneExactTest(y=y, p.adjust = "bonferroni",
 alternative = "greater"))
```
## Nemenyi

```r
text <- summary(frdManyOneNemenyiTest(y=y, alternative = "greater"))
```

## House test

```r
frdHouseTest(y, alternative = "greater")
```

---

### frdManyOneExactTest

**Exact Many-to-One Test for Unreplicated Blocked Data**

**Description**

Performs an exact non-parametric many-to-one comparison test for Friedman-type ranked data according to Eisinga et al. (2017).

**Usage**

```r
frdManyOneExactTest(y, ...)
```

#### Default S3 method:

```r
frdManyOneExactTest(y, groups, blocks, p.adjust.method = p.adjust.methods, ...)
```

**Arguments**

- `y` a numeric vector of data values, or a list of numeric data vectors.
- `groups` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks` a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `p.adjust.method` method for adjusting p values (see `p.adjust`).
- `...` further arguments to be passed to or from methods.

**Details**

For many-to-one comparisons (pairwise comparisons with one control) in a two factorial unreplicated complete block design with non-normally distributed residuals, an exact test can be performed on Friedman-type ranked data. Let there be \( k \) groups including the control, then the number of treatment levels is \( m = k - 1 \). A total of \( m \) pairwise comparisons can be performed between the \( i \)-th treatment level and the control. \( H_i : \theta_0 = \theta_i, \ (1 \leq i \leq m) \)

The exact \( p \)-values are computed using the code of "pexactfrsd.R" that was a supplement to the publication of Eisinga et al. (2017). Additionally, any of the \( p \)-adjustment methods as included in `p.adjust` can be selected, for \( p \)-value adjustment.
**Value**

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

**References**


**See Also**

`friedmanTest`, `friedman.test`, `frdManyOneDemsarTest`, `frdManyOneNemenyiTest`.

**Examples**

```r
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92, 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45, 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72, 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23, 26.65), nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6]))

Global Friedman test
friedmanTest(y)

Demsar's many-one test
summary(frdManyOneDemsarTest(y=y, p.adjust = "bonferroni", alternative = "greater"))

Exact many-one test
summary(frdManyOneExactTest(y=y, p.adjust = "bonferroni", alternative = "greater"))
```
## Nemenyi's Many-to-One Test for Unreplicated Blocked Data

### Description
Performs Nemenyi's non-parametric many-to-one comparison test for Friedman-type ranked data.

### Usage
```r
frdManyOneNemenyiTest(y, ...)
```

#### Default S3 method:
```r
frdManyOneNemenyiTest(
 y,
 groups,
 blocks,
 alternative = c("two.sided", "greater", "less"),
 ...
)
```

### Arguments
- `y`: a numeric vector of data values, or a list of numeric data vectors.
- `groups`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks`: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`: the alternative hypothesis. Defaults to `two.sided`.
- `...`: further arguments to be passed to or from methods.

### Details
For many-to-one comparisons (pairwise comparisons with one control) in a two factorial unreplicated complete block design with non-normally distributed residuals, Nemenyi's test can be performed on Friedman-type ranked data.

Let there be \( k \) groups including the control, then the number of treatment levels is \( m = k - 1 \). A total of \( m \) pairwise comparisons can be performed between the \( i \)-th treatment level and the control. \( H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \( A_i : \theta_0 \neq \theta_i \), \( 1 \leq i \leq m \).

The \( p \)-values are computed from the multivariate normal distribution. As \texttt{pmvnorm} applies a numerical method, the estimated \( p \)-values are set depended.
Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References


See Also

- `friedmanTest`
- `friedman.test`
- `frdManyOneExactTest`
- `frdManyOneDemsarTest`
- `pmvnorm`
- `set.seed`

Examples

```r
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
 dimnames=list(1:6, LETTERS[1:6]))

Global Friedman test
friedmanTest(y)

Demsar's many-one test
```
summary(frdManyOneDemsarTest(y=y, p.adjust = "bonferroni", alternative = "greater"))

## Exact many-one test
summary(frdManyOneExactTest(y=y, p.adjust = "bonferroni", alternative = "greater"))

## Nemenyi's many-one test
summary(frdManyOneNemenyiTest(y=y, alternative = "greater"))

## House test
frdHouseTest(y, alternative = "greater")

---

**friedmanTest**

**Friedman Rank Sum Test**

**Description**
Performs a Friedman rank sum test. The null hypothesis \( H_0 : \theta_i = \theta_j \ (i \neq j) \) is tested against the alternative \( H_A : \theta_i \neq \theta_j \), with at least one inequality being strict.

**Usage**
friedmanTest(y, ...)

## Default S3 method:
friedmanTest(y, groups, blocks, dist = c("Chisquare", "FDist"), ...)

**Arguments**
y a numeric vector of data values, or a list of numeric data vectors.
groups a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
dist the test distribution. Defaults to Chisquare.
... further arguments to be passed to or from methods.

**Details**
The function has implemented Friedman’s test as well as the extension of Conover and Iman (1981). Friedman’s test statistic is asymptotically chi-squared distributed. Consequently, the default test distribution is dist = "Chisquare".

If dist = "FDist" is selected, then the approach of Conover and Iman (1981) is performed. The Friedman Test using the \( F \)-distribution leads to the same results as doing an two-way Analysis of Variance without interaction on rank transformed data.
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References


See Also

- friedman.test

Examples

```r
Comparison of three methods ("round out", "narrow angle", and
"wide angle") for rounding first base. For each of 18 players
and the three method, the average time of two runs from a point on
the first base line 35ft from home plate to a point 15ft short of
second base is recorded.
RoundingTimes <-
 matrix(c(5.40, 5.50, 5.55,
 5.85, 5.70, 5.75,
 5.20, 5.60, 5.50,
 5.55, 5.50, 5.40,
 5.90, 5.85, 5.70,
 5.45, 5.55, 5.60,
 5.40, 5.40, 5.35,
 5.45, 5.50, 5.35,
 5.25, 5.15, 5.00,
 5.85, 5.80, 5.70,
 5.25, 5.20, 5.10,
 5.65, 5.55, 5.45,
 5.60, 5.35, 5.45,
 5.05, 5.00, 4.95,
 5.50, 5.50, 5.40,
 5.45, 5.55, 5.50,
 5.55, 5.55, 5.35),
```
Games-Howell Test

Description
Performs Games-Howell all-pairs comparison test for normally distributed data with unequal group variances.

Usage

gamesHowellTest(x, ...)

## Default S3 method:
gamesHowellTest(x, g, ...)

## S3 method for class 'formula'
gamesHowellTest(formula, data, subset, na.action, ...)

## S3 method for class 'aov'
gamesHowellTest(x, ...)

5.45, 5.50, 5.55,
5.50, 5.45, 5.25,
5.65, 5.60, 5.40,
5.70, 5.65, 5.55,
6.30, 6.30, 6.25),
nrow = 22,
byrow = TRUE,
dimnames = list(1 : 22,
c("Round Out", "Narrow Angle", "Wide Angle")))

## Chisquare distribution
friedmanTest(RoundingTimes)

## check with friedman.test from R stats
friedman.test(RoundingTimes)

## F-distribution
friedmanTest(RoundingTimes, dist = "FDist")

## Check with One-way repeated measure ANOVA
rmat <- RoundingTimes
for (i in 1:length(RoundingTimes[,1])) rmat[i,] <- rank(rmat[i,])
dataf <- data.frame(
y = y <- as.vector(rmat),
g = g <- factor(c(col(RoundingTimes))),
b = b <- factor(c(row(RoundingTimes))))
summary(aov(y ~ g + Error(b), data = dataf))
Arguments

- **x**: a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an `aov` fit.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal between-groups variances the Games-Howell Test can be performed. Let $X_{ij}$ denote a continuous random variable with the $j$-the realization ($1 \leq j \leq n_i$) in the $i$-th group ($1 \leq i \leq k$). Furthermore, the total sample size is $N = \sum_{i=1}^{k} n_i$. A total of $m = k(k - 1)/2$ hypotheses can be tested: The null hypothesis is $H_{ij}: \mu_i = \mu_j$ ($i \neq j$) is tested against the alternative $A_{ij}: \mu_i \neq \mu_j$ (two-tailed). Games-Howell Test all-pairs test statistics are given by

$$t_{ij} = \frac{\bar{X}_i - \bar{X}_j}{(s_j^2/n_j + s_i^2/n_i)^{1/2}}, \ (i \neq j)$$

with $s_i^2$ the variance of the $i$-th group. The null hypothesis is rejected (two-tailed) if

$$\Pr\{ |t_{ij}| \sqrt{2} \geq q_{mv_i, \alpha} \} = \alpha_i$$

with Welch’s approximate solution for calculating the degree of freedom.

$$v_{ij} = \frac{(s_i^2/n_i + s_j^2/n_j)^2}{s_i^4/n_i^2(n_i - 1) + s_j^4/n_j^2(n_j - 1)}.$$ 

The $p$-values are computed from the Tukey distribution.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value  lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

See Also

Tukey

Examples

fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts) # var1 = varN
anova(fit)

## also works with fitted objects of class aov
res <- gamesHowellTest(fit)
summary(res)
summaryGroup(res)

---------------------

gesdTest                   Generalized Extreme Studentized Deviate Many-Outlier Test
---------------------

Description

Performs Rosner’s generalized extreme studentized deviate procedure to detect up-to maxr outliers in a univariate sample that follows an approximately normal distribution.

Usage

gesdTest(x, maxr)

Arguments

x a numeric vector of data.
maxr the maximum number of outliers to be tested.

References

Examples

## Taken from Rosner (1983):
x <- c(-0.25, 0.68, 0.94, 1.15, 1.20, 1.26, 1.26,
    1.34, 1.38, 1.43, 1.49, 1.49, 1.55, 1.56,
    1.58, 1.65, 1.69, 1.70, 1.76, 1.77, 1.81,
    1.91, 1.94, 1.96, 1.99, 2.06, 2.09, 2.10,
    2.14, 2.15, 2.23, 2.24, 2.26, 2.35, 2.37,
    2.40, 2.47, 2.54, 2.62, 2.64, 2.90, 2.92,
    2.92, 2.93, 3.21, 3.26, 3.30, 3.59, 3.68,
    4.30, 4.64, 5.34, 5.42, 6.01)

out <- gesdTest(x, 10)

## print method
out

## summary method
summary(out)

goreTest

Gore Test

Description

Performs Gore’s test. The null hypothesis $H_0 : \theta_i = \theta_j$ ($i \neq j$) is tested against the alternative $H_A : \theta_i \neq \theta_j$, with at least one inequality being strict.

Usage

goreTest(y, groups, blocks)

Arguments

y a numeric vector of data values.
groups a vector or factor object giving the group for the corresponding elements of "y".
blocks a vector or factor object giving the group for the corresponding elements of "y".

Details

The function has implemented Gore’s test for testing main effects in unbalanced CRB designs, i.e. there are one or more observations per cell. The statistic is asymptotically chi-squared distributed.
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References


See Also

- `friedmanTest`
- `skillingsMackTest`
- `durbinTest`

Examples

```r
Crop Yield of 3 varieties on two soil classes
X <- c("130,A,Light
115,A,Light
123,A,Light
142,A,Light
117,A,Heavy
125,A,Heavy
139,A,Heavy
108,B,Light
114,B,Light
124,B,Light
106,B,Light
91,B,Heavy
111,B,Heavy
110,B,Heavy
155,C,Light
146,C,Light
151,C,Light
165,C,Light
97,C,Heavy
108,C,Heavy")
con <- textConnection(X)
x <- read.table(con, header=FALSE, sep="","
close(con)
colnames(x) <- c("Yield", "Variety", "SoilType")
goreTest(y = x$Yield, groups = x$Variety, blocks = x$SoilType)
```
Grubbs distribution

Description

Distribution function and quantile function for Grubbs distribution.

Usage

\begin{verbatim}
qgrubbs(p, n)
pgrubbs(q, n, lower.tail = TRUE)
\end{verbatim}

Arguments

\begin{itemize}
  \item \texttt{p} \hfill vector of probabilities.
  \item \texttt{n} \hfill total sample size.
  \item \texttt{q} \hfill vector of quantiles.
  \item \texttt{lower.tail} \hfill logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
\end{itemize}

Value

\texttt{pgrubbs} gives the distribution function and \texttt{qgrubbs} gives the quantile function.

References


See Also

\texttt{TDist}

Examples

\begin{verbatim}
qgrubbs(0.05, 7)
\end{verbatim}
**grubbsTest**  

**Grubbs Outlier Test**

**Description**

Performs Grubbs single outlier test.

**Usage**

```r
grubbsTest(x, alternative = c("two.sided", "greater", "less"))
```

**Arguments**

- `x`: a numeric vector of data.
- `alternative`: the alternative hypothesis. Defaults to "two.sided".

**Details**

Let $X$ denote an identically and independently distributed continuous variate with realizations $x_i$ ($1 \leq i \leq k$). Further, let the increasingly ordered realizations denote $x(1) \leq x(2) \leq \ldots \leq x(n)$. Then the following model for a single maximum outlier can be proposed:

$$x(i) = \begin{cases} 
\mu + \epsilon(i), & i = 1, \ldots, n-1 \\
\mu + \Delta + \epsilon(n) 
\end{cases}$$

with $\epsilon \approx N(0, \sigma)$. The null hypothesis, $H_0: \Delta = 0$ is tested against the alternative, $H_A: \Delta > 0$.

For testing a single minimum outlier, the model can be proposed as

$$x(i) = \begin{cases} 
\mu + \Delta + \epsilon(1) \\
\mu + \epsilon(i) 
\end{cases}$$

$i = 2, \ldots, n$

The null hypothesis is tested against the alternative, $H_A: \Delta < 0$.

The p-value is computed with the function `pgrubbs`.

**Value**

A list with class "htest" containing the following components:

- `method`: a character string indicating what type of test was performed.
- `data.name`: a character string giving the name(s) of the data.
- `statistic`: the estimated quantile of the test statistic.
- `p.value`: the p-value for the test.
- `parameter`: the parameters of the test statistic, if any.
- `alternative`: a character string describing the alternative hypothesis.
- `estimates`: the estimates, if any.
- `null.value`: the estimate under the null hypothesis, if any.
References


Examples

data(Pentosan)
dat <- subset(Pentosan, subset = (material == "A"))
labMeans <- tapply(dat$value, dat$lab, mean)
grubbsTest(x = labMeans, alternative = "two.sided")

---

**Generalized Siegel-Tukey Test of Homogeneity of Scales**

Description

Performs a Siegel-Tukey k-sample rank dispersion test.

Usage

GSTTest(x, ...)

## Default S3 method:
GSTTest(x, g, dist = c("Chisquare", "KruskalWallis"), ...)

## S3 method for class 'formula'
GSTTest(
  formula,
data,
subset,
na.action,
dist = c("Chisquare", "KruskalWallis"),
...
)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **dist**: the test distribution. Defaults’s to "Chisquare".
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
GSTTest

Details

Meyer-Bahlburg (1970) has proposed a generalized Siegel-Tukey rank dispersion test for the $k$-sample case. Likewise to the `fligner.test`, this test is a nonparametric test for testing the homogeneity of scales in several groups. Let $\theta_i$ and $\lambda_i$ denote location and scale parameter of the $i$th group, then for the two-tailed case, the null hypothesis $H$: $\lambda_i/\lambda_j = 1 | \theta_i = \theta_j$, $i \neq j$ is tested against the alternative, $A$: $\lambda_i/\lambda_j \neq 1$ with at least one inequality being strict.

The data are combinedly ranked according to Siegel-Tukey. The ranking is done by alternate extremes (rank 1 is lowest, 2 and 3 are the two highest, 4 and 5 are the two next lowest, etc.).

Meyer-Bahlburg (1970) showed, that the Kruskal-Wallis H-test can be employed on the Siegel-Tukey ranks. The H-statistic is asymptotically chi-squared distributed with $v = k - 1$ degree of freedom, the default test distribution is consequently `dist = "Chisquare"`. If `dist = "KruskalWallis"` is selected, an incomplete beta approximation is used for the calculation of p-values as implemented in the function `pKruskalWallis` of the package `SuppDists`.

Value

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the p-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.

Note

If ties are present, a tie correction is performed and a warning message is given. The GSTTest is sensitive to median differences, likewise to the Siegel-Tukey test. It is thus appropriate to apply this test on the residuals of a one-way ANOVA, rather than on the original data (see example).

References

hartleyTest

See Also
fligner.test, pKruskalWallis, Chisquare, fligner.test

Examples
GSTTest(count ~ spray, data = InsectSprays)

## as means/medians differ, apply the test to residuals
## of one-way ANOVA
ans <- aov(count ~ spray, data = InsectSprays)
GSTTest(residuals(ans) ~ spray, data = InsectSprays)

hartleyTest
Hartley's Maximum F-Ratio Test of Homogeneity of Variances

Description
Performs Hartley's maximum F-ratio test of the null that variances in each of the groups (samples) are the same.

Usage
hartleyTest(x, ...)

## Default S3 method:
hartleyTest(x, g, ...)

## S3 method for class 'formula'
hartleyTest(formula, data, subset, na.action, ...)

Arguments
x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar; see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
Details

If \( x \) is a list, its elements are taken as the samples to be compared for homogeneity of variances. In this case, the elements must all be numeric data vectors, \( g \) is ignored, and one can simply use \( \text{hartleyTest}(x) \) to perform the test. If the samples are not yet contained in a list, use \( \text{hartleyTest}([x, \ldots]) \).

Otherwise, \( x \) must be a numeric data vector, and \( g \) must be a vector or factor object of the same length as \( x \) giving the group for the corresponding elements of \( x \).

Hartley’s parametric test requires normality and a nearly balanced design. The p-value of the test is calculated with the function \( \text{pmaxFratio} \) of the package \textbf{SuppDists}.

Value

A list with class "htest" containing the following components:

- \textbf{method} a character string indicating what type of test was performed.
- \textbf{data.name} a character string giving the name(s) of the data.
- \textbf{statistic} the estimated quantile of the test statistic.
- \textbf{p.value} the p-value for the test.
- \textbf{parameter} the parameters of the test statistic, if any.
- \textbf{alternative} a character string describing the alternative hypothesis.
- \textbf{estimates} the estimates, if any.
- \textbf{null.value} the estimate under the null hypothesis, if any.

References


See Also

\texttt{bartlett.test}, \texttt{pmaxFratio}

Examples

\begin{verbatim}
hartleyTest(count ~ spray, data = InsectSprays)
\end{verbatim}
Description

Performs the non-parametric Hayter-Stone procedure to test against an monotonically increasing alternative.

Usage

hayterStoneTest(x, ...)

## Default S3 method:
hayterStoneTest(
  x,
  g,
  alternative = c("greater", "less"),
  method = c("look-up", "boot", "asympt"),
  nperm = 10000,
  ...)

## S3 method for class 'formula'
hayterStoneTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("greater", "less"),
  method = c("look-up", "boot", "asympt"),
  nperm = 10000,
  ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to greater.

method a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values.

nperm number of permutations for the asymptotic permutation test. Defaults to 1000. Ignored, if method = "look-up".
formula    a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data     an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

Let $X$ be an identically and independent distributed variable that was $n$ times observed at $k$ increasing treatment levels. Hayter and Stone (1991) proposed a non-parametric procedure to test the null hypothesis, $H: \theta_i = \theta_j$ ($i < j \leq k$) against a simple order alternative, $A: \theta_i < \theta_j$, with at least one inequality being strict.

The statistic for a global test is calculated as,

$$ h = \max_{1 \leq i < j \leq k} \frac{2 \sqrt{6} (U_{ij} - n_i n_j / 2)}{\sqrt{n_i n_j (n_i + n_j + 1)}} $$

with the Mann-Whitney counts:

$$ U_{ij} = \sum_{a=1}^{n_i} \sum_{b=1}^{n_j} I\{x_{ia} < x_{ja}\}.$$

Under the large sample approximation, the test statistic $h$ is distributed as $h_{k,\alpha,v}$. Thus, the null hypothesis is rejected, if $h > h_{k,\alpha,v}$, with $v = \infty$ degree of freedom.

If `method = "look-up"` the function will not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for $\alpha = 0.05$ (one-sided) are looked up according to the number of groups ($k$) and the degree of freedoms ($v = \infty$).

If `method = "boot"` an asymptotic permutation test is conducted and a p-value is returned.

If `method = "asympt"` is selected the asymptotic p-value is estimated as implemented in the function `pHayStonLSA` of the package `NSM3`.

Value

Either a list of class `htest` or a list with class "osrt" that contains the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated statistic(s)
- `crit.value` critical values for $\alpha = 0.05$.
- `alternative` a character string describing the alternative hypothesis.
- `parameter` the parameter(s) of the test distribution.
- `dist` a string that denotes the test distribution.

There are print and summary methods available.
If `method = "asympt"` is selected, this function calls an internal probability function `pHS`. The GPL-2 code for this function was taken from `pHayStonLSA` of the package `NSM3`:


**References**


**See Also**

`osrtTest, hsAllPairsTest, sample, pHayStonLSA`

**Examples**

