Package ‘PMCMRplus’

October 21, 2019

Type Package

Title Calculate Pairwise Multiple Comparisons of Mean Rank Sums

Extended

Version 1.4.2

Date 2019-10-21

Description For one-way layout experiments the one-way ANOVA can be performed as an omnibus test. All-pairs multiple comparisons tests (Tukey-Kramer test, Scheffe test, LSD-test) and many-to-one tests (Dunnett test) for normally distributed residuals and equal within variance are available. Furthermore, all-pairs tests (Games-Howell test, Tamhane’s T2 test, Dunnett T3 test, Ury-Wiggins-Hochberg test) and many-to-one (Tamhane-Dunnett Test) for normally distributed residuals and heterogeneous variances are provided. Van der Waerden's normal scores test for omnibus, all-pairs and many-to-one tests is provided for non-normally distributed residuals and homogeneous variances. The Kruskal-Wallis, BWS and Anderson-Darling omnibus test and all-pairs tests (Nemenyi test, Dunn test, Conover test, Dwass-Steele-Critchlow-Flinger test) as well as many-to-one (Nemenyi test, Dunn test, U-test) are given for the analysis of variance by ranks. Non-parametric trend tests (Jonckheere test, Cuzick test, Johnson-Mehrotra test, Spearman test) are included. In addition, a Friedman-test for one-way ANOVA with repeated measures on ranks (CRBD) and Skillings-Mack test for unbalanced CRBD is provided with consequent all-pairs tests (Nemenyi test, Siegel test, Miller test, Conover test, Exact test) and many-to-one tests (Nemenyi test, Demsar test, Exact test). A trend can be tested with Pages's test. Durbin's test for a two-way balanced incomplete block design (BIBD) is given in this package as well as Gore's test for CRBD with multiple observations per cell is given. Outlier tests, Mandel's k- and h statistic as well as functions for Type I error and Power analysis as well as generic summary, print and plot methods are provided.
R topics documented:

- adAllPairsTest .. 4
- adKSampleTest ... 6
- adManyOneTest ... 8
- algae ... 9
- barPlot .. 10
- bwsAllPairsTest ... 11
- bwsKSampleTest .. 13
- bwsManyOneTest .. 15
- bwsTrendTest .. 17
- chaAllPairsNashimotoTest 19
- chackoTest .. 21
- Cochran .. 23
- cochrantTest ... 24
- cuzickTest .. 26
- Dgrubbs .. 28
- doubleGrubbsTest ... 29
- dscfAllPairsTest ... 30
- duncanTest ... 32
- dunnettT3Test ... 33
- dunnertTest ... 35
- durbinAllPairsTest .. 37
- durbinTest ... 38
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>frdAllPairsConoverTest</td>
<td>40</td>
</tr>
<tr>
<td>frdAllPairsExactTest</td>
<td>42</td>
</tr>
<tr>
<td>frdAllPairsMillerTest</td>
<td>44</td>
</tr>
<tr>
<td>frdAllPairsNemenyiTest</td>
<td>47</td>
</tr>
<tr>
<td>frdAllPairsSiegelTest</td>
<td>49</td>
</tr>
<tr>
<td>frdManyOneDemsarTest</td>
<td>51</td>
</tr>
<tr>
<td>frdManyOneExactTest</td>
<td>53</td>
</tr>
<tr>
<td>frdManyOneNemenyiTest</td>
<td>55</td>
</tr>
<tr>
<td>friedmanTest</td>
<td>57</td>
</tr>
<tr>
<td>gamesHowellTest</td>
<td>59</td>
</tr>
<tr>
<td>gesdTest</td>
<td>61</td>
</tr>
<tr>
<td>goreTest</td>
<td>62</td>
</tr>
<tr>
<td>Grubbs</td>
<td>64</td>
</tr>
<tr>
<td>grubbsTest</td>
<td>65</td>
</tr>
<tr>
<td>GSTTest</td>
<td>66</td>
</tr>
<tr>
<td>hartleyTest</td>
<td>68</td>
</tr>
<tr>
<td>johnsonTest</td>
<td>70</td>
</tr>
<tr>
<td>jonckheereTest</td>
<td>72</td>
</tr>
<tr>
<td>kruskalTest</td>
<td>74</td>
</tr>
<tr>
<td>kwAllPairsConoverTest</td>
<td>76</td>
</tr>
<tr>
<td>kwAllPairsDunnTest</td>
<td>78</td>
</tr>
<tr>
<td>kwAllPairsNemenyiTest</td>
<td>80</td>
</tr>
<tr>
<td>kwManyOneConoverTest</td>
<td>82</td>
</tr>
<tr>
<td>kwManyOneDunnTest</td>
<td>84</td>
</tr>
<tr>
<td>kwManyOneNdwTest</td>
<td>86</td>
</tr>
<tr>
<td>leTest</td>
<td>88</td>
</tr>
<tr>
<td>lsdTest</td>
<td>90</td>
</tr>
<tr>
<td>mackWolfeTest</td>
<td>92</td>
</tr>
<tr>
<td>Mandel-h</td>
<td>94</td>
</tr>
<tr>
<td>Mandel-k</td>
<td>95</td>
</tr>
<tr>
<td>mandelhTest</td>
<td>96</td>
</tr>
<tr>
<td>mandelkTest</td>
<td>98</td>
</tr>
<tr>
<td>manyOneUTest</td>
<td>99</td>
</tr>
<tr>
<td>MTest</td>
<td>101</td>
</tr>
<tr>
<td>normalScoresAllPairsTest</td>
<td>102</td>
</tr>
<tr>
<td>normalScoresManyOneTest</td>
<td>104</td>
</tr>
<tr>
<td>normalScoresTest</td>
<td>105</td>
</tr>
<tr>
<td>NPMTest</td>
<td>107</td>
</tr>
<tr>
<td>osrtTest</td>
<td>109</td>
</tr>
<tr>
<td>pageTest</td>
<td>110</td>
</tr>
<tr>
<td>Pentosan</td>
<td>111</td>
</tr>
<tr>
<td>plot.mandel</td>
<td>112</td>
</tr>
<tr>
<td>plot.PMCMR</td>
<td>112</td>
</tr>
<tr>
<td>powerMCTests</td>
<td>113</td>
</tr>
<tr>
<td>powerOneWayTests</td>
<td>115</td>
</tr>
<tr>
<td>print.gesdTest</td>
<td>117</td>
</tr>
<tr>
<td>print.mandel</td>
<td>118</td>
</tr>
<tr>
<td>print.PMCMR</td>
<td>118</td>
</tr>
</tbody>
</table>
adAllPairsTest

Anderson-Darling All-Pairs Comparison Test

Description

Performs Anderson-Darling all-pairs comparison test.

Usage

adAllPairsTest(x, ...)

Default S3 method:
adAllPairsTest(x, g,
 p.adjust.method = p.adjust.methods, ...)

Index

adAllPairsTest 161
S3 method for class 'formula'
adAllPairsTest(formula, data, subset, na.action,
 p.adjust.method = p.adjust.methods, ...)

Arguments

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Anderson-Darling's all-pairs comparison test can be used. A total of \(m = k(k-1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \).

This function is a wrapper function that sequentially calls `adKSampleTest` for each pair. The calculated p-values for \(Pr(|T2N|) \) can be adjusted to account for Type I error multiplicity using any method as implemented in `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- `method`: a character string indicating what type of test was performed.
- `data.name`: a character string giving the name(s) of the data.
- `statistic`: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- `p.value`: lower-triangle matrix of the p-values for the pairwise tests.
- `alternative`: a character string describing the alternative hypothesis.
- `p.adjust.method`: a character string describing the method for p-value adjustment.
- `model`: a data frame of the input data.
- `dist`: a string that denotes the test distribution.
adKSampleTest

References

See Also
adKSampleTest, adManyOneTest, ad.pval.

Examples
adKSampleTest(count ~ spray, InsectSprays)

out <- adAllPairsTest(count ~ spray, InsectSprays, p.adjust="holm")
summary(out)
summaryGroup(out)

adKSampleTest

Anderson-Darling k-Sample Test

Description
Performs Anderson-Darling k-sample test.

Usage
adKSampleTest(x, ...)

Default S3 method:
adKSampleTest(x, g, ...)

S3 method for class 'formula'
adKSampleTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
 further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").
adKSampleTest

Details

The null hypothesis, $H_0 : F_1 = F_2 = \ldots = F_k$ is tested against the alternative, $H_A : F_i \neq F_j$ ($i \neq j$), with at least one inequality being strict.

This function only evaluates version 1 of the k-sample Anderson-Darling test (i.e. Eq. 6) of Scholz and Stephens (1987). The p-values are estimated with the extended empirical function as implemented in `ad.pval` of the package `kSamples`.

Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References

See Also

`adAllPairsTest`, `adManyOneTest`, `ad.pval`.

Examples

```r
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
datf <- data.frame(g = g <- c(rep("ns", length(x)), rep("oad", length(y)), rep("a", length(z))),
                   x = x <- c(x, y, z))
adKSampleTest(x ~ g, datf)
```
adManyOneTest

Anderson-Darling Many-To-One Comparison Test

Description

Performs Anderson-Darling many-to-one comparison test.

Usage

adManyOneTest(x, ...)

Default S3 method:
adManyOneTest(x, g, p.adjust.method = p.adjust.methods,
...)

S3 method for class 'formula'
adManyOneTest(formula, data, subset, na.action,
 p.adjust.method = p.adjust.methods, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
 further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
p.adjust.method
 method for adjusting p values (see p.adjust).
formula
 a formula of the form response ~ group where response gives the data values
 and group a vector or factor of the corresponding groups.
data
 an optional matrix or data frame (or similar: see model.frame) containing
 the variables in the formula formula. By default the variables are taken from
 environment(formula).
subset
 an optional vector specifying a subset of observations to be used.
n.a.action
 a function which indicates what should happen when the data contain NAs. De-
 fault is getOption("na.action").

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout
with non-normally distributed residuals Anderson-Darling’s non-parametric test can be performed.
Let there be k groups including the control, then the number of treatment levels is m = k - 1.
Then m pairwise comparisons can be performed between the i-th treatment level and the control.
H_i: F_0 = F_i is tested in the two-tailed case against A_i: F_0 \neq F_i, (1 \leq i \leq m).

This function is a wrapper function that sequentially calls adKSampleTest for each pair. The cal-
culated p-values for Pr(>|T2N|) can be adjusted to account for Type I error inflation using any
method as implemented in p.adjust.
Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

See Also

`adKSampleTest, adAllPairsTest, ad.pval`

Examples

```r
## Data set PlantGrowth
## Global test
adKSampleTest(weight ~ group, data = PlantGrowth)

##
## ans <- adManyOneTest(weight ~ group,
## data = PlantGrowth,
## p.adjust.method = "holm")
summary(ans)
```

algae

algae Growth Inhibition Data Set

Description

A dose-response experiment was conducted using Atrazine at 9 different dose-levels including the zero-dose control and the biomass of algae (*Selenastrum capricornutum*) as the response variable. Three replicates were measured at day 0, 1 and 2. The fluorescence method (Mayer et al. 1997) was applied to measure biomass.
Format

A data frame with 22 observations on the following 10 variables.

- **concentration** a numeric vector of dose value in mg / L
- **Day.0** a numeric vector, total biomass
- **Day.0.1** a numeric vector, total biomass
- **Day.0.2** a numeric vector, total biomass
- **Day.1** a numeric vector, total biomass
- **Day.1.1** a numeric vector, total biomass
- **Day.1.2** a numeric vector, total biomass
- **Day.2** a numeric vector, total biomass
- **Day.2.1** a numeric vector, total biomass
- **Day.2.2** a numeric vector, total biomass

Source

References

See Also

demo(algae)

barPlot

Plotting PMCMR Objects

Description

Plots a bar-plot for objects of class "PMCMR".

Usage

```
barPlot(x, alpha = 0.05, ...)
```

Arguments

- **x** an object of class "PMCMR".
- **alpha** the selected alpha-level. Defaults to 0.05.
- **...** further arguments for method `barplot`.
bwsAllPairsTest

Value
A barplot where the height of the bars corresponds to the arithmetic mean. The extend of the
whiskers are \(\pm z_{(1-\alpha/2)} \times s_{E,i} \), where the latter denotes the standard error of the
\(i \)th group. Symbolic letters are depicted on top of the bars, whereas different letters indicate significant differences
between groups for the selected level of alpha.

Note
The barplot is strictly spoken only valid for normal data, as the depicted significance intervall implies symetry.

Examples
```r
## data set chickwts
ans <- tukeyTest(weight ~ feed, data = chickwts)
barPlot(ans)
```

bwsAllPairsTest

BWS All-Pairs Comparison Test

Description
Performs Baumgartner-Weiβ-Schindler all-pairs comparison test.

Usage
```r
bwsAllPairsTest(x, ...)
```

Default S3 method:
```r
bwsAllPairsTest(x, g, method = c("BWS", "Murakami"),
    p.adjust.method = p.adjust.methods, ...)
```

S3 method for class 'formula'
```r
bwsAllPairsTest(formula, data, subset, na.action,
    method = c("BWS", "Murakami"), p.adjust.method = p.adjust.methods,
    ...)
```

Arguments
- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
- **method**: a character string specifying the test statistic to use. Defaults to BWS.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`).
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Baumgartner-Weiß-Schindler all-pairs comparison test can be used. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \quad i \neq j \).

This function is a wrapper function that sequentially calls bws_test for each pair. The default test method ("BWS") is the original Baumgartner-Weiß-Schindler test statistic B. For method == "Murakami" it is the modified BWS statistic denoted B*. The calculated p-values for \(Pr(>|B|) \) or \(Pr(>|B*|) \) can be adjusted to account for Type I error inflation using any method as implemented in p.adjust.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

See Also

bws_test.
Examples

```r
out <- bwsAllPairsTest(count ~ spray, InsectSprays, p.adjust="holm")
summary(out)
summaryGroup(out)
```

Murakami’s k-Sample BWS Test

Description

Performs Murakami’s k-Sample BWS Test.

Usage

```r
bwsKSampleTest(x, ...)
```

Default S3 method:
```
bwsKSampleTest(x, g, nperm = 1000, ...)
```

S3 method for class 'formula'
```
bwsKSampleTest(formula, data, subset, na.action, nperm = 1000, ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
- `nperm` number of permutations for the assymptotic permutation test. Defaults to 1000.
- `formula` a formula of the form `response ~ group` where `response` gives the data values
 and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing
 the variables in the formula `formula`. By default the variables are taken from
 `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. De-
 faults to `getOption("na.action")`.

Details

The null hypothesis, \(H_0 : F_1 = F_2 = \ldots = F_k \) is tested against the alternative, \(H_A : F_i \neq F_j \) \((i \neq j)\), with at least one inequality beeing strict.

The p-values are estimated through an assymptotic boot-strap method.
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Note

One may increase the number of permutations to e.g. `nperm = 10000` in order to get more precise p-values. However, this will be on the expense of computational time.

References

See Also

`sample, bwsAllPairsTest, bwsManyOneTest`.

Examples

```r
# Hollander & Wolfe (1973), 116.
# Mucociliary efficiency from the rate of removal of dust in normal
# subjects, subjects with obstructive airway disease, and subjects
# with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2)  # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4)      # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

datf <- data.frame(g = g <- c(rep("ns", length(x)), rep("oad", length(y)), rep("a", length(z))),
                   x = x <- c(x, y, z))

# k-sample BWS Test
bwsKSampleTest(x ~ g, datf)
```
Description

Performs Baumgartner-Weiß-Schindler many-to-one comparison test.

Usage

```r
bwsManyOneTest(x, ...)```

## Default S3 method:

```r
bwsManyOneTest(x, g, alternative = c("two.sided", "greater", "less"), method = c("BWS", "Murakami", "Neuhauser"), p.adjust.method = p.adjust.methods, ...)```

S3 method for class 'formula'

```r
bwsManyOneTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), method = c("BWS", "Murakami", "Neuhauser"), p.adjust.method = p.adjust.methods, ...)```

**Arguments**

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`: the alternative hypothesis. Defaults to `two.sided`.
- `method`: a character string specifying the test statistic to use. Defaults to `BWS`.
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`. 
Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Baumgartner-Weiß-Schindler's non-parametric test can be performed. Let there be \( k \) groups including the control, then the number of treatment levels is \( m = k - 1 \). Then \( m \) pairwise comparisons can be performed between the \( i \)-th treatment level and the control. \( H_i : F_0 = F_i \) is tested in the two-tailed case against \( A_i : F_0 \neq F_i \), \( 1 \leq i \leq m \).

This function is a wrapper function that sequentially calls \( \text{bws_stat} \) and \( \text{bws_cdf} \) for each pair. For the default test method ("BWS") the original Baumgartner-Weiß-Schindler test statistic \( B \) and its corresponding \( \text{Pr}(>|B|) \) is calculated. For \( \text{method} = \"BWS\" \) only a two-sided test is possible.

For \( \text{method} = \"Murakami\" \) the modified BWS statistic denoted \( B^* \) and its corresponding \( \text{Pr}(>|B^*|) \) is computed by sequentially calling \( \text{murakami_stat} \) and \( \text{murakami_cdf} \). For \( \text{method} = \"Murakami\" \) only a two-sided test is possible.

If \( \text{alternative} = \"greater\" \) then the alternative, if one population is stochastically larger than the other is tested: \( H_i : F_0 = F_i \) against \( A_i : F_0 \geq F_i \), \( 1 \leq i \leq m \). The modified test-statistic \( B^* \) according to Neuhäuser (2001) and its corresponding \( \text{Pr}(B^*) \) or \( \text{Pr}(B^*) \) is computed by sequentially calling \( \text{murakami_stat} \) and \( \text{murakami_cdf} \) with \( \text{flavor} = 2 \).

The p-values can be adjusted to account for Type I error inflation using any method as implemented in \( \text{p.adjust} \).

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References


See Also

- \( \text{murakami_stat} \), \( \text{murakami_cdf} \), \( \text{bws_stat} \), \( \text{bws_cdf} \).
Examples

```r
out <- bwsManyOneTest(weight ~ group, PlantGrowth, p.adjust="holm")
summary(out)

A two-sample test
set.seed(1245)
x <- c(rnorm(20), rnorm(20,0.3))
g <- gl(2, 20)
summary(bwsManyOneTest(x ~ g, alternative = "less", p.adjust="none"))
summary(bwsManyOneTest(x ~ g, alternative = "greater", p.adjust="none"))

Not run:
Check with the implementation in package BWStest
BWStest::bws_test(x=x[g==1], y=x[g==2], alternative = "less")
BWStest::bws_test(x=x[g==1], y=x[g==2], alternative = "greater")
End(Not run)
```

### bwsTrendTest

*Testing against Ordered Alternatives (Murakami’s BWS Trend Test)*

**Description**

Performs Murakami’s modified Baumgartner-Weiβ-Schindler test for testing against ordered alternatives.

**Usage**

```r
bwsTrendTest(x, ...)
```

**Arguments**

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **nperm**: number of permutations for the asymptotic permutation test. Defaults to 1000.
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar; see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details
The null hypothesis, \( H_0 : F_1(u) = F_2(u) = \ldots = F_k(u) \ u \in R \) is tested against a simple order hypothesis, \( H_A : F_1(u) \leq F_2(u) \leq \ldots \leq F_k(u), F_1(u) < F_k(u), u \in R. \)
The p-values are estimated through an assymptotic boot-strap method using the function sample.

Value
A list with class "htest" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated quantile of the test statistic.
- p.value the p-value for the test.
- parameter the parameters of the test statistic, if any.
- alternative a character string describing the alternative hypothesis.
- estimates the estimates, if any.
- null.value the estimate under the null hypothesis, if any.

Note
One may increase the number of permutations to e.g. \( \text{np}em = 10000 \) in order to get more precise p-values. However, this will be on the expense of computational time.

References


See Also
sample, bwsAllPairsTest, bwsManyOneTest.

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.
Examples

```r
Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3, 5)
levels(g) <- c("A", "B", "C")

Chacko's test
chackoTest(x, g)

Cuzick's test
cuzickTest(x, g)

Johnson-Mehrotra test
johnsonTest(x, g)

Jonckheere-Terpstra test
jonckheereTest(x, g)

Le's test
leTest(x, g)

Spearman type test
spearmanTest(x, g)

Murakami's BWS trend test
bwsTrendTest(x, g)
```

chaAllPairsNashimotoTest

**All-Pairs Comparisons for Simply Ordered Mean Ranksums**

**Description**

Performs Nashimoto and Wright’s all-pairs comparison procedure for simply ordered mean ranksums (NPY’ test and NPT’ test). According to the authors, these procedures shall only be applied after Chacko’s test (see `chackoTest`) indicates global significance.

The modified procedure uses the property of a simple order, $\theta_{m'} - \theta_m \leq \theta_j - \theta_i \leq \theta_l' - \theta_l$ ($l \leq i \leq m$ and $m' \leq j \leq l'$). The null hypothesis $H_{ij} : \theta_i = \theta_j$ is tested against the alternative $A_{ij} : \theta_i < \theta_j$ for any $1 \leq i < j \leq k$.

In the NPY’ test the p-values are estimated from the studentized range distribution. In the NPT’ test the p-values are estimated from the standard normal distribution.
Usage

chaAllPairsNashimotoTest(x, ...)

## Default S3 method:
chaAllPairsNashimotoTest(x, g,
  p.adjust.method = c("single-step", p.adjust.methods), ...)

## S3 method for class 'formula'
chaAllPairsNashimotoTest(formula, data, subset,
  na.action, p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

x  
   a numeric vector of data values, or a list of numeric data vectors.

...  
   further arguments to be passed to or from methods.

g  
   a vector or factor object giving the group for the corresponding elements of "x".
   Ignored with a warning if "x" is a list.

p.adjust.method  
   method for adjusting p values

formula  
   a formula of the form response ~ group where response gives the data values
   and group a vector or factor of the corresponding groups.

data  
   an optional matrix or data frame (or similar: see model.frame) containing
   the variables in the formula formula. By default the variables are taken from
   environment(formula).

subset  
   an optional vector specifying a subset of observations to be used.

na.action  
   a function which indicates what should happen when the data contain NAs. De-
  faults togetOption("na.action").

Details

The type of test can be controlled via the argument p.adjust.method:

single.step  
   the NPY’ test is performed.

none  
   the plain NPT’ test is performed.

However, any method as available by p.adjust.methods can be selected for the adjustment of
p-values estimated from the standard normal distribution.

Value

A list with class "PMCMR" containing the following components:

method  
   a character string indicating what type of test was performed.

data.name  
   a character string giving the name(s) of the data.

statistic  
   lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value  
   lower-triangle matrix of the p-values for the pairwise tests.
alternative  a character string describing the alternative hypothesis.

p.adjust.method  a character string describing the method for p-value adjustment.

model  a data frame of the input data.

dist  a string that denotes the test distribution.

References


See Also

Tukey, Normal, chackoTest

Examples

```r
Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")
chackoTest(x , g)
chaAllPairsNashimotoTest(x, g, p.adjust.method = "single-step")
```

chackoTest

**Testing against Ordered Alternatives (Chacko’s Test)**

**Description**

Performs Chacko’s test for testing against ordered alternatives.

**Usage**

```r
chackoTest(x, ...)
```

## Default S3 method:

```r
chackoTest(x, g, ...)
```

## S3 method for class 'formula'

```r
chackoTest(formula, data, subset, na.action, ...)
```
Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k$.

The p-values are estimated from the chi-square distribution.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

Source

The source code for the application of the pool adjacent violators theorem to calculate the isotonic means was taken from the file "pava.f", which is included in the package `Iso`:


The file "pava.f" is a Ratfor modification of Algorithm AS 206.1:


The Algorithm AS 206 is available from StatLib http://lib.stat.cmu.edu/apstat. The Royal Statistical Society holds the copyright to these routines, but has given its permission for their distribution provided that no fee is charged.
Cochran

References


See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

```r
Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

Chacko's test
chackoTest(x, g)

Cuzick's test
cuzickTest(x, g)

Johnson-Mehrotra test
johnsonTest(x, g)

Jonckheere-Terpstra test
jonckheereTest(x, g)

Le's test
leTest(x, g)

Spearman type test
spearmanTest(x, g)

Murakami's BWS trend test
bwsTrendTest(x, g)
```

---

**Description**

Distribution function and quantile function for Cochran's distribution.
Usage

qcochran(p, k, n, lower.tail = TRUE, log.p = FALSE)
pcochran(q, k, n, lower.tail = TRUE, log.p = FALSE)

Arguments

p vector of probabilities.

k number of groups.

n (average) sample size of the k groups.

lower.tail logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

q vector of quantiles.

Value

pcochran gives the distribution function and qcochran gives the quantile function.

References


See Also

FDist

Examples

qcochran(0.05, 7, 3)
Usage

cochransTest(x, ...)

## Default S3 method:
cochransTest(x, g, alternative = c("greater", "less"),
              ...)

## S3 method for class 'formula'
cochransTest(formula, data, subset, na.action,
             alternative = c("greater", "less"), ...)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to "greater".
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For normally distributed data the null hypothesis, H₀: σᵢ² = σⱼ² = ... = σₖ² is tested against the alternative (greater) Hₐ: σᵢ > σⱼ (i ≤ k, i ≠ p) with at least one inequality being strict.

The p-value is computed with the function pcochran.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.
cuzickTest

Testing against Ordered Alternatives (Cuzick's Test)

Description

Performs Cuzick's test for testing against ordered alternatives.

Usage

cuzickTest(x, 

## Default S3 method:
cuzickTest(x, g, alternative = c("two.sided", 
  "greater", "less"), scores = NULL, continuity = FALSE, 

## S3 method for class 'formula'
cuzickTest(formula, data, subset, na.action, 
  alternative = c("two.sided", "greater", "less"), scores = NULL, 
  continuity = FALSE, 

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "two.sided".

scores numeric vector of scores. Defaults to NULL.

continuity logical indicator whether a continuity correction shall be performed. Defaults to FALSE.
formula  a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data  an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset  an optional vector specifying a subset of observations to be used.
na.action  a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k$.

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

method  a character string indicating what type of test was performed.
data.name  a character string giving the name(s) of the data.
statistic  the estimated quantile of the test statistic.
p.value  the p-value for the test.
parameter  the parameters of the test statistic, if any.
alternative  a character string describing the alternative hypothesis.
estimates  the estimates, if any.
null.value  the estimate under the null hypothesis, if any.

References


See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

```r
Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")
```

## Chacko's test
chackoTest(x, g)

# Cuzick's test
cuzickTest(x, g)

# Johnson-Mehrotra test
johnsonTest(x, g)

# Jonckheere-Terpstra test
jonckheereTest(x, g)

# Le's test
leTest(x, g)

# Spearman type test
spearmanTest(x, g)

# Murakami's BWS trend test
bwsTrendTest(x, g)

---

**Dgrubs**

*Grubbs D* distribution

**Description**

Distribution function for Grubbs D* distribution.

**Usage**

```
pdgrubbs(q, n, m = 10000, lower.tail = TRUE, log.p = FALSE)
```

**Arguments**

- `q` vector of quantiles.
- `n` total sample size.
- `m` number of Monte-Carlo replicates. Defaults to 10,000.

- `lower.tail` logical; if TRUE (default), probabilities are \( P[X \leq x] \) otherwise, \( P[X > x] \).
- `log.p` logical; if TRUE, probabilities \( p \) are given as \( \log(p) \).

**Value**

`pgrubbs` gives the distribution function.

**References**


**doubleGrubbsTest**

**See Also**
- Grubbs

**Examples**
```
pdgrubbs(0.62, 7, 1E4)
```

---

**doubleGrubbsTest  Grubbs Double Outlier Test**

**Description**
Performs Grubbs double outlier test.

**Usage**
```
doubleGrubbsTest(x, alternative = c("two.sided", "greater", "less"),
m = 10000)
```

**Arguments**
- `x` a numeric vector of data.
- `alternative` the alternative hypothesis. Defaults to "two.sided".
- `m` number of Monte-Carlo replicates.

**Details**
Let \( X \) denote an identically and independently distributed continuous variate with realizations \( x_i \) (1 ≤ \( i \) ≤ \( k \)). Further, let the increasingly ordered realizations denote \( x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)} \). Then the following model for testing two maximum outliers can be proposed:

\[
x_{(i)} = \begin{cases} 
\mu + \epsilon_{(i)}, & \text{if } i = 1, \ldots, n-2 \\
\mu + \Delta + \epsilon_{(j)}, & \text{if } j = n-1, n 
\end{cases}
\]

with \( \epsilon \approx N(0, \sigma) \). The null hypothesis, \( H_0 : \Delta = 0 \) is tested against the alternative, \( H_A : \Delta > 0 \).

For testing two minimum outliers, the model can be proposed as

\[
x_{(i)} = \begin{cases} 
\mu + \Delta + \epsilon_{(j)}, & \text{if } j = 1, 2 \\
\mu + \epsilon_{(i)}, & \text{if } i = 3, \ldots, n 
\end{cases}
\]

The null hypothesis is tested against the alternative, \( H_A : \Delta < 0 \).

The p-value is computed with the function `pdgrubbs`. 
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References


Examples

```r
data(Pentosan)
dat <- subset(Pentosan, subset = (material == "A"))
labMeans <- tapply(dat$value, dat$lab, mean)
doubleGrubbsTest(x = labMeans, alternative = "less")
```

dscfAllPairsTest

Multiple Comparisons of Mean Rank Sums

Description

Performs the all-pairs comparison test for different factor levels according to Dwass, Steel, Critchlow and Fligner.

Usage

```r
dscfAllPairsTest(x, ...)
```

## Default S3 method:
dscfAllPairsTest(x, g, ...)

## S3 method for class 'formula'
dscfAllPairsTest(formula, data, subset, na.action, ...)

Arguments

x  a numeric vector of data values, or a list of numeric data vectors.

...  further arguments to be passed to or from methods.

g  a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula  a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data  an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset  an optional vector specifying a subset of observations to be used.

na.action  a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals the DSCF all-pairs comparison test can be used. A total of \( m = k(k-1)/2 \) hypotheses can be tested.

The null hypothesis \( H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \( A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \). As opposed to the all-pairs comparison procedures that depend on Kruskal ranks, the DSCF test is basically an extension of the U-test as re-ranking is conducted for each pairwise test.

The p-values are estimated from the studentized range distribution.

Value

A list with class "PMCMR" containing the following components:

- **method**  a character string indicating what type of test was performed.
- **data.name**  a character string giving the name(s) of the data.
- **statistic**  lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**  lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**  a character string describing the alternative hypothesis.
- **p.adjust.method**  a character string describing the method for p-value adjustment.
- **model**  a data frame of the input data.
- **dist**  a string that denotes the test distribution.

References


See Also

Tukey.pairwise.wilcox.test

duncanTest

Duncan's Multiple Range Test

Description

Performs Duncan's all-pairs comparisons test for normally distributed data with equal group variances.

Usage

duncanTest(x, ...)

## Default S3 method:
duncanTest(x, g, ...)

## S3 method for class 'formula'
duncanTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Duncan's multiple range test can be performed. A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \( H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \( A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the Tukey-distribution.
Value
A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also
- Tukey, TukeyHSD tukeyTest

Examples
```r
set.seed(245)
mn <- rep(c(1, 2^(1:4)), each=5)
sd <- rep(1, 25)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 = varN
anova(fit)
summary(duncanTest(x, g))
```

---

**dunnettT3Test**

**Dunnett’s T3 Test**

**Description**
Performs Dunnett’s all-pairs comparison test for normally distributed data with unequal variances.
Usage

dunnettT3Test(x, ...)

## Default S3 method:
dunnettT3Test(x, g, ...)

## S3 method for class 'formula'
dunnettT3Test(formula, data, subset, na.action, ...)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the T3 test of Dunnett can be performed. A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \( H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \( A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the studentized maximum modulus distribution that is the equivalent of the multivariate t distribution with \( \rho = 0 \). The function `pmvt` is used to calculate the \( p \)-values.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.
References


See Also

`pmvt`

Examples

```r
set.seed(245)
mn <- rep(c(1, 2^(1:4)), each=5)
sd <- rep(1:5, each=5)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 != varN
anova(fit)
summary(dunnettT3Test(x, g))
```

---

**dunnettTest**

*Dunnett’s Many-to-One Comparisons Test*

**Description**

Performs Dunnett’s multiple comparisons test with one control.

**Usage**

```r
dunnettTest(x, ...)
```

## Default S3 method:

dunnettTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

## S3 method for class 'formula'

dunnettTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ...)

**Arguments**

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
alternative the alternative hypothesis. Defaults to two.sided.

formula a formula of the form response ~ group where response gives the data values
and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
defaults to getOption("na.action").

Details

For many-to-one comparisons in an one-factorial layout with normally distributed residuals Dun-
nett's test can be used. A total of \( m = k - 1 \) hypotheses can be tested. The null hypothesis
\( H_i : \mu_0(x) = \mu_i(x) \) is tested in the two-tailed test against the alternative \( A_i : \mu_0(x) \neq \mu_i(x), \ 1 \leq i \leq k - 1 \).

The p-values for the test are calculated from the multivariate t distribution as implemented in the
function pmvt.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

Dunnett, C. W. (1955) A multiple comparison procedure for comparing several treatments with a

OECD (ed. 2006) *Current approaches in the statistical analysis of ecotoxicity data: A guidance to
application - Annexes*. OECD Series on testing and assessment, No. 54.

See Also

pmvt
Examples

```r
set.seed(245)
mn <- c(1, 2, 2^2, 2^3, 2^4)
x <- rep(mn, each=5) + rnorm(25)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g - 1)
shapiro.test(residuals(fit))
bartlett.test(x ~ g - 1)
anova(fit)
summary(dunnettTest(x, g, alternative = "greater"))
```

---

**durbinAllPairsTest**  
*All-Pairs Comparisons Test for Balanced Incomplete Block Designs*

### Description

Performs Conover-Iman all-pairs comparison test for a balanced incomplete block design (BIBD).

### Usage

```r
durbinAllPairsTest(y, ...)
```

```r
Default S3 method:
durbinAllPairsTest(y, groups, blocks,
 p.adjust.method = p.adjust.methods, ...)
```

### Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`)
- **...**: further arguments to be passed to or from methods.

### Details

For all-pairs comparisons in a balanced incomplete block design the proposed test of Conover and Imam can be applied. A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \( H_{ij} : \theta_i = \theta_j \) is tested in the two-tailed test against the alternative \( A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The p-values are computed from the t distribution. If no p-value adjustment is performed (p.adjust.method = "none"), than a simple protected test is recommended, i.e. the all-pairs comparisons should only be applied after a significant durbinTest. However, any method as implemented in `p.adjust.methods` can be selected by the user.
Value
A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also
durbinTest

Examples

```r
Example for an incomplete block design:
Data from Conover (1999, p. 391).
y <- matrix(c(2,NA,NA,NA,3, NA, 3, 3, NA, NA, NA, 3, NA, NA,
1, 2, NA, NA, NA, 1, 1, NA, 1, 1,
NA, NA, NA, NA, 2, NA, 2, 1, NA, NA, NA, NA,
3, NA, 2, 1, NA, NA, NA, 3, NA, 2, 2),
ncol=7, nrow=7, byrow=FALSE, dimnames=list(1:7, LETTERS[1:7]))
durbinAllPairsTest(y)
```

**durbinTest**

**Durbin Test**

Description
Performs Durbin’s tests whether k groups (or treatments) in a two-way balanced incomplete block design (BIBD) have identical effects.

Usage
durbinTest(y, ...)

## Default S3 method:
durbinTest(y, groups, blocks, ...)

Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x".
  Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x".
  Ignored with a warning if "x" is a list.
- **...**: further arguments to be passed to or from methods.

Details

For testing a two factorial layout of a balanced incomplete block design whether the \(k\) groups have identical effects, the Durbin test can be performed. The null hypothesis, \(H_0: \theta_i = \theta_j (1 \leq i < j \leq k)\), is tested against the alternative that at least one \(\theta_i \neq \theta_j\).

The p-values are computed from the chi-square distribution.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

Note

The function does not test, whether it is a true BIBD. This function does not test for ties.

References


Examples

```r
Example for an incomplete block design:
Data from Conover (1999, p. 391).
y <- matrix(c(
 2,NA,NA,NA,3, NA, 3, 3, 3, NA, NA, NA, 3, NA, NA,
 1, 2, NA, NA, NA, 1, 1, NA, 1, 1, 1,
), nrow=3)
```
```
NA, NA, NA, NA, 2, NA, 2, 1, NA, NA, NA, NA,
3, NA, 2, 1, NA, NA, NA, NA, 3, NA, 2, 2
```

### frdAllPairsConoverTest

**Conover’s All-Pairs Comparisons Test for Unreplicated Blocked Data**

#### Description
Performs Conover’s all-pairs comparisons tests of Friedman-type ranked data.

#### Usage
```
frdAllPairsConoverTest(y, ...)
Default S3 method:
frdAllPairsConoverTest(y, groups, blocks,
p.adjust.method = c("single-step", p.adjust.methods), ...)
```

#### Arguments
- `y` : a numeric vector of data values, or a list of numeric data vectors.
- `groups` : a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks` : a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `...` : further arguments to be passed to or from methods.

#### Details
For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Conover’s test can be performed on Friedman-type ranked data.

A total of $m = k(k - 1)/2$ hypotheses can be tested. The null hypothesis, $H_{ij} : \theta_i = \theta_j$, is tested in the two-tailed case against the alternative, $A_{ij} : \theta_i \neq \theta_j$, $i \neq j$.