```r
Example from Shirley (1977)
Reaction times of mice to stimuli to their tails.
x <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3,
 2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8,
 7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 3.4,
 9, 8.4, 2.4, 7.8)
g <- gl(4, 10)
Shirley's test
one-sided test using look-up table
shirleyWilliamsTest(x ~ g, alternative = "greater")

Chacko's global hypothesis test for 'greater'
chackoTest(x, g)

post-hoc test, default is standard normal distribution (NPT'-test)
summary(chaAllPairsNashimotoTest(x, g, p.adjust.method = "none"))

same but h-distribution (NPY'-test)
chaAllPairsNashimotoTest(x, g, dist = "h")

NPM-test
NPMTest(x, g)

Hayter-Stone test
hayterStoneTest(x, g)

all-pairs comparisons
hsAllPairsTest(x, g)
```
**Description**

Performs the non-parametric Hayter-Stone all-pairs procedure to test against monotonically increasing alternatives.

**Usage**

```r
hsAllPairsTest(x, ...)
```

### Default S3 method:

```r
hsAllPairsTest(
 x,
 g,
 alternative = c("greater", "less"),
 method = c("look-up", "boot", "asympt"),
 nperm = 10000,
 ...
)
```

### S3 method for class 'formula'

```r
hsAllPairsTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 method = c("look-up", "boot", "asympt"),
 nperm = 10000,
 ...
)
```

**Arguments**

- **x**
  - a numeric vector of data values, or a list of numeric data vectors.
- **...**
  - further arguments to be passed to or from methods.
- **g**
  - a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**
  - the alternative hypothesis. Defaults to greater.
- **method**
  - a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values of Williams (1972).
- **nperm**
  - number of permutations for the asymptotic permutation test. Defaults to 1000. Ignored, if `method = "look-up"`. 

**HS All-Pairs Test**

*Hayter-Stone All-Pairs Comparison Test*

**Description**

Performs the non-parametric Hayter-Stone all-pairs procedure to test against monotonically increasing alternatives.

**Usage**

```r
hsAllPairsTest(x, ...)
```

### Default S3 method:

```r
hsAllPairsTest(
 x,
 g,
 alternative = c("greater", "less"),
 method = c("look-up", "boot", "asympt"),
 nperm = 10000,
 ...
)
```

### S3 method for class 'formula'

```r
hsAllPairsTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 method = c("look-up", "boot", "asympt"),
 nperm = 10000,
 ...
)
```

**Arguments**

- **x**
  - a numeric vector of data values, or a list of numeric data vectors.
- **...**
  - further arguments to be passed to or from methods.
- **g**
  - a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**
  - the alternative hypothesis. Defaults to greater.
- **method**
  - a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values of Williams (1972).
- **nperm**
  - number of permutations for the asymptotic permutation test. Defaults to 1000. Ignored, if `method = "look-up"`. 

hsAllPairsTest

formula  a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data  an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset  an optional vector specifying a subset of observations to be used.
na.action  a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

Let $X$ be an identically and independently distributed variable that was $n$ times observed at $k$ increasing treatment levels. Hayter and Stone (1991) proposed a non-parametric procedure to test the null hypothesis, $H: \theta_i = \theta_j$ $(i < j \leq k)$ against a simple order alternative, $A: \theta_i < \theta_j$.

The statistic for all-pairs comparisons is calculated as,

$$S_{ij} = \frac{2\sqrt{6} (U_{ij} - n_in_j/2)}{\sqrt{n_in_j(n_i + n_j + 1)},}$$

with the Mann-Whitney counts:

$$U_{ij} = \sum_{a=1}^{n_i} \sum_{b=1}^{n_j} I \{x_{ia} < x_{ja}\}.$$  

Under the large sample approximation, the test statistic $S_{ij}$ is distributed as $h_{k,\alpha,v}$. Thus, the null hypothesis is rejected, if $S_{ij} > h_{k,\alpha,v}$, with $v = \infty$ degree of freedom.

If method = "look-up" the function will not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for $\alpha = 0.05$ (one-sided) are looked up according to the number of groups ($k$) and the degree of freedoms ($v = \infty$).

If method = "boot" an asymmetric permutation test is conducted and p-values are returned.

If method = "asympt" is selected the asymptotic p-value is estimated as implemented in the function pHayStonLSA of the package NSM3.

Value

Either a list of class "PMCMR" or a list with class "osrt" that contains the following components:

method  a character string indicating what type of test was performed.
data.name  a character string giving the name(s) of the data.
statistic  the estimated statistic(s)
crit.value  critical values for $\alpha = 0.05$.
alternative  a character string describing the alternative hypothesis.
parameter  the parameter(s) of the test distribution.
dist  a string that denotes the test distribution.
There are print and summary methods available. A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

**Source**

If `method = "asympt"` is selected, this function calls an internal probability function `pHS`. The GPL-2 code for this function was taken from `pHayStonLSA` of the package `NSM3`:


**References**


**See Also**

- `hayterStoneTest` sample

**Examples**

```r
Example from Shirley (1977)
Reaction times of mice to stimuli to their tails.
x <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3, 2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8, 7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 3.4, 9, 8.4, 2.4, 7.8)
g <- gl(4, 10)

Shirley's test
one-sided test using look-up table
shirleyWilliamsTest(x ~ g, alternative = "greater")

Chacko's global hypothesis test for 'greater'
chackoTest(x, g)
```
## post-hoc test, default is standard normal distribution (NPT'-test)
summary(chaAllPairsNashimotoTest(x, g, p.adjust.method = "none"))

## same but h-distribution (NPY'-test)
chaAllPairsNashimotoTest(x, g, dist = "h")

## NPM-test
NPMTest(x, g)

## Hayter-Stone test
hayterStoneTest(x, g)

## all-pairs comparisons
hsAllPairsTest(x, g)

---

### johnsonTest

**Testing against Ordered Alternatives (Johnson-Mehrotra Test)**

#### Description

Performs the Johnson-Mehrotra test for testing against ordered alternatives in a balanced one-factorial sampling design.

#### Usage

johnsonTest(x, ...)

#### Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to "two.sided".
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, \( H_0 : \theta_1 = \theta_2 = \ldots = \theta_k \) is tested against a simple order hypothesis, \( H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k \).
The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

- method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.

Note

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, .... Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

References


See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.
Examples

## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
     110, 125, 143, 148, 151,
     136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)

jonckheereTest

Testing against Ordered Alternatives (Jonckheere-Terpstra Test)

Description

Performs the Jonckheere-Terpstra test for testing against ordered alternatives.

Usage

 jonckheereTest(x, ...)  

## Default S3 method:  
 jonckheereTest(  

jonckheereTest

```r
x,
 g,
 alternative = c("two.sided", "greater", "less"),
 continuity = FALSE,
...
)

S3 method for class 'formula'
jonckheereTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 continuity = FALSE,
...
)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.

- **...**: further arguments to be passed to or from methods.

- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- **alternative**: the alternative hypothesis. Defaults to "two.sided".

- **continuity**: logical indicator whether a continuity correction shall be performed. Defaults to FALSE.

- **formula**: a formula of the form `response ~ group` where `response` gives the data values and group a vector or factor of the corresponding groups.

- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

- **subset**: an optional vector specifying a subset of observations to be used.

- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

The null hypothesis, \(H_0 : \theta_1 = \theta_2 = \ldots = \theta_k \) is tested against a simple order hypothesis, \(H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k \).

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.

Source

The code for the computation of the standard deviation for the Jonckheere-Terpstra test in the presence of ties was taken from:

Note

jonckheereTest(x, g, alternative = "two.sided", continuity = TRUE) is equivalent to
cor.test(x, as.numeric(g), method = "kendall", alternative = "two.sided", continuity
= TRUE)

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).

References

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")
Chacko's test
chackoTest(x, g)

Cuzick's test
cuzickTest(x, g)

Johnson-Mehrotra test
johnsonTest(x, g)

Jonckheere-Terpstra test
jonckheereTest(x, g)

Le's test
leTest(x, g)

Spearman type test
spearmanTest(x, g)

Murakami's BWS trend test
bwsTrendTest(x, g)

Fligner-Wolfe test
flignerWolfeTest(x, g)

Shan-Young-Kang test
shanTest(x, g)

kruskalTest

Kruskal-Wallis Rank Sum Test

Description
Performs a Kruskal-Wallis rank sum test.

Usage

```r
descr <- c('Kruskal-Wallis Rank Sum Test
Performs a Kruskal-Wallis rank sum test.

Usage

kruskalTest(x, ...)')
descr <- c('Kruskal-Wallis Rank Sum Test
Performs a Kruskal-Wallis rank sum test.

Usage

kruskalTest(x, ...)')
```

kruskalTest

Kruskal-Wallis Rank Sum Test

Description
Performs a Kruskal-Wallis rank sum test.

Usage

```r
kruskalTest(x, ...)
```

Default S3 method:
```r
kruskalTest(x, g, dist = c("Chisquare", "KruskalWallis", "FDist"), ...)
```

S3 method for class 'formula'
```r
kruskalTest(formula, data, subset, na.action, ...)
```
dist = c("Chisquare", "KruskalWallis", "FDist"),
...

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
dist the test distribution. Defaults’s to "Chisquare".
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For one-factorial designs with non-normally distributed residuals the Kruskal-Wallis rank sum test can be performed to test the H_0:

$$F_1(x) = F_2(x) = \ldots = F_k(x)$$

against the H_A:

$$F_i(x) \neq F_j(x) \quad (i \neq j)$$

with at least one strict inequality.

Let R_{ij} be the joint rank of X_{ij}, with $R_{(1)(1)} = 1, \ldots, R_{(n)(n)} = N, \quad N = \sum_{i=1}^{k} n_i$, The test statistic is calculated as

$$H = \sum_{i=1}^{k} n_i \left(\frac{\bar{R}_i - \bar{R}}{\sigma_R} \right),$$

with the mean rank of the i-th group

$$\bar{R}_i = \sum_{j=1}^{n_i} R_{ij} / n_i,$$

the expected value

$$\bar{R} = (N + 1) / 2$$

and the expected variance as

$$\sigma_R^2 = N (N + 1) / 12.$$

In case of ties the statistic H is divided by $(1 - \sum_{i=1}^{k} t_i^3 - t_i) / (N^3 - N)$

According to Conover and Imam (1981), the statistic H is related to the F-quantile as

$$F = \frac{H / (k - 1)}{(N - 1 - H) / (N - k)},$$

which is equivalent to a one-way ANOVA F-test using rank transformed data (see examples).

The function provides three different dist for p-value estimation:
Chisquare p-values are computed from the Chisquare distribution with $v = k - 1$ degree of freedom.

KruskalWallis p-values are computed from the pKruskalWallis of the package SuppDists.

FDist p-values are computed from the FDist distribution with $v_1 = k - 1$, $v_2 = N - k$ degree of freedom.

Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References

See Also

- kruskal.test, pKruskalWallis, Chisquare, FDist

Examples

```r
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4)    # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
g <- factor(x = c(rep(1, length(x)),
               rep(2, length(y)),
               rep(3, length(z))),
labels = c("ns", "oad", "a"))
dat <- data.frame(
  g = g,
  x = c(x, y, z))
```
AD-Test
adKSampleTest(x ~ g, data = dat)

BWS-Test
bwsKSampleTest(x ~ g, data = dat)

Kruskal-Test
Using incomplete beta approximation
kruskalTest(x ~ g, dat, dist="KruskalWallis")
Using chisquare distribution
kruskalTest(x ~ g, dat, dist="Chisquare")

Not run:
Check with kruskal.test from R stats
kruskal.test(x ~ g, dat)

End(Not run)
Using Conover's F
kruskalTest(x ~ g, dat, dist="FDist")

Not run:
Check with aov on ranks
anova(aov(rank(x) ~ g, dat))
Check with oneway.test
oneway.test(rank(x) ~ g, dat, var.equal = TRUE)

End(Not run)

kwAllPairsConoverTest *Conover's All-Pairs Rank Comparison Test*

Description

Performs Conover's non-parametric all-pairs comparison test for Kruskal-type ranked data.

Usage

kwAllPairsConoverTest(x, ...)

Default S3 method:

kwAllPairsConoverTest(
 x,
 g,
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

S3 method for class 'formula'

kwAllPairsConoverTest(
kwAllPairsConoverTest

```
formula, data, subset, na.action, p.adjust.method = c("single-step", p.adjust.methods), ...
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `p.adjust.method` method for adjusting p values (see `p.adjust`).
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`. Ignored with a warning if "x" is a list.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Conover's non-parametric test can be performed. A total of \(m = \frac{k(k - 1)}{2} \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

If `p.adjust.method` == "single-step" the p-values are computed from the studentized range distribution. Otherwise, the p-values are computed from the t-distribution using any of the p-adjustment methods as included in `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- `p.value` lower-triangle matrix of the p-values for the pairwise tests.
- `alternative` a character string describing the alternative hypothesis.
- `p.adjust.method` a character string describing the method for p-value adjustment.
- `model` a data frame of the input data.
- `dist` a string that denotes the test distribution.
kwAllPairsDunnTest

Dunn’s All-Pairs Rank Comparison Test

Description
Performs Dunn’s non-parametric all-pairs comparison test for Kruskal-type ranked data.

Usage
kwAllPairsDunnTest(x, ...)

Default S3 method:
kwAllPairsDunnTest(x, g, p.adjust.method = p.adjust.methods, ...)

S3 method for class 'formula'
kwAllPairsDunnTest(
 formula,
 data,
 subset,
 ...,
)
kwAllPairsDunnTest

na.action,
p.adjust.method = p.adjust.methods,
...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
p.adjust.method method for adjusting p values (see p.adjust).
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Dunn’s non-parametric test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x) \), \(i \neq j \).

The p-values are computed from the standard normal distribution using any of the p-adjustment methods as included in p.adjust. Originally, Dunn (1964) proposed Bonferroni’s p-adjustment method.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.
kwAllPairsNemenyiTest

References

See Also

Normal, p.adjust, kruskalTest, kwAllPairsConoverTest, kwAllPairsNemenyiTest

Examples

```r
## Data set InsectSprays
## Global test
kruskalTest(count ~ spray, data = InsectSprays)

## Conover's all-pairs comparison test
## single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays,
               p.adjust.method = "single-step")
summary(ans)

## Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays,
               p.adjust.method = "bonferroni")
summary(ans)

## Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
```

kwAllPairsNemenyiTest Nemenyi's All-Pairs Rank Comparison Test

Description

Performs Nemenyi's non-parametric all-pairs comparison test for Kruskal-type ranked data.

Usage

```r
kwAllPairsNemenyiTest(x, ...)
```

Default S3 method:
```r
kwAllPairsNemenyiTest(x, g, dist = c("Tukey", "Chisquare"), ...)
```

S3 method for class 'formula'
```r
kwAllPairsNemenyiTest(formula, data,
```
kwAllPairsNemenyiTest

subset,
a.action,
dist = c("Tukey", "Chisquare"),
...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
dist the distribution for determining the p-value. Defaults to "Tukey".
formula a formula of the form response ~ group where response gives the data values
 and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing
 the variables in the formula formula. By default the variables are taken from
 environment(formula).
subset an optional vector specifying a subset of observations to be used.
a.action a function which indicates what should happen when the data contain NAs. De-

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Ne-
menyi’s non-parametric test can be performed. A total of m = k(k − 1)/2 hypotheses can be
tested. The null hypothesis H_{ij} : \theta_i(x) = \theta_j(x) is tested in the two-tailed test against the alterna-
tive A_{ij} : \theta_i(x) \neq \theta_j(x), i \neq j.

Let R_{ij} be the rank of X_{ij}, where X_{ij} is jointly ranked from \{1, 2, ..., N\}, N = \sum_{i=1}^{k} n_i, then
the test statistic under the absence of ties is calculated as

\[t_{ij} = \frac{\bar{R}_j - \bar{R}_i}{\sigma_R \left(\frac{1}{n_i} + \frac{1}{n_j} \right)^{1/2}} \quad (i \neq j), \]

with \bar{R}_j, \bar{R}_i the mean rank of the i-th and j-th group and the expected variance as

\[\sigma_R^2 = N(N+1)/12. \]

A pairwise difference is significant, if |t_{ij}|/\sqrt{2} > q_{kv}, with k the number of groups and v = \infty the
degree of freedom.

Sachs(1997) has given a modified approach for Nemenyi’s test in the presence of ties for N > 6, k > 4 provided
that the kruskalTest indicates significance: In the presence of ties, the test
statistic is corrected according to \hat{t}_{ij} = t_{ij}/C, with

\[C = 1 - \frac{\sum_{i=1}^{r} t^2_i - t_i}{N^3 - N}. \]

The function provides two different dist for p-value estimation:
Tukey The p-values are computed from the studentized range distribution (alias Tukey), $\Pr \left\{ t_{ij} \sqrt{2} \geq q_{k,\alpha,|\text{mathrm}H|} \right\} = \alpha$.

Chisquare The p-values are computed from the Chisquare distribution with $v = k - 1$ degree of freedom.

Value
A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also
Tukey, Chisquare, p.adjust, kruskalTest, kwAllPairsDunnTest, kwAllPairsConoverTest

Examples
```
## Data set InsectSprays
## Global test
kruskalTest(count ~ spray, data = InsectSprays)

## Conover's all-pairs comparison test
## single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays,
                          p.adjust.method = "single-step")
summary(ans)

## Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays,
                          p.adjust.method = "bonferroni")
summary(ans)

## Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
```
Conover’s Many-to-One Rank Comparison Test

Description

Performs Conover’s non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

```r
kwManyOneConoverTest(x, ...)  
## Default S3 method:
kwManyOneConoverTest(  
  x,
  g,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

## S3 method for class 'formula'
kwManyOneConoverTest(  
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative` the alternative hypothesis. Defaults to `two.sided`.
- `p.adjust.method` method for adjusting p values (see `p.adjust`).
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Conover’s non-parametric test can be performed. Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). Then \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \(A_i : \theta_0 \neq \theta_i, \ (1 \leq i \leq m) \).

If \(p.adjust.method == \text{"single-step"} \) is selected, the \(p \)-values will be computed from the multivariate \(t \) distribution. Otherwise, the \(p \)-values are computed from the \(t \)-distribution using any of the \(p \)-adjustment methods as included in \(\text{p.adjust} \).