If `p.adjust.method == "single-step"` the p-values are computed from the studentized range distribution. Otherwise, the p-values are computed from the t-distribution using any of the p-adjustment methods as included in `p.adjust`.

```
Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

`friedmanTest`, `friedman.test`, `frdAllPairsExactTest`, `frdAllPairsMillerTest`, `frdAllPairsNemenyiTest`, `frdAllPairsSiegelTest`

Examples

```r
## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
##
## y <- matrix(c(
3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)

## Eisinga et al. 2017
frdAllPairsExactTest(y=y, p.adjust = "bonferroni")

## Conover's test
frdAllPairsConoverTest(y=y, p.adjust = "bonferroni")

## Nemenyi's test
```
frdAllPairsNemenyiTest(y=y)

Miller et al.
frdAllPairsMillerTest(y=y)

Siegel-Castellan
frdAllPairsSiegelTest(y=y, p.adjust = "bonferroni")

Irrelevant of group order?
x <- as.vector(y)
g <- rep(colnames(y), each = length(x)/length(colnames(y)))
b <- rep(rownames(y), times = length(x)/length(rownames(y)))
xDF <- data.frame(x, g, b) # grouped by colnames

frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b)
o <- order(xDF$b) # order per block increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])
o <- order(xDF$x) # order per value increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])

formula method (only works for Nemenyi)
frdAllPairsNemenyiTest(x ~ g | b, data = xDF)

frdAllPairsExactTest

Exact All-Pairs Comparisons Test for Unreplicated Blocked Data

Description

Performs exact all-pairs comparisons tests of Friedman-type ranked data according to Eisinga et al. (2017).

Usage

`frdAllPairsExactTest(y, ...)`

Default S3 method:
frdAllPairsExactTest(y, groups, blocks,
 p.adjust.method = p.adjust.methods, ...)

Arguments

- `y`: a numeric vector of data values, or a list of numeric data vectors.
- `groups`: a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
- `blocks`: a vector or factor object giving the block for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
- `...`: further arguments to be passed to or from methods.
frdAllPairsExactTest

Details
For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, an exact test can be performed on Friedman-type ranked data.

A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis, \(H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \(A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The exact \(p \)-values are computed using the code of "pexactfrsd.R" that was a supplement to the publication of Eisinga et al. (2017). Additionally, any of the \(p \)-adjustment methods as included in \(\text{p.adjust} \) can be selected, for \(p \)-value adjustment.

Value
A list with class "PMCMR" containing the following components:

- \textbf{method} a character string indicating what type of test was performed.
- \textbf{data.name} a character string giving the name(s) of the data.
- \textbf{statistic} lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- \textbf{p.value} lower-triangle matrix of the \(p \)-values for the pairwise tests.
- \textbf{alternative} a character string describing the alternative hypothesis.
- \textbf{p.adjust.method} a character string describing the method for \(p \)-value adjustment.
- \textbf{model} a data frame of the input data.
- \textbf{dist} a string that denotes the test distribution.

Source
The function \texttt{frdAllPairsExactTest} uses the code of the file \texttt{pexactfrsd.R} that was a supplement to:

References

See Also
\texttt{friedmanTest}, \texttt{friedman.test}, \texttt{frdAllPairsConoverTest}, \texttt{frdAllPairsMillerTest}, \texttt{frdAllPairsNemenyiTest}, \texttt{frdAllPairsSiegelTest}
Examples

Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
##
$y \leftarrow \text{matrix}(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92, 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45, 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72, 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23, 26.65), nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6]))$

\text{print}(y)

\text{friedmanTest}(y)

Eisinga et al. 2017

\text{frdAllPairsExactTest}(y = y, p.adjust = "bonferroni")

Conover's test

\text{frdAllPairsConoverTest}(y = y, p.adjust = "bonferroni")

Nemenyi's test

\text{frdAllPairsNemenyiTest}(y = y)

Miller et al.

\text{frdAllPairsMillerTest}(y = y)

Siegel-Castellan

\text{frdAllPairsSiegelTest}(y = y, p.adjust = "bonferroni")

Irrelevant of group order?

$x \leftarrow \text{as.vector}(y)$

$g \leftarrow \text{rep}(\text{colnames}(y), \text{each} = \text{length}(x) / \text{length}(\text{colnames}(y)))$

$b \leftarrow \text{rep}(\text{rownames}(y), \text{times} = \text{length}(x) / \text{length}(\text{rownames}(y)))$

$\text{xdf} \leftarrow \text{data.frame}(x, g, b) \ # \text{grouped by colnames}$

\text{frdAllPairsNemenyiTest}(\text{xdf}x, \text{groups} = \text{xdf}g, \text{blocks} = \text{xdf}b)

$o \leftarrow \text{order}(\text{xdf}b) \ # \text{order per block increasingly}$

\text{frdAllPairsNemenyiTest}(\text{xdf}$x[o], \text{groups} = \text{xdf}$g[o], \text{blocks} = \text{xdf}$b[o])

$o \leftarrow \text{order}(\text{xdf}x) \ # \text{order per value increasingly}$

\text{frdAllPairsNemenyiTest}(\text{xdf}$x[o], \text{groups} = \text{xdf}$g[o], \text{blocks} = \text{xdf}$b[o])

formula method (only works for Nemenyi)

\text{frdAllPairsNemenyiTest}(x \sim g \mid b, \text{data} = \text{xdf})
frdAllPairsMillerTest

Description

Performs Miller’s all-pairs comparisons tests of Friedman-type ranked data.

Usage

frdAllPairsMillerTest(y, ...)

Default S3 method:
frdAllPairsMillerTest(y, groups, blocks, ...)

Arguments

y a numeric vector of data values, or a list of numeric data vectors.
groups a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
... further arguments to be passed to or from methods.

Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Miller’s test can be performed on Friedman-type ranked data.

A total of \(m = \frac{k(k-1)}{2} \) hypotheses can be tested. The null hypothesis, \(H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \(A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The \(p \)-values are computed from the chi-square distribution.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the \(p \)-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for \(p \)-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

frdAllPairsMillerTest

See Also

friedmanTest, friedman.test, frdAllPairsExactTest, frdAllPairsConoverTest, frdAllPairsNemenyiTest, frdAllPairsSiegelTest

Examples

Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
##
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)

Eisinga et al. 2017
frdAllPairsExactTest(y=y, p.adjust = "bonferroni")

Conover's test
frdAllPairsConoverTest(y=y, p.adjust = "bonferroni")

Nemenyi's test
frdAllPairsNemenyiTest(y=y)

Miller et al.
frdAllPairsMillerTest(y=y)

Siegel-Castellan
frdAllPairsSiegelTest(y=y, p.adjust = "bonferroni")

Irrelevant of group order?
x <- as.vector(y)
g <- rep(colnames(y), each = length(x)/length(colnames(y)))
b <- rep(rownames(y), times = length(x)/length(rownames(y)))
xD <- data.frame(x, g, b) # grouped by colnames

frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b)
o <- order(xDF$b) # order per block increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])
o <- order(xDF$x) # order per value increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])

formula method (only works for Nemenyi)
frdAllPairsNemenyiTest(x ~ g | b, data = xDF)
frdAllPairsNemenyiTest

Nemenyi’s All-Pairs Comparisons Test for Unreplicated Blocked Data

Description

Performs Nemenyi’s all-pairs comparisons tests of Friedman-type ranked data.

Usage

frdAllPairsNemenyiTest(y, ...)
 ## Default S3 method:
 frdAllPairsNemenyiTest(y, groups, blocks, ...)
 ## S3 method for class 'formula'
 frdAllPairsNemenyiTest(formula, data, subset, na.action, ...)

Arguments

y
 a numeric vector of data values, or a list of numeric data vectors.

groups
 a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.

blocks
 a vector or factor object giving the block for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.

formula
 a formula of the form a ~ b | c where a, b and c give the data values and the
 corresponding groups and blocks, respectively.

data
 an optional matrix or data frame (or similar: see model.frame) containing
 the variables in the formula formula. By default the variables are taken from
 environment(formula).

subset
 an optional vector specifying a subset of observations to be used.

na.action
 a function which indicates what should happen when the data contain NAs. De-
 faults to getOption("na.action").

...
 further arguments to be passed to or from methods.

Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally
 distributed residuals, Nemenyi’s test can be performed on Friedman-type ranked data.

A total of \(m = \frac{k(k-1)}{2} \) hypotheses can be tested. The null hypothesis, \(H_{ij} : \theta_i = \theta_j \), is tested
in the two-tailed case against the alternative, \(A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The \(p \)-values are computed from the studentized range distribution.
Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

See Also

- `friedmanTest`, `friedman.test`, `frdAllPairsExactTest`, `frdAllPairsConoverTest`, `frdAllPairsMillerTest`, `frdAllPairsSiegelTest`

Examples

```r
## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
##
y <- matrix(c(
  3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
  23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
  26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
  32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
  26.65), nrow=6, ncol=6,

dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)
```

```r
## Eisinga et al. 2017
frdAllPairsExactTest(y=y, p.adjust = "bonferroni")
```

Conover's test
frdAllPairsConoverTest(y=y, p.adjust = "bonferroni")

Nemenyi's test
frdAllPairsNemenyiTest(y)

Miller et al.
frdAllPairsMillerTest(y)

Siegel-Castellan
frdAllPairsSiegelTest(y=y, p.adjust = "bonferroni")

Irrelevant of group order?
x <- as.vector(y)
g <- rep(colnames(y), each = length(x)/length(colnames(y)))
b <- rep(rownames(y), times = length(x)/length(rownames(y)))
xD <- data.frame(x, g, b) # grouped by colnames
frdAllPairsNemenyiTest(xDF$x, groups = xDF$g, blocks = xDF$b)
o <- order(xDF$b) # order per block increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])
o <- order(xDF$x) # order per value increasingly
frdAllPairsNemenyiTest(xDF$x[o], groups = xDF$g[o], blocks = xDF$b[o])

formula method (only works for Nemenyi)
frdAllPairsNemenyiTest(x ~ g | b, data = xDF)

frdAllPairsSiegelTest Siegel and Castellan's All-Pairs Comparisons Test for Unreplicated Blocked Data

Description

Performs Siegel and Castellan's all-pairs comparisons tests of Friedman-type ranked data.

Usage

frdAllPairsSiegelTest(y, ...)

Default S3 method:
frdAllPairsSiegelTest(y, groups, blocks,
 p.adjust.method = p.adjust.methods, ...)

Arguments

- `y`
a numeric vector of data values, or a list of numeric data vectors.

- `groups`
a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
p.adjust.method method for adjusting p values (see p.adjust).
... further arguments to be passed to or from methods.

Details

For all-pairs comparisons in a two factorial unreplicated complete block design with non-normally distributed residuals, Siegel and Castellan’s test can be performed on Friedman-type ranked data. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis, \(H_{ij} : \theta_i = \theta_j \), is tested in the two-tailed case against the alternative, \(A_{ij} : \theta_i \neq \theta_j, \ i \neq j \).

The \(p \)-values are computed from the standard normal distribution. Any method as implemented in p.adjust can be used for \(p \)-value adjustment.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the \(p \)-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for \(p \)-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

See Also

friedmanTest, friedman.test, frdAllPairsExactTest, frdAllPairsConoverTest, frdAllPairsNemenyiTest, frdAllPairsMillerTest

Examples

```r
## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
## y <- matrix(c(
```
frdManyOneDemsarTest

Demsar’s Many-to-One Test for Unreplicated Blocked Data

Description

Performs Demšar’s non-parametric many-to-one comparison test for Friedman-type ranked data.

Usage

frdManyOneDemsarTest(y, ...)
Default S3 method:
frdManyOneDemsarTest(y, groups, blocks,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = p.adjust.methods, ...)

Arguments

y a numeric vector of data values, or a list of numeric data vectors.
groups a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
blocks a vector or factor object giving the block for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
alternative the alternative hypothesis. Defaults to two.sided.
p.adjust.method method for adjusting p values (see p.adjust).
 ...

Details

For many-to-one comparisons (pairwise comparisons with one control) in a two factorial unreplicated complete block design with non-normally distributed residuals, Demsar’s test can be performed on Friedman-type ranked data.

Let there be k groups including the control, then the number of treatment levels is m = k − 1. A total of m pairwise comparisons can be performed between the i-th treatment level and the control. H_i : \theta_0 = \theta_i is tested in the two-tailed case against A_i : \theta_0 \neq \theta_i, (1 \leq i \leq m).

The p-values are computed from the standard normal distribution. Any of the p-adjustment methods as included in p.adjust can be used for the adjustment of p-values.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

frdManyOneExactTest

See Also
friedmanTest, friedman.test, frdManyOneExactTest, frdManyOneNemenyiTest.

Examples

Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))

Global Friedman test
friedmanTest(y)

Demsar's many-one test
frdManyOneDemsarTest(y=y, p.adjust = "bonferroni")

Exact many-one test
frdManyOneExactTest(y=y, p.adjust = "bonferroni")

Nemenyi's many-one test
frdManyOneNemenyiTest(y=y)

frdManyOneExactTest Exact Many-to-One Test for Unreplicated Blocked Data

Description

Performs an exact non-parametric many-to-one comparison test for Friedman-type ranked data according to Eisinga et al. (2017).

Usage

frdManyOneExactTest(y, ...)

Default S3 method:
frdManyOneExactTest(y, groups, blocks,
 p.adjust.method = p.adjust.methods, ...)

See Also

friedmanTest, friedman.test, frdManyOneExactTest, frdManyOneNemenyiTest.

Examples

Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
 26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))

Global Friedman test
friedmanTest(y)

Demsar's many-one test
frdManyOneDemsarTest(y=y, p.adjust = "bonferroni")

Exact many-one test
frdManyOneExactTest(y=y, p.adjust = "bonferroni")

Nemenyi's many-one test
frdManyOneNemenyiTest(y=y)
Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`).
- **...**: further arguments to be passed to or from methods.

Details

For many-to-one comparisons (pairwise comparisons with one control) in a two factorial unreplicated complete block design with non-normally distributed residuals, an exact test can be performed on Friedman-type ranked data.

Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). A total of \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \(A_i : \theta_0 \neq \theta_i, (1 \leq i \leq m) \).

The exact p-values are computed using the code of "pexactfrsd.R" that was a supplement to the publication of Eisinga et al. (2017). Additionally, any of the p-adjustment methods as included in `p.adjust` can be selected, for p-value adjustment.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

See Also

`frdManyOneDemsarTest`, `frdManyOneNemenyiTest`, `friedmanTest`, `friedman.test`
frdManyOneNemenyiTest

Examples

Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

```r
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
              23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
              26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 39.15, 28.06, 32.92,
              28.23, 23.35, 12, 38.87, 23.42, 18.85, 20.45, 29.41, 30.72,
              32.92, 28.23, 23.35, 12, 38.87, 33.12, 19.15, 28.06, 38.23,
              26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
```

Global Friedman test
```r
friedmanTest(y)
```

Demsar's many-one test
```r
frdManyOneDemsarTest(y=y, p.adjust = "bonferroni")
```

Exact many-one test
```r
frdManyOneExactTest(y=y, p.adjust = "bonferroni")
```

Nemenyi's many-one test
```r
frdManyOneNemenyiTest(y=y)
```

frdManyOneNemenyiTest Nemenyi's Many-to-One Test for Unreplicated Blocked Data

Description

Performs Nemenyi's non-parametric many-to-one comparison test for Friedman-type ranked data.

Usage

```r
frdManyOneNemenyiTest(y, ...)
```

Default S3 method:
```r
frdManyOneNemenyiTest(y, groups, blocks,
                      alternative = c("two.sided", "greater", "less"), ...)
```

Arguments

- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
blocks a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to two.sided.

... further arguments to be passed to or from methods.

Details
For many-to-one comparisons (pairwise comparisons with one control) in a two factorial unrepli-
cated complete block design with non-normally distributed residuals, Nemenyi’s test can be per-
formed on Friedman-type ranked data.

Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). A
total of \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control.
\[H_i : \theta_0 = \theta_i \text{ is tested in the two-tailed case against } A_i : \theta_0 \neq \theta_i, \quad (1 \leq i \leq m). \]
The \(p \)-values are computed from the multivariate normal distribution. As \texttt{pmvnorm} applies a numerical method, the estimated \(p \)-values are set depended.

Value
A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the \(p \)-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for \(p \)-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References
York: Wiley. 2014.

See Also
text

friedmanTest,friedman.test,frdManyOneExactTest,frdManyOneDemarTest pmvnorm, set.seed
friedmanTest

Examples

Sachs, 1997, p. 675
Six persons (block) received six different diuretics
(A to F, treatment).
The responses are the Na-concentration (mval)
in the urine measured 2 hours after each treatment.
Assume A is the control.

```r
y <- matrix(c(3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92, 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45, 26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72, 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23, 26.65), nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6]))
```

Global Friedman test
friedmanTest(y)

Demsar's many-one test
frdManyOneDemsarTest(y=y, p.adjust = "bonferroni")

Exact many-one test
frdManyOneExactTest(y=y, p.adjust = "bonferroni")

Nemenyi's many-one test
frdManyOneNemenyiTest(y=y)

friedmanTest

Friedman Rank Sum Test

Description

Performs a Friedman rank sum test. The null hypothesis $H_0 : \theta_i = \theta_j$ ($i \neq j$) is tested against the alternative $H_A : \theta_i \neq \theta_j$, with at least one inequality being strict.

Usage

```r
friedmanTest(y, ...)
```

Default S3 method:
friedmanTest(y, groups, blocks, dist = c("Chisquare", "FDist"), ...)

Arguments

- `y` a numeric vector of data values, or a list of numeric data vectors.
friedmanTest

- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **dist**: the test distribution. Defaults to Chisquare.
- **...**: further arguments to be passed to or from methods.

Details

The function has implemented Friedman’s test as well as the extension of Conover anf Iman (1981). Friedman’s test statistic is asymptotically chi-squared distributed. Consequently, the default test distribution is dist = "Chisquare".

If dist = "FDist" is selected, than the approach of Conover and Imam (1981) is performed. The Friedman Test using the F-distribution leads to the same results as doing an two-way Analysis of Variance without interaction on rank transformed data.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

References

See Also

friedman.test

Examples

```r
## Comparison of three methods ("round out", "narrow angle", and
## "wide angle") for rounding first base. For each of 18 players
## and the three method, the average time of two runs from a point on
## the first base line 35ft from home plate to a point 15ft short of
## second base is recorded.
```
```r
RoundingTimes <-
matrix(c(5.40, 5.50, 5.55,
        5.85, 5.70, 5.75,
        5.20, 5.60, 5.50,
        5.55, 5.50, 5.40,
        5.90, 5.85, 5.70,
        5.45, 5.55, 5.60,
        5.40, 5.40, 5.35,
        5.45, 5.50, 5.35,
        5.25, 5.15, 5.00,
        5.85, 5.80, 5.70,
        5.25, 5.20, 5.10,
        5.65, 5.55, 5.45,
        5.60, 5.35, 5.45,
        5.05, 5.00, 4.95,
        5.50, 5.50, 5.40,
        5.45, 5.55, 5.50,
        5.55, 5.55, 5.35,
        5.45, 5.50, 5.55,
        5.50, 5.45, 5.25,
        5.65, 5.60, 5.40,
        5.70, 5.65, 5.55,
        6.30, 6.30, 6.25),
nrow = 22,
byrow = TRUE,
dimnames = list(1 : 22,
                c("Round Out", "Narrow Angle", "Wide Angle")))

## Chisquare distribution
friedmanTest(RoundingTimes)

## check with friedman.test from R stats
friedman.test(RoundingTimes)

## F-distribution
friedmanTest(RoundingTimes, dist = "FDist")

## Check with One-way repeated measure ANOVA
rmat <- RoundingTimes
for (i in 1:length(RoundingTimes[,1])) rmat[i,] <- rank(rmat[i,])
dataf <- data.frame(
y = y <- as.vector(rmat),
g = g <- factor(c(col(RoundingTimes))),
b = b <- factor(c(row(RoundingTimes))))
summary(aov(y ~ g + Error(b), data = dataf))
```

gamesHowellTest Games-Howell Test
Description
Performing Games-Howell all-pairs comparison test for normally distributed data with unequal group variances.

Usage

gamesHowellTest(x, ...)

Default S3 method:
gamesHowellTest(x, g, ...)

S3 method for class 'formula'
gamesHowellTest(formula, data, subset, na.action, ...)

Arguments

x
a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details
For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal between-groups variances the Games-Howell Test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the studentized range distribution.

Value
A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value lower-triangle matrix of the p-values for the pairwise tests.

alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

See Also

ptukey

Examples

set.seed(245)
mn <- rep(c(1, 2*(1:4)), each=5)
sd <- rep(1:5, each=5)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 != varN
anova(fit)
summary(gamesHowellTest(x, g))
Examples

```r
## Taken from Rosner (1983):
x <- c(-0.25, 0.68, 0.94, 1.15, 1.20, 1.26, 1.26,
     1.34, 1.38, 1.43, 1.49, 1.49, 1.55, 1.56,
     1.58, 1.65, 1.69, 1.70, 1.76, 1.77, 1.81,
     1.91, 1.94, 1.96, 1.99, 2.06, 2.09, 2.10,
     2.14, 2.15, 2.23, 2.24, 2.26, 2.35, 2.37,
     2.40, 2.47, 2.54, 2.62, 2.64, 2.90, 2.92,
     2.92, 2.93, 3.21, 3.26, 3.30, 3.59, 3.68,
     4.30, 4.64, 5.34, 5.42, 6.01)

out <- gesdTest(x, 10)

## print method
out

## summary method
summary(out)
```

goreTest

Description

Performs Gore’s test. The null hypothesis $H_0 : \theta_i = \theta_j$ $(i \neq j)$ is tested against the alternative $H_A : \theta_i \neq \theta_j$, with at least one inequality being strict.

Usage