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the \(p \)-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for \(p \)-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

Note

Factor labels for \(g \) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \(k \) or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see \(\text{order, factor} \)).

References

See Also

\(\text{pmvt, TDist, kruskalTest, kwManyOneDunnTest, kwManyOneNdwTest} \)
Examples

```r
## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover's many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
   p.adjust.method = "single-step")
summary(ans)

## Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
   p.adjust.method = "holm")
summary(ans)

## Dunn's many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
   p.adjust.method = "holm")
summary(ans)

## Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
   p.adjust.method = "holm")
summary(ans)

## Many one U test
ans <- manyOneUTest(weight ~ group, data = PlantGrowth,
   p.adjust.method = "holm")
summary(ans)

## Chen Test
ans <- chenTest(weight ~ group, data = PlantGrowth,
   p.adjust.method = "holm")
summary(ans)
```

Dunn’s Many-to-One Rank Comparison Test

Description

Performs Dunn’s non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

```r
kwManyOneDunnTest(x, ...)  
```

Default S3 method:

```r
kwManyOneDunnTest(
```
kwManyOneDunnTest

```r
x,
  g,
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
...)
```

S3 method for class 'formula'
kwManyOneDunnTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
...)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to `two.sided`.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`).
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Dunn’s non-parametric test can be performed. Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). Then \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \(A_i : \theta_0 \neq \theta_i \), \((1 \leq i \leq m) \).

If `p.adjust.method` == "single-step" is selected, the \(p \)-values will be computed from the multivariate normal distribution. Otherwise, the \(p \)-values are computed from the standard normal distribution using any of the \(p \)-adjustment methods as included in `p.adjust`.
Value
A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

Note
Factor labels for \(g \) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \(k \) or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order`, `factor`).

References

See Also

- pmvnorm, TDist, kruskalTest, kwManyOneConoverTest, kwManyOneNdwTest

Examples

```r
## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover's many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth, 
                            p.adjust.method = "single-step")
summary(ans)

## Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth, 
                            p.adjust.method = "holm")
summary(ans)

## Dunn's many-one comparison test
```
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
 p.adjust.method = "holm")
summary(ans)

Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
 p.adjust.method = "holm")
summary(ans)

Many one U test
ans <- manyOneUTest(weight ~ group, data = PlantGrowth,
 p.adjust.method = "holm")
summary(ans)

Chen Test
ans <- chenTest(weight ~ group, data = PlantGrowth,
 p.adjust.method = "holm")
summary(ans)

kwManyOneNdwTest
Nemenyi-Damico-Wolfe Many-to-One Rank Comparison Test

Description

Performs Nemenyi-Damico-Wolfe non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

kwManyOneNdwTest(x, ...)

Default S3 method:
kwManyOneNdwTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

S3 method for class 'formula'
kwManyOneNdwTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)
Arguments

x
a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative
the alternative hypothesis. Defaults to `two.sided`.

p.adjust.method
method for adjusting p values (see `p.adjust`).

formula
a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.

data
an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset
an optional vector specifying a subset of observations to be used.

na.action
a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals the Nemenyi-Damico-Wolfe non-parametric test can be performed. Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). Then \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \(A_i : \theta_0 \neq \theta_i \), (1 \(\leq \) \(i \) \(\leq \) \(m \)).

If `p.adjust.method` == "single-step" is selected, the \(p \)-values will be computed from the multivariate normal distribution. Otherwise, the \(p \)-values are computed from the standard normal distribution using any of the \(p \)-adjustment methods as included in `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the \(p \)-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for \(p \)-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

Note

This function is essentially the same as `kwManyOneDunnTest`, but there is no tie correction included. Therefore, the implementation of Dunn’s test is superior, when ties are present.
References

See Also

`pmvt`, `TDist`, `kruskalTest`, `kwManyOneDunnTest`, `kwManyOneConoverTest`

Examples

```r
## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover's many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
  p.adjust.method = "single-step")
summary(ans)

## Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
  p.adjust.method = "holm")
summary(ans)

## Dunn's many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
  p.adjust.method = "holm")
summary(ans)

## Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
  p.adjust.method = "holm")
summary(ans)

## Many one U test
ans <- manyOneUTest(weight ~ group, data = PlantGrowth,
  p.adjust.method = "holm")
summary(ans)

## Chen Test
ans <- chenTest(weight ~ group, data = PlantGrowth,
  p.adjust.method = "holm")
summary(ans)
```
Testing against Ordered Alternatives (Le's Test)

Description
Performs Le's test for testing against ordered alternatives.

Usage
leTest(x, ...)

Default S3 method:
leTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

S3 method for class 'formula'
leTest(
 formula,
data,
 subset,
 na.action,
alternative = c("two.sided", "greater", "less"),...
)

Arguments
x
a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "two.sided".

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details
The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k$.

The p-values are estimated from the standard normal distribution.
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Note

Factor labels for `g` must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order`, `factor`).

References

See Also

- `kruskalTest` and `shirleyWilliamsTest` of the package `PMCMRplus`, `kruskal.test` of the library `stats`.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
      110, 125, 143, 148, 151,
      136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)
```
Jonckheere-Terpstra test
jonckheereTest(x, g)

Le's test
leTest(x, g)

Spearman type test
spearmanTest(x, g)

Murakami's BWS trend test
bwsTrendTest(x, g)

Fligner-Wolfe test
flignerWolfeTest(x, g)

Shan-Young-Kang test
shanTest(x, g)

lsdTest
Least Significant Difference Test

Description
Performs the least significant difference all-pairs comparisons test for normally distributed data with equal group variances.

Usage
lsdTest(x, ...)

Default S3 method:
lsdTest(x, g, ...)

**## S3 method for class 'formula'
lsdTest(formula, data, subset, na.action, ...)

**## S3 method for class 'aov'
lsdTest(x, ...)

Arguments

- **x**
a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.

- **...**
further arguments to be passed to or from methods.

- **g**
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details
For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances the least significant difference test can be performed after a significant ANOVA F-test. Let \(X_{ij} \) denote a continuous random variable with the \(j \)-the realization \((1 \leq j \leq n_i) \) in the \(i \)-th group \((1 \leq i \leq k) \). Furthermore, the total sample size is \(N = \sum_{i=1}^{k} n_i \). A total of \(m = k(k-1)/2 \) hypotheses can be tested: The null hypothesis is \(H_{ij} : \mu_i = \mu_j \) \((i \neq j) \) is tested against the alternative \(A_{ij} : \mu_i \neq \mu_j \) (two-tailed). Fisher’s LSD all-pairs test statistics are given by

\[
t_{ij} = \frac{\bar{X}_i - \bar{X}_j}{s_{in} (1/n_j + 1/n_i)^{1/2}}, \quad (i \neq j)
\]

with \(s_{in}^2 \) the within-group ANOVA variance. The null hypothesis is rejected if \(|t_{ij}| > t_{v_n/2} \), with \(v = N - k \) degree of freedom. The p-values (two-tailed) are computed from the TDist distribution.

Value
A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

Note
As there is no p-value adjustment included, this function is equivalent to Fisher’s protected LSD test, provided that the LSD test is only applied after a significant one-way ANOVA F-test. If one is interested in other types of LSD test (i.e. with p-value adjustment) see function pairwise.t.test.

References
mackWolfeTest

Mack-Wolfe Test for Umbrella Alternatives

Description

Performs Mack-Wolfe non-parametric test for umbrella alternatives.

Usage

mackWolfeTest(x, ...)

Default S3 method:
mackWolfeTest(x, g, p = NULL, nperm = 1000, ...)

S3 method for class 'formula'
mackWolfeTest(formula, data, subset, na.action, p = NULL, nperm = 1000, ...)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

p the a-priori known peak as an ordinal number of the treatment group including the zero dose level, i.e. p = {1, ..., k}. Defaults to NULL.

nperm number of permutations for the assymptotic permutation test. Defaults to 1000.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

In dose-finding studies one may assume an increasing treatment effect with increasing dose level. However, the test subject may actually succumb to toxic effects at high doses, which leads to decreasing treatment effects.

The scope of the Mack-Wolfe Test is to test for umbrella alternatives for either a known or unknown point \(p \) (i.e. dose-level), where the peak (umbrella point) is present.

\[H_i: \theta_0 = \theta_1 = \ldots = \theta_k \] is tested against the alternative \(A_i: \theta_1 \leq \ldots \theta_p \geq \theta_k \) for some \(p \), with at least one strict inequality.

If \(p = \text{NULL} \) (peak unknown), the upper-tail \(p \)-value is computed via an asymptotic bootstrap permutation test.

If an integer value for \(p \) is given (peak known), the upper-tail \(p \)-value is computed from the standard normal distribution (`pnorm`).

Value

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the p-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.

Note

One may increase the number of permutations to e.g. \(\text{npert} = 10000 \) in order to get more precise \(p \)-values. However, this will be on the expense of computational time.

References

See Also

\texttt{pnorm, sample.}

Examples

Example from Table 6.10 of Hollander and Wolfe (1999).
Plates with Salmonella bacteria of strain TA98 were exposed to
various doses of Acid Red 114 (in \textmu g / ml).
The data are the numbers of visible revertant colonies on 12 plates.
Assume a peak at D333 (i.e. \(p = 3 \)).

\begin{verbatim}
x <- c(22, 23, 35, 60, 59, 54, 98, 78, 50, 60, 82, 59, 22, 44,
 33, 23, 21, 25)
g <- as.ordered(rep(c(0, 100, 333, 1000, 3333, 10000), each=3))
plot(x ~ g)
mackWolfeTest(x=x, g=g, p=3)
\end{verbatim}

<table>
<thead>
<tr>
<th>曼德尔-(h)</th>
<th>\textit{曼德尔的} (h) 分布</th>
</tr>
</thead>
</table>

Description

Distribution function and quantile function for Mandel’s \(h\) distribution.

Usage

\begin{verbatim}
qmandelh(p, k, lower.tail = TRUE, log.p = FALSE)
pmandelh(q, k, lower.tail = TRUE, log.p = FALSE)
\end{verbatim}

Arguments

- \(p\)
 vector of probabilities.
- \(k\)
 number of groups.
- \(lower.tail\)
 logical; if \(TRUE\) (default), probabilities are \(P[X \leq x]\) otherwise, \(P[X > x]\).
- \(log.p\)
 logical; if \(TRUE\), probabilities are given as \(\log(p)\).
- \(q\)
 vector of quantiles.

Value

\(pmandelh\) gives the distribution function and \(qmandelh\) gives the quantile function.

Source

The code for \(pmandelh\) was taken from:
https://CRAN.R-project.org/package=metRology
Mandel-k

References

See Also

mandelhTest

Examples

```r
## We need a two-sided upper-tail quantile
qmandelh(p = 0.005/2, k = 7, lower.tail=FALSE)
```

Mandel-k

Mandel’s k Distribution

Description

Distribution function and quantile function for Mandel’s k distribution.

Usage

```r
qmandelk(p, k, n, lower.tail = TRUE, log.p = FALSE)
pmandelk(q, k, n, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `p` vector of probabilities.
- `k` number of groups.
- `n` number of replicates per group.
- `lower.tail` logical; if TRUE (default), probabilities are \(P[X \leq x] \) otherwise, \(P[X > x] \).
- `log.p` logical; if TRUE, probabilities are given as log(p).
- `q` vector of quantiles.

Value

`pmandelk` gives the distribution function and `qmandelk` gives the quantile function.

Source

The code for `pmandelk` was taken from:
Note

The functions are only appropriate for balanced designs.

References

See Also

mandelkTest
pmandelh, qmandelh

Examples

qmandelk(0.005, 7, 3, lower.tail=FALSE)

mandelhTest

Mandel’s h Test According to E 691 ASTM

Description

The function calculates the consistency statistics h and corresponding p-values for each group (lab) according to Practice E 691 ASTM.

Usage

mandelhTest(x, ...)

Default S3 method:
mandelhTest(x, g, ...)

S3 method for class 'formula'
mandelhTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
mandelkTest

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Value

A list with class "mandel" containing the following components:

 method a character string indicating what type of test was performed.
 data.name a character string giving the name(s) of the data.
 p.value the p-value for the test.
 statistic the estimated quantiles of Mandel's statistic.
 alternative a character string describing the alternative hypothesis.
 grouplevel a character vector describing the levels of the groups.
 nrofrepl the number of replicates for each group.

References

See Also

qmandelh pmandelh

Examples

data(Pentosan)
mandelhTest(value ~ lab, data=Pentosan, subset=(material == "A"))

Description

The function calculates the consistency statistics k and corresponding p-values for each group (lab) according to Practice E 691 ASTM.

Usage

mandelkTest(x, ...)

Default S3 method:
mandelkTest(x, g, ...)

S3 method for class 'formula'
mandelkTest(formula, data, subset, na.action, ...)
Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Value

A list with class "mandel" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **p.value**: the p-value for the test.
- **statistic**: the estimated quantiles of Mandel’s statistic.
- **alternative**: a character string describing the alternative hypothesis.
- **grouplev**: a character vector describing the levels of the groups.
- **nrofrepl**: the number of replicates for each group.

References

See Also

qmandelk, pmandelk

Examples

data(Pentosan)
mandelkTest(value ~ lab, data=Pentosan, subset=(material == "A"))
manyOneUTest

Multiple Comparisons with One Control (U-test)

Description

Performs pairwise comparisons of multiple group levels with one control.

Usage

manyOneUTest(x, ...)

Default S3 method:
manyOneUTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

S3 method for class 'formula'
manyOneUTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
alternative the alternative hypothesis. Defaults to two.sided.
p.adjust.method method for adjusting p values (see p.adjust)
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

This function performs Wilcoxon, Mann and Whitney’s U-test for a one factorial design where each factor level is tested against one control \((m = k - 1 \) tests). As the data are re-ranked for each comparison, this test is only suitable for balanced (or almost balanced) experimental designs.

For the two-tailed test and `p.adjust.method = "single-step"` the multivariate normal distribution is used for controlling Type I error and to calculate p-values. Otherwise, the p-values are calculated from the standard normal distribution with any latter p-adjustment as available by `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

Note

Factor labels for `g` must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order, factor`).

References

OECD (ed. 2006) *Current approaches in the statistical analysis of ecotoxicity data: A guidance to application*, OECD Series on testing and assessment, No. 54.

See Also

`wilcox.test, pmvnorm, Normal`
mrrTest

Madhava Rao-Raghunath Test for Testing Treatment vs. Control

Description

The function has implemented the nonparametric test of Madhava Rao and Raghunath (2016) for testing paired two-samples for symmetry. The null hypothesis $H : F(x,y) = F(y,x)$ is tested against the alternative $A : F(x,y) \neq F(y,x)$.

Usage

mrrTest(x, ...)

Examples

```r
## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover's many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
p.adjust.method = "single-step")
summary(ans)

## Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
p.adjust.method = "holm")
summary(ans)

## Dunn's many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
p.adjust.method = "holm")
summary(ans)

## Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
p.adjust.method = "holm")
summary(ans)

## Many one U test
ans <- manyOneUTest(weight ~ group, data = PlantGrowth,
p.adjust.method = "holm")
summary(ans)

## Chen Test
ans <- chenTest(weight ~ group, data = PlantGrowth,
p.adjust.method = "holm")
summary(ans)
```
mrrTest

Default S3 method:
mrrTest(x, y = NULL, m = NULL, ...)

S3 method for class 'formula'
mrrTest(formula, data, subset, na.action, ...)

Arguments

- **x**: numeric vector of data values. Non-finite (e.g., infinite or missing) values will be omitted.
- **...**: further arguments to be passed to or from methods.
- **y**: an optional numeric vector of data values: as with x non-finite values will be omitted.
- **m**: numeric, optional integer number, whereas \(n = km \) needs to be full filled.
- **formula**: a formula of the form \(\text{response} \sim \text{group} \) where \(\text{response} \) gives the data values and \(\text{group} \) a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

Let \(X_i \) and \(Y_i \), \(i \leq n \) denote continuous variables that were observed on the same \(i \)th test item (e.g. patient) with \(i = 1, \ldots n \). Let

\[
U_i = X_i + Y_i \quad V_i = X_i - Y_i
\]

Let \(U(i) \) be the \(i \)th order statistic, \(U(1) \leq U(2) \leq \ldots U(n) \) and \(k \) the number of clusters, with the condition:

\[
n = km.
\]

Further, let the divider denote \(d_0 = -\infty \), \(d_k = \infty \), and else

\[
d_j = \frac{U(jm) + U(jm+1)}{2}, \quad 1 \leq j \leq k - 1
\]

The two counts are

\[
n^+_j = \begin{cases}
1 & \text{if } d_{j-1} < u_i < d_j \text{, } v_i > 0 \\
0 & \text{otherwise}
\end{cases}
\]

and

\[
n^-_j = \begin{cases}
1 & \text{if } d_{j-1} < u_i < d_j \text{, } v_i \leq 0 \\
0 & \text{otherwise}
\end{cases}
\]
The test statistic is

\[M = \sum_{j=1}^{k} \left(\frac{n_j^+ - n_j^-}{m} \right)^2 \]

The exact p-values for \(5 \leq n \leq 30 \) are taken from an internal look-up table. The exact p-values were taken from Table 7, Appendix B of Madhava Rao and Raghunath (2016).

If \(m = \text{NULL} \) the function uses \(n = m \) for all prime numbers, otherwise it tries to find an value for \(m \) in such a way, that for \(k = n/m \) all variables are integer.

Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Note

The function returns an error code if a value for \(m \) is provided that does not lead to an integer of the ratio \(k = n/m \).

The function also returns an error code, if a tabulated value for given \(n, m \) and calculated \(M \) can not be found in the look-up table.

References

Examples

```r
## Madhava Rao and Raghunath (2016), p. 151
## Inulin clearance of living donors
## and recipients of their kidneys
x <- c(61.4, 63.3, 63.7, 80.0, 77.3, 84.0, 105.0)
y <- c(70.8, 89.2, 65.8, 67.1, 87.3, 85.1, 88.1)
mrrTest(x, y)

## formula method
## Student’s Sleep Data
mrrTest(extra ~ group, data = sleep)
```
Extended One-Sided Studentised Range Test

Description
Performing Nashimoto-Wright's extended one-sided studentised range test against an ordered alternative for normal data with equal variances.

Usage
MTest(x, ...) # Default S3 method:
MTest(x, g, alternative = c("greater", "less"), ...)

S3 method for class 'formula'
MTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 ...
)

S3 method for class 'aov'
MTest(x, alternative = c("greater", "less"), ...)

Arguments
- x a numeric vector of data values, or a list of numeric data vectors.
- ... further arguments to be passed to or from methods.
- g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- alternative the alternative hypothesis. Defaults to greater.
- formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- data an optional matrix or data frame (or similar; see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- subset an optional vector specifying a subset of observations to be used.
- na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
Details

The procedure uses the property of a simple order, θ_m' - μ_m ≤ μ_j - μ_i ≤ μ_l' - μ_l (l ≤ i ≤ m and m' ≤ j ≤ l'). The null hypothesis H_ij : μ_i = μ_j is tested against the alternative A_ij : μ_i < μ_j for any 1 ≤ i < j ≤ k.

The all-pairs comparisons test statistics for a balanced design are

\[\hat{h}_{ij} = \max_{i \leq m < m' \leq j} \frac{(\bar{x}_{m'} - \bar{x}_m)}{s_{\text{in}}/\sqrt{n}}, \]

with \(n = n_i; \ N = \sum_{i=1}^{k} n_i \) (1 ≤ i ≤ k), \(\bar{x}_i \) the arithmetic mean of the i-th group, and \(s_{\text{in}}^2 \) the within ANOVA variance. The null hypothesis is rejected, if \(\hat{h} > h_{k,\alpha,v} \), with \(v = N - k \) degree of freedom.