```r
goreTest(y, groups, blocks)
```

Arguments

- `y`: a numeric vector of data values.
- `groups`: a vector or factor object giving the group for the corresponding elements of "y".
- `blocks`: a vector or factor object giving the group for the corresponding elements of "y".

Details

The function has implemented Gore’s test for testing main effects in unbalanced CRB designs, i.e. there are one or more observations per cell. The statistic is asymptotically chi-squared distributed.
Value
A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

References

See Also
- `friedmanTest`
- `skillingsMackTest`
- `durbinTest`

Examples
```r
## Crop Yield of 3 varieties on two soil classes
X <- c("130,A,Light";
115,A,Light
123,A,Light
142,A,Light
117,A,Heavy
125,A,Heavy
139,A,Heavy
108,B,Light
114,B,Light
124,B,Light
106,B,Light
91,B,Heavy
111,B,Heavy
110,B,Heavy
155,C,Light
146,C,Light
151,C,Light
165,C,Light
97,C,Heavy
108,C,Heavy")
con <- textConnection(X)
x <- read.table(con, header=FALSE, sep="",")
close(con)
colnames(x) <- c("Yield", "Variety", "SoilType")
goreTest(y = x$Yield, groups = x$Variety, blocks = x$SoilType)
```
Grubbs

Grubbs distribution

Description

Distribution function and quantile function for Grubbs distribution.

Usage

\[
\text{qgrubbs}(p, n) \\
\text{pgrubbs}(q, n, \text{lower.tail} = \text{TRUE})
\]

Arguments

- `p`: vector of probabilities.
- `n`: total sample size.
- `q`: vector of quantiles.
- `lower.tail`: logical; if TRUE (default), probabilities are \(P[X \leq x] \) otherwise, \(P[X > x] \).

Value

`pgrubbs` gives the distribution function and `qgrubbs` gives the quantile function.

References

See Also

`TDist`

Examples

\[
\text{qgrubbs}(0.05, 7)
\]
Description

Performs Grubbs single outlier test.

Usage

\texttt{grubbsTest(x, alternative = c("two.sided", "greater", "less"))}

Arguments

\texttt{x} \hspace{1cm} \text{a numeric vector of data.}
\texttt{alternative} \hspace{1cm} \text{the alternative hypothesis. Defaults to "two.sided".}

Details

Let X denote an identically and independently distributed continuous variate with realizations $x_i \ (1 \leq i \leq k)$. Further, let the increasingly ordered realizations denote $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$. Then the following model for a single maximum outlier can be proposed:

$$
 x_{(i)} = \begin{cases}
 \mu + \epsilon_i, & i = 1, \ldots, n - 1 \\
 \mu + \Delta + \epsilon_{(n)}
 \end{cases}
$$

with $\epsilon \approx N(0, \sigma)$. The null hypothesis, $H_0 : \Delta = 0$ is tested against the alternative, $H_A : \Delta > 0$.

For testing a single minimum outlier, the model can be proposed as

$$
 x_{(i)} = \begin{cases}
 \mu + \epsilon_{(1)}, & i = 2, \ldots, n \\
 \mu + \Delta + \epsilon_i,
 \end{cases}
$$

The null hypothesis is tested against the alternative, $H_A : \Delta < 0$.

The p-value is computed with the function \texttt{pgrubbs}.

Value

A list with class "htest" containing the following components:

\texttt{method} \hspace{1cm} \text{a character string indicating what type of test was performed.}
\texttt{data.name} \hspace{1cm} \text{a character string giving the name(s) of the data.}
\texttt{statistic} \hspace{1cm} \text{the estimated quantile of the test statistic.}
\texttt{p.value} \hspace{1cm} \text{the p-value for the test.}
\texttt{parameter} \hspace{1cm} \text{the parameters of the test statistic, if any.}
\texttt{alternative} \hspace{1cm} \text{a character string describing the alternative hypothesis.}
\texttt{estimates} \hspace{1cm} \text{the estimates, if any.}
\texttt{null.value} \hspace{1cm} \text{the estimate under the null hypothesis, if any.}
References

Examples

```r
data(Pentosan)
dat <- subset(Pentosan, subset = (material == "A"))
labMeans <- tapply(dat$value, dat$lab, mean)
grubbsTest(x = labMeans, alternative = "two.sided")
```

GSTTest
Generalized Siegel-Tukey Test of Homogeneity of Scales

Description

Performs a Siegel-Tukey k-sample rank dispersion test.

Usage

```r
GSTTest(x, ...)

## Default S3 method:
GSTTest(x, g, dist = c("Chisquare", "KruskalWallis"), ...)

## S3 method for class 'formula'
GSTTest(formula, data, subset, na.action, dist = c("Chisquare", "KruskalWallis"), ...)
```

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **dist**: the test distribution. Defaults’s to "Chisquare".
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.
Details

Meyer-Bahlburg (1970) has proposed a generalized Siegel-Tukey rank dispersion test for the \(k \)-sample case. Likewise to the \texttt{fligner.test}, this test is a nonparametric test for testing the homogeneity of scales in several groups. Let \(\theta_i \) and \(\lambda_i \) denote location and scale parameter of the \(i \)-th group, then for the two-tailed case, the null hypothesis \(H: \lambda_i/\lambda_j = 1 | \theta_i = \theta_j, i \neq j \) is tested against the alternative, \(A: \lambda_i/\lambda_j \neq 1 \) with at least one inequality being strict.

The data are combinedly ranked according to Siegel-Tukey. The ranking is done by alternate extremes (rank 1 is lowest, 2 and 3 are the two highest, 4 and 5 are the two next lowest, etc.).

Meyer-Bahlburg (1970) showed, that the Kruskal-Wallis H-test can be employed on the Siegel-Tukey ranks. The H-statistic is asymptotically chi-squared distributed with \(v = k - 1 \) degree of freedom, the default test distribution is consequently \texttt{dist = "Chisquare"}. If \texttt{dist = "KruskalWallis"} is selected, an incomplete beta approximation is used for the calculation of p-values as implemented in the function \texttt{pKruskalWallis} of the package \texttt{SuppDists}.

Value

A list with class "htest" containing the following components:

- \texttt{method} a character string indicating what type of test was performed.
- \texttt{data.name} a character string giving the name(s) of the data.
- \texttt{statistic} the estimated quantile of the test statistic.
- \texttt{p.value} the p-value for the test.
- \texttt{parameter} the parameters of the test statistic, if any.
- \texttt{alternative} a character string describing the alternative hypothesis.
- \texttt{estimates} the estimates, if any.
- \texttt{null.value} the estimate under the null hypothesis, if any.

Note

If ties are present, a tie correction is performed and a warning message is given. The GSTTest is sensitive to median differences, likewise to the Siegel-Tukey test. It is thus appropriate to apply this test on the residuals of a one-way ANOVA, rather than on the original data (see example).

References

See Also

\texttt{fligner.test, pKruskalWallis, Chisquare, fligner.test}
Examples

GSTTest(count ~ spray, data = InsectSprays)

as means/medians differ, apply the test to residuals
of one-way ANOVA
ans <- aov(count ~ spray, data = InsectSprays)
GSTTest(residuals(ans) ~ spray, data = InsectSprays)

|-- hartleyTest

Hartley’s Maximum F-Ratio Test of Homogeneity of Variances

Description

Performs Hartley’s maximum F-ratio test of the null that variances in each of the groups (samples) are the same.

Usage

hartleyTest(x, ...)

Default S3 method: hartleyTest(x, g, ...)

S3 method for class 'formula'
hartleyTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption(“na.action”).
Details

If \(x \) is a list, its elements are taken as the samples to be compared for homogeneity of variances. In this case, the elements must all be numeric data vectors, \(g \) is ignored, and one can simply use \(\text{hartleyTest}(x) \) to perform the test. If the samples are not yet contained in a list, use \(\text{hartleyTest}(\text{list}(x,\ldots)) \).

Otherwise, \(x \) must be a numeric data vector, and \(g \) must be a vector or factor object of the same length as \(x \) giving the group for the corresponding elements of \(x \).

Hartley’s parametric test requires normality and a nearly balanced design. The p-value of the test is calculated with the function \(\text{pmaxFratio} \) of the package \textbf{SuppDists}.

Value

A list with class "htest" containing the following components:

- \textbf{method} a character string indicating what type of test was performed.
- \textbf{data.name} a character string giving the name(s) of the data.
- \textbf{statistic} the estimated quantile of the test statistic.
- \textbf{p.value} the p-value for the test.
- \textbf{parameter} the parameters of the test statistic, if any.
- \textbf{alternative} a character string describing the alternative hypothesis.
- \textbf{estimates} the estimates, if any.
- \textbf{null.value} the estimate under the null hypothesis, if any.

References

See Also

\texttt{bartlett.test}, \texttt{pmaxFratio}

Examples

\begin{verbatim}
\text{hartleyTest(count ~ spray, data = InsectSprays)}
\end{verbatim}
Description

Performs the Johnson-Mehrotra test for testing against ordered alternatives in a balanced one-factorial sampling design.

Usage

johnsonTest(x, ...)

Default S3 method:
johnsonTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

S3 method for class 'formula'
johnsonTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ...)

Arguments

x
a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "two.sided".

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, \(H_0 : \theta_1 = \theta_2 = \ldots = \theta_k \), is tested against a simple order hypothesis, \(H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k \).

The p-values are estimated from the standard normal distribution.
Value

A list with class "htest" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.

References

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

Example from Sachs (1997, p. 402)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

Chacko's test
chackoTest(x, g)

Cuzick's test
cuzickTest(x, g)

Johnson-Mehrotra test
johnsonTest(x, g)

Jonckheere-Terpstra test
jonckheereTest(x, g)

Le's test
leTest(x, g)

Spearman type test
jonckheereTest

Testing against Ordered Alternatives (Jonckheere-Terpstra Test)

Description

Performs the Jonckheere-Terpstra test for testing against ordered alternatives.

Usage

jonckheereTest(x, ...)

Default S3 method:
jonckheereTest(x, g, alternative = c("two.sided", "greater", "less"), continuity = FALSE, ...)

S3 method for class 'formula'
jonckheereTest(formula, data, subset, na.action,
alternative = c("two.sided", "greater", "less"), continuity = FALSE,
...)

Arguments

x
a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "two.sided".

continuity logical indicator whether a continuity correction shall be performed. Defaults to FALSE.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").
The null hypothesis, \(H_0 : \theta_1 = \theta_2 = \ldots = \theta_k \) is tested against a simple order hypothesis, \(H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k \).

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
- **parameter**: the parameters of the test statistic, if any.
- **alternative**: a character string describing the alternative hypothesis.
- **estimates**: the estimates, if any.
- **null.value**: the estimate under the null hypothesis, if any.

Source

The code for the computation of the standard deviation for the Jonckheere-Terpstra test in the presence of ties was taken from:

Kloke, J., McKean, J. (2016) **npsm**: Package for Nonparametric Statistical Methods using R. R package version 0.5. https://CRAN.R-project.org/package=npsm

Note

\texttt{jonckheereTest(x,g,alternative = "two.sided",continuity = TRUE)} is equivalent to \texttt{cor.test(x,as.numeric(g),method = "kendall",alternative = "two.sided",continuity = TRUE)}

References

See Also

[kruskalTest](https://example.com) and [shirleyWilliamsTest](https://example.com) of the package **PMCMRplus**, [kruskal.test](https://example.com) of the library **stats**.
Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
      110, 125, 143, 148, 151,
      136, 139, 149, 160, 174)
g <- gl(3, 5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)
```

kruskalTest
Kruskal-Wallis Rank Sum Test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

```r
description
Usage
kruskalTest(x, ...)

## Default S3 method:
kruskalTest(x, g, dist = c("Chisquare",
   "KruskalWallis", "FDist"), ...)

## S3 method for class 'formula'
kruskalTest(formula, data, subset, na.action,
dist = c("Chisquare", "KruskalWallis", "FDist"), ...)
```
Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x".
Ignored with a warning if "x" is a list.
dist the test distribution. Defaults to "Chisquare".
formula a formula of the form response ~ group where response gives the data values
and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar; see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-
defaults to getOption("na.action").

Details

For one-factorial designs with non-normally distributed residuals the Kruskal-Wallis rank sum test
can be performed to test the H₀ : F₁(x) = F₂(x) = ... = Fₖ(x) against the Hₐ : Fᵢ(x) ≠ Fⱼ(x) (i ≠ j) with at least one strict inequality.

As the Kruskal-Wallis H-statistic is asymptotically chi-squared distributed with v = k − 1 de-
gree of freedom, the default test distribution is consequently dist = "Chisquare". If dist = "KruskalWallis" is selected, an incomplete beta approximation is used for the calculation of p-values as implemented in the function pKruskalWallis of the package SuppDists. For dist = "FDist" the proposed method of Conover and Imam (1981) is used, which is equivalent to a one-way ANOVA F-test using rank transformed data (see examples).

Value

A list with class "htest" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.

References

Conover, W. J., Iman, R. L. (1981) Rank transformations as a bridge between parametric and non-
kwAllPairsConoverTest

Conover's All-Pairs Rank Comparison Test

Description

Performs Conover’s non-parametric all-pairs comparison test for Kruskal-type ranked data.

Usage

kwAllPairsConoverTest(x, ...)

Default S3 method:
kwAllPairsConoverTest(x, g,

See Also

kruskal.test, pKruskalWallis, Chisquare, FDist

Examples

Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.

x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

datf <- data.frame(
 g = g <- c(rep("ns", length(x)), rep("oad",
 length(y)), rep("a", length(z))),
 x = x <- c(x, y, z))

Using incomplete beta approximation
kruskalTest(x ~ g, datf, dist="KruskalWallis")

Using chisquare distribution
kruskalTest(x ~ g, datf, dist="Chisquare")

Check with kruskal.test from R stats
kruskal.test(x ~ g, datf)

Using Conover’s F
kruskalTest(x ~ g, datf, dist="FDist")

Check with aov on ranks
anova(aov(rank(x) ~ g, datf))

Check with oneway.test
oneway.test(rank(x) ~ g, datf, var.equal = TRUE)
kwAllPairsConoverTest

p.adjust.method = c("single-step", p.adjust.methods), ...

S3 method for class 'formula'
kwAllPairsConoverTest(formula, data, subset, na.action,
 p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

x
 a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g
 a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

p.adjust.method
 method for adjusting p values (see p.adjust).

formula
 a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data
 an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset
 an optional vector specifying a subset of observations to be used.

na.action
 a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Conover’s non-parametric test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

If p.adjust.method == "single-step" the p-values are computed from the studentized range distribution. Otherwise, the p-values are computed from the t-distribution using any of the p-adjustment methods as included in p.adjust.

Value

A list with class "PMCMR" containing the following components:

 method a character string indicating what type of test was performed.

 data.name a character string giving the name(s) of the data.

 statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

 p.value lower-triangle matrix of the p-values for the pairwise tests.

 alternative a character string describing the alternative hypothesis.

 p.adjust.method a character string describing the method for p-value adjustment.

 model a data frame of the input data.

 dist a string that denotes the test distribution.
kwAllPairsDunnTest

Dunn’s All-Pairs Rank Comparison Test

Description

Performs Dunn’s non-parametric all-pairs comparison test for Kruskal-type ranked data.

Usage

kwAllPairsDunnTest(x, ...)

Default S3 method:
kwAllPairsDunnTest(x, g,
 p.adjust.method = p.adjust.methods, ...)

S3 method for class 'formula'
kwAllPairsDunnTest(formula, data, subset, na.action,
 p.adjust.method = p.adjust.methods, ...)

References

See Also

Tukey, TDist, p.adjust, kruskalTest, kwAllPairsDunnTest, kwAllPairsNemenyiTest

Examples

Data set InsectSprays
Global test
kruskalTest(count ~ spray, data = InsectSprays)

Conover's all-pairs comparison test
single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays,
 p.adjust.method = "single-step")
summary(ans)

Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays,
 p.adjust.method = "bonferroni")
summary(ans)

Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

p.adjust.method method for adjusting p values (see p.adjust).

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Dunn’s non-parametric test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), i \neq j \).

The p-values are computed from the standard normal distribution using any of the p-adjustment methods as included in p.adjust. Originally, Dunn (1964) proposed Bonferroni’s p-adjustment method.

Value

A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value lower-triangle matrix of the p-values for the pairwise tests.

alternative a character string describing the alternative hypothesis.

p.adjust.method a character string describing the method for p-value adjustment.

model a data frame of the input data.

dist a string that denotes the test distribution.

References

kwAllPairsNemenyiTest

Nemenyi's All-Pairs Rank Comparison Test

Description

Performs Nemenyi's non-parametric all-pairs comparison test for Kruskal-type ranked data.

Usage

kwAllPairsNemenyiTest(x, \ldots)

Default S3 method:
kwAllPairsNemenyiTest(x, g, dist = c("Tukey", "Chisquare"), \ldots)

S3 method for class 'formula'
kwAllPairsNemenyiTest(formula, data, subset, na.action, dist = c("Tukey", "Chisquare"), \ldots)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

\ldots

further arguments to be passed to or from methods.

See Also

Normal, p.adjust, kruskalTest, kwAllPairsConoverTest, kwAllPairsNemenyiTest

Examples

Data set InsectSprays
Global test
kruskalTest(count ~ spray, data = InsectSprays)

Conover's all-pairs comparison test
single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays, p.adjust.method = "single-step")
summary(ans)

Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays, p.adjust.method = "bonferroni")
summary(ans)

Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
dist the distribution for determining the p-value. Defaults to "Tukey".
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see \texttt{model.frame}) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details
For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Nemenyi’s non-parametric test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j. \)

If dist == "Tukey" is selected, the p-values are computed from the studentized range distribution. If dist == "Chisquare" is selected, the p-values are computed from the chi-square distribution.

Value
A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the p-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for p-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

See Also
Tukey, Chisquare, p.adjust, kruskalTest, kwAllPairsDunnTest, kwAllPairsConoverTest
Examples

```r
## Data set InsectSprays
## Global test
kruskalTest(count ~ spray, data = InsectSprays)

## Conover's all-pairs comparison test
## single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays,
                              p.adjust.method = "single-step")
summary(ans)

## Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays,
                          p.adjust.method = "bonferroni")
summary(ans)

## Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
```

kwManyOneConoverTest
Conover's Many-to-One Rank Comparison Test

Description

Performs Conover's non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

```r
kwManyOneConoverTest(x, ...)
```

Arguments

- `x`
a numeric vector of data values, or a list of numeric data vectors.

- `...`
further arguments to be passed to or from methods.

- `g`
a vector or factor object giving the group for the corresponding elements of "x".
Ignored with a warning if "x" is a list.
alternative the alternative hypothesis. Defaults to two.sided.

p.adjust.method method for adjusting p values (see p.adjust).

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Conover’s non-parametric test can be performed. Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). Then \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \(A_i : \theta_0 \neq \theta_i, \ (1 \leq i \leq m) \).

If p.adjust.method = "single-step" is selected, the \(p \)-values will be computed from the multivariate \(t \) distribution. Otherwise, the \(p \)-values are computed from the \(t \)-distribution using any of the \(p \)-adjustment methods as included in p.adjust.

Value

A list with class "PMCMR" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- p.value lower-triangle matrix of the \(p \)-values for the pairwise tests.
- alternative a character string describing the alternative hypothesis.
- p.adjust.method a character string describing the method for \(p \)-value adjustment.
- model a data frame of the input data.
- dist a string that denotes the test distribution.

References

See Also

pmvt, TDist, kruskalTest, kwManyOneDunnTest, kwManyOneNdwTest
kwManyOneDunnTest

Dunn’s Many-to-One Rank Comparison Test

Description

Performs Dunn’s non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

kwManyOneDunnTest(x, ...)

Default S3 method:
kwManyOneDunnTest(x, g, alternative = c("two.sided",
"greater", "less"), p.adjust.method = c("single-step",
 p.adjust.methods), ...)

S3 method for class 'formula'
kwManyOneDunnTest(formula, data, subset, na.action,
 alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods), ...)
Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to `two.sided`.
- **p.adjust.method**: method for adjusting p values (see `p.adjust`).
- **formula**: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout with non-normally distributed residuals Dunn’s non-parametric test can be performed. Let there be \(k \) groups including the control, then the number of treatment levels is \(m = k - 1 \). Then \(m \) pairwise comparisons can be performed between the \(i \)-th treatment level and the control. \(H_i : \theta_0 = \theta_i \) is tested in the two-tailed case against \(A_i : \theta_0 \neq \theta_i \), \(1 \leq i \leq m \).

If `p.adjust.method` == "single-step" is selected, the \(p \) -values will be computed from the multivariate normal distribution. Otherwise, the \(p \) -values are computed from the standard normal distribution using any of the \(p \)-adjustment methods as included in `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the \(p \)-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for \(p \)-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

kwManyOneNdwTest

Nemenyi-Damico-Wolfe Many-to-One Rank Comparison Test

Description

Performs Nemenyi-Damico-Wolfe non-parametric many-to-one comparison test for Kruskal-type ranked data.

Usage

kwManyOneNdwTest(x, ...)

Default S3 method:
kwManyOneNdwTest(x, g, alternative = c("two.sided",
"greater", "less"), p.adjust.method = c("single-step",
p.adjust.methods), ...)

S3 method for class 'formula'
kwManyOneNdwTest(formula, data, subset, na.action,

Examples

Data set PlantGrowth
Global test
kruskalTest(weight ~ group, data = PlantGrowth)

Conover's many-one comparison test
single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
P.adjust.method = "single-step")
summary(ans)

Conover's many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth,
P.adjust.method = "holm")
summary(ans)

Dunn's many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth,
P.adjust.method = "holm")
summary(ans)

Nemenyi's many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth,
P.adjust.method = "holm")
summary(ans)
alternative = c("two.sided", "greater", "less"),
 p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

 x a numeric vector of data values, or a list of numeric data vectors.
 ... further arguments to be passed to or from methods.
 g a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
 alternative the alternative hypothesis. Defaults to two.sided.
 p.adjust.method method for adjusting p values (see p.adjust).
 formula a formula of the form response ~ group where response gives the data values
 and group a vector or factor of the corresponding groups.
 data an optional matrix or data frame (or similar: see model.frame) containing
 the variables in the formula formula. By default the variables are taken from
 environment(formula).
 subset an optional vector specifying a subset of observations to be used.
 na.action a function which indicates what should happen when the data contain NAs. De-
 faults togetOption("na.action").

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial layout
with non-normally distributed residuals the Nemenyi-Damico-Wolfe non-parametric test can be
performed. Let there be k groups including the control, then the number of treatment levels is
m = k - 1. Then m pairwise comparisons can be performed between the i-th treatment level and
the control. H_i : \theta_0 = \theta_i is tested in the two-tailed case against A_i : \theta_0 \neq \theta_i, (1 \leq i \leq m).

If p.adjust.method == "single-step" is selected, the p-values will be computed from the multi-
variate normal distribution. Otherwise, the p-values are computed from the standard normal distri-
bution using any of the p-adjustment methods as included in p.adjust.

Value

A list with class "PMCMR" containing the following components:

 method a character string indicating what type of test was performed.
 data.name a character string giving the name(s) of the data.
 statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
 p.value lower-triangle matrix of the p-values for the pairwise tests.
 alternative a character string describing the alternative hypothesis.
 p.adjust.method a character string describing the method for p-value adjustment.
 model a data frame of the input data.
 dist a string that denotes the test distribution.
leTest

Testing against Ordered Alternatives (Le’s Test)

Description

Performs Le’s test for testing against ordered alternatives.

Note

This function is essentially the same as \texttt{kwManyOneDunnTest}, but there is no tie correction included. Therefore, the implementation of Dunn’s test is superior, when ties are present.

References

See Also

\texttt{pmvt,TDist,kruskalTest,kwManyOneDunnTest,kwManyOneConoverTest}

Examples

```r
## Data set PlantGrowth
## Global test
kruskalTest(weight ~ group, data = PlantGrowth)

## Conover’s many-one comparison test
## single-step means p-value from multivariate t distribution
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth, p.adjust.method = "single-step")
summary(ans)

## Conover’s many-one comparison test
ans <- kwManyOneConoverTest(weight ~ group, data = PlantGrowth, p.adjust.method = "holm")
summary(ans)

## Dunn’s many-one comparison test
ans <- kwManyOneDunnTest(weight ~ group, data = PlantGrowth, p.adjust.method = "holm")
summary(ans)

## Nemenyi’s many-one comparison test
ans <- kwManyOneNdwTest(weight ~ group, data = PlantGrowth, p.adjust.method = "holm")
summary(ans)
```
Usage

leTest(x, ...)

Default S3 method:
leTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

S3 method for class 'formula'
leTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x".
 Ignored with a warning if "x" is a list.
alternative the alternative hypothesis. Defaults to "two.sided".
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k$, $\theta_1 < \theta_k$.

The p-values are estimated from the standard normal distribution.

Value

A list with class "htest" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated quantile of the test statistic.
- p.value the p-value for the test.
- parameter the parameters of the test statistic, if any.
- alternative a character string describing the alternative hypothesis.
- estimates the estimates, if any.
- null.value the estimate under the null hypothesis, if any.
References

See Also

`kruskalTest` and `shirleyWilliamsTest` of the package `PMCMRplus`, `kruskal.test` of the library `stats`.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
       110, 125, 143, 148, 151,
       136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)
```

lsdTest
Least Significant Difference Test

Description

Performs the least significant difference all-pairs comparisons test for normally distributed data with equal group variances.
Usage

```r
lsdTest(x, ...)
```

Default S3 method:
```r
lsdTest(x, g, ...)
```

S3 method for class 'formula'
```r
lsdTest(formula, data, subset, na.action, ...)
```

Arguments

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances the least significant difference test can be performed. A total of \(m = k(k-1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the t-distribution.

Value

A list with class "PMCMR" containing the following components:

- `method`: a character string indicating what type of test was performed.
- `data.name`: a character string giving the name(s) of the data.
- `statistic`: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- `p.value`: lower-triangle matrix of the p-values for the pairwise tests.
- `alternative`: a character string describing the alternative hypothesis.
- `p.adjust.method`: a character string describing the method for p-value adjustment.
- `model`: a data frame of the input data.
- `dist`: a string that denotes the test distribution.
Note

As there is no p-value adjustment build in, this function is equivalent to Fisher’s protected LSD test, provided that the LSD test is only applied after a significant one-way ANOVA F-test. If one is interested in other types of LSD test (i.e. with p-value adjustment) see function `pairwise.t.test`.

References

See Also

`TDist.pairwise.t.test`

Examples

```r
set.seed(245)
mn <- rep(c(1, 2^(1:4)), each=5)
sd <- rep(1, 25)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 = varN
anova(fit)
summary(lsdTest(x, g))
```

mackWolfeTest

Mack-Wolfe Test for Umbrella Alternatives

Description

Performs Mack-Wolfe non-parametric test for umbrella alternatives.

Usage

```r
mackWolfeTest(x, ...)
```

Default S3 method:
mackWolfeTest(x, g, p = NULL, nperm = 1000, ...)

S3 method for class 'formula'
mackWolfeTest(formula, data, subset, na.action,
 p = NULL, nperm = 1000, ...)
Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
p the a-priori known peak as an ordinal number of the treatment group including the zero dose level, i.e. $p = \{1, \ldots, k\}$. Defaults to NULL.
nperm number of permutations for the asymptotic permutation test. Defaults to 1000.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

In dose-finding studies one may assume an increasing treatment effect with increasing dose level. However, the test subject may actually succumb to toxic effects at high doses, which leads to decreasing treatment effects.

The scope of the Mack-Wolfe Test is to test for umbrella alternatives for either a known or unknown point p (i.e. dose-level), where the peak (umbrella point) is present.

$H_i : \theta_0 = \theta_1 = \ldots = \theta_k$ is tested against the alternative $A_i : \theta_1 \leq \ldots \theta_p \geq \theta_k$ for some p, with at least one strict inequality.

If $p = \text{NULL}$ (peak unknown), the upper-tail p-value is computed via an asymptotic bootstrap permutation test.

If an integer value for p is given (peak known), the upper-tail p-value is computed from the standard normal distribution (pnorm).

Value

A list with class "htest" containing the following components:

- method a character string indicating what type of test was performed.
- data.name a character string giving the name(s) of the data.
- statistic the estimated quantile of the test statistic.
- p.value the p-value for the test.
- parameter the parameters of the test statistic, if any.
- alternative a character string describing the alternative hypothesis.
- estimates the estimates, if any.
- null.value the estimate under the null hypothesis, if any.
Note

One may increase the number of permutations to e.g. `nperm = 10000` in order to get more precise p-values. However, this will be on the expense of computational time.

References

See Also

`pnorm, sample`.

Examples

```r
## Example from Table 6.10 of Hollander and Wolfe (1999).
## Plates with Salmonella bacteria of strain TA98 were exposed to
## various doses of Acid Red 114 (in µg / ml).
## The data are the numbers of visible revertant colonies on 12 plates.
## Assume a peak at D333 (i.e. p = 3).
##
x <- c(22, 23, 35, 60, 59, 54, 98, 78, 50, 60, 82, 59, 22, 44,
##       33, 23, 21, 25)
g <- as.ordered(rep(c(0, 100, 333, 1000, 3333, 10000), each=3))
plot(x ~ g)
mackWolfeTest(x=x, g=g, p=3)
```

Mandel-h

Mandel's h Distribution

Description

Distribution function and quantile function for Mandel's h distribution.

Usage

```r
qmandelh(p, k, lower.tail = TRUE, log.p = FALSE)
pmandelh(q, k, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `p` vector of probabilities.
- `k` number of groups.
- `lower.tail` logical; if `TRUE` (default), probabilities are `P[X <= x]` otherwise, `P[X > x]`.
- `log.p` logical; if `TRUE`, probabilities are given as `log(p)`.
- `q` vector of quantiles.
Mandel-k

Value

`pmandelh` gives the distribution function and `qmandelh` gives the quantile function.

Source

The code for `pmandelh` was taken from:

References

See Also

`mandelhTest`

Examples

```r
## We need a two-sided upper-tail quantile
qmandelh(p = 0.005/2, k = 7, lower.tail=FALSE)
```

Mandel-k

Mandel’s k Distribution

Description

Distribution function and quantile function for Mandel’s k distribution.

Usage

```r
qmandelk(p, k, n, lower.tail = TRUE, log.p = FALSE)
pmandelk(q, k, n, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `p` vector of probabilities.
- `k` number of groups.
- `n` number of replicates per group.
- `lower.tail` logical; if TRUE (default), probabilities are $P[X \leq x]$ otherwise, $P[X > x]$.
- `log.p` logical; if TRUE, probabilities are given as log(p).
- `q` vector of quantiles.
Value

pmandelk gives the distribution function and qmandelk gives the quantile function.

Source

The code for pmandelk was taken from:

Note

The functions are only appropriate for balanced designs.

References

See Also

mandelkTest
pmandelh, qmandelh

Examples

qmandelk(0.005, 7, 3, lower.tail=FALSE)

mandelhTest

Mandel’s h Test According to E 691 ASTM

Description

The function calculates the consistency statistics h and corresponding p-values for each group (lab) according to Practice E 691 ASTM.

Usage

mandelhTest(x, ...)

Default S3 method:
mandelhTest(x, g, ...)

S3 method for class 'formula'
mandelhTest(formula, data, subset, na.action, ...)

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see *model.frame*) containing the variables in the formula formula. By default the variables are taken from environment(formula).
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Value

A list with class "mandel" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **p.value**: the p-value for the test.
- **statistic**: the estimated quantiles of Mandel’s statistic.
- **alternative**: a character string describing the alternative hypothesis.
- **grouplev**: a character vector describing the levels of the groups.
- **nrofrepl**: the number of replicates for each group.

References

See Also

qmandelh, pmandelh

Examples

data(Pentosan)
mandelhTest(value ~ lab, data=Pentosan, subset=(material == "A"))
mandelkTest

Mandel’s k Test According to E 691 ASTM

Description

The function calculates the consistency statistics k and corresponding p-values for each group (lab) according to Practice E 691 ASTM.

Usage

```r
mandelkTest(x, ...)  
## Default S3 method:  
mandelkTest(x, g, ...)  
## S3 method for class 'formula'  
mandelkTest(formula, data, subset, na.action, ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Value

A list with class "mandel" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `p.value` the p-value for the test.
- `statistic` the estimated quantiles of Mandel’s statistic.
- `alternative` a character string describing the alternative hypothesis.
- `grouplevel` a character vector describing the levels of the groups.
- `nrofrepl` the number of replicates for each group.
References

See Also

qmandelk pmandelk

Examples

data(Pentosan)
mandelkTest(value ~ lab, data=Pentosan, subset=(material == "A"))

Description

Performs pairwise comparisons of multiple group levels with one control.

Usage

manyOneUTest(x, ...)

Default S3 method:
manyOneUTest(x, g, alternative = c("two.sided", "greater", "less"), p.adjust.method = c("single-step", p.adjust.methods), ...)

S3 method for class 'formula'
manyOneUTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
alternative the alternative hypothesis. Defaults to two.sided.
p.adjust.method method for adjusting p values (see p.adjust)
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details
This function performs Wilcoxon, Mann and Whitney’s U-test for a one factorial design where each factor level is tested against one control ($m = k - 1$ tests). As the data are re-ranked for each comparison, this test is only suitable for balanced (or almost balanced) experimental designs.

For the two-tailed test and `p.adjust.method = "single-step"` the multivariate normal distribution is used for controlling Type I error and to calculate p-values. Otherwise, the p-values are calculated from the standard normal distribution with any latter p-adjustment as available by `p.adjust`.

Value
A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

OECD (ed. 2006) *Current approaches in the statistical analysis of ecotoxicity data: A guidance to application*, OECD Series on testing and assessment, No. 54.

See Also

`wilcox.test`, `pmvnorm`, `Normal`
MTest

Extended One-Sided Studentised Range Test

Description

Performs Nashimoto-Wright’s extended one-sided studentised range test against an ordered alternative for normal data with equal variances.

This test is an extension of Hayter’s OSRT (see `osrtTest`) by applying a simple order restriction of

\[\mu_{m'} - \mu_m \leq \mu_j - \mu_i \leq \mu_{l'} - \mu_l \]

for any \(l \leq i \leq m \) and \(m' \leq j \leq l' \). It tests all-pairs \(H_{ij} : \mu_i \geq \mu_j \) against \(A_{ij} : \mu_i < \mu_j \) for any \(1 \leq i < j \leq k \).

Usage

```r
MTest(x, ...)  
## Default S3 method:  
MTest(x, g, ...)  
## S3 method for class 'formula'  
MTest(formula, data, subset, na.action, ...)
```

Arguments

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Value

A list with class "PMCMR" containing the following components:

- `method`: a character string indicating what type of test was performed.
- `data.name`: a character string giving the name(s) of the data.
- `statistic`: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- `p.value`: lower-triangle matrix of the p-values for the pairwise tests.
normalScoresAllPairsTest

Lu-Smith All-Pairs Comparison Normal Scores Test

Description
Performs Lu-Smith all-pairs comparison normal scores test.

Usage

normalScoresAllPairsTest(x, ...)

Default S3 method:
normalScoresAllPairsTest(x, g,
 p.adjust.method = c("single-step", p.adjust.methods), ...)

S3 method for class 'formula'
normalScoresAllPairsTest(formula, data, subset,
 na.action, p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x".
Ignored with a warning if "x" is a list.

p.adjust.method method for adjusting p values (see p.adjust).

formula a formula of the form response ~ group where response gives the data values
and group a vector or factor of the corresponding groups.

References
Nashimoto, K., Wright, F.T., (2005) Multiple comparison procedures for detecting differences in

Examples

MTest(weight ~ group, data = PlantGrowth)

alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.
data an optional matrix or data frame (or similar; see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals Lu and Smith’s normal scores transformation can be used prior to an all-pairs comparison test. A total of \(m = k(k-1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : F_i(x) = F_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \). For \(p.adjust.method = \"single-step\" \) the Tukey’s studentized range distribution is used to calculate p-values (see Tukey). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by \(p.adjust \).

Value

A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

References

See Also

normalScoresTest, normalScoresManyOneTest, normOrder.
normalScoresManyOneTest

Lu-Smith Many-One Comparisons Normal Scores Test

Description

Performs Lu-Smith multiple comparison normal scores test with one control.

Usage

```r
normalScoresManyOneTest(x, ...)
```

Default S3 method:

```r
normalScoresManyOneTest(x, g,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = c("single-step", p.adjust.methods), ...)
```

S3 method for class 'formula'

```r
normalScoresManyOneTest(formula, data, subset, na.action,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = c("single-step", p.adjust.methods), ...)
```

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to two.sided.
- **p.adjust.method**: method for adjusting p values (see p.adjust).
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula formula. By default the variables are taken from `environment(formula)`.
- **subset**: an optional vector specifying a subset of observations to be used.
- **na.action**: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons in an one-factorial layout with non-normally distributed residuals Lu and Smith's normal scores transformation can be used prior to a many-to-one comparison test. A total of \(m = k - 1 \) hypotheses can be tested. The null hypothesis \(H_0 : F_0(x) = F_i(x) \) is tested in the
two-tailed test against the alternative $A_i : F_0(x) \neq F_i(x), \ 1 \leq i \leq k-1$. For `p.adjust.method = "single-step"` the multivariate t distribution is used to calculate p-values (see `pmvt`). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by `p.adjust`.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

- `normalScoresTest`, `normalScoresAllPairsTest`, `normOrder`, `pmvt`.

Examples

```r
## Data set PlantGrowth
## Global test
normalScoresTest(weight ~ group, data = PlantGrowth)

## Lu-Smith's many-one comparison test
ans <- normalScoresManyOneTest(weight ~ group, data = PlantGrowth, p.adjust.method = "holm")
summary(ans)
```

normalScoresTest

Lu-Smith Normal Scores Test

Description

Performs the Lu-Smith normal score test
Usage

normalScoresTest(x, ...)
Default S3 method:
normalScoresTest(x, g, ...)
S3 method for class 'formula'
normalScoresTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
... further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For one-factorial designs with non-normally distributed residuals the Lu-Smith normal score test can be performed to test the $H_0 : F_1(x) = F_2(x) = ... = F_k(x)$ against the $H_A : F_i(x) \neq F_j(x) (i \neq j)$ with at least one strict inequality. This function is basically a wrapper function to `pNormScore` of the package `SuppDists`.

Value

A list with class "htest" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic the estimated quantile of the test statistic.
p.value the p-value for the test.
parameter the parameters of the test statistic, if any.
alternative a character string describing the alternative hypothesis.
estimates the estimates, if any.
null.value the estimate under the null hypothesis, if any.
References

See Also

`vanWaerdenTest`, `kruskalTest`, `pNormScore`

Examples

```r
normalScoresTest(count ~ spray, data = InsectSprays)
```

Description

NPMTest

Performs Nashimoto and Wright’s all-pairs comparison procedure for simply ordered mean ranksums. Their test denoted as NPM test is basically an extension of Nemenyi’s procedure for testing increasingly ordered alternatives.

The modified procedure uses the property of a simple order, $\theta_i' - \theta_m \leq \theta_j - \theta_i \leq \theta_l' - \theta_l$ ($l \leq i \leq m$ and $m' \leq j \leq l'$). The null hypothesis $H_{ij}: \theta_i = \theta_j$ is tested against the alternative $A_{ij}: \theta_i < \theta_j$ for any $1 \leq i < j \leq k$.

The p-values are estimated from the studentized range distribution. If the medians are already increasingly ordered, than the NPM-test simplifies to the ordinary Nemenyi test (see `kwAllPairsNemenyiTest`).