For the unbalanced case with moderate imbalance the test statistic is

\[\hat{h}_{ij} = \max_{i \leq m < m' \leq j} \frac{(\bar{x}_{m'} - \bar{x}_m)}{s_{\text{in}} (1/n_m + 1/n_{m'})^{1/2}}, \]

The null hypothesis is rejected, if \(\hat{h}_{ij} > h_{k,\alpha,v}/\sqrt{2} \).

The function does not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for \(\alpha = 0.05 \) (one-sided) are looked up according to the number of groups (k) and the degree of freedoms (v).

Value

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated statistic(s)
- **crit.value** critical values for \(\alpha = 0.05 \).
- **alternative** a character string describing the alternative hypothesis.
- **parameter** the parameter(s) of the test distribution.
- **dist** a string that denotes the test distribution.

There are print and summary methods available.

Note

The function will give a warning for the unbalanced case and returns the critical value \(h_{k,\alpha,\infty}/\sqrt{2} \).

References

normalScoresAllPairsTest

Lu-Smith All-Pairs Comparison Normal Scores Test

Description

Performs Lu-Smith all-pairs comparison normal scores test.

Usage

normalScoresAllPairsTest(x, ...)

Default S3 method:
normalScoresAllPairsTest(
 x,
 g,
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

S3 method for class 'formula'
normalScoresAllPairsTest(
 formula,
 data,
 subset,
 na.action,
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
 further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
normalScoresAllPairsTest

p.adjust.method
method for adjusting p values (see p.adjust).

formula
a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data
an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset
an optional vector specifying a subset of observations to be used.

na.action
a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details
For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Lu and Smith’s normal scores transformation can be used prior to an all-pairs comparison test. A total of \(m = k(k - 1)/2\) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x)\) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j\). For p.adjust.method = "single-step" the Tukey’s studentized range distribution is used to calculate p-values (see Tukey). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by p.adjust.

Value
A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

References

See Also
normalScoresTest, normalScoresManyOneTest, normOrder.
normalScoresManyOneTest

Lu-Smith Many-One Comparisons Normal Scores Test

Description

Performs Lu-Smith multiple comparison normal scores test with one control.

Usage

normalScoresManyOneTest(x, ...)

Default S3 method:
normalScoresManyOneTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

S3 method for class 'formula'
normalScoresManyOneTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x".
Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to two.sided.
p.adjust.method method for adjusting p values (see p.adjust).

formula a formula of the form response ~ group where response gives the data values
and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons in an one-factorial layout with non-normally distributed residuals Lu and Smith’s normal scores transformation can be used prior to a many-to-one comparison test. A total of \(m = k - 1 \) hypotheses can be tested. The null hypothesis \(H_i : F_0(x) = F_i(x) \) is tested in the two-tailed test against the alternative \(A_i : F_0(x) \neq F_i(x), \ 1 \leq i \leq k - 1 \). For \(\text{p.adjust.method = "single-step"} \) the multivariate t distribution is used to calculate p-values (see \text{pmvt}). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by \text{p.adjust}.

Value

A list with class "PMCMR" containing the following components:

- \text{method} a character string indicating what type of test was performed.
- \text{data.name} a character string giving the name(s) of the data.
- \text{statistic} lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- \text{p.value} lower-triangle matrix of the p-values for the pairwise tests.
- \text{alternative} a character string describing the alternative hypothesis.
- \text{p.adjust.method} a character string describing the method for p-value adjustment.
- \text{model} a data frame of the input data.
- \text{dist} a string that denotes the test distribution.

Note

Factor labels for \(g \) must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., \(k \) or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see \text{order, factor}).

References

See Also

\text{normalScoresTest, normalScoresAllPairsTest, normOrder, pmvt}.
Examples

```r
## Data set PlantGrowth
## Global test
normalScoresTest(weight ~ group, data = PlantGrowth)

## Lu-Smith's many-one comparison test
ans <- normalScoresManyOneTest(weight ~ group, data = PlantGrowth, p.adjust.method = "holm")
summary(ans)
```

normalScoresTest

Lu-Smith Normal Scores Test

Description

Performs the Lu-Smith normal score test

Usage

```r
normalScoresTest(x, ...)
## Default S3 method:
normalScoresTest(x, g, ...)
## S3 method for class 'formula'
normalScoresTest(formula, data, subset, na.action, ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For one-factorial designs with non-normally distributed residuals the Lu-Smith normal score test can be performed to test the $H_0 : F_1(x) = F_2(x) = \ldots = F_k(x)$ against the $H_A : F_i(x) \neq F_j(x) \ (i \neq j)$ with at least one strict inequality. This function is basically a wrapper function to `pNormScore` of the package `SuppDists`.
Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

References

See Also

`vanWaerdenTest, kruskalTest, pNormScore`

Examples

```r
normalScoresTest(count ~ spray, data = InsectSprays)
```

NPMTest

All-Pairs Comparisons for Simply Ordered Mean Ranksums

Description

Performs Nashimoto and Wright’s all-pairs comparison procedure for simply ordered mean ranksums.

Usage

```r
NPMTest(x, ...)  
```

Default S3 method:

```r
defaultMethod <- function(x, g, alternative = c("greater", "less"), method = c("look-up", "boot", "asympt"), nperm = 10000, ...)
NPMTest(  
  x,  
  g,  
  alternative = c("greater", "less"),  
  method = c("look-up", "boot", "asympt"),  
  nperm = 10000,  
  ...
)
```
S3 method for class 'formula'
NPMTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 method = c("look-up", "boot", "asympt"),
 nperm = 10000,
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x".

alternative the alternative hypothesis. Defaults to greater.

method a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values of Williams (1972).

nperm number of permutations for the asymptotic permutation test. Defaults to 1000. Ignored, if method = "look-up".

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

The procedure uses the property of a simple order, \(\theta'_m - \theta'_m \leq \theta'_j - \theta'_i \leq \theta'_l - \theta'_l \) \((l \leq i \leq m \text{ and } m' \leq j \leq l')\). The null hypothesis \(H_{ij} : \theta_i = \theta_j \) is tested against the alternative \(A_{ij} : \theta_i < \theta_j \) for any \(1 \leq i < j \leq k \).

The all-pairs comparisons test statistics for a balanced design are

\[
\hat{h}_{ij} = \max_{i \leq m < m' \leq j} \frac{\hat{R}_{m'} - \hat{R}_m}{\sigma_a/\sqrt{n}},
\]

with \(n = n_i; N = \sum_i n_i \) \((1 \leq i \leq k)\), \(\hat{R}_i \) the mean rank for the \(i \)th group, and \(\sigma_a = \sqrt{N (N + 1) / 12} \). The null hypothesis is rejected, if \(h_{ij} > h_{k,\alpha,\infty} \).
For the unbalanced case with moderate imbalance the test statistic is

\[\hat{h}_{ij} = \max_{i \leq m < m' \leq j} \frac{(\bar{R}_{m'} - \bar{R}_m)}{\sigma_a (1/n_m + 1/n_{m'})^{1/2}}. \]

The null hypothesis is rejected, if \(\hat{h}_{ij} > h_{k, \alpha, \infty} / \sqrt{2} \).

If method = "look-up" the function will not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for \(\alpha = 0.05 \) (one-sided) are looked up according to the number of groups (\(k \)) and the degree of freedoms (\(v = \infty \)).

If method = "boot" an asymmetric permutation test is conducted and p-values is returned.

If method = "asympt" is selected the asymptotic p-value is estimated as implemented in the function pHayStonLSA of the package NSM3.

Value

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated statistic(s)
- crit.value critical values for \(\alpha = 0.05 \).
- alternative a character string describing the alternative hypothesis.
- parameter the parameter(s) of the test distribution.
- dist a string that denotes the test distribution.

There are print and summary methods available.

Either a list of class "PMCMR" or a list with class "osrt" that contains the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated statistic(s)
- crit.value critical values for \(\alpha = 0.05 \).
- alternative a character string describing the alternative hypothesis.
- parameter the parameter(s) of the test distribution.
- dist a string that denotes the test distribution.

There are print and summary methods available.

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.
Note

The function will give a warning for the unbalanced case and returns the critical value $h_{k,\alpha,\infty}/\sqrt{2}$.

Source

If `method = "asympt"` is selected, this function calls an internal probability function `pHS`. The GPL-2 code for this function was taken from `pHayStonLSA` of the package `NSM3`:

References

See Also

`MTest`

Examples

```r
## Example from Shirley (1977)
## Reaction times of mice to stimuli to their tails.
x <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3, 2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8, 7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 3.4, 9, 8.4, 2.4, 7.8)
g <- gl(4, 10)

## Shirley's test
## one-sided test using look-up table
shirleyWilliamsTest(x ~ g, alternative = "greater")

## Chacko's global hypothesis test for 'greater'
chackoTest(x, g)

## post-hoc test, default is standard normal distribution (NPT'-test)
summary(chAllParsNashimotoTest(x, g, p.adjust.method = "none"))

## same but h-distribution (NPY'-test)
chAllParsNashimotoTest(x, g, dist = "h")

## NPM-test
NPMTest(x, g)

## Hayter-Stone test
hayterStoneTest(x, g)
```
osrtTest

all-pairs comparisons
hsAllPairsTest(x, g)

osrtTest

One-Sided Studentized Range Test

Description

Performs Hayter's one-sided studentized range test against an ordered alternative for normal data with equal variances.

Usage

```r
osrtTest(x, ...)
```

Default S3 method:

```r
osrtTest(x, g, alternative = c("greater", "less"), ...)
```

S3 method for class 'formula'

```r
osrtTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("greater", "less"),
  ...
)
```

S3 method for class 'aov'

```r
osrtTest(x, alternative = c("greater", "less"), ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative` the alternative hypothesis. Defaults to greater.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.
Details

Hayter’s one-sided studentized range test (OSRT) can be used for testing several treatment levels with a zero control in a balanced one-factorial design with normally distributed variables that have a common variance. The null hypothesis, H: \(\mu_i = \mu_j \) \((i < j)\) is tested against a simple order alternative, A: \(\mu_i < \mu_j \), with at least one inequality being strict.

The test statistic is calculated as,

\[
\hat{h} = \max_{1 \leq i < j \leq k} \left(\bar{x}_j - \bar{x}_i \right) \frac{s_{in}}{\sqrt{n}},
\]

with \(k \) the number of groups, \(n = n_1, n_2, \ldots, n_k \) and \(s_{in}^2 \) the within ANOVA variance. The null hypothesis is rejected, if \(\hat{h} > h_{k,\alpha,v} \), with \(v = N - k \) degree of freedom.

For the unbalanced case with moderate imbalance the test statistic is

\[
\hat{h} = \max_{1 \leq i < j \leq k} \frac{\left(\bar{x}_j - \bar{x}_i \right)}{s_{in} \sqrt{1/n_j + 1/n_i}},
\]

The function does not return p-values. Instead the critical h-values as given in the tables of Hayter (1990) for \(\alpha = 0.05 \) (one-sided) are looked up according to the number of groups \((k) \) and the degree of freedoms \((v) \). Non tabulated values are linearly interpolated with the function approx.

Value

A list with class "osrt" that contains the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated statistic(s)
- crit.value critical values for \(\alpha = 0.05 \).
- alternative a character string describing the alternative hypothesis.
- parameter the parameter(s) of the test distribution.
- dist a string that denotes the test distribution.

There are print and summary methods available.

Note

Hayter (1990) has tabulated critical h-values for balanced designs only. For some unbalanced designs some \(k = 3 \) critical h-values can be found in Hayter et al. 2001. The function will give a warning for the unbalanced case and returns the critical value \(h_{k,\alpha,v}/\sqrt{2} \).

References

Computes Page's ordered aligned rank sum test.

Usage

```r
pageTest(y, ...)  
```

Arguments

- **y**: A numeric vector of data values, or a list of numeric data vectors.
- **groups**: A vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: A vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: The alternative hypothesis. Defaults to `two.sided`.
- **...**: Further arguments to be passed to or from methods.
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References

See Also

- `friedmanTest`

Examples

```r
## 9 reviewers (blocks)
## assigned ranks to 4 objects (groups).
data(reviewers)
pageTest(reviewers, alternative = "greater")
```

Pentosan Dataset

Description

A benchmark dataset of an interlaboratory study for determining the precision of a test method on several levels of the material Pentosan.

Format

A data frame with 189 obs. of 3 variables:

- **value** numeric, test result (no unit specified)
- **lab** factor, identifier of the lab (1–7)
- **material** factor, identifier of the level of the material (A–I)
plot.mandel

Source

Tab. 8, Practice E 691, 2005, Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method, ASTM International.

plot.mandel

Plotting mandel Objects

Description

Plotting method for objects inheriting from class "mandel".

Usage

S3 method for class 'mandel'
plot(x, alpha = 0.005, ...)

Arguments

x
an object with class "mandel".

alpha
level of significance. Defaults to 0.005.

... further arguments, currently ignored.

See Also
demo(Pentosan)

Examples

##
Not run:
data(Pentosan)
md <- mandelkTest(value ~ lab, Pentosan, subset = (material == "B"))
plot(md)

End(Not run)
plot.PMCMR

Plotting PMCMR Objects

Description

Plotting method for objects inheriting from class "PMCMR".

Usage

S3 method for class 'PMCMR'
plot(x, alpha = 0.05, ...)

Arguments

x
an object of class "PMCMR".

alpha
the selected alpha-level. Defaults to 0.05.

...
进一步的参数，用于方法 boxplot。

Value

A box-whisker plot for each factor level. The range of the whiskers indicate the extremes (boxplot = x, ..., range=0). Letter symbols are depicted on top of each box. Different letters indicate significant differences between groups on the selected level of alpha.

See Also

boxplot

Examples

data set InsectSprays
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
plot(ans)
plot(ans, col="red", main="My title", xlab="Spray", "Count")

power.dunnett.test

Power Calculations for Balanced Dunnett's Many-to-One Comparison Test

Description

Compute average per-pair power of Dunnetts’s multiple comparison test with one control.

Usage

power.dunnett.test(n, groups, delta, within.var, sig.level = 0.05)
power.dunnett.test

Arguments

- `n` Number of observations (per group)
- `groups` Number of groups (including control)
- `delta` true difference in means
- `within.var` Within group variance
- `sig.level` Significance level (Type I error probability)

Details

The function has implemented the following Eq. to estimate average per-pair power for two-sided tests:

\[1 - \beta = 1 - t(T_{\alpha \rho v}, v, ncp) + t(-T_{\alpha \rho v}, v, ncp), \]

with \(T_{\alpha \rho v} \) the two-sided \(\alpha \) quantile of the multivariate t-distribution, with \(v = k(n - 1) \) degree of freedom, \(k \) the number of groups and correlation matrix \(\rho_{ij} = 0.5 \) \((i \neq j)\).

The non-centrality parameter for the non-central student t-distribution is

\[ncp = |\Delta|/\sqrt{s^2_n 2/n}. \]

Value

Object of class `power.htest`, a list of the arguments (including the computed one) augmented with method and note elements.

Note

The results for power are seed depending.

Source

The Eqs. were taken from Lecture 5, *Determining Sample Size*, Statistics 514, Fall 2015, Purdue University, IN, USA.

See Also

`TDist qmvt powerMCTests`

Examples

```r
set.seed(113)
power.dunnett.test(n = 9, groups = 5, delta = 30,
                   within.var = 333.7)
```

```r
## compare with t-test, bonferroni corrected
power.t.test(n = 9, delta = 30, sd = sqrt(333.7),
             sig.level = 0.05 / 4)
```
Not run:
asymptotic Monte-Carlo power analysis
set.seed(113)
powerMCTests(mu = c(rep(0,4), 30), n = 9,
parms = list(mean = 0, sd = sqrt(333.7)),
test = "dunnettTest", alternative = "two.sided")
End(Not run)

power.tukey.test

Power Calculations for Balanced Tukey’s Multiple Comparison Test

Description
Compute average per-pair power of Tukey’s test for multiple comparison of means.

Usage
power.tukey.test(n, groups, delta, within.var, sig.level = 0.05)

Arguments

- **n**: number of observations (per group)
- **groups**: number of groups
- **delta**: true difference in means
- **within.var**: within group variance
- **sig.level**: significance level (Type I error probability)

Details
The function has implemented the following Eq. to estimate average per-pair power for two-sided tests:

\[1 - \beta = 1 - t(q_{\alpha k}/\sqrt{2}, v, \text{ncp}) + t(-q_{\alpha k}/\sqrt{2}, v, \text{ncp}), \]

with \(q_{\alpha k} \) the upper \(\alpha \) quantile of the studentised range distribution, with \(v = k(n - 1) \) degree of freedom and \(k \) the number of groups; and \(t(. \text{ncp}) \) the probability function of the non-central student t-distribution with non-centrality parameter

\[
\text{ncp} = |\Delta|/\sqrt{s^2/n}.
\]

Value
Object of class ‘power.htest’, a list of the arguments (including the computed one) augmented with method and note elements.
power.williams.test

Source
The Eqs. were taken from Lecture 5, Determining Sample Size, Statistics 514, Fall 2015, Purdue University, IN, USA.

See Also
TDist Tukey powerMCTests

Examples
power.tukey.test(n = 11, groups = 5, delta = 30, within.var = 333.7)

compare with t-test, Bonferroni-correction
power.t.test(n = 11, delta = 30, sd = sqrt(333.7), sig.level = 0.05 / 10)

Not run:
powerMCTests(mu = c(rep(0,4), 30), n = 11, parms = list(mean = 0, sd = sqrt(333.7)), test = "tukeyTest")

End(Not run)

power.williams.test Power calculations for minimum detectable difference of the Williams’ test

Description
Compute the power of a Williams’ test, or determine parameters to obtain a target power.

Usage
power.williams.test(n = NULL, k, delta, sd = 1, power = NULL, ...)

Arguments
- `n` number of observations (per group).
- `k` number of treatment groups.
- `delta` clinically meaningful minimal difference (between a treatment group and control).
- `sd` common standard deviation.
- `power` power of test (1 minus Type II error probability).
- `...` further arguments, currently ignored.
Details

Exactly one of the parameters \(n \) or \(\text{power} \) must be passed as \text{NULL}, and that parameter is determined from the others.

The function has implemented the following Eq. in order to estimate power (Chow et al. 2008):

\[
1 - \beta = 1 - \Phi \left(T_{K_{av}} - |\Delta|/\sigma \sqrt{2/n} \right)
\]

with \(|\Delta| \) the clinically meaningful minimal difference, \(T_{K_{av}} \) the critical Williams’ t-statistic for \(\alpha = 0.05, v = \infty \) degree of freedom and \(\Phi \) the probability function of the standard normal function.

The required sample size (balanced design) is estimated based on the expression as given by the PASS manual, p. 595-2:

\[
n = 2\sigma^2 \left(T_{K_{av}} + z_\beta \right)^2 / \Delta^2
\]

Value

Object of class ‘\text{power.h.test}’, a list of the arguments (including the computed one) augmented with method and note elements.

Note

The current function calculates power for \(\text{sig.level} = 0.05 \) significance level (Type I error probability) only (one-sided test).