Usage

```r
NPMTest(x, ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

The type of test can be controlled via the argument `p.adjust.method`:

- **single.step** the NPY' test is performed.
- **none** the plain NPT' test is performed.

However, any method as available by `p.adjust.methods` can be selected for the adjustment of p-values estimated from the standard normal distribution.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

- `kwAllPairsNemenyiTest`

Examples

```R
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
      110, 125, 143, 148, 151,
      136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")
NPMTest(x, g)
```
osrtTest

Description

Performs Hayter's one-sided studentised range test against an ordered alternative for normal data with equal variances.

Usage

```r
osrtTest(x, ...)  
## Default S3 method:  
osrtTest(x, g, ...)  
## S3 method for class 'formula'  
osrtTest(formula, data, subset, na.action, ...)  
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Value

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the p-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.
References

Examples

```r
osrtTest(weight ~ group, data = PlantGrowth)
```

Page Rank Sum Test

Description

Performs Page's ordered aligned rank sum test.

Usage

```r
pageTest(y, ...)  
## Default S3 method:  
pageTest(y, groups, blocks,  
alternative = c("two.sided", "greater", "less"), ...)  
```

Arguments

- `y` a numeric vector of data values, or a list of numeric data vectors.
- `groups` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks` a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative` the alternative hypothesis. Defaults to `two.sided`.
- `...` further arguments to be passed to or from methods.

Value

A list with class "htest" containing the following components:

- `method` a character string indicating what type of test was performed.
- `data.name` a character string giving the name(s) of the data.
- `statistic` the estimated quantile of the test statistic.
- `p.value` the p-value for the test.
- `parameter` the parameters of the test statistic, if any.
- `alternative` a character string describing the alternative hypothesis.
- `estimates` the estimates, if any.
- `null.value` the estimate under the null hypothesis, if any.
Pentosan

Pentosan Dataset

Description

A benchmark dataset of an interlaboratory study for determining the precision of a test method on several levels of the material Pentosan.

Format

A data frame with 189 obs. of 3 variables:

- **value** numeric, test result (no unit specified)
- **lab** factor, identifier of the lab (1–7)
- **material** factor, identifier of the level of the material (A–I)

Source

References

See Also

friedmanTest

Examples

```r
## 9 reviewers (blocks)
## assigned ranks to 4 objects (groups).
## data(reviewers)
## pageTest(reviewers, alternative = "greater")
```
plot.mandel

Plotting mandel Objects

Description
Plotting method for objects inheriting from class "mandel".

Usage

```r
## S3 method for class 'mandel'
plot(x, alpha = 0.005, ...)
```

Arguments
- `x`: an object with class "mandel".
- `alpha`: level of significance. Defaults to 0.005.
- `...`: further arguments, currently ignored.

See Also
- `demo(Pentosan)`

Examples

```r
## Not run:
data(Pentosan)
md <- mandelkTest(value ~ lab, Pentosan, subset = (material == "B"))
plot(md)
## End(Not run)
```

plot.PMCMR

Plotting PMCMR Objects

Description
Plotting method for objects inheriting from class "PMCMR".

Usage

```r
## S3 method for class 'PMCMR'
plot(x, alpha = 0.05, ...)
```

Examples

```r
## Not run:
data(Pentosan)
md <- PMCMRkTest(value ~ lab, Pentosan, subset = (material == "B"))
plot(md)
## End(Not run)
```
Arguments

- **x**
 - an object of class "PMCMR".
- **alpha**
 - the selected alpha-level. Defaults to 0.05.
- **...**
 - further arguments for method boxplot.

Value

A box-whisker plot for each factor level. The range of the whiskers indicate the extremes (boxplot $= x, \ldots, \text{range}=0$). Letter symbols are depicted on top of each box. Different letters indicate significant differences between groups on the selected level of alpha.

See Also

- **boxplot**

Examples

```r
## data set InsectSprays
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
plot(ans)
plot(ans, col="red",main="My title", xlab="Spray", "Count")
```

Description

Performs power simulation for one-factorial all-pairs and Many-To-One comparison tests.

Usage

```r
powerMCTests(mu, n = 10, errfn = c("Normal", "Lognormal", "Exponential", "Chisquare", "TDist", "Cauchy", "Weibull"), params = list(mean = 0, sd = 1), test = c("kwManyOneConoverTest", "kwManyOneDunnTest", "kwManyOneNdwTest", "vanWaerdenManyOneTest", "normalScoresManyOneTest", "dunnettTest", "tamhaneDunnettTest", "ManyOneUTest", "kwAllPairsNemenyiTest", "kwAllPairsDunnTest", "kwAllPairsConoverTest", "normalScoresAllPairsTest", "vanWaerdenAllPairsTest", "dscfAllPairsTest", "gamesHowellTest", "lsdTTest", "scheffeTest", "tamhaneT2Test", "tukeyTest", "dunnettT3Test", "pairwise.t.test", "pairwise.wilcox.test", "adManyOneTest", "adAllPairsTest", "bwsManyOneTest", "bwsAllPairsTest", "welchManyOneTest"), alternative = c("two.sided", "greater", "less"), p.adjust.method = c("single-step", p.adjust.methods), alpha = 0.05, FWER = TRUE, replicates = 1000)
```
Arguments

mu numeric vector of group means.
n number of replicates per group. If n is a scalar, then a balanced design is assumed. Otherwise, n must be a vector of same length as mu.
errfn the error function. Defaults to "Normal".
parms a list that denotes the arguments for the error function. Defaults to list(mean=0, sd=1).
test the multiple comparison test for which the power analysis is to be performed. Defaults to "kwManyOneConoverTest".
alternative the alternative hypothesis. Defaults to "two.sided", ignored if the selected error function does not use this argument.
p.adjust.method method for adjusting p values (see p.adjust).
alpha the nominal level of Type I Error.
FWER logical, indicates whether the family-wise error should be computed. Defaults to TRUE.
replicates the number of Monte Carlo replicates or runs. Defaults to 1000.

Details

The linear model of a one-way ANOVA can be written as:

$$X_{ij} = \mu_i + \epsilon_{ij}$$

For each Monte Carlo run, the function simulates ϵ_{ij} based on the given error function and the corresponding parameters. Then the specified all-pairs or many-to-one comparison test is performed. Finally, several effect sizes (Cohen's f and R-squared), error rates (per comparison error rate, false discovery rate and familywise error rate) and test powers (any-pair power, average per-pair power and all-pairs power) are calculated.

Value

An object with class powerPMCMR.

Examples

```
## Not run:
mu <- c(0, 0, 1, 2)
n <- c(5, 4, 5, 5)
set.seed(100)
powerMCTests(mu, n, errfn="Normal",
            parms=list(mean=0, sd=1),
            test="dunnettTest", replicates=1E4)
powerMCTests(mu, n, errfn="Normal",
            parms=list(mean=0, sd=1),
            test="kwManyOneDunnTest", p.adjust.method = "bonferroni",
```
powerOneWayTests

replicates=1E4)

End(Not run)

powerOneWayTests

Description

Performs power simulation for one-factorial single hypothesis tests.

Usage

```r
powerOneWayTests(mu, n = 10, errfn = c("Normal", "Lognormal", "Exponential", "Chisquare", "TDist", "Cauchy", "Weibull"), parms = list(mean = 0, sd = 1), test = c("kruskalTest", "leTest", "vanWaerdenTest", "normalScoresTest", "spearmanTest", "cuzickTest", "jonckheereTest", "johnsonTest", "oneway.test", "adKSampleTest", "bwsKSampleTest", "bwsTrendTest", "mackWolfeTest"), alternative = c("two.sided", "greater", "less"), var.equal = TRUE, dist = NULL, alpha = 0.05, FWER = TRUE, replicates = 1000, p = NULL)
```

Arguments

- `mu` numeric vector of group means.
- `n` number of replicates per group. If `n` is a scalar, then a balanced design is assumed. Otherwise, `n` must be a vector of same length as `mu`.
- `errfn` the error function. Defaults to "Normal".
- `parms` a list that denotes the arguments for the error function. Defaults to `list(mean=0, sd=1)`.
- `test` the test for which the power analysis is to be performed. Defaults to "kwManyOneConoverTest".
- `alternative` the alternative hypothesis. Defaults to "two.sided", ignored if the selected error function does not use this argument.
- `var.equal` a logical variable indicating whether to treat the variances in the samples as equal. "TRUE", then a simple F test for the equality of means in a one-way analysis of variance is performed. If "FALSE", an approximate method of Welch (1951) is used, which generalizes the commonly known 2-sample Welch test to the case of arbitrarily many samples. Defaults to "TRUE"; only relevant, if `test = "oneway.test"", otherwise ignored.
- `dist` the test distribution. Only relevant for `kruskalTest`. Defaults’s to NULL.
- `alpha` the nominal level of Type I Error.
- `FWER` logical, indicates whether the family-wise error should be computed. Defaults to TRUE.
powerOneWayTests

replicates the number of Monte Carlo replicates or runs. Defaults to 1000.

p the a-priori known peak as an ordinal number of the treatment group including the zero dose level, i.e. \(p = \{1, \ldots, k\} \). Defaults to NULL. Only relevant, if "mackWolfeTest" is selected.

Details

The linear model of a one-way ANOVA can be written as:

\[
X_{ij} = \mu_i + \epsilon_{ij}
\]

For each Monte Carlo run, the function simulates \(\epsilon_{ij} \) based on the given error function and the corresponding parameters. Then the specified test is performed. Finally, Type I and Type II error rates are calculated.

Value

An object with class powerOneWayPMCMR.

See Also

powerMCTests, pwr.anova.test, power.anova.test

Examples

```r
## Not run:
set.seed(12)
mu <- c(0, 0, 1, 2)
n <- c(5, 4, 5, 5)
parms <- list(mean=0, sd=1)
powerOneWayTests(mu, n, parms, test = "cuzickTest",
alternative = "two.sided", replicates = 1E4)

## Compare power estimation for
## one-way ANOVA with balanced design
## as given by functions
## power.anova.test, pwr.anova.test
## and powerOneWayTest

groupmeans <- c(120, 130, 140, 150)
SEsq <- 500  # within-variance
n <- 10
k <- length(groupmeans)
df <- n * k - k
SSQ.E <- SEsq * df
SSQ.A <- n * var(groupmeans) * (k - 1)
sd.errfn <- sqrt(SSQ.E / (n * k - 1))
R2 <- c("R-squared" = SSQ.A / (SSQ.A + SSQ.E))
cohensf <- sqrt(R2 / (1 - R2))
names(cohensf) <- "Cohens f"
```
R stats power function

```R
dummy.anova.test(groups = k, 
                 between.var = var(groupmeans),
                 within.var = SEsq,
                 n = n)
```

pwr power function

```R
dummy.anova.test(k = k, n = n, f = cohensf, sig.level=0.05)
```

this Monte-Carlo based estimation

```R
set.seed(200)
dummyOneWayTests(mu = groupmeans, 
                 n = n,
                 parms = list(mean=0, sd=sd.errfn),
                 test = "oneway.test",
                 var.equal = TRUE,
                 replicates = 5E3)
```

Compare with effect sizes

```R
R2
cohensf
```

End(Not run)

print.gesdTest
gesdTest Printing

Description

`print.gesdTest` is the `gesdTest` method of the generic `print` function which prints its argument and returns it invisibly (via `invisible(x)`).

Usage

```R
## S3 method for class 'gesdTest'
print(x, ...)
```

Arguments

- **x**: an object used to select a method.
- **...**: further arguments. Currently ignored.
Description

`print.mandel` is the `mandel` method of the generic `print` function which prints its argument and returns it *invisibly* (via `invisible(x)`).

Usage

```r
## S3 method for class 'mandel'
print(x, ...)
```

Arguments

- `x` an object used to select a method.
- `...` further arguments. Currently ignored.

See Also

`mandelhTest`, `mandelkTest`

Description

`print.PMCMR` is the `PMCMR` method of the generic `print` function which prints its argument and returns it *invisibly* (via `invisible(x)`).

Usage

```r
## S3 method for class 'PMCMR'
print(x, ...)
```

Arguments

- `x` an object used to select a method.
- `...` further arguments. Currently ignored.
print.powerOneWayPMCMR

PowerOneWayPMCMR Printing

Description

print.powerOneWayPMCMR is the powerOneWayPMCMR method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'powerOneWayPMCMR'
print(x, ...)

Arguments

x an object used to select a method.

... further arguments. Currently ignored.

print.powerPMCMR

PowerPMCMR Printing

Description

print.powerPMCMR is the powerPMCMR method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'powerPMCMR'
print(x, ...)

Arguments

x an object used to select a method.

... further arguments. Currently ignored.

See Also

powerMCTests, powerOneWayTests
print.steel

Description

print.steel is the steel method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'steel'
print(x, ...)

Arguments

x an object used to select a method.

... further arguments. Currently ignored.

print.williams

Description

print.williams is the williams method of the generic print function which prints its argument and returns it invisibly (via invisible(x)).

Usage

S3 method for class 'williams'
print(x, ...)

Arguments

x an object used to select a method.

... further arguments. Currently ignored.
qPCR Curve Analysis Methods

Description

The data set contains 4 classifiers (blocks), i.e., bias, linearity, precision and resolution, for 11 different qPCR analysis methods. The null hypothesis is that there is no preferred ranking of the method results per gene for the performance parameters analyzed. The rank scores were obtained by averaging results across a large set of 69 genes in a biomarker data file.

Format

A data frame with 4 observations on the following 11 variables.

- Cy0 a numeric vector
- LinRegPCR a numeric vector
- Standard_Cq a numeric vector
- PCR_Miner a numeric vector
- MAK2 a numeric vector
- LRE_E100 a numeric vector
- 5PSM a numeric vector
- DART a numeric vector
- FPLM a numeric vector
- LRE_Emax a numeric vector
- FPK_PCR a numeric vector

Source

Data were taken from Table 2 of Ruijter et al. (2013, p. 38). See also Eisinga et al. (2017, pp. 14–15).

References

quadeAllPairsTest
All-Pairs Comparisons for Unreplicated Blocked Data (Quade’s All-Pairs Test)

Description

Performs Quade multiple-comparison test for unreplicated blocked data.

Usage

```r
quadeAllPairsTest(y, ...)  
## Default S3 method:  
quadeAllPairsTest(y, groups, blocks, dist = c("TDist", "Normal"), p.adjust.method = p.adjust.methods, ...)  
```

Arguments

- `y`
 a numeric vector of data values, or a list of numeric data vectors.
- `groups`
 a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `blocks`
 a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `dist`
 the test distribution. Defaults to "TDist".
- `p.adjust.method`
 method for adjusting p values (see `p.adjust`).
- `...`
 further arguments to be passed to or from methods.

Details

For all-pairs comparisons of unreplicated blocked data Quade’s test can be applied. A total of $m = k(k - 1)/2$ hypotheses can be tested. The null hypothesis $H_{ij} : \theta_i = \theta_j$ is tested in the two-tailed test against the alternative $A_{ij} : \theta_i \neq \theta_j, \ i \neq j$.

The function has included two methods for approximate p-value estimation:

- **TDist**
 p-values are computed from the t distribution
- **Normal**
 p-values are computed from the standard normal distribution

If no p-value adjustment is performed (`p.adjust.method = "none"`), than a simple protected test is recommended, i.e. all-pairs comparisons should only be applied after a significant `quade.test`. However, any method as implemented in `p.adjust.methods` can be selected by the user.
Value

A list with class "PMCMR" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value**: lower-triangle matrix of the p-values for the pairwise tests.
- **alternative**: a character string describing the alternative hypothesis.
- **p.adjust.method**: a character string describing the method for p-value adjustment.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

References

See Also

- quade.test, friedmanTest

Examples

```r
## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
##
y <- matrix(c(
  3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92,
  23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
  26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72,
  32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
  26.65), nrow=6, ncol=6,
dimnames=list(1:6, LETTERS[1:6]))
print(y)

## Global test
quade.test(y)

## All-pairs comparisons
quadeAllPairsTest(y, dist="TDist", p.adjust.method="holm")
```


<table>
<thead>
<tr>
<th>reviewers</th>
<th>Reviewers</th>
</tr>
</thead>
</table>

Description

9 reviewers (blocks) assigned ranks to 4 objects (groups).

Format

The format is a 9 x 4 Matrix with Friedman type rankings:

- **rows** reviewers, 1, 2, ..., 9
- **columns** groups, A, B, ..., D

Source

References

Examples

```r
data(reviewers)
friedmanTest(reviewers)
pageTest(reviewers)
frdAllPairsExactTest(reviewers, p.adjust = "bonferroni")
```

<table>
<thead>
<tr>
<th>scheffeTest</th>
<th>Scheffe’s Test</th>
</tr>
</thead>
</table>

Description

Performs Scheffe’s all-pairs comparisons test for normally distributed data with equal group variances.

Usage

```r
scheffeTest(x, ...)

## Default S3 method:
scheffeTest(x, g, ...)

## S3 method for class 'formula'
scheffeTest(formula, data, subset, na.action, ...)
```
Arguments

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Scheffe’s test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the F-distribution.

Value

A list with class "PMCMR" containing the following components:

- `method`: a character string indicating what type of test was performed.
- `data.name`: a character string giving the name(s) of the data.
- `statistic`: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- `p.value`: lower-triangle matrix of the p-values for the pairwise tests.
- `alternative`: a character string describing the alternative hypothesis.
- `p.adjust.method`: a character string describing the method for p-value adjustment.
- `model`: a data frame of the input data.
- `dist`: a string that denotes the test distribution.

References

See Also

`FDist`, `tukeyTest`
Examples

```r
crit Seed(245)
mn <- rep(c(1, 2^(1:4)), each=5)
sd <- rep(1, 25)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 = varN
anova(fit)
summary(scheffeTest(x, g))
```

Description

Performs Shirley’s nonparametric equivalent of William’s test for contrasting increasing dose levels of a treatment.

Usage

```r
shirleyWilliamsTest(x, ..., 
  alternative = c("two.sided", "greater", "less"), method = c("look-up", "boot"), nperm = 10000, 
...)
```

Arguments

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`: the alternative hypothesis. Defaults to "two.sided".
- `method`: a character string specifying the test statistic to use. Defaults to "look-up" that uses published Table values of Williams (1972).
- `nperm`: number of permutations for the assymptotic permutation test. Defaults to 10000. Ignored, if `method = "look-up"`.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The Shirley-William test is a non-parametric step-down trend test for testing several treatment levels with a zero control. Let there be \(k \) groups including the control and let the zero dose level be indicated with \(i = 0 \) and the highest dose level with \(i = m \), then the following \(m = k - 1 \) hypotheses are tested:

\[
\begin{align*}
H_m : \theta_0 = \theta_1 = \ldots = \theta_m, \\
A_m = \theta_0 \leq \theta_1 \leq \ldots \theta_m, \theta_0 < \theta_m \\
H_{m-1} : \theta_0 = \theta_1 = \ldots = \theta_{m-1}, \\
A_{m-1} = \theta_0 \leq \theta_1 \leq \ldots \theta_{m-1}, \theta_0 < \theta_{m-1}
\end{align*}
\]

The procedure starts from the highest dose level \((m) \) to the lowest dose level \((1) \) and stops at the first non-significant test. The consequent lowest effect dose is the treatment level of the previous test number. This function has included the modifications as recommended by Williams (1986).

If method = "look-up" is selected, the function does not return p-values. Instead the critical t-values as given in the tables of Williams (1972) for \(\alpha = 0.05 \) (one-sided) are looked up according to the degree of freedoms \((v = \infty) \) and the order number of the dose level \((i) \) and (potentially) modified according to the given extrapolation coefficient \(\beta \).

Non tabulated values are linearly interpolated with the function approx.

For the comparison of the first dose level \((i = 1) \) with the control, the critical z-value from the standard normal distribution is used (Normal).

If method = "boot", the p-values are estimated through an assymptotic boot-strap method. The p-values for \(H_1 \) are calculated from the t distribution with infinite degree of freedom.

Value

Either a list with class "williamsTest" or al list with class "PMCMR".

The list with class "williamsTest".

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
t.value lower-triangle matrix of the critical t'-values for \(\alpha = 0.05 \).
df.residual the degree of freedom
alternative a character string describing the alternative hypothesis.
model a data frame of the input data.
dist a string that denotes the test distribution.

A list with class "PMCMR" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value lower-triangle matrix of the p-values for the pairwise tests.
alternative a character string describing the alternative hypothesis.
p.adjust.method a character string describing the method for p-value adjustment.
model a data frame of the input data.
dist a string that denotes the test distribution.

Note
For method = "look-up", only tests on the level of \(\alpha = 0.05 \) can be performed for alternative hypotheses less or greater.

For method = "boot" only the alternative "two.sided" can be calculated. One may increase the number of permutations to e.g. `nperm = 10000` in order to get more precise p-values. However, this will be on the expense of computational time.

References

See Also
williamsTest

Examples
```
## Example from Shirley (1977)
## Reaction times of mice to stimuli to their tails.
y <- c(2.4, 3, 3, 2.2, 2.2, 2.2, 2.2, 2.8, 2, 3,
     2.8, 2.2, 3.8, 9.4, 8.4, 3, 3.2, 4.4, 3.2, 7.4, 9.8, 3.2, 5.8,
     7.8, 2.6, 2.2, 6.2, 9.4, 7.8, 3.4, 7, 9.8, 9.4, 8.8, 8.8, 3.4,
     9, 8.4, 2.4, 7.8)
g <- gl(4, 10)

## Not run:
## two.sided test
summary(shirleyWilliamsTest(y ~ g, method = "boot", alternative = "two.sided"))
```

End(Not run)
one-sided test using look-up table
shirleyWilliamsTest(y ~ g, alternative = "greater")

siegelTukeyTest

Siegel-Tukey Rank Dispersion Test

Description

Performs Siegel-Tukey non-parametric rank dispersion test.

Usage

```r
siegelTukeyTest(x, ...)
```

Default S3 method:
```r
siegelTukeyTest(x, y, alternative = c("two.sided", "greater", "less"), median.corr = FALSE, ...)
```

S3 method for class 'formula'
```r
siegelTukeyTest(formula, data, subset, na.action, ...)
```

Arguments

- `x, y` numeric vectors of data values.
- `...` further arguments to be passed to or from methods.
- `alternative` a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
- `median.corr` logical indicator, whether median correction should be performed prior testing. Defaults to FALSE.
- `formula` a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

Let x and y denote two identically and independently distributed variables of at least ordinal scale. Further, let θ and λ denote location and scale parameter of the common, but unknown distribution. Then for the two-tailed case, the null hypothesis H: $\lambda_x/\lambda_y = 1/\theta_x = \theta_y$ is tested against the alternative, A: $\lambda_x/\lambda_y \neq 1$.

The data are combinedly ranked according to Siegel-Tukey. The ranking is done by alternate extremes (rank 1 is lowest, 2 and 3 are the two highest, 4 and 5 are the two next lowest, etc.). If no ties are present, the p-values are computed from the Wilcoxon distribution (see Wilcoxon). In the case of ties, a tie correction is done according to Sachs (1997) and approximate p-values are computed from the standard normal distribution (see Normal).

If both medians differ, one can correct for medians to increase the specificity of the test.

Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

Source

References

Examples

```r
## Sachs, 1997, p. 376
A <- c(10.1, 7.3, 12.6, 2.4, 6.1, 8.5, 8.8, 9.4, 10.1, 9.8)
B <- c(15.3, 3.6, 16.5, 2.9, 3.3, 4.2, 4.9, 7.3, 11.7, 13.7)
siegelTukeyTest(A, B)

## from example var.test
x <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)
```
siegelTukeyTest(x, y, median.corr = TRUE)

directional hypothesis
A <- c(33, 62, 84, 85, 88, 93, 97)
B <- c(4, 16, 48, 51, 66, 98)
siegelTukeyTest(A, B, alternative = "greater")

skillingsMackTest
Skillings-Mack Test

Description
Performs Skillings-Mack rank sum test for partially balanced incomplete block designs or partially balanced random block designs. The null hypothesis $H_0: \theta_i = \theta_j$ (i ≠ j) is tested against the alternative $H_A: \theta_i \neq \theta_j$, with at least one inequality being strict.

Usage
skillingsMackTest(y, ...)

Default S3 method:
skillingsMackTest(y, groups, blocks, ...)

Arguments
- **y**: a numeric vector of data values, or a list of numeric data vectors.
- **groups**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **blocks**: a vector or factor object giving the block for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **...**: further arguments to be passed to or from methods.

Details
The function has implemented the test of Skillings and Mack (1981). The test statistic is asymptotically chi-squared distributed with df = k - 1 degrees of freedom.

Value
A list with class "htest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: the estimated quantile of the test statistic.
- **p.value**: the p-value for the test.
skillingsMackTest

parameter the parameters of the test statistic, if any.

alternative a character string describing the alternative hypothesis.

estimates the estimates, if any.

null.value the estimate under the null hypothesis, if any.

Note

The input vector/matrix 'y' must contain NA.

References

See Also

friedmanTest, durbinTest

Examples

```r
## Example from Hollander and Wolfe 1999,
## originally appeared in Brady 1969.
x <- cbind(c(3,1,5,2,0,0,0,0),
          c(5,3,4,NA,2,2,3,2),
          c(15,18,21,6,17,10,8,13))
colnames(x) <- c("R", "A", "B")
rownames(x) <- 1:8
skillingsMackTest(x)
```

```r
## Compare with Friedman Test for CRB
## Sachs, 1997, p. 675
## Six persons (block) received six different diuretics
## (A to F, treatment).
## The responses are the Na-concentration (mval)
## in the urine measured 2 hours after each treatment.
y <- matrix(c(
  3.88, 5.64, 5.76, 4.25, 5.91, 4.33, 30.58, 30.14, 16.92, 23.19, 26.74, 10.91, 25.24, 33.52, 25.45, 18.85, 20.45,
  26.67, 4.44, 7.94, 4.04, 4.4, 4.23, 4.36, 29.41, 30.72, 32.92, 28.23, 23.35, 12, 38.87, 33.12, 39.15, 28.06, 38.23,
  32.65), nrow=6, ncol=6, dimnames=list(1:6, LETTERS[1:6]))
print(y)
friedmanTest(y)
skillingsMackTest(y)
```
snkTest

Student-Newman-Keuls Test

Description

Performs Student-Newman-Keuls all-pairs comparisons test for normally distributed data with equal group variances.

Usage

```r
snkTest(x, ...)  
## Default S3 method:  
snkTest(x, g, ...)  
## S3 method for class 'formula'  
snkTest(formula, data, subset, na.action, ...)  
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Student-Newman-Keuls test can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the Tukey-distribution.
Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

Tukey, TukeyHSD tukeyTest

Examples

```r
set.seed(245)
mn <- rep(c(1, 2^(1:4)), each=5)
sd <- rep(1, 25)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 = varN
anova(fit)
summary(snkTest(x, g))
```
spearmanTest

Testing against Ordered Alternatives (Spearman Test)

Description

Performs a Spearman type test for testing against ordered alternatives.

Usage

spearmanTest(x, ...)

Default S3 method:
spearmanTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

S3 method for class 'formula'
spearmanTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative the alternative hypothesis. Defaults to "two.sided".

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The null hypothesis, $H_0 : \theta_1 = \theta_2 = \ldots = \theta_k$ is tested against a simple order hypothesis, $H_A : \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k, \theta_1 < \theta_k$.

The p-values are estimated from the t distribution.
Value

A list with class "htest" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** the estimated quantile of the test statistic.
- **p.value** the p-value for the test.
- **parameter** the parameters of the test statistic, if any.
- **alternative** a character string describing the alternative hypothesis.
- **estimates** the estimates, if any.
- **null.value** the estimate under the null hypothesis, if any.

References

See Also

- kruskalTest and shirleyWilliamsTest of the package PMCMRplus, *kruskal.test* of the library stats.

Examples

```r
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
      110, 125, 143, 148, 151,
      136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)
```
Murakami's BWS trend test

bwsTrendTest(x, g)

steelTest

Steel's Many-to-One Rank Test

Description

Performs Steel's non-parametric many-to-one comparison test for Wilcox-type ranked data.

Usage

```r
steelTest(x, ...)
```

Arguments

- `x` a numeric vector of data values, or a list of numeric data vectors.
- `...` further arguments to be passed to or from methods.
- `g` a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative` the alternative hypothesis. Defaults to greater.
- `formula` a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data` an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset` an optional vector specifying a subset of observations to be used.
- `na.action` a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Details

For many-to-one comparisons (pairwise comparisons with one control) in an one-factorial balanced layout with non-normally distributed residuals Steels’s non-parametric single-step test can be performed. Let there be `k` treatment levels (excluding the control), then `k` pairwise comparisons can be performed between the `i`-th treatment level and the control. `H_i : \theta_0 = \theta_i` is tested in the one-tailed case (less) against `A_i : \theta_0 > \theta_i`, `(1 \leq i \leq k)`.
For each control - treatment level the data are ranked in increasing order. The ranksum \(R_i \) for the \(i \)-th treatment level is compared to a critical \(R \) value and is significantly\((p = 0.05)\) less, if \(R_i \leq R \). For the alternative = "greater" the sign is changed.

The function does not return p-values. Instead the critical \(R \)-values as given in the tables of USEPA (2002) for \(\alpha = 0.05 \) (one-sided, less) are looked up according to the balanced sample sizes \((n) \) and the order number of the dose level \((i) \).

Value

A list with class "steelTest" containing the following components:

method a character string indicating what type of test was performed.
data.name a character string giving the name(s) of the data.
statistic lower-triangle matrix of the ranksum for the \(i \)-th treatment level
R.crit lower-triangle matrix of critical R-values for \(\alpha = 0.05 \).
alternative a character string describing the alternative hypothesis.
model a data frame of the input data.
dist a string that denotes the test distribution.

There are print and summary methods available.

Source

The critical rank sum values were taken from Table E.5 of USEPA (2002).

Note

Steel’s Many-to-One Rank test is only applicable for balanced designs and directional hypotheses. An error message will occur, if the design is unbalanced. In the current implementation, only one-sided tests on the level of \(\alpha = 0.05 \) can be performed.

References

See Also

wilcox.test, pairwise.wilcox.test, manyOneUTest, shirleyWilliamsTest, kwManyOneDunnTest, kwManyOneNdwTest, kwManyOneConoverTest, print.steel, summary.steel
Examples

Example from Sachs (1997, p. 402)
```r
x <- c(106, 114, 116, 127, 145,
110, 125, 143, 148, 151,
136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("0", "I", "II")
```

Steel's Test
```r
steelTest(x ~ g)
```

Example from USEPA (2002):
Reproduction data from a Ceriodaphnia dubia
7-day chronic test to several concentrations
of effluent. Dose level 50% is excluded.
```r
x <- c(20, 26, 26, 23, 24, 27, 26, 23, 27, 24,
13, 15, 14, 13, 23, 26, 0, 25, 26, 27,
18, 22, 13, 13, 23, 22, 20, 22, 23, 22,
14, 22, 20, 23, 20, 23, 25, 24, 25, 21,
9, 0, 9, 7, 6, 10, 12, 14, 9, 13,
rep(0,10))
g <- gl(6, 10)
levels(g) <- c("Control", "3%", "6%", "12%", "25%", "50%")
```

NOEC at 3%, LOEC at 6%
```r
steelTest(x ~ g, subset = g != "50%", alternative = "less")
```

summary.gesdTest

Summarize an gesdTest Object

Description

Summarize an object of class `gesdTest`.

Usage

```r
## S3 method for class 'gesdTest'
summary(object, ...)
```

Arguments

- `object` an object of class "gesdTest".
- `...` further arguments. Currently ignored.
summary.mandel

Object Summary for class "mandel"

Description

summary.mandel is a function used to produce result summaries of the results of the functions mandelhTest or mandelkTest.

Usage

```r
## S3 method for class 'mandel'
summary(object, ...)
```

Arguments

- `object`: an object of class "mandel" for which a summary is desired.
- `...`: further arguments. Currently ignored.

See Also

mandelhTest, mandelkTest

summary.PMCMR

Summarize an PMCMR Object

Description

Summarize an object of class PMCMR.

Usage

```r
## S3 method for class 'PMCMR'
summary(object, ...)
```

Arguments

- `object`: an object of class "PMCMR".
- `...`: further arguments. Currently ignored.

Value

A detailed output of all pairwise hypotheses, the test statistics, the corresponding p-values and symbols that indicates the level of significance.
summary.steel

See Also

`print.PMCMR, summaryGroup`

Examples

```r
ans <- vanWaerdenAllPairsTest(count ~ spray, InsectSprays)
summary(ans)
```

summary.steel

Summarize a steel Object

Description

Summarize an object of class *steel*.

Usage

```r
## S3 method for class 'steel'
summary(object, ...
```

Arguments

- `object`: an object of class "steel".
- `...`: further arguments. Currently ignored.

Value

A detailed output of all pairwise hypotheses, the test statistics, the corresponding p-values and symbols that indicates the level of significance.

See Also

`print.steel, summaryGroup`

Examples

```r
ans <- vanWaerdenAllPairsTest(count ~ spray, InsectSprays)
summary(ans)
```
summary.williams

Summarize an williams Object

Description

Summarize an object of class `williams`.

Usage

```r
## S3 method for class 'williams'
summary(object, ...)
```

Arguments

- `object` an object of class "williams".
- `...` further arguments. Currently ignored.

Value

A detailed output of all pairwise hypotheses, the test statistics, the corresponding p-values and symbols that indicates the level of significance.

See Also

`print.williams, summaryGroup`.

Examples

```r
ans <- vanWaerdenAllPairsTest(count ~ spray, InsectSprays)
summary(ans)
```

summaryGroup

Grouped Summary of an PMCMR Object

Description

Performes a grouped summary on an PMCMR object.

Usage

```r
summaryGroup(x, alpha = 0.05, ...)
```

Arguments

- `x` an object of class "PMCMR".
- `alpha` the selected alpha-level. Defaults to 0.05.
- `...` further arguments. Currently ignored.
Value

Provides summary statistics for each factor level and a letter symbol, whereas different letters indicate significant differences between factor levels based on the selected level of alpha.

See Also

summary.PMCMR

tamhaneDunnettTest Tamhane-Dunnett Many-to-One Comparison Test

Description

Performs Tamhane-Dunnett’s multiple comparisons test with one control. For many-to-one comparisons in an one-factorial layout with normally distributed residuals and unequal variances Tamhane-Dunnett’s test can be used. A total of \(m = k - 1 \) hypotheses can be tested. The null hypothesis \(H_i : \mu_0(x) = \mu_i(x) \) is tested in the two-tailed test against the alternative \(A_i : \mu_0(x) \neq \mu_i(x), \ 1 \leq i \leq k - 1 \).

The p-values for the test are calculated from the multivariate t distribution as implemented in the function \texttt{pmvt}.

Usage

```r
tamhaneDunnettTest(x, ...
```

Default S3 method:
```
tamhaneDunnettTest(x, g, alternative = c("two.sided", "greater", "less"), ...)
```

S3 method for class 'formula'
```
tamhaneDunnettTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ...)
```

Arguments

- **x**: a numeric vector of data values, or a list of numeric data vectors.
- **...**: further arguments to be passed to or from methods.
- **g**: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- **alternative**: the alternative hypothesis. Defaults to "two.sided".
- **formula**: a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
- **data**: an optional matrix or data frame (or similar: see \texttt{model.frame}) containing the variables in the formula \texttt{formula}. By default the variables are taken from \texttt{environment(formula)}.
subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References

See Also

- `pmvt`
- `welchManyOneTTest`

Examples

```r
set.seed(245)
mn <- c(1, 2, 2^2, 2^3, 2^4)
x <- rep(mn, each=5) + rnorm(25)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g - 1)
shapiro.test(residuals(fit))
bartlett.test(x ~ g - 1)
anova(fit)
summary(tamhaneDunnettTest(x, g, alternative = "greater"))
```
Description

Performs Tamhane’s T2 (or T2’) all-pairs comparison test for normally distributed data with unequal variances.

Usage

tamhaneT2Test(x, ...)

Default S3 method:
tamhaneT2Test(x, g, welch = TRUE, ...)

S3 method for class 'formula'
tamhaneT2Test(formula, data, subset, na.action, welch = TRUE, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.
...
further arguments to be passed to or from methods.
g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
welch indicates, whether Welch’s approximate solution for calculating the degree of freedom shall be used or, as usually, \(df = N - 2 \). Defaults to TRUE.
formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the T2 test (or T2’ test) of Tamhane can be performed. A total of \(m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \(H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed test against the alternative \(A_{ij} : \mu_i(x) \neq \mu_j(x) \), \(i \neq j \).

The T2 test uses Welch’s approximate solution for calculating the degree of freedom. T2’ test uses the usual \(df = N - 2 \) approximation. A warning message appears in the modified T2’ test, if none of
in Tamhane (1979) given conditions for nearly balanced sample sizes and nearly balanced standard errors is true.

The p-values are computed from the t-distribution and adjusted according to Dunn-Sidak.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

Note

T2 test is basically an all-pairs pairwise-t-test. Similar results can be obtained with `pairwise.t.test(..., var.equal=FALSE,p.adjust.method = FALSE).

Thanks to Sirio Bolaños for his kind suggestion for adding T2’ test into this function.

References

See Also

dunnettT3Test

Examples

```r
set.seed(245)
mn <- rep(c(1, 2*(1:4)), each=5)
sd <- rep(1:5, each=5)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 != varN
anova(fit)
summary(T2 <- tamhaneT2Test(x, g))
T2
## compare with pairwise.t.test
WT <- pairwise.t.test(x, g, pool.sd = FALSE, p.adjust.method = "none")```

trout <- Data from a Dose-Response Experiment with Trouts

Description

This data set contains results from a dose-response experiment with trouts. The experiment was conducted with five doses of 10, 25, 60, 150 and 1000 ppm, respectively, plus a zero-dose control. The response is trout weight in mg.

Format

A data frame with 65 observations on the following 5 variables.

CONC a numeric vector of dose concentration in ppm
DOSE a factor with levels 1 2 3 4 5 6
REPA a factor with levels 1 2
REPC a factor with levels 1 2
Y a numeric vector of trout weight in mg

Source


References

Tukey’s Test

Description

Performs Tukey’s all-pairs comparisons test for normally distributed data with equal group variances.

Usage

tukeyTest(x, ...)

## Default S3 method:
tukeyTest(x, g, ...)

## S3 method for class 'formula'
tukeyTest(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. Defaults togetOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals and equal variances Tukey’s test can be performed. A total of $m = k(k-1)/2$ hypotheses can be tested. The null hypothesis $H_{ij} : \mu_i(x) = \mu_j(x)$ is tested in the two-tailed test against the alternative $A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j$.

The p-values are computed from the Tukey-distribution.
uryWigginsHochbergTest

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
- **alternative** a character string describing the alternative hypothesis.
- **p.adjust.method** a character string describing the method for p-value adjustment.
- **model** a data frame of the input data.
- **dist** a string that denotes the test distribution.

References


See Also

Tukey, TukeyHSD

Examples

```r
set.seed(245)
mn <- rep(c(1, 2^(1:4)), each=5)
sd <- rep(1, 25)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 = varN
anova(fit)
summary(tukeyTest(x, g))
```

---

**uryWigginsHochbergTest**

*Ury, Wiggins, Hochberg Test*

Description

Performs Ury-Wiggins and Hochberg’s all-pairs comparison test for normally distributed data with unequal variances.
Usage

uryWigginsHochbergTest(x, ...)

## Default S3 method:
uryWigginsHochbergTest(x, g,
    p.adjust.method = p.adjust.methods, ...)

## S3 method for class 'formula'
uryWigginsHochbergTest(formula, data, subset, na.action,
    p.adjust.method = p.adjust.methods, ...)