References

See Also

\text{optimise williamsTest}

Examples

```r
## Chow et al. 2008, p. 288 depicts 53 (rounded),
## better use ceiling for rounding
power.williams.test(power = 0.8, k = 3, delta = 11, sd = 22)
power.williams.test(n = 54, k = 3, delta = 11, sd = 22)

## PASS manual example:
## up-rounded n values are:
## 116, 52, 29, 14, 8 and 5
## according to PASS manual, p. 595-5
D <- c(10, 15, 20, 30, 40, 50)
y <- sapply(D, function(delta) {
  power.williams.test(power = 0.9, k = 4, delta = delta, sd = 25)$n
})
ceiling(y)
```
Not run:
compare with power.t.test
and bonferroni correction
power.t.test(power = 0.9, delta = 50, sd = 25, sig.level = 0.05 / 4, alternative = "one.sided")
End(Not run)

powerMCTests

Power Simulation for One-Factorial All-Pairs and Many-To-One Comparison Tests

Description

Performs power simulation for one-factorial all-pairs and Many-To-One comparison tests.

Usage

```r
powerMCTests(
  mu,
  n = 10,
  errfn = c("Normal", "Lognormal", "Exponential", "Chisquare", "TDist", "Cauchy", "Weibull"),
  parms = list(mean = 0, sd = 1),
  test = c("kwManyOneConoverTest", "kwManyOneDunnTest", "kwManyOneNdwTest", "vanWaerdenManyOneTest", "normalScoresManyOneTest", "dunnettTTest", "tamhaneDunnettTest", "ManyOneUTest", "chenTest", "kwAllPairsNemenyiTest", "kwAllPairsDunnTest", "kwAllPairsConoverTest", "normalScoresAllPairsTest", "vanWaerdenAllPairsTest", "dscfAllPairsTest", "gamesHowellTest", "lsdTest", "scheffeTest", "tamhaneT2Test", "tukeyTest", "dunnettT3Test", "pairwise.t.test", "pairwise.wilcox.test", "adManyOneTest", "adAllPairsTest", "bwsManyOneTest", "bwsAllPairsTest", "welchManyOneTTest"),
  alternative = c("two.sided", "greater", "less"),
  p.adjust.method = c("single-step", p.adjust.methods),
  alpha = 0.05,
  FWER = TRUE,
  replicates = 1000
)
```

Arguments

- `mu` numeric vector of group means.
- `n` number of replicates per group. If `n` is a scalar, then a balanced design is assumed. Otherwise, `n` must be a vector of same length as `mu`.
errfn

the error function. Defaults to "Normal".

parms

a list that denotes the arguments for the error function. Defaults to list(mean=0, sd=1).

test

the multiple comparison test for which the power analysis is to be performed. Defaults to "kwManyOneConoverTest".

alternative

the alternative hypothesis. Defaults to "two.sided", ignored if the selected error function does not use this argument.

p.adjust.method

method for adjusting p values (see p.adjust).

alpha

the nominal level of Type I Error.

FWER

logical, indicates whether the family-wise error should be computed. Defaults to TRUE.

replicates

the number of Monte Carlo replicates or runs. Defaults to 1000.

details

The linear model of a one-way ANOVA can be written as:

\[X_{ij} = \mu_i + \epsilon_{ij} \]

For each Monte Carlo run, the function simulates \(\epsilon_{ij} \) based on the given error function and the corresponding parameters. Then the specified all-pairs or many-to-one comparison test is performed. Finally, several effect sizes (Cohen’s f and R-squared), error rates (per comparison error rate, false discovery rate and familywise error rate) and test powers (any-pair power, average per-pair power and all-pairs power) are calculated.

value

An object with class powerPMCMR.

datasets

Examples

```r
## Not run:
mu <- c(0, 0, 1, 2)
n <- c(5, 4, 5, 5)
set.seed(100)
powerMCTests(mu, n, errfn="Normal",
          parms=list(mean=0, sd=1),
          test="dunnettTest", replicates=1E4)
powerMCTests(mu, n, errfn="Normal",
          parms=list(mean=0, sd=1),
          test="kwManyOneDunnTest", p.adjust.method = "bonferroni",
          replicates=1E4)

## End(Not run)
```
powerOneWayTests

Description

Performs power simulation for one-factorial single hypothesis tests.

Usage

powerOneWayTests(
 mu,
 n = 10,
 errfn = c("Normal", "Lognormal", "Exponential", "Chisquare", "TDist", "Cauchy", "Weibull"),
 parms = list(mean = 0, sd = 1),
 test = c("kruskalTest", "leTest", "vanWaerdenTest", "normalScoresTest", "spearmanTest", "cuzickTest", "jonckheereTest", "johnsonTest", "oneway.test", "adKSampleTest", "bwsKSampTest", "bwsTrendTest", "mackWolfeTest", "chackoTest", "flignerWolfeTest"),
 alternative = c("two.sided", "greater", "less"),
 var.equal = TRUE,
 dist = NULL,
 alpha = 0.05,
 FWER = TRUE,
 replicates = 1000,
 p = NULL
)

Arguments

mu numeric vector of group means.

n number of replicates per group. If n is a scalar, then a balanced design is assumed. Otherwise, n must be a vector of same length as mu.

errfn the error function. Defaults to "Normal".

parms a list that denotes the arguments for the error function. Defaults to list(mean=0, sd=1).

test the test for which the power analysis is to be performed. Defaults to "kwManyOneConoverTest".

alternative the alternative hypothesis. Defaults to "two.sided", ignored if the selected error function does not use this argument.

var.equal a logical variable indicating whether to treat the variances in the samples as equal. "TRUE", then a simple F test for the equality of means in a one-way analysis of variance is performed. If "FALSE", an approximate method of Welch (1951) is used, which generalizes the commonly known 2-sample Welch test to the case of arbitrarily many samples. Defaults to "TRUE"; only relevant, if test = "oneway.test", otherwise ignored.

dist the test distribution. Only relevant for kruskalTest. Defaults's to NULL.
alpha the nominal level of Type I Error.
FWER logical, indicates whether the family-wise error should be computed. Defaults to TRUE.
replicates the number of Monte Carlo replicates or runs. Defaults to 1000.
p the a-priori known peak as an ordinal number of the treatment group including the zero dose level, i.e. \(p = \{1, \ldots, k\} \). Defaults to NULL. Only relevant, if "mackWolfeTest" is selected.

Details
The linear model of a one-way ANOVA can be written as:

\[X_{ij} = \mu_i + \epsilon_{ij} \]

For each Monte Carlo run, the function simulates \(\epsilon_{ij} \) based on the given error function and the corresponding parameters. Then the specified test is performed. Finally, Type I and Type II error rates are calculated.

Value
An object with class `powerOneWayPMCMR`.

See Also
`powerMCTests`, `pwr.anova.test`, `power.anova.test`

Examples
```r
## Not run:
set.seed(12)
mu <- c(0, 0, 1, 2)
n <- c(5, 4, 5, 5)
parms <- list(mean=0, sd=1)
powerOneWayTests(mu, n, parms, test = "cuzickTest",
alternative = "two.sided", replicates = 1E4)

## Compare power estimation for one-way ANOVA with balanced design
## as given by functions
## pwr.anova.test, pwr.anova.test
## and powerOneWayTest
groupmeans <- c(120, 130, 140, 150)
SEsq <- 500  # within-variance
n <- 10
k <- length(groupmeans)
df <- n * k - k
SSQ.E <- SEsq * df
SSQ.A <- n * var(groupmeans) * (k - 1)
sd.errfn <- sqrt(SSQ.E / (n * k - 1))
```
R2 <- c("R-squared" = SSQ.A / (SSQ.A + SSQ.E))
cohensf <- sqrt(R2 / (1 - R2))
names(cohensf) <- "Cohens f"

R stats power function
power.anova.test(groups = k,
 between.var = var(groupmeans),
 within.var = S5Esq,
 n = n)

pwr power function
pwr.anova.test(k = k, n = n, f = cohensf, sig.level=0.05)

this Monte-Carlo based estimation
set.seed(200)
powerOneWayTests(mu = groupmeans,
 n = n,
 parms = list(mean=0, sd=sd.errfn),
 test = "oneway.test",
 var.equal = TRUE,
 replicates = 5E3)

Compare with effect sizes
R2
cohensf

End(Not run)

print.gesdTest

Description

print.gesdTest is the gesdTest method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'gesdTest'
print(x, ...)

Arguments

x an object used to select a method.
...	further arguments. Currently ignored.
print.mandel

Mandel Printing

Description

print.mandel is the mandel method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'mandel'
print(x, ...)

Arguments

x: an object used to select a method.

...: further arguments. Currently ignored.

See Also

mandelhTest, mandelkTest

print.osrt
osrt Printing

Description

print.osrt is the osrt method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'osrt'
print(x, ...)

Arguments

x: an object used to select a method.

...: further arguments. Currently ignored.

See Also

summary.osrt
Description

`print.PMCMR` is the `PMCMR` method of the generic `print` function which prints its argument and returns it *invisibly* (via `invisible(x)`).

Usage

```r
## S3 method for class 'PMCMR'
print(x, ...)
```

Arguments

- `x` an object used to select a method.
- `...` further arguments. Currently ignored.

Description

`print.powerOneWayPMCMR` is the `powerOneWayPMCMR` method of the generic `print` function which prints its argument and returns it *invisibly* (via `invisible(x)`).

Usage

```r
## S3 method for class 'powerOneWayPMCMR'
print(x, ...)
```

Arguments

- `x` an object used to select a method.
- `...` further arguments. Currently ignored.
print.powerPMCMR
PowerPMCMR Printing

Description

print.powerPMCMR is the powerPMCMR method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'powerPMCMR'
print(x, ...)

Arguments

x an object used to select a method.
...

further arguments. Currently ignored.

See Also

powerMCTests, powerOneWayTests

print.trendPMCMR
trendPMCMR Printing

Description

print.trendPMCMR is the trendPMCMR method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'trendPMCMR'
print(x, ...)

Arguments

x an object used to select a method.
...

further arguments. Currently ignored.
qDunnett

Dunnett Distribution

Description

Distribution function and quantile function for the distribution of Dunnett’s many-to-one comparisons test.

Usage

- `qDunnett(p, n0, n)`
- `pDunnett(q, n0, n, lower.tail = TRUE)`

Arguments

- `p`: vector of probabilities.
- `n0`: sample size for control group.
- `n`: vector of sample sizes for treatment groups.
- `q`: vector of quantiles.
- `lower.tail`: logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.

Details

Dunnett’s distribution is a special case of the multivariate t distribution. Let the total sample size be $N = n_0 + \sum_{i}^{m} n_i$, with m the number of treatment groups, than the quantile $T_{mv,\rho_{ij}}$ is calculated with $v = N - k$ degree of freedom and the correlation ρ

$$\rho_{ij} = \sqrt{\frac{n_i n_j}{(n_i + n_0)(n_j + n_0)}} \ (i \neq j).$$

The functions determines m via the length of the input vector n.

Quantiles and p-values are computed with the functions of the package *mvtnorm*.

Value

`pDunnett` gives the distribution function and `qDunnett` gives its inverse, the quantile function.

Note

The results are seed depending.

See Also

`qmvtnorm`, `pmvt`, `dunnettTest`
Examples

```r
## Table gives 2.34 for df = 6, m = 2, one-sided
set.seed(112)
qval <- qDunnett(p = 0.05, n0 = 3, n = rep(3,2))
round(qval, 2)
set.seed(112)
pDunnett(qval, n0=3, n = rep(3,2), lower.tail = FALSE)

## Table gives 2.65 for df = 20, m = 4, two-sided
set.seed(112)
qval <- qDunnett(p = 0.05/2, n0 = 5, n = rep(5,4))
round(qval, 2)
set.seed(112)
2 * pDunnett(qval, n0= 5, n = rep(5,4), lower.tail= FALSE)
```

qPCR

qPCR Curve Analysis Methods

Description

The data set contains 4 classifiers (blocks), i.e. bias, linearity, precision and resolution, for 11 different qPCR analysis methods. The null hypothesis is that there is no preferred ranking of the method results per gene for the performance parameters analyzed. The rank scores were obtained by averaging results across a large set of 69 genes in a biomarker data file.

Format

A data frame with 4 observations on the following 11 variables.

- **Cy0** a numeric vector
- **LinRegPCR** a numeric vector
- **Standard_Cq** a numeric vector
- **PCR_Miner** a numeric vector
- **MAK2** a numeric vector
- **LRE_E100** a numeric vector
- **5PSM** a numeric vector
- **DART** a numeric vector
- **FPLM** a numeric vector
- **LRE_Emax** a numeric vector
- **FPK_PCR** a numeric vector

Source

Data were taken from Table 2 of Ruijter et al. (2013, p. 38). See also Eisinga et al. (2017, pp. 14–15).
References

quadeAllPairsTest

All-Pairs Comparisons for Unreplicated Blocked Data (Quade’s All-Pairs Test)

Description

Performs Quade multiple-comparison test for unreplicated blocked data.

Usage

```
quadeAllPairsTest(y, ...)  
```  

```
## Default S3 method:  
quadeAllPairsTest(  
  y,  
  groups,  
  blocks,  
  dist = c("TDist", "Normal"),  
  p.adjust.method = p.adjust.methods,  
  ...  
)
```

Arguments

- `y` a numeric vector of data values, or a list of numeric data vectors.
- `groups` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks` a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `dist` the test distribution. Defaults to "TDist".
- `p.adjust.method` method for adjusting p values (see `p.adjust`).
- `...` further arguments to be passed to or from methods.
Details

For all-pairs comparisons of unreplicated blocked data Quade's test can be applied. A total of
\(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \theta_i = \theta_j \) is tested in the
two-tailed test against the alternative \(A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The function has included two methods for approximate p-value estimation:

TDist p-values are computed from the t distribution

Normal p-values are computed from the standard normal distribution

If no p-value adjustment is performed (p.adjust.method = "none"), than a simple protected test
is recommended, i.e. all-pairs comparisons should only be applied after a significant `quade.test`.
However, any method as implemented in `p.adjust.methods` can be selected by the user.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

ume 2: Let Subcommands and Library Functions. National Institute of Standards and Technology

D. Quade (1979), Using weighted rankings in the analysis of complete blocks with additive block

See Also

`quade.test, friedmanTest`

Examples

```r
## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
##
```
reviewers

y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92, 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45, 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72, 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23, 26.65), nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6]))
print(y)

Global test
quade.test(y)

All-pairs comparisons
quadeAllPairsTest(y, dist="TDist", p.adjust.method="holm")

Description

9 reviewers (blocks) assigned ranks to 4 objects (groups).

Format

The format is a 9 x 4 Matrix with Friedman type rankings:

rows reviewers, 1, 2, ..., 9

columns groups, A, B, ..., D

Source

References

Examples

data(reviewers)
friedmanTest(reviewers)
pagetTest(reviewers)
frdAllPairsExactTest(reviewers, p.adjust = "bonferroni")
scheffeTest

Scheffe’s Test

Description
Performs Scheffe’s all-pairs comparisons test for normally distributed data with equal group variances.

Usage
scheffeTest(x, ...)

Default S3 method:
scheffeTest(x, g, ...)

S3 method for class 'formula'
scheffeTest(formula, data, subset, na.action, ...)

S3 method for class 'aov'
scheffeTest(x, ...)

Arguments
x a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details
For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Scheffe’s test can be performed. Let X_{ij} denote a continuous random variable with the j-th realization ($1 \leq j \leq n_i$) in the i-th group ($1 \leq i \leq k$). Furthermore, the total sample size is $N = \sum_{i=1}^{k} n_i$. A total of $m = k(k - 1)/2$ hypotheses can be tested: The null hypothesis is $H_{ij} : \mu_i = \mu_j$ ($i \neq j$) is tested against the alternative $A_{ij} : \mu_i \neq \mu_j$ (two-tailed). Scheffe’s all-pairs test statistics are given by
\[t_{ij} = \frac{\bar{X}_i - \bar{X}_j}{s_{in} (\frac{1}{n_j} + \frac{1}{n_i})^{1/2}}, \quad (i \neq j) \]

with \(s_{in}^2 \) the within-group ANOVA variance. The null hypothesis is rejected if \(t_{ij}^2 > F_{v_1, v_2, \alpha} \), with \(v_1 = k-1 \), \(v_2 = N-k \) degree of freedom. The p-values are computed from the \texttt{FDist} distribution.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

\texttt{FDist, tukeyTest}

Examples

```r
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts)
anova(fit)
## also works with fitted objects of class aov
res <- scheffeTest(fit)
summary(res)
summaryGroup(res)
```
shanTest

Testing against Ordered Alternatives (Shan-Young-Kang Test)

Description
Performs the Shan-Young-Kang test for testing against ordered alternatives.

Usage
shanTest(x, ...)

Default S3 method:
shanTest(x, g, alternative = c("greater", "less"), ...)

S3 method for class 'formula'
shanTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "greater".

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details
The null hypothesis, \(H_0 : \theta_1 = \theta_2 = \ldots = \theta_k \) is tested against a simple order hypothesis, \(H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k \).
Let R_{ij} be the rank of X_{ij}, where X_{ij} is jointly ranked from $\{1, 2, \ldots, N\}$, $N = \sum_{i=1}^{k} n_i$, the the test statistic is

$$S = \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} D_{ij},$$

with

$$D_{ij} = \sum_{l=1}^{n_i} \sum_{m=1}^{n_j} (R_{jm} - R_{il}) I(X_{jm} > X_{il}),$$

where

$$I(u) = \begin{cases} 1, & \forall u > 0 \\ 0, & \forall u \leq 0 \end{cases}.$$

The test statistic is asymptotically normal distributed:

$$z = \frac{S - \mu_S}{\sqrt{s_S^2}}$$

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Note

The variance estimation (see Theorem 2.1, Shan et al. 2014) can become negative for certain combinations of N, n_i, k ($1 \leq i \leq k$). In these cases the function will return a warning and the returned p-value will be NaN.