Arguments

x       a numeric vector of data values, or a list of numeric data vectors.
...
   further arguments to be passed to or from methods.
g       a vector or factor object giving the group for the corresponding elements of "x".
   Ignored with a warning if "x" is a list.
p.adjust.method  
   method for adjusting p values (see p.adjust).
formula  a formula of the form response ~ group where response gives the data values
   and group a vector or factor of the corresponding groups.
data     an optional matrix or data frame (or similar: see model.frame) containing
   the variables in the formula formula. By default the variables are taken from
   environment(formula).
subset   an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-
  faults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal
groups variances the tests of Ury-Wiggins and Hochberg can be performed. A total of \( m = k(k - 1)/2 \) hypotheses can be tested. The null hypothesis \( H_{ij} : \mu_i(x) = \mu_j(x) \) is tested in the two-tailed
test against the alternative \( A_{ij} : \mu_i(x) \neq \mu_j(x), \ i \neq j \).

The p-values are computed from the t-distribution. The type of test depends on the selected p-value
adjustment method (see also p.adjust):

- **bonferroni** the Ury-Wiggins test is performed
- **hochberg** the Hochberg test is performed.

Value

A list with class “PMCMR” containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
statistic lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value lower-triangle matrix of the p-values for the pairwise tests.

alternative a character string describing the alternative hypothesis.

p.adjust.method a character string describing the method for p-value adjustment.

model a data frame of the input data.

dist a string that denotes the test distribution.

References


See Also
dunnettT3Test

Examples

```r
set.seed(245)
mn <- rep(c(1, 2*(1:4)), each=5)
sd <- rep(1:5, each=5)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 != varN
anova(fit)
summary(uryWigginsHochbergTest(x, g))
```

---

vanWaerdenAllPairsTest

*van-der-Waerden’s All-Pairs Comparison Normal Scores Test*

Description

Performs van-der-Waerden all-pairs comparison normal scores test.
vanWaerdenAllPairsTest

Usage

vanWaerdenAllPairsTest(x, ...)

## Default S3 method:
vanWaerdenAllPairsTest(x, g,
  p.adjust.method = c("single-step", p.adjust.methods), ...)

## S3 method for class 'formula'
vanWaerdenAllPairsTest(formula, data, subset, na.action,
  p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

x  a numeric vector of data values, or a list of numeric data vectors.

... further arguments to be passed to or from methods.

g  a vector or factor object giving the group for the corresponding elements of "x".
  Ignored with a warning if "x" is a list.

p.adjust.method  method for adjusting p values (see p.adjust).

formula  a formula of the form response ~ group where response gives the data values
  and group a vector or factor of the corresponding groups.

data  an optional matrix or data frame (or similar: see model.frame) containing
  the variables in the formula formula. By default the variables are taken from
  environment(formula).

subset  an optional vector specifying a subset of observations to be used.

na.action  a function which indicates what should happen when the data contain NAs. De-
 faults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals van-
der-Waerden’s normal scores transformation can be used prior to an all-pairs comparison test. A
total of \( m = k(k-1)/2 \) hypotheses can be tested. The null hypothesis \( H_{ij} : F_i(x) = F_j(x) \)
is tested in the two-tailed test against the alternative \( A_{ij} : F_i(x) \neq F_j(x), \ i \neq j \). For
\( \text{p.adjust.method} = \) "single-step" the Tukey’s studentized range distribution is used to calculate p-values (see Tukey).
Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment
as performed by p.adjust.

Value

A list with class "PMCMR" containing the following components:

- **method** a character string indicating what type of test was performed.
- **data.name** a character string giving the name(s) of the data.
- **statistic** lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **p.value** lower-triangle matrix of the p-values for the pairwise tests.
vanWaerdenManyOneTest

alternative  a character string describing the alternative hypothesis.
p.adjust.method  a character string describing the method for p-value adjustment.
model  a data frame of the input data.
dist  a string that denotes the test distribution.

References

van der Waerden, B. L. (1952) Order tests for the two-sample problem and their power, Indagationes Mathematicae 14, 453–458.

See Also

vanWaerdenTest, vanWaerdenManyOneTest, normOrder.

vanWaerdenManyOneTest  van-der-Waerden's Many-One Comparisons Normal Scores Test

Description

Performs van-der-Waerden’s multiple comparison normal scores test with one control.

Usage

vanWaerdenManyOneTest(x, ...)

## Default S3 method:
vanWaerdenManyOneTest(x, g,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = c("single-step", p.adjust.methods), ...)

## S3 method for class 'formula'
vanWaerdenManyOneTest(formula, data, subset, na.action,
alternative = c("two.sided", "greater", "less"),
p.adjust.method = c("single-step", p.adjust.methods), ...)

Arguments

x  a numeric vector of data values, or a list of numeric data vectors.
...  further arguments to be passed to or from methods.
g  a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
alternative  the alternative hypothesis. Defaults to two.sided.
p.adjust.method

method for adjusting p values (see \texttt{p.adjust}).

formula

a formula of the form \texttt{response ~ group} where \texttt{response} gives the data values
and \texttt{group} a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see \texttt{model.frame}) containing
the variables in the formula \texttt{formula}. By default the variables are taken from
\texttt{environment(formula)}.

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. De-
defaults to \texttt{getOption("na.action")}.

Details

For many-to-one comparisons in an one-factorial layout with non-normally distributed residuals
van-der-Waerden’s normal scores transformation can be used prior to a many-to-one comparison
test. A total of \( m = k - 1 \) hypotheses can be tested. The null hypothesis \( H_i : F_0(x) = F_i(x) \)
is tested in the two-tailed test against the alternative \( A_i : F_0(x) \neq F_i(x), \ 1 \leq i \leq k - 1. \) For
\texttt{p.adjust.method = "single-step"} the multivariate t distribution is used to calculate p-values
(see \texttt{pmvt}). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value
adjustment as performed by \texttt{p.adjust}.

Value

A list with class \"PMCMR\" containing the following components:

- \textbf{method} a character string indicating what type of test was performed.
- \textbf{data.name} a character string giving the name(s) of the data.
- \textbf{statistic} lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- \textbf{p.value} lower-triangle matrix of the p-values for the pairwise tests.
- \textbf{alternative} a character string describing the alternative hypothesis.
- \textbf{p.adjust.method} a character string describing the method for p-value adjustment.
- \textbf{model} a data frame of the input data.
- \textbf{dist} a string that denotes the test distribution.

References

Los Alamos Scientific Laboratory.

van der Waerden, B. L. (1952) Order tests for the two-sample problem and their power, \textit{Indagationes

See Also

\texttt{vanWaerdenTest, vanWaerdenAllPairsTest, pmvt}.
vanWaerdenTest

Examples

```r
Data set PlantGrowth
Global test
vanWaerdenTest(weight ~ group, data = PlantGrowth)

van-der-Waerden's many-one comparison test
ans <- vanWaerdenManyOneTest(weight ~ group,
 data = PlantGrowth,
 p.adjust.method = "holm")
summary(ans)
```

---

### Description

Performs van der Waerden’s normal scores test.

### Usage

```r
vanWaerdenTest(x, ...)
vanWaerdenTest(x, x, ...)
vanWaerdenTest(formula, data, subset, na.action, ...)
```

### Arguments

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`.

### Details

For one-factorial designs with non-normally distributed residuals van der Waerden’s normal scores test can be performed to test the $H_0 : F_1(x) = F_2(x) = \ldots = F_k(x)$ against the $H_A : F_i(x) \neq F_j(x) \ (i \neq j)$ with at least one strict inequality.
Note

A tie correction is not applied in this function.

References


See Also

`kruskalTest`, `normalScoresTest`

Examples

`vanWaerdenTest(count ~ spray, data = InsectSprays)`

---

**welchManyOneTTest**  
*Welch’s Many-To-One Comparison Test*

Description

Performs Welch’s t-test for multiple comparisons with one control.

Usage

`welchManyOneTTest(x, ...)`

## Default S3 method:
`welchManyOneTTest(x, g, alternative = c("two.sided", "greater", "less"), p.adjust.method = p.adjust.methods, ...)`

## S3 method for class ‘formula’
`welchManyOneTTest(formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), p.adjust.method = p.adjust.methods, ...)`

Arguments

- `x`  
a numeric vector of data values, or a list of numeric data vectors.

- `...`
  further arguments to be passed to or from methods.

- `g`
  a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

- `alternative`
  the alternative hypothesis. Defaults to *two.sided*.
p.adjust.method

method for adjusting p values (see p.adjust).

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar; see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For many-to-one comparisons in an one-factorial layout with normally distributed residuals and unequal variances Welch’s t-test can be used. A total of \( m = k - 1 \) hypotheses can be tested. The null hypothesis \( H_i : \mu_0(x) = \mu_i(x) \) is tested in the two-tailed test against the alternative \( A_i : \mu_0(x) \neq \mu_i(x), \ 1 \leq i \leq k - 1 \).

This function is basically a wrapper function for t.test(...,var.equal = FALSE). The p-values for the test are calculated from the t distribution and can be adjusted with any method that is implemented in p.adjust.methods.

Value

A list with class "PMCMR" containing the following components:

method  a character string indicating what type of test was performed.
data.name  a character string giving the name(s) of the data.
statistic  lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
p.value  lower-triangle matrix of the p-values for the pairwise tests.
alternative  a character string describing the alternative hypothesis.
p.adjust.method  a character string describing the method for p-value adjustment.
model  a data frame of the input data.
dist  a string that denotes the test distribution.

References

Welch, B. L. (1947) The generalization of "Student's" problem when several different population variances are involved, Biometrika 34, 28–35.

Welch, B. L. (1951) On the comparison of several mean values: An alternative approach, Biometrika 38, 330–336.

See Also

pairwise.t.test, t.test, p.adjust, tamhaneDunnettTest
Examples

```r
set.seed(245)
mn <- rep(c(1, 2^((1:4))), each=5)
sd <- rep(1:5, each=5)
x <- mn + rnorm(25, sd = sd)
g <- factor(rep(1:5, each=5))

fit <- aov(x ~ g)
shapiro.test(residuals(fit))
bartlett.test(x ~ g) # var1 != varN
anova(fit)
summary(welchManyOneTTest(x, g, alternative = "greater", p.adjust="holm"))
```

---

williamsTest

*Williams Trend Test*

**Description**

Performs Williams’ test for contrasting increasing (decreasing) dose levels of a treatment.

**Usage**

```r
williamsTest(x, ...)
```

```
Default S3 method:
williamsTest(x, g, alternative = c("greater", "less"),
 ...)

S3 method for class 'formula'
williamsTest(formula, data, subset, na.action,
 alternative = c("greater", "less"), ...)
```

**Arguments**

- `x`: a numeric vector of data values, or a list of numeric data vectors.
- `...`: further arguments to be passed to or from methods.
- `g`: a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.
- `alternative`: the alternative hypothesis. Defaults to greater
- `formula`: a formula of the form `response ~ group` where `response` gives the data values and `group` a vector or factor of the corresponding groups.
- `data`: an optional matrix or data frame (or similar: see `model.frame`) containing the variables in the formula `formula`. By default the variables are taken from `environment(formula)`.
- `subset`: an optional vector specifying a subset of observations to be used.
- `na.action`: a function which indicates what should happen when the data contain NAs. Defaults to `getOption("na.action")`. 
Williams’ test is a step-down trend test for testing several treatment levels with a zero control in a one-factorial design with normally distributed errors of homogeneous variance. Let there be \( k \) groups including the control and let the zero dose level be indicated with \( i = 0 \) and the treatment levels indicated as \( 1 \leq i \leq m \), then the following \( m = k - 1 \) hypotheses are tested:

\[
\begin{align*}
H_m &: \bar{x}_0 = m_1 = \ldots = m_m, \\
H_{m-1} &: \bar{x}_0 = m_1 = \ldots = m_{m-1}, \\
& \vdots \\
H_1 &: \bar{x}_0 = m_1,
\end{align*}
\]

\[
\begin{align*}
A_m &: \bar{x}_0 \geq m_1 \geq \ldots m_m, \bar{x}_0 < m_m \\
A_{m-1} &: \bar{x}_0 \geq m_1 \geq \ldots m_{m-1}, \bar{x}_0 < m_{m-1} \\
& \vdots \\
A_1 &: \bar{x}_0 < m_1,
\end{align*}
\]

where \( m_i \) denotes the isotonic mean of the \( i \)th dose level group. The procedure starts from the highest dose level (\( m \)) to the the lowest dose level (\( 1 \)) and stops at the first non-significant test. The consequent lowest effect dose is the treatment level of the previous test number.

The function does not return p-values. Instead the critical t-values as given in the tables of Williams (1972) for \( \alpha = 0.05 \) (one-sided) are looked up according to the degree of freedoms (\( v \)) and the order number of the dose level (\( i \)) and (potentially) modified according to the given extrapolation coefficient \( \beta \).

Non tabulated values are linearly interpolated as recommended by Williams (1972). The function \texttt{approx} is used.

For the comparison of the first dose level (\( i = 1 \)) with the control, the critical t-value from the Student t distribution is used (TDist).

### Value

A list with class "williamsTest" containing the following components:

- **method**: a character string indicating what type of test was performed.
- **data.name**: a character string giving the name(s) of the data.
- **statistic**: lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
- **t.value**: lower-triangle matrix of the critical t' values for \( \alpha = 0.05 \).
- **df.residual**: the degree of freedom.
- **alternative**: a character string describing the alternative hypothesis.
- **model**: a data frame of the input data.
- **dist**: a string that denotes the test distribution.

There are print and summary methods available.

### Source

The source code for the application of the pool adjacent violators theorem to calculate the isotonic means was taken from the file "pava.f", which is included in the package \texttt{Iso}:


The file \texttt{pava.f} is a Ratfor modification of Algorithm AS 206.1.

The Algorithm AS 206 is available from StatLib [http://lib.stat.cmu.edu/apstat](http://lib.stat.cmu.edu/apstat). The Royal Statistical Society holds the copyright to these routines, but has given its permission for their distribution provided that no fee is charged.

**Note**

In the current implementation, only tests on the level of $\alpha = 0.05$ can be performed. The included extrapolation function assumes either a balanced design, or designs, where the number of replicates in the control exceeds the number of replicates in the treatment levels. A warning message appears, if the following condition is not met, $1 \leq n_0/n_i \leq 6$ for $1 \leq i \leq m$.

**References**


**See Also**

TDist, approx, print.williams, summary.williams

**Examples**

```r
Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
 110, 125, 143, 148, 151,
 136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("0", "I", "II")

Williams Test
williamsTest(x ~ g)
```
Index

+Topic **datasets**
  algae, 9
  Pentosan, 111
  qPCR, 121
  reviewers, 124
  trout, 147
+Topic **distribution**
  Cochran, 23
  Dgrubbs, 28
  Grubbs, 64
  Mandel-h, 94
  Mandel-k, 95
+Topic **htest**
  adAllPairsTest, 4
  adManyOneTest, 8
  bwsAllPairsTest, 11
  bwsKSampleTest, 13
  bwsManyOneTest, 15
  bwsTrendTest, 17
  chaAllPairsNashimotoTest, 19
  chackoTest, 21
  cochranTest, 24
  cuzickTest, 26
  doubleGrubbsTest, 29
  dscfAllPairsTest, 30
  duncanTest, 32
  dunnettT3Test, 33
  dunnettTest, 35
  durbinAllPairsTest, 37
  frdAllPairsConoverTest, 40
  frdAllPairsExactTest, 42
  frdAllPairsMillerTest, 44
  frdAllPairsNemenyiTest, 47
  frdAllPairsSiegelTest, 49
  frdManyOneDemsarTest, 51
  frdManyOneExactTest, 53
  frdManyOneNemenyiTest, 55
  friedmanTest, 57
  gamesHowellTest, 59
  gesdTest, 61
  goreTest, 62
  grubbsTest, 65
  GSTTest, 66
  hartleyTest, 68
  johnsonTest, 70
  jonckheereTest, 72
  kwAllPairsConoverTest, 76
  kwAllPairsDunnTest, 78
  kwAllPairsNemenyiTest, 80
  kwManyOneConoverTest, 82
  kwManyOneDunnTest, 84
  kwManyOneNdwTest, 86
  leTest, 88
  lsdTest, 90
  mackWolfeTest, 92
  mandelhTest, 96
  mandelkTest, 98
  manyOneUTest, 99
  MTest, 101
  normalScoresAllPairsTest, 102
  normalScoresManyOneTest, 104
  normalScoresTest, 105
  NPMTest, 107
  osrtTest, 109
  pageTest, 110
  quadeAllPairsTest, 122
  scheffeTest, 124
  shirleyWilliamsTest, 126
  siegelTukeyTest, 129
  skillingsMackTest, 131
  snkTest, 133
  spearmanTest, 135
  steelTest, 137
  tamhaneDunnettTest, 143
  tamhaneT2Test, 145
  tukeyTest, 148
  uryWigginsHochbergTest, 149
  vanWaerdenAllPairsTest, 151
INDEX

Chisquare, 67, 76, 81
Cochran, 23
cochranTest, 24
cuzickTest, 26
default (kwAllPairsDunnTest), 78
Dgrubbs, 28
doubleGrubbsTest, 29
dscfAllPairsTest, 30
duncanTest, 32
dunnettT3Test, 33, 146, 151
dunnettTest, 35
durbinAllPairsTest, 37
durbinTest, 37, 38, 63, 132
FDist, 24, 76, 125
fligner.test, 26, 67
frdAllPairsConoverTest, 40, 43, 46, 48, 50
frdAllPairsExactTest, 41, 42, 46, 48, 50
frdAllPairsMillerTest, 41, 43, 44, 48, 50
frdAllPairsNemenyiTest, 41, 43, 46, 47, 50
frdAllPairsSiegelTest, 41, 43, 46, 48, 49
frdManyOneDemsarTest, 51, 54, 56
frdManyOneExactTest, 53, 54, 56
frdManyOneNemenyiTest, 53, 54, 55
friedman.test, 41, 43, 46, 48, 50, 53, 54, 56, 58
friedmanTest, 41, 43, 46, 48, 50, 53, 54, 56, 57, 63, 111, 123, 132
gamesHowellTest, 59
gesdTest, 61
goreTest, 62
Grubbs, 29, 64
grubbsTest, 65
GSTTest, 66
hartleyTest, 68
invisible, 117–120
johnsonTest, 70
jonckheereTest, 72
kruskal.test, 18, 23, 27, 71, 73, 76, 90, 136
kruskalTest, 18, 23, 27, 71, 73, 74, 78, 80, 81, 83, 86, 88, 90, 107, 115, 136, 156
kwAllPairsConoverTest, 76, 80, 81
kwAllPairsDunnTest, 78, 78, 81
kwAllPairsNemenyiTest, 78, 80, 81, 107, 108
kwManyOneConoverTest, 82, 86, 88, 138
kwManyOneDunnTest, 83, 84, 88, 138
kwManyOneNdwTest, 83, 86, 86, 138
leTest, 88
lsdT. Test, 90
mackWolfeTest, 92
Mandel-h, 94
Mandel-k, 95
mandelhTest, 95, 96, 118, 140
mandelkTest, 96, 98, 118, 140
manyOneUTest, 99, 138
model.frame, 5, 6, 8, 12, 13, 15, 18, 20, 22, 25, 27, 31, 32, 34, 36, 47, 60, 66, 68, 70, 72, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 97, 98, 100, 101, 103, 104, 106, 108, 109, 125, 127, 129, 133, 135, 137, 143, 145, 148, 150, 152, 154, 155, 157, 158
MTest, 101
murakami_cdf, 16
murakami_stat, 16
Normal, 21, 80, 100, 127, 130
normalScoresAllPairsTest, 102, 105
normalScoresManyOneTest, 103, 104
normalScoresTest, 103, 105, 105, 156
normOrder, 103, 105, 153
NPMTest, 107
osrtTest, 101, 109
p.adjust, 5, 8, 11, 12, 15, 16, 37, 40, 42, 43, 50, 52, 54, 77–81, 83, 85, 87, 99, 100, 102–105, 114, 122, 150, 152, 154, 157
p.adjust.methods, 20, 37, 108, 122, 157
pageTest, 110
pairwise.t.test, 92, 157
pairwise.wilcox.test, 32, 138
pcochran, 25
pcochran(Cochran), 23
pdgrubbs, 29
pdgrubbs(Dgrubbs), 28
Pentosan, 111
pgrubbs, 65