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order, factor).
References

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
     110, 125, 143, 148, 151,
     136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)
```

Description

Performs Shirley’s nonparametric equivalent of William’s test for contrasting increasing dose levels of a treatment.

Usage

shirleyWilliamsTest(x, ...)

Default S3 method:
shirleyWilliamsTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 method = c("look-up", "boot"),
 nperm = 10000,
 ...
)

S3 method for class 'formula'
shirleyWilliamsTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 method = c("look-up", "boot"),
 nperm = 10000,
 ...
)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to two.sided

method a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values of Williams (1972).

nperm number of permutations for the asymptotic permutation test. Defaults to 1000. Ignored, if method = "look-up".

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset
an optional vector specifying a subset of observations to be used.
na.action
a function which indicates what should happen when the data contain NAs. De-
defaults to getOption("na.action").

Details
The Shirley-William test is a non-parametric step-down trend test for testing several treatment levels
with a zero control. Let there be \(k \) groups including the control and let the zero dose level be
indicated with \(i = 0 \) and the highest dose level with \(i = m \), then the following \(m = k - 1 \) hypotheses
are tested:

\[
\begin{align*}
H_m & : \theta_0 = \theta_1 = \ldots = \theta_m, \\
H_{m-1} & : \theta_0 = \theta_1 = \ldots = \theta_{m-1}, \\
\vdots & \\
H_1 & : \theta_0 = \theta_1, \\
A_m & = \theta_0 \leq \theta_1 \leq \ldots \theta_m, \theta_0 < \theta_m \\
A_{m-1} & = \theta_0 \leq \theta_1 \leq \ldots \theta_{m-1}, \theta_0 < \theta_{m-1} \\
\vdots & \\
A_1 & = \theta_0 < \theta_1
\end{align*}
\]

Let \(R_{ij} \) be the rank of \(X_{ij} \), where \(X_{ij} \) is jointly ranked from \(\{1, 2, \ldots, N\} \), \(N = \sum_{i=1}^{k} n_i \), then
the test statistic is

\[
t_i = \frac{\max_{1 \leq u \leq i} \left(\sum_{j=u}^{i} n_j \bar{R}_j / \sum_{j=u}^{i} n_j \right) - \bar{R}_0}{\sigma_{R_i} \sqrt{1/n_i + 1/n_0}},
\]

with expected variance of

\[
\sigma_{R_i}^2 = N_i (N_i + 1)/12 - T_i,
\]

where \(N_i = n_0 + n_1 + n_2 + \ldots + n_i \) and \(T_i \) the ties for the \(i \)-th comparison is given by

\[
T_i = \sum_{j=1}^{i} \frac{t_j^3 - t_j}{12(N_i - 1)}.
\]

The procedure starts from the highest dose level (\(m \)) to the the lowest dose level (1) and stops at the
first non-significant test. The consequent lowest effect dose is the treatment level of the previous
test number. This function has included the modifications as recommended by Williams (1986), i.e.
the data are re-ranked for each of the \(i \)-th comparison.

If method = "look-up" is selected, the function does not return p-values. Instead the critical \(t'_{i,v,\alpha} \-
values as given in the tables of Williams (1972) for \(\alpha = 0.05 \) (one-sided) are looked up according
to the degree of freedoms (\(v = \infty \)) and the order number of the dose level (\(i \)) and (potentially)
modified according to the given extrapolation coefficient \(\beta \).

Non tabulated values are linearly interpolated with the function approx.

For the comparison of the first dose level (\(i = 1 \)) with the control, the critical z-value from the
standard normal distribution is used (Normal).

If method = "boot", the p-values are estimated through an assymptotic boot-strap method. The
p-values for \(H_1 \) are calculated from the t distribution with infinite degree of freedom.
Value

Either a list with class "osrt" or a list with class "PMCMR".

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated statistic(s)
- **crit.value**: critical values for \(\alpha = 0.05 \).
- **alternative**: a character string describing the alternative hypothesis.
- **parameter**: the parameter(s) of the test distribution.
- **dist**: a string that denotes the test distribution.

There are print and summary methods available.
A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

Note

For `method = "look-up"`, only tests on the level of \(\alpha = 0.05 \) can be performed for alternative hypotheses less or greater.

For `method = "boot"` only the alternative "two.sided" can be calculated. One may increase the number of permutations to e.g. `nperm = 10000` in order to get more precise p-values. However, this will be on the expense of computational time.

References

See Also

`williamsTest`
Examples

Example from Shirley (1977)
Reaction times of mice to stimuli to their tails.
x <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3,
 2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8,
 7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 3.4,
 9, 8.4, 2.4, 7.8)
g <- gl(4, 10)

Shirley's test
one-sided test using look-up table
shirleyWilliamsTest(x ~ g, alternative = "greater")

Chacko's global hypothesis test for 'greater'
chackoTest(x, g)

post-hoc test, default is standard normal distribution (NPT'-test)
summary(chaAllPairsNashimotoTest(x, g, p.adjust.method = "none"))

same but h-distribution (NPY'-test)
chaAllPairsNashimotoTest(x, g, dist = "h")

NPM-test
NPMTest(x, g)

Hayter-Stone test
hayterStoneTest(x, g)

all-pairs comparisons
hsAllPairsTest(x, g)

siegelTukeyTest Siegel-Tukey Rank Dispersion Test

Description

Performs Siegel-Tukey non-parametric rank dispersion test.

Usage

siegelTukeyTest(x, ...)

Default S3 method:
siegelTukeyTest(
x,
y,
alternative = c("two.sided", "greater", "less"),
median.correction = FALSE,
...
S3 method for class 'formula'
siegelTukeyTest(formula, data, subset, na.action, ...)

Arguments

- **x, y**: numeric vectors of data values.
- **...**: further arguments to be passed to or from methods.
- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
- **median.correction**: logical indicator, whether median correction should be performed prior testing. Defaults to FALSE.
- **formula**: a formula of the form \(\text{response} \sim \text{group} \) where \(\text{response} \) gives the data values and \(\text{group} \) a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see \text{model.frame}) containing the variables in the formula \text{formula}. By default the variables are taken from \text{environment(formula)}.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain \text{NA}s. Defaults to \text{getOption("na.action")}.

Details

Let \(x \) and \(y \) denote two identically and independently distributed variables of at least ordinal scale. Further, let \(\theta \) and \(\lambda \) denote location and scale parameter of the common, but unknown distribution. Then for the two-tailed case, the null hypothesis \(H: \lambda_x / \lambda_y = 1 | \theta_x = \theta_y \) is tested against the alternative, \(A: \lambda_x / \lambda_y \neq 1 \).

The data are combinedly ranked according to Siegel-Tukey. The ranking is done by alternate extremes (rank 1 is lowest, 2 and 3 are the two highest, 4 and 5 are the two next lowest, etc.). If no ties are present, the p-values are computed from the Wilcoxon distribution (see \text{Wilcoxon}). In the case of ties, a tie correction is done according to Sachs (1997) and approximate p-values are computed from the standard normal distribution (see \text{Normal}).

If both medians differ, one can correct for medians to increase the specificity of the test.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.
Source

References

Examples

```r
## Sachs, 1997, p. 376
A <- c(10.1, 7.3, 12.6, 2.4, 6.1, 8.5, 8.8, 9.4, 10.1, 9.8)
B <- c(15.3, 3.6, 16.5, 2.9, 3.3, 4.2, 4.9, 7.3, 11.7, 13.7)
siegelTukeyTest(A, B)

## from example var.test
x <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)
siegelTukeyTest(x, y, median.corr = TRUE)

## directional hypothesis
A <- c(33, 62, 84, 85, 88, 93, 97)
B <- c(4, 16, 48, 51, 66, 98)
siegelTukeyTest(A, B, alternative = "greater")
```

skillingsMackTest

Skillings-Mack Test

Description

Performs Skillings-Mack rank sum test for partially balanced incomplete block designs or partially balanced random block designs. The null hypothesis $H_0 : \theta_i = \theta_j \ (i \neq j)$ is tested against the alternative $H_A : \theta_i \neq \theta_j$, with at least one inequality being strict.

Usage

```r
skillingsMackTest(y, ...
```

Default S3 method:

```r
skillingsMackTest(y, groups, blocks, ...)
```
skillingsMackTest

Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- ... further arguments to be passed to or from methods.

Details

The function has implemented the test of Skillings and Mack (1981). The test statistic is asymptotically chi-squared distributed with \(df = k - 1 \) degrees of freedom.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

Note

The input vector/matrix 'y' must contain NA.

References

See Also

- `friedmanTest`
- `durbinTest`

Examples

```r
## Example from Hollander and Wolfe 1999, 
## originally appeared in Brady 1969.

x <- cbind(c(3,1,5,2,0,0,0,0),
          c(5,3,4,NA,2,2,3,2),
          c(15,18,21,6,17,10,8,13))
colnames(x) <- c("R", "A", "B")
```
rownames(x) <- 1:8
skillingsMackTest(x)

Compare with Friedman Test for CRB
Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)
skillingsMackTest(y)

snkTest
Student-Newman-Keuls Test

Description
Performs Student-Newman-Keuls all-pairs comparisons test for normally distributed data with equal group variances.

Usage

```r
snkTest(x, ...)
```

Default S3 method:
```r
snkTest(x, g, ...)
```

S3 method for class 'formula'
```r
snkTest(formula, data, subset, na.action, ...)
```

S3 method for class 'aov'
```r
snkTest(x, ...)
```

Arguments

- `x` a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an `aov` fit.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
The function \(\text{snkTest} \) takes the following arguments:

- **formula**: a formula of the form \(\text{response} \sim \text{group} \) where \(\text{response} \) gives the data values and \(\text{group} \) a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see \text{model.frame}) containing the variables in the formula \text{formula}. By default the variables are taken from \text{environment(formula)}.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to \text{getOption("na.action")}.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Student-Newman-Keuls test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j. \)

The \(p \)-values are computed from the Tukey-distribution.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the \(p \)-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for \(p \)-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

Student (1927) Errors of routine analysis, \textit{Biometrika} 19, 151–164.

See Also

\text{Tukey}, \text{TukeyHSD} \text{tukeyTest}
Examples

```r
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts)
anova(fit)

## also works with fitted objects of class aov
res <- snkTest(fit)
summary(res)
summaryGroup(res)
```

spearmanTest Testing against Ordered Alternatives (Spearman Test)

Description

Performs a Spearman type test for testing against ordered alternatives.

Usage

```r
spearmanTest(x, ...)

## Default S3 method:
spearmanTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

## S3 method for class 'formula'
spearmanTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```

Arguments

- `x`
 a numeric vector of data values, or a list of numeric data vectors.

- `...`
 further arguments to be passed to or from methods.

- `g`
 a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- `alternative`
 the alternative hypothesis. Defaults to "two.sided".

- `formula`
 a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

- `data`
 an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
spearmanTest

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

A one factorial design for dose finding comprises an ordered factor, i.e. treatment with increasing treatment levels. The basic idea is to correlate the ranks R_{ij} with the increasing order number $1 \leq i \leq k$ of the treatment levels (Kloke and McKean 2015). More precisely, R_{ij} is correlated with the expected mid-value ranks under the assumption of strictly increasing median responses. Let the expected mid-value rank of the first group denote $E_1 = (n_1 + 1)/2$. The following expected mid-value ranks are $E_j = n_{j-1} + (n_j + 1)/2$ for $2 \leq j \leq k$. The corresponding number of tied values for the ith group is n_i. # The sum of squared residuals is $D^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (R_{ij} - E_i)^2$. Consequently, Spearman’s rank correlation coefficient can be calculated as:

$$r_S = \frac{6D^2}{(N^3 - N)} - C,$$

with

$$C = \frac{1}{2} - \sum_{c=1}^{r} (t_c^3 - t_c) + \frac{1}{2} - \sum_{i=1}^{k} (n_i^3 - n_i)$$

and t_c the number of ties of the cth group of ties. Spearman’s rank correlation coefficient can be tested for significance with a t-test. For a one-tailed test the null hypothesis of $r_S \leq 0$ is rejected and the alternative $r_S > 0$ is accepted if

$$r_S \sqrt{\frac{(n - 2)}{(1 - r_S)}} > t_{v, 1 - \alpha},$$

with $v = n - 2$ degree of freedom.

Value

A list with class "htest" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated quantile of the test statistic.
- p.value the p-value for the test.
- parameter the parameters of the test statistic, if any.
- alternative a character string describing the alternative hypothesis.
- estimates the estimates, if any.
- null.value the estimate under the null hypothesis, if any.
Note

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see order.factor).

References

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

Example from Sachs (1997, p. 402)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

Chacko's test
chackoTest(x, g)

Cuzick's test
cuzickTest(x, g)

Johnson-Mehrotra test
johnsonTest(x, g)

Jonckheere-Terpstra test
jonckheerTest(x, g)

Le's test
leTest(x, g)

Spearman type test
spearmanTest(x, g)

Murakami's BWS trend test
bwsTrendTest(x, g)

Fligner-Wolfe test
flignerWolfeTest(x, g)

Shan-Young-Kang test
steelsKSampleTest

shanTest(x, g)

steelsKSampleTest
Steel's k-Treatments vs. Control Test

Description

Performs the non-parametric Steel’s test for simultaneously testing k-treatments vs. one control.

Usage

```r
steelsKSampleTest(x, ...)  
## Default S3 method:  
steelsKSampleTest(x, g, alternative = c("two.sided", "greater", "less"), ...)
```

```r
## S3 method for class 'formula'
steelsKSampleTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```

Arguments

- `x`
a numeric vector of data values, or a list of numeric data vectors.
- `...`
further arguments to be passed to or from methods.
- `g`
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`
the alternative hypothesis. Defaults to `two.sided`.
- `formula`
a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`
an optional matrix or data frame (or similar; see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`
an optional vector specifying a subset of observations to be used.
- `na.action`
a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

steelsKSampleTest
Steel's k-Treatments vs. Control Test

Description

Performs the non-parametric Steel’s test for simultaneously testing k-treatments vs. one control.

Usage

```r
steelsKSampleTest(x, ...)
```

```r
## Default S3 method:  
steelsKSampleTest(x, g, alternative = c("two.sided", "greater", "less"), ...)
```

```r
## S3 method for class 'formula'
steelsKSampleTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```

Arguments

- `x`
a numeric vector of data values, or a list of numeric data vectors.
- `...`
further arguments to be passed to or from methods.
- `g`
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`
the alternative hypothesis. Defaults to `two.sided`.
- `formula`
a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`
an optional matrix or data frame (or similar; see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`
an optional vector specifying a subset of observations to be used.
- `na.action`
a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

steelsKSampleTest
Steel's k-Treatments vs. Control Test

Description

Performs the non-parametric Steel’s test for simultaneously testing k-treatments vs. one control.

Usage

```r
steelsKSampleTest(x, ...)
```

```r
## Default S3 method:  
steelsKSampleTest(x, g, alternative = c("two.sided", "greater", "less"), ...)
```

```r
## S3 method for class 'formula'
steelsKSampleTest(
  formula,
  data,
  subset,
  na.action,
  alternative = c("two.sided", "greater", "less"),
  ...
)
```
Details

It tests \(H : F(i) = F(0), \ i \leq k, \) against \(A : F(i) > F(0) \) (greater) with at least one inequality being strict.

The function is a wrapper function that calls Steel.test of the package **kSamples** with argument `method = "asymptotic"`.

Value

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the p-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.

References

See Also

- `Steel.test`, `flignerWolfeTest`

Examples

```r
## Example from Sachs (1997, p. 402)
g <- gl(3,5)
levels(g) <- c("0", "I", "II")

## Steel's Test
steelsKSampleTest(x ~ g, alternative = "greater")
```

```r
## Example from USEPA (2002):
## Reproduction data from a Ceriodaphnia dubia
## 7-day chronic test to several concentrations
## of effluent. Dose level 50% is excluded.
x <- c(20, 26, 26, 23, 24, 27, 26, 23, 27, 24,
```
```r
13, 15, 14, 13, 23, 26, 0, 25, 26, 27,
18, 22, 13, 13, 23, 22, 20, 22, 23, 22,
14, 22, 20, 23, 20, 23, 25, 24, 25, 21,
9, 0, 9, 7, 6, 10, 12, 14, 9, 13,
rep(0, 10))
g <- gl(6, 10)
levels(g) <- c("Control", "3%", "6%", "12%", "25%", "50%")

## NOEC at 3%, LOEC at 6%
steelsKSampTest(x ~ g, subset = g != "50", alternative = "less")
```

steelTest
Steel’s Many-to-One Rank Test

Description

Performs Steel’s non-parametric many-to-one comparison test for Wilcoxon-type ranked data.

Usage

```r
steelTest(x, ...)
```

Arguments

- `x`
a numeric vector of data values, or a list of numeric data vectors.
- `...`
further arguments to be passed to or from methods.
- `g`
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`
the alternative hypothesis. Defaults to greater
- `formula`
a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial balanced layout with non-normally distributed residuals Steels’s non-parametric single-step test can be performed. Let there be k treatment levels (excluding the control), then k pairwise comparisons can be performed between the i-th treatment level and the control. $H_i : \theta_0 = \theta_i$ is tested in the one-tailed case (less) against $A_i : \theta_0 > \theta_i$, $(1 \leq i \leq k)$.

For each control - treatment level the data are ranked in increasing order. The ranksum R_i for the i-th treatment level is compared to a critical R value and is significantly ($p = 0.05$) less, if $R_i \leq R$. For the alternative = "greater" the sign is changed.

The function does not return p-values. Instead the critical R-values as given in the tables of USEPA (2002) for $\alpha = 0.05$ (one-sided, less) are looked up according to the balanced sample sizes (n) and the order number of the dose level (i).

Value

A list with class "osrt" that contains the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated statistic(s)
- `crit.value` critical values for $\alpha = 0.05$.
- `alternative` a character string describing the alternative hypothesis.
- `parameter` the parameter(s) of the test distribution.
- `dist` a string that denotes the test distribution.

There are print and summary methods available.

Source

The critical rank sum values were taken from Table E.5 of USEPA (2002).

Note

Steel’s Many-to-One Rank test is only applicable for balanced designs and directional hypotheses. An error message will occur, if the design is unbalanced. In the current implementation, only one-sided tests on the level of $\alpha = 0.05$ can be performed.
References

See Also

`wilcox.test`, `pairwise.wilcox.test`, `manyOneUTest`, `flignerWolfeTest`, `shirleyWilliamsTest`, `kwManyOneDunnTest`, `kwManyOneNdwTest`, `kwManyOneConoverTest`, `print.osrt`, `summary.osrt`

Examples

```r
## Example from Sachs (1997, p. 402)
g <- gl(3,5)
levels(g) <- c("0", "I", "II")

## Steel's Test
steelTest(x ~ g)

## Example from USEPA (2002):
## Reproduction data from a Ceriodaphnia dubia
## 7-day chronic test to several concentrations
## of effluent. Dose level 50% is excluded.
x <- c(20, 26, 26, 23, 24, 27, 26, 23, 27, 24, 13, 15, 14, 13, 23, 26, 0, 25, 26, 27, 18, 22, 13, 13, 23, 22, 20, 22, 23, 22, 14, 22, 20, 23, 20, 25, 24, 25, 21, 9, 0, 9, 7, 6, 10, 12, 14, 9, 13, rep(0,10))
g <- gl(6, 10)
levels(g) <- c("Control", "3%", "6%", "12%", "25%", "50%")

## NOEC at 3%, LOEC at 6%
steelTest(x ~ g, subset = g != "50", alternative = "less")
```

Description

Performs step-down trend test procedures for monotone responses to detect NOEC (LOEC) according to OECD (2006).
Usage

stepDownTrendTest(x, ...)

Default S3 method:
stepDownTrendTest(
 x,
 g,
 test = c("leTest", "spearmanTest", "jonckheereTest", "cuzickTest", "chackoTest",
 "johnsonTest"),
 alternative = c("two.sided", "greater", "less"),
 continuity = FALSE,
 ...
)

S3 method for class 'formula'
stepDownTrendTest(
 formula,
 data,
 subset,
 na.action,
 test = c("leTest", "spearmanTest", "jonckheereTest", "cuzickTest", "chackoTest",
 "johnsonTest"),
 alternative = c("two.sided", "greater", "less"),
 continuity = FALSE,
 ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

test

the trend test that shall be performed. Defaults to "leTest".

alternative

the alternative hypothesis. Defaults to "two.sided".

continuity

logical indicator whether a continuity correction shall be performed. Only relevant for "jonckheereTest". Defaults to FALSE.

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
Details

According to OECD 2006 one can perform a test for trend on responses from all dose groups including the control. If the trend test is significant at the 0.05 level, the high dose group is omitted, and the trend statistic with the remaining dose groups is re-compute The procedure is continued until the trend test is first non-significant at the 0.05 level, then stop.
The NOEC is the highest dose remaining at this stage. If this test is significant when only the lowest dose and control remain, then a NOEC cannot be established from the data.

Value

A list with class "trendPMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **dist** a string that denotes the test distribution.

Note

Factor labels for g must be assigned in such a way, that they can be increasingly ordered from zero-dose control to the highest dose level, e.g. integers 0, 1, 2, ..., k or letters a, b, c, Otherwise the function may not select the correct values for intended zero-dose control.

It is safer, to i) label the factor levels as given above, and to ii) sort the data according to increasing dose-levels prior to call the function (see `order`, `factor`).

References

See Also

- `leTest`, `jonckheereTest`, `spearmanTest`, `cuzickTest`, `chackoTest`, `johnsonTest`

Examples

```r
res <- stepDownTrendTest(Y ~ DOSE, data = trout, test = "jonckheereTest", alternative = "less")
## print method
res
## summary method
summary(res)
```
summary.gesdTest
Summarize an gesdTest Object

Description
Summarize an object of class `gesdTest`.

Usage
```r
## S3 method for class 'gesdTest'
summary(object, ...)
```

Arguments
- `object`: an object of class `"gesdTest"`.
- `...`: further arguments. Currently ignored.

summary.mandel
Object Summary for class "mandel"

Description
summary.mandel is a function used to produce result summaries of the results of the functions `mandelhTest` or `mandelkTest`.

Usage
```r
## S3 method for class 'mandel'
summary(object, ...)
```

Arguments
- `object`: an object of class `"mandel"` for which a summary is desired.
- `...`: further arguments. Currently ignored.

See Also
`mandelhTest`, `mandelkTest`
summary.osrt
Summarize an osrt Object

Description
Summarize an object of class *osrt*.

Usage
```r
## S3 method for class 'osrt'
summary(object, ...)
```

Arguments
- **object**: an object of class "osrt".
- **...**: further arguments. Currently ignored.

See Also
- `print.osrt`

summary.PMCMR
Summarize an PMCMR Object

Description
Summarize an object of class *PMCMR*.

Usage
```r
## S3 method for class 'PMCMR'
summary(object, ...)
```

Arguments
- **object**: an object of class "PMCMR".
- **...**: further arguments. Currently ignored.

Value
A detailed output of all pairwise hypotheses, the test statistics, the corresponding p-values and symbols that indicates the level of significance.

See Also
- `print.PMCMR`, `summaryGroup`
Examples
ans <- vanWaerdenAllPairsTest(count ~ spray, InsectSprays)
summary(ans)

summary.trendPMCMR Summarize an trendPMCMR Object

Description
Summarize an object of class trendPMCMR.

Usage
S3 method for class 'trendPMCMR'
summary(object, ...)

Arguments
object an object of class "trendPMCMR".
... further arguments. Currently ignored.

Value
A detailed output of all pairwise hypotheses, the test statistics, the corresponding p-values and symbols that indicates the level of significance.

See Also
print.trendPMCMR

summaryGroup Grouped Summary of an PMCMR Object

Description
Performs a grouped summary on an PMCMR object.

Usage
summaryGroup(x, alpha = 0.05, ...)

Arguments
x an object of class "PMCMR".
alpha the selected alpha-level. Defaults to 0.05.
... further arguments. Currently ignored.
Value

Provides summary statistics for each factor level and a letter symbol, whereas different letters indicate significant differences between factor levels based on the selected level of alpha.

See Also

summary.PMCMR

tamhaneDunnettTest Tamhane-Dunnett Many-to-One Comparison Test

Description

Performs Tamhane-Dunnett’s multiple comparisons test with one control. For many-to-one comparisons in an one-factorial layout with normally distributed residuals and unequal variances Tamhane-Dunnett’s test can be used. Let X_{0j} denote a continuous random variable with the j-the realization of the control group ($1 \leq j \leq n_0$) and X_{ij} the j-the realization in the i-th treatment group ($1 \leq i \leq k$). Furthermore, the total sample size is $N = n_0 + \sum_{i=1}^{k} n_i$. A total of $m = k$ hypotheses can be tested: The null hypothesis is $H_i : \mu_i = \mu_0$ is tested against the alternative $A_i : \mu_i \neq \mu_0$ (two-tailed). Tamhane-Dunnett’s test statistics are given by

$$t_i = \frac{\bar{X}_i - \bar{X}_0}{(s_0^2/n_0 + s_i^2/n_i)^{1/2}} (1 \leq i \leq k)$$

The null hypothesis is rejected if $|t_i| > T_{kv,\rho_{ij},\alpha}$ (two-tailed), with

$$v_i = n_0 + n_i - 2$$

degree of freedom and the correlation

$$\rho_{ii} = 1, \rho_{ij} = 0 (i \neq j).$$

The p-values are computed from the multivariate-t distribution as implemented in the function pmvt distribution.

Usage

tamhaneDunnettTest(x, ...)

Default S3 method:
tamhaneDunnettTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

S3 method for class 'formula'
tamhaneDunnettTest(
 formula,
 data,
subset,
na.action,
alternative = c("two.sided", "greater", "less"),
...
)

S3 method for class 'aov'
tamhaneDunnettTest(x, alternative = c("two.sided", "greater", "less"), ...)

Arguments

- **x**
 a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an `aov` fit.

- **...**
 further arguments to be passed to or from methods.

- **g**
 a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- **alternative**
 the alternative hypothesis. Defaults to "two.sided".

- **formula**
 a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

- **data**
 an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

- **subset**
 an optional vector specifying a subset of observations to be used.

- **na.action**
 a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Value

A list with class "PMCMR" containing the following components:

- **method**
 a character string indicating what type of test was performed.

- **data.name**
 a character string giving the name(s) of the data.

- **statistic**
 lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

- **p.value**
 lower-triangle matrix of the p-values for the pairwise tests.

- **alternative**
 a character string describing the alternative hypothesis.

- **p.adjust.method**
 a character string describing the method for p-value adjustment.

- **model**
 a data frame of the input data.

- **dist**
 a string that denotes the test distribution.

References

tamhaneT2Test

See Also

pmvt, welchManyOneTTest

Examples

set.seed(245)
nn <- c(1, 2, 2^2, 2^3, 2^4)
x <- rep(nn, each=5) + rnorm(25)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g - 1)
shapiro.test(residuals(fit))
bartlett.test(x ~ g - 1)
anova(fit)
works with object of class aov
summary(tamhaneDunnettTest(fit, alternative = "greater"))
welch indicates, whether Welch's approximate solution for calculating the degree of freedom shall be used or, as usually, \(df = N - 2 \). Defaults to TRUE.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the T2 test (or T2' test) of Tamhane can be performed. Let \(X_{ij} \) denote a continuous random variable with the \(j \)-the realization (\(1 \leq j \leq n_i \)) in the \(i \)-th group (\(1 \leq i \leq k \)). Furthermore, the total sample size is \(N = \sum_{i=1}^{k} n_i \). A total of \(m = k(k-1)/2 \) hypotheses can be tested: The null hypothesis is \(H_{ij}: \mu_i = \mu_j \) (\(i \neq j \)) is tested against the alternative \(A_{ij}: \mu_i \neq \mu_j \) (two-tailed). Tamhane T2 all-pairs test statistics are given by

\[
t_{ij} = \frac{\bar{X}_i - \bar{X}_j}{\left(\frac{s^2_j}{n_j} + \frac{s^2_i}{n_i} \right)^{1/2}}, \quad (i \neq j)
\]

with \(s^2_i \) the variance of the \(i \)-th group. The null hypothesis is rejected (two-tailed) if

\[
Pr \left\{ |t_{ij}| \geq t_{v_{ij}, \alpha'/2} | H_{ij} \right\} = \alpha.
\]

T2 test uses Welch's approximate solution for calculating the degree of freedom.

\[
v_{ij} = \frac{(s^2_i/n_i + s^2_j/n_j)^2}{s^4_i/n_i^2(n_i - 1) + s^4_j/n_j^2(n_j - 1)}.
\]

T2' test applies the following approximation for the degree of freedom

\[
v_{ij} = n_i + n_j - 2
\]

The p-values are computed from the \(\text{TDist} \)-distribution and adjusted according to Dunn-Sidak.

\[
p'_{ij} = \min \{ 1, (1 - (1 - p_{ij})^m) \}
\]

Value

A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

Note
T2 test is basically an all-pairs pairwise-t-test. Similar results can be obtained with `pairwise.t.test(..., var.equal = FALSE, p.adjust.method = FALSE).
A warning message appears in the modified T2' test, if none of in Tamhane (1979) given conditions for nearly balanced sample sizes and nearly balanced standard errors is true.
Thanks to Sirio Bolaños for his kind suggestion for adding T2' test into this function.

References

See Also
dunnettT3Test uryWigginsHochbergTest

Examples

```r
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts) # var1 = varN
anova(fit)
## also works with fitted objects of class aov
res <- tamhaneT2Test(fit)
summary(res)
summaryGroup(res)
res
## compare with pairwise.t.test
WT <- pairwise.t.test(chickwts$weight, chickwts$feed, 
                       pool.sd = FALSE, 
                       p.adjust.method = "none")
p.adj.sidak <- function(p, m) sapply(p, function(p) min(1, 1 - (1 - p)^m))
p.raw <- as.vector(WT$p.value)
m <- length(p.raw[!is.na(p.raw)])
PADJ <- matrix(ans <- p.adj.sidak(p.raw, m), 
               nrow = 5, ncol = 5)
colnames(PADJ) <- colnames(WT$p.value)
rownames(PADJ) <- rownames(WT$p.value)
PADJ
```

same without Welch's approximate solution
summary(T2b <- tamhaneT2Test(fit, welch = FALSE))

toTidy

Convert a PMCMR or osrt Object to a Data.Frame

Description

The functions converts a list object of class "PMCMR" or "osrt" into a data.frame.

Usage

toTidy(mod, ...)

Arguments

mod an object of class "PMCMR", "trendPMCMR" or "osrt".

... further arguments. Currently ignored.

Value

A data.frame.

Author(s)

Indrajeet Patil (via email, 2020-1022), modified by Thorsten Pohlert

Examples

```r
res <- tukeyTest(weight ~ Diet, data = ChickWeight, subset = Time == 21)
toTidy(res)
```

trouth

Data from a Dose-Response Experiment with Trouts

Description

This data set contains results from a dose-response experiment with trouts. The experiment was conducted with five doses of 10, 25, 60, 150 and 1000 ppm, respectively, plus a zero-dose control. The response is trout weight in mg.
tukeyTest

Format
A data frame with 65 observations on the following 5 variables.

CONC a numeric vector of dose concentration in ppm
DOSE a factor with levels 1 2 3 4 5 6
REPA a factor with levels 1 2
REPC a factor with levels 1 2
Y a numeric vector of trout weight in mg

Source

References

tukeyTest Tukey’s Multiple Comparison Test

Description
Performs Tukey’s all-pairs comparisons test for normally distributed data with equal group variances.

Usage
tukeyTest(x, ...)

Default S3 method:
tukeyTest(x, g, ...)

S3 method for class 'formula'
tukeyTest(formula, data, subset, na.action, ...)

S3 method for class 'aov'
tukeyTest(x, ...)

Arguments
x a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Tukey’s test can be performed. Let \(X_{ij} \) denote a continuous random variable with the \(j \)-the realization (\(1 \leq j \leq n_i \)) in the \(i \)-th group (\(1 \leq i \leq k \)). Furthermore, the total sample size is \(N = \sum_{i=1}^{k} n_i \). A total of \(m = k(k - 1)/2 \) hypotheses can be tested: The null hypothesis is \(H_{ij} : \mu_i = \mu_j \) \((i \neq j)\) is tested against the alternative \(A_{ij} : \mu_i \neq \mu_j \) (two-tailed). Tukey’s all-pairs test statistics are given by

\[
t_{ij} = \frac{\bar{X}_i - \bar{X}_j}{s_{\text{in}} \left(1/n_j + 1/n_i\right)^{1/2}}, \quad (i \neq j)
\]

with \(s_{\text{in}}^2 \) the within-group ANOVA variance. The null hypothesis is rejected if \(|t_{ij}| > q_{\alpha m}/\sqrt{2}\), with \(v = N - k \) degree of freedom. The p-values are computed from the Tukey distribution.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

Tukey, TukeyHSD
Examples

```r
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts)
anova(fit)

## also works with fitted objects of class aov
res <- tukeyTest(fit)
summary(res)
summaryGroup(res)
```

Ury, Wiggins, Hochberg Test

Description

Performs Ury-Wiggins and Hochberg’s all-pairs comparison test for normally distributed data with unequal variances.

Usage

```r
uryWigginsHochbergTest(x, ...)

## Default S3 method:
uryWigginsHochbergTest(x, g, p.adjust.method = p.adjust.methods, ...)

## S3 method for class 'formula'
uryWigginsHochbergTest(
  formula,
  data,
  subset,
  na.action,
  p.adjust.method = p.adjust.methods,
  ...
)

## S3 method for class 'aov'
uryWigginsHochbergTest(x, p.adjust.method = p.adjust.methods, ...)
```

Arguments

- `x` a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an `aov` fit.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
204

uryWigginsHochbergTest

p.adjust.method
method for adjusting p values (see `p.adjust`).

formula
a formula of the form `response ~ group` where `response` gives the data values
and `group` a vector or factor of the corresponding groups.

data
an optional matrix or data frame (or similar; see `model.frame`) containing
the variables in the formula `formula`. By default the variables are taken from
`environment(formula)`.

subset
an optional vector specifying a subset of observations to be used.

na.action
a function which indicates what should happen when the data contain NAs. De-
defaults to `getOption("na.action")`.

Details
For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal
groups variances the tests of Ury-Wiggins and Hochberg can be performed. Let \(X_{ij} \) denote a
continuous random variable with the \(j \)-the realization \((1 \leq j \leq n_i)\) in the \(i \)-th group \((1 \leq i \leq k)\).
Furthermore, the total sample size is \(N = \sum_{i=1}^{k} n_i \). A total of \(m = k(k-1)/2 \) hypotheses can be
tested: The null hypothesis is \(H_{ij} : \mu_i = \mu_j \ (i \neq j) \) is tested against the alternative \(A_{ij} : \mu_i \neq \mu_j \)
two-tailed). Ury-Wiggins and Hochberg all-pairs test statistics are given by

\[
t_{ij} = \frac{\bar{X}_i - \bar{X}_j}{(s_j^2/n_j + s_i^2/n_i)^{1/2}}, \quad (i \neq j)
\]

with \(s_i^2 \) the variance of the \(i \)-th group. The null hypothesis is rejected (two-tailed) if

\[
Pr \{|t_{ij}| \geq t_{v_{ij} \alpha'/2}\} = \alpha,
\]

with Welch’s approximate equation for degree of freedom as

\[
v_{ij} = \frac{\left(s_i^2/n_i + s_j^2/n_j\right)^2}{s_i^4/n_i^2(n_i - 1) + s_j^4/n_j^2(n_j - 1)}.
\]

The p-values are computed from the `TDist`-distribution. The type of test depends on the selected
p-value adjustment method (see also `p.adjust`):

- **bonferroni** the Ury-Wiggins test is performed with Bonferroni adjusted p-values.
- **hochberg** the Hochberg test is performed with Hochberg’s adjusted p-values.

Value
A list with class “PMCMR” containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
vanWaerdenAllPairsTest

alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

References

See Also
dunnettT3Test tamhaneT2Test TDist

Examples

fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts) # var1 = varN
anova(fit)
also works with fitted objects of class aov
res <- uryWigginsHochbergTest(fit)
summary(res)
summaryGroup(res)

vanWaerdenAllPairsTest

van-der-Waerden's All-Pairs Comparison Normal Scores Test

Description
Performs van-der-Waerden all-pairs comparison normal scores test.

Usage

vanWaerdenAllPairsTest(x, ...)

Default S3 method:
vanWaerdenAllPairsTest(
 x,
 ...
vanWaerdenAllPairsTest

S3 method for class 'formula'
vanWaerdenAllPairsTest(
 formula,
 data,
 subset,
 na.action,
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`).
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals van der Waerden's normal scores transformation can be used prior to an all-pairs comparison test. A total of \(m = k(k-1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \). For `p.adjust.method = "single-step"` the Tukey's studentized range distribution is used to calculate p-values (see `Tukey`). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
vanWaerdenManyOneTest van-der-Waerden’s Many-One Comparisons Normal Scores Test

Description

Performs van-der-Waerden’s multiple comparison normal scores test with one control.

Usage

vanWaerdenManyOneTest(x, ...)

Default S3 method:
vvanWaerdenManyOneTest(
 x,
 g,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

S3 method for class 'formula'
vvanWaerdenManyOneTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods),
 ...
)

References

van der Waerden, B. L. (1952) Order tests for the two-sample problem and their power, Indagationes Mathematicae 14, 453–458.

See Also

vanWaerdenTest, vanWaerdenManyOneTest, normOrder.
Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to **two.sided**.
- **p.adjust.method**: method for adjusting p values (see **p.adjust**).
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar; see **model.frame**) containing the variables in the formula **formula**. By default the variables are taken from **environment(formula)**.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to **getOption("na.action")**.

Details

For many-to-one comparisons in an one-factorial layout with non-normally distributed residuals van-der-Waerden’s normal scores transformation can be used prior to a many-to-one comparison test. A total of \(m = k - 1 \) hypotheses can be tested. The null hypothesis \(H_i : F_0(x) = F_i(x) \) is tested in the two-tailed test against the alternative \(A_i : F_0(x) \neq F_i(x), \ 1 \leq i \leq k - 1 \). For **p.adjust.method** = "single-step" the multivariate t distribution is used to calculate p-values (see **pmvt**). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by **p.adjust**.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

See Also

vanWaerdenTest, vanWaerdenAllPairsTest, pmvt.

Examples

Data set PlantGrowth
Global test
vanWaerdenTest(weight ~ group, data = PlantGrowth)

van-der-Waerden's many-one comparison test
ans <- vanWaerdenManyOneTest(weight ~ group,
 data = PlantGrowth,
 p.adjust.method = "holm")
summary(ans)

vanWaerdenTest van der Waerden’s Normal Scores Test

Description

Performs van der Waerden’s normal scores test.

Usage

vanWaerdenTest(x, ...)

Default S3 method:
vanWaerdenTest(x, g, ...)

S3 method for class 'formula'
vanWaerdenTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
Details

For one-factorial designs with non-normally distributed residuals van der Waerden’s normal scores test can be performed to test the $H_0: F_1(x) = F_2(x) = \ldots = F_k(x)$ against the $H_A: F_i(x) \neq F_j(x) \ (i \neq j)$ with at least one strict inequality.

Note

A tie correction is not applied in this function.

References

See Also

`kruskalTest`, `normalScoresTest`

Examples

vanWaerdenTest(count ~ spray, data = InsectSprays)
for formula, data, subset, alternative = c("two.sided", "greater", "less"), p.adjust.method = p.adjust.methods, ...)

S3 method for class 'aov'
welchManyOneTTest(x, alternative = c("two.sided", "greater", "less"), p.adjust.method = p.adjust.methods, ...)

Arguments

- **x**
 - a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.
- **...**
 - further arguments to be passed to or from methods.
- **g**
 - a vector or factor object giving the group for the corresponding elements of "x".
 - Ignored with a warning if "x" is a list.
- **alternative**
 - the alternative hypothesis. Defaults to two.sided.
- **p.adjust.method**
 - method for adjusting p values (see p.adjust).
- **formula**
 - a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**
 - an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**
 - an optional vector specifying a subset of observations to be used.
- **na.action**
 - a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons in an one-factorial layout with normally distributed residuals and unequal variances Welch’s t-test can be used. A total of \(m = k - 1 \) hypotheses can be tested. The null hypothesis \(H_i : \mu_0(x) = \mu_i(x) \) is tested in the two-tailed test against the alternative \(A_i : \mu_0(x) \neq \mu_i(x), \ 1 \leq i \leq k - 1 \).

This function is basically a wrapper function for t.test(..., var.equal = FALSE). The p-values for the test are calculated from the t distribution and can be adjusted with any method that is implemented in p.adjust.methods.
Value
A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References
Welch, B. L. (1947) The generalization of "Student's" problem when several different population variances are involved, *Biometrika* 34, 28–35.

See Also
pairwise.t.test, t.test, p.adjust, tamhaneDunnettTest

Examples
```r
set.seed(245)
mn <- rep(c(1, 2*(1:4)), each=5)
sd <- rep(1:5, each=5)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))
fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g)
anova(fit)
summary(welchManyOneTTest(fit, alternative = "greater", p.adjust="holm"))
```

williamsTest

Williams Trend Test

Description
Performs Williams’ test for contrasting increasing (decreasing) dose levels of a treatment.
Usage

williamsTest(x, ...)

Default S3 method:
williamsTest(x, g, alternative = c("greater", "less"), ...)

S3 method for class 'formula'
williamsTest(
 formula,
 data,
 subset,
 na.action,
 alternative = c("greater", "less"),
 ...
)

S3 method for class 'aov'
williamsTest(x, alternative = c("greater", "less"), ...)

Arguments

x
 a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to greater

formula a formula of the form response ~ group where response gives the data values
 and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
 the variables in the formula formula. By default the variables are taken from
 environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
 fault to getOption("na.action").

Details

Williams' test is a step-down trend test for testing several treatment levels with a zero control in
a one-factorial design with normally distributed errors of homogeneous variance. Let there be k
groups including the control and let the zero dose level be indicated with i = 0 and the treatment
levels indicated as 1 ≤ i ≤ m, then the following m = k − 1 hypotheses are tested:

H_m : \bar{x}_0 = m_1 = \ldots = m_m, \quad A_m : \bar{x}_0 \leq m_1 \leq \ldots m_m, \bar{x}_0 < m_m
H_{m-1} : \bar{x}_0 = m_1 = \ldots = m_{m-1}, \quad A_{m-1} : \bar{x}_0 \leq m_1 \leq \ldots m_{m-1}, \bar{x}_0 < m_{m-1}
\vdots
H_1 : \bar{x}_0 = m_1, \quad A_1 : \bar{x}_0 < m_1,
where \(m_i \) denotes the isotonic mean of the \(i \)th dose level group.

William’s test bases on an order restriction:

\[
\mu_i^* = \max_{1 \leq u \leq i} \min_{i \leq u \leq m} \sum_{j=u}^{v} n_j \bar{x}_j^* / \sum_{j=u}^{v} n_j \tag{1 \leq i \leq m},
\]

where \(\bar{x}_j^* \) denotes the \(j \)-th isotonic mean estimated with isotonic regression using the pool adjacent violators algorithm (PAVA) with the vector of means \(\{ \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_m \}^T \) and the vector of weights \(\{ n_1, n_2, \ldots, n_m \}^T \).

For the alternative hypothesis of decreasing trend, max and min are interchanged in the above Equation.

The \(i \)-the test statistic is calculated as follows:

\[
\bar{t}_i = \frac{\mu_m^* - \bar{x}_0}{s \sqrt{1/n_m - 1/n_0}}
\]

The procedure starts from the highest dose level (\(m \)) to the lowest dose level (\(1 \)) and stops at the first non-significant test. The consequent lowest effect dose is the treatment level of the previous test number.

The function does not return p-values. Instead the critical t-values as given in the tables of Williams (1972) for \(\alpha = 0.05 \) (one-sided) are looked up according to the degree of freedoms (\(v \)) and the order number of the dose level (\(i \)) and (potentially) modified according to the given extrapolation coefficient \(\beta \).

Non tabulated values are linearly interpolated as recommended by Williams (1972). The function \texttt{approx} is used.

For the comparison of the first dose level (\(i = 1 \)) with the control, the critical t-value from the Student t distribution is used (\texttt{TDist}).

Value

A list with class "osrt" that contains the following components:

- \texttt{method} a character string indicating what type of test was performed.
- \texttt{data.name} a character string giving the name(s) of the data.
- \texttt{statistic} the estimated statistic(s)
- \texttt{crit.value} critical values for \(\alpha = 0.05 \).
- \texttt{alternative} a character string describing the alternative hypothesis.
- \texttt{parameter} the parameter(s) of the test distribution.
- \texttt{dist} a string that denotes the test distribution.

There are print and summary methods available.
Source

The source code for the application of the pool adjacent violators theorem to calculate the isotonic means was taken from the file "pava.f", which is included in the package Iso:

The file pava.f is a Ratfor modification of Algorithm AS 206.1:

The Algorithm AS 206 is available from StatLib http://lib.stat.cmu.edu/apstat/. The Royal Statistical Society holds the copyright to these routines, but has given its permission for their distribution provided that no fee is charged.

Note

In the current implementation, only tests on the level of $\alpha = 0.05$ can be performed. The included extrapolation function assumes either a balanced design, or designs, where the number of replicates in the control exceeds the number of replicates in the treatment levels. A warning message appears, if the following condition is not met, $1 \leq n_0/n_i \leq 6$ for $1 \leq i \leq m$.

References

Williams, D. A. (1971) A test for differences between treatment means when several dose levels are compared with a zero dose control, Biometrics 27, 103–117.

Williams, D. A. (1972) The comparison of several dose levels with a zero dose control, Biometrics 28, 519–531.

See Also

TDist, approx, print.osrt, summary.osrt

Examples

```r
# Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
     110, 125, 143, 148, 151,
     136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("0", "I", "II")

# Williams Test
williamsTest(x ~ g)
```
Index

∧ datasets
 algae, 11
 Pentosan, 148
 qPCR, 164
 reviewers, 167
 trout, 200
∧ distribution
 Cochran, 34
 Dgrubbs, 39
 Grubbs, 83
 Mandel-h, 124
 Mandel-k, 125
∧ friedmanranks
 durbinAllPairsTest, 49
 durbinTest, 51
 frdAllPairsConoverTest, 55
 frdAllPairsExactTest, 58
 frdAllPairsMillerTest, 60
 frdAllPairsNemenyiTest, 63
 frdAllPairsSiegelTest, 65
 frdHouseTest, 67
 frdManyOneDemsarTest, 70
 frdManyOneExactTest, 72
 frdManyOneNemenyiTest, 74
∧ htest
 adAllPairsTest, 5
 adKSampleTest, 7
 adManyOneTest, 9
 bwsAllPairsTest, 12
 bwsKSamplesTest, 15
 bwsManyOneTest, 17
 bwsTrendTest, 20
 chaAllPairsNashimotoTest, 23
 chackoTest, 26
 chenJanTest, 29
 chenTest, 31
 cochrantTest, 35
 cuzickTest, 37
 doubleGrubbsTest, 40
 dscfAllPairsTest, 42
 duncanTest, 43
 dunnettT3Test, 45
 dunnettTest, 47
 durbinAllPairsTest, 49
 durbinTest, 51
 flignerWolfeTest, 52
 frdAllPairsConoverTest, 55
 frdAllPairsExactTest, 58
 frdAllPairsMillerTest, 60
 frdAllPairsNemenyiTest, 63
 frdAllPairsSiegelTest, 65
 frdHouseTest, 67
 frdManyOneDemsarTest, 70
 frdManyOneExactTest, 72
 frdManyOneNemenyiTest, 74
 friedmanTest, 76
 gamesHowellTest, 78
 gesdTest, 80
 goreTest, 81
 grubbsTest, 84
 GSTTest, 85
 hartleyTest, 87
 hayterStoneTest, 89
 hsAllPairsTest, 92
 johnsonTest, 95
 jonckheereTest, 97
 kruskalTest, 100
 kwAllPairsConoverTest, 103
 kwAllPairsDunnTest, 105
 kwAllPairsNemenyiTest, 107
 kwManyOneConoverTest, 110
 kwManyOneDunnTest, 112
 kwManyOneNdwTest, 115
 leTest, 118
 lsdTest, 120
 mackWolfeTest, 122
 mandelhTest, 126
 mandelkTest, 127
index

ManyOneUTest, 129
mrrTest, 131
MTest, 134
normalScoresAllPairsTest, 136
normalScoresManyOneTest, 138
normalScoresTest, 140
NPMTest, 141
osrtTest, 145
pageTest, 147
power.dunnett.test, 150
power.tukey.test, 152
quadeAllPairsTest, 165
scheffeTest, 168
shanTest, 170
shirleyWilliamsTest, 172
siegelTukeyTest, 176
skillingsMackTest, 178
snkTest, 180
spearmanTest, 182
steelsKSampleTest, 185
steelTest, 187
stepDownTrendTest, 189
tamhaneDunnettTest, 195
tamhaneTZTest, 197
tukeyTest, 201
uryWigginsHochbergTest, 203
vanWaerdenAllPairsTest, 205
vanWaerdenManyOneTest, 207
vanWaerdenTest, 209
welchManyOneTest, 210
williamsTest, 212

* nonparametric
adAllPairsTest, 5
adKSampleTest, 7
adManyOneTest, 9
bwsAllPairsTest, 12
bwsKSampleTest, 15
bwsManyOneTest, 17
bwsTrendTest, 20
chaAllPairsNashimotoTest, 23
chackoTest, 26
chenJanTest, 29
chenTest, 31
cuzickTest, 37
dscfAllPairsTest, 42
durbinAllPairsTest, 49
durbinTest, 51
flignerWolfeTest, 52
frdAllPairsConoverTest, 55
frdAllPairsExactTest, 58
frdAllPairsMillerTest, 60
frdAllPairsNemenyiTest, 63
frdAllPairsSiegelTest, 65
frdHouseTest, 67
frdManyOneDemsarTest, 70
frdManyOneExactTest, 72
frdManyOneNemenyiTest, 74
friedmanTest, 76
goreTest, 81
GSTTest, 85
hayterStoneTest, 89
hsAllPairsTest, 92
johnsonTest, 95
jonckheereTest, 97
kwAllPairsConoverTest, 103
kwAllPairsDunnTest, 105
kwAllPairsNemenyiTest, 107
kwManyOneConoverTest, 110
kwManyOneDunnTest, 112
kwManyOneNdwTest, 115
mackWolfeTest, 122

* methods
summary.gesdTest, 192
summary.mandel, 192
summary.osrt, 193
summary.PMCMR, 193
summary.trendPMCMR, 194
summaryGroup, 194

* misc
powerMCTests, 155
powerOneWayTests, 157

* kruskalranks
kruskalTest, 100
kwAllPairsConoverTest, 103
kwAllPairsDunnTest, 105
kwAllPairsNemenyiTest, 107
kwManyOneConoverTest, 110
kwManyOneDunnTest, 112
kwManyOneNdwTest, 115
mackWolfeTest, 122

* misc
INDEX

pageTest, 147
quadeAllPairsTest, 165
shanTest, 170
shirleyWilliamsTest, 172
siegeltukeyTest, 176
skillingS MackTest, 178
spearmanTest, 182
steelsK SampleTest, 185
stepDownTrendTest, 189
vanWaerdenAllPairsTest, 205
vanWaerdenManyOneTest, 207
vanWaerdenTest, 209
* normalscores
 normalscoresAllPairsTest, 136
 normalscoresManyOneTest, 138
 vanWaerdenAllPairsTest, 205
 vanWaerdenManyOneTest, 207
* outliers
 cochranTest, 35
doubleGrubbsTest, 40
gsedTest, 80
grubbsTest, 84
* parametric
duncanTest, 43
dunnettT3Test, 45
dunnettTest, 47
gamesHowellTest, 78
hartleyTest, 87
ldstTest, 120
MTest, 134
osrtTest, 145
scheffeTest, 168
snkTest, 180
tamhaneDunnettTest, 195
tamhaneT2Test, 197
tukeyTest, 201
uryWigginsHochbergTest, 203
welchManyOneTTest, 210
* plot
 barPlot, 12
 plot.PMCMR, 150
* print
 print.gsedTest, 159
 print.mandel, 160
 print.osrt, 160
 print.PMCMR, 161
 print.powerOneWayPMCMR, 161
 print.powerPMCMR, 162
* testpower
 powerMCTests, 155
 powerOneWayTests, 157
* trendtest
 bwsTrendTest, 20
crackoTest, 26
cuzickTest, 37
flignerWolfeTest, 52
johnsonTest, 95
jonckheereTest, 97
leTest, 118
shanTest, 170
shirleyWilliamsTest, 172
spearmanTest, 182
stepDownTrendTest, 189
* umbrellaTest
 mackWolfeTest, 122
* univariate
gsedTest, 80
grubbsTest, 84
* utilities
toTidy, 200
* wilcoxonranks
 chenJanTest, 29
 chenTest, 31
cuzickTest, 37
dscfAllPairsTest, 42
flignerWolfeTest, 52
manyOneUTest, 129
ad.pval, 6–8, 10
adAllPairsTest, 5, 8, 10
adKSampleTest, 6, 7, 10
adManyOneTest, 6, 8, 9
algae, 11
aov, 44, 45, 48, 79, 120, 168, 180, 196, 197,
 201, 203, 211
approx, 146, 174, 214, 215
barPlot, 12
bartlett.test, 37, 88
boxplot, 150
bws_cdf, 19, 20
bws_stat, 19, 20
bws_test, 14
bwsAllPairsTest, 12, 16, 22
bwsKS SampleTest, 15
bwsManyOneTest, 16, 17, 22
INDEX 219

bwsTrendTest, 20
chaAllPairsNashimotoTest, 23
chackoTest, 23, 25, 26, 191
chenJanTest, 29
chenTest, 31
Chisquare, 87, 102, 109
Cochran, 34
cochranTest, 35
cuzickTest, 37, 191
default (kwAllPairsDunnTest), 105
dgrubbs, 39
doubleGrubbsTest, 40
dscfAllPairsTest, 42
duncanTest, 43
Dunnett (qDunnett), 163
dunnettT3Test, 45, 199, 205
dunnettTest, 47, 163
durbinAllPairsTest, 49
durbinTest, 50, 51, 82, 179
factor, 10, 19, 21, 28, 34, 38, 54, 96, 99, 111, 114, 119, 130, 139, 171, 184, 191
FDist, 35, 102, 169
fligner.test, 37, 86, 87
flignerWolfeTest, 52, 186, 189
frdAllPairsConoverTest, 55, 59, 61, 64, 66
frdAllPairsExactTest, 57, 58, 61, 64, 66
frdAllPairsMillerTest, 57, 59, 60, 64, 66
frdAllPairsNemenyiTest, 57, 59, 61, 62, 66
frdAllPairsSiegelTest, 57, 59, 61, 64, 65
frdHouseTest, 67
frdManyOneDemsarTest, 69, 70, 73, 75
frdManyOneExactTest, 69, 71, 72, 75
frdManyOneNemenyiTest, 71, 73, 74
friedman.test, 57, 59, 61, 64, 66, 69, 71, 73, 75, 77
friedmanTest, 57, 59, 61, 64, 66, 69, 71, 73, 75, 76, 82, 148, 166, 179
geosdTest, 80
goreTest, 81
Grubbs, 40, 83
grubbsTest, 84
GSTTest, 85
hartleyTest, 87
hayterStoneTest, 89, 94
hsAllPairsTest, 91, 92
invisible, 159–162
johnsonTest, 95, 191
jonckheereTest, 97, 191
kruskal.test, 22, 28, 39, 54, 96, 99, 102, 119, 172, 184
kruskalTest, 22, 28, 39, 54, 96, 99, 100, 105, 107–109, 111, 114, 117, 119, 141, 157, 172, 184, 210
kwAllPairsConoverTest, 103, 107, 109
kwAllPairsDunnTest, 105, 105, 109
kwAllPairsNemenyiTest, 105, 107, 107
kwManyOneConoverTest, 110, 114, 117, 189
kwManyOneDunnTest, 111, 112, 116, 117, 189
kwManyOneNdwTest, 111, 114, 115, 189
leTest, 118, 191
lsdTest, 120
mackWolfeTest, 122
Mandel-h, 124
Mandel-k, 125
mandelhTest, 125, 126, 160, 192
mandelkTest, 126, 127, 160, 192
manyOneUTest, 129, 189
mrmTest, 131
MTest, 134, 144, 147
murakami_cdf, 19, 20
murakami_stat, 19, 20
Normal, 25, 31, 34, 54, 68, 107, 130, 174, 177
normalScoresAllPairsTest, 136, 139
normalScoresManyOneTest, 137, 138
normalScoresTest, 137, 139, 140, 210
normOrder, 137, 139, 207
NPMTest, 25, 136, 141
optimise, 154
INDEX

order, 10, 19, 21, 28, 34, 38, 54, 96, 99, 111, 114, 119, 130, 139, 171, 184, 191
osrtTest, 91, 136, 145
p.adjust, 5, 6, 9, 10, 13, 14, 18, 19, 29, 30, 32, 33, 50, 56, 58, 65, 66, 70, 72, 104–107, 109–111, 113, 116, 129, 130, 137–139, 156, 165, 204, 206, 208, 211, 212
p.adjust.methods, 24, 50, 166, 211
pageTest, 147
pairwise.t.test, 121, 122, 212
pairwise.wilcox.test, 43, 189
pcochran, 36
pcochran (Cochran), 34
pdgrubbs, 41
pdgrubbs (Grubbs), 39
pDunnett, 48, 49
pDunnett (qDunnett), 163
Pentosan, 148
pgrubbs, 84
pgrubbs (Grubbs), 83
pHayStonLSA, 91
pKruskalWallis, 86, 87, 102
plot.mandel, 149
plot.PMCMR, 150
pmandelh, 126, 127
pmandelh (Mandel-h), 124
pmandelk, 128
pmandelk (Mandel-k), 125
pmaxFratio, 88
pmvnorm, 31, 74, 75, 114, 130
pmvt, 46–49, 111, 117, 139, 163, 195, 197, 208, 209
pnorm, 123, 124
pNormScore, 140, 141
power.anova.test, 158
power.dunnett.test, 150
power.tukey.test, 152
power.williams.test, 153
powerMCTests, 151, 153, 155, 158, 162
powerOneWayTests, 157, 162
print, 159–162
print (print.mandel), 160
print.gesdTest, 159
print.mandel, 160
print.osrt, 160, 189, 193, 215
print.PMCMR, 161, 193
print.powerOneWayPMCMR, 161
print.powerPMCMR, 162
print.trendPMCMR, 162, 194
pwr.anova.test, 138
qcochran (Cochran), 34
qDunnett, 163
qgrubbs (Grubbs), 83
qmandelh, 126, 127
qmandelh (Mandel-h), 124
qmandelk, 128
qmandelk (Mandel-k), 125
qmvt, 151, 163
qPCR, 164
quade.test, 166
quadeAllPairsTest, 165
reviewers, 167
sample, 16, 21, 22, 91, 94, 124
scheffeTest, 168
set.seed, 75
shanTest, 170
shirleyWilliamsTest, 22, 28, 39, 54, 96, 99, 119, 172, 172, 184, 189
siegeLTukeyTest, 176
skillingsMackTest, 82, 178
snKTest, 180
spearmanTest, 182, 191
Steel.test, 186
steelsKSampTest, 185
steelTest, 187
stepDownTrendTest, 189
summary.gesdTest, 192
summary.mandel, 192
summary.osrt, 189, 193, 215
summary.PMCMR, 193, 195
summary.trendPMCMR, 194
summaryGroup, 193, 194
t.test, 211, 212
tamhaneDunnettTest, 195, 212
tamhaneT2Test, 197, 205
TDist, 83, 105, 111, 114, 117, 121, 122, 151, 153, 198, 204, 205, 214, 215
toTidy, 200
truit, 200
Tukey, 43–45, 79, 80, 105, 109, 137, 153, 181, 202, 206
TukeyHSD, 45, 181, 202
tukeyTest, 45, 169, 181, 201

uryWigginsHochbergTest, 199, 203

vanWaerdenAllPairsTest, 205, 209
vanWaerdenManyOneTest, 207, 207
vanWaerdenTest, 141, 207, 209, 209
vanWeardenTest.default
 (vanWaerdenTest), 209

welchManyOneTTest, 197, 210
wilcox.test, 34, 130, 189
Wilcoxon, 54, 177
williamsTest, 154, 175, 212