Package ‘POET’

October 12, 2022

Type Package
Title Principal Orthogonal ComplemEment Thresholding (POET) Method
Version 2.0
Date 2016-06-26
Author Jianqing Fan, Yuan Liao, Martina Mincheva
Maintainer Martina Mincheva <m.z.mincheva@gmail.com>
Description Estimate large covariance matrices in approximate factor models by thresholding principal orthogonal complements.
License GPL-2
LazyLoad yes
Repository CRAN
Date/Publication 2016-06-29 02:33:30
NeedsCompilation no

R topics documented:

- POET .. 1
- POETCmin ... 3
- POETKhat .. 5

Index

POET Principal Orthogonal ComplemEment Thresholding (POET) method

Description

Estimates large covariance matrices in approximate factor models by thresholding principal orthogonal complements.
Usage

POET(Y, K, C, thres, matrix)

Arguments

Y
p by n matrix of raw data, where p is the dimensionality, n is the sample size. It is recommended that Y is de-meaned, i.e., each row has zero mean.

K
number of factors. K is pre-determined by the users. Default value is set at the average value obtained from the Hallin&Liska and Bai&Ng methods. Suggestions on choosing K:
A simple way of determining K is to count the number of very spiked (much larger than others) eigenvalues of the p by p sample covariance matrix of Y.
A formal data-driven way of determining K is described in Bai and Ng (2002):"Determining the number of factors in approximate factor models", Econometrica, 70, 191-221. This procedure requires a one-dimensional optimization.
POET is very robust to over-estimating K. But under-estimating K can result to VERY BAD performance. Therefore we strongly recommend choosing a relatively large K (normally less than 8) to avoid missing any important common factor.
K=0 corresponds to thresholding the sample covariance directly.

C
the positive constant for thresholding, user-specified. Default value is set at C=0.5 Our experience shows that C=0.5 performs quite well for soft thresholding.

thres
choice of thresholding. Users can choose from three thresholding methods:
'soft': soft thresholding
'hard': hard thresholding
'scad': scad thresholding
'alasso': adaptive lasso thresholding
Default value is set at thres='soft'.
Details are found in Rothman et al. (2009): "Generalized thresholding of large covariance matrices." JASA, 104, 177-186

matrix
the option of thresholding either correlation or covairance matrix. Users can choose from:
'cor': threshold the error correlation matrix then transform back to covariance matrix
'vedad': threshold the error covariance matrix directly.
Default value is set at matrix='cor'.

Details

This function is for POET, proposed by Fan, Liao and Mincheva (2012) "Large Covariance Estimation by Thresholding Principal Orthogonal Complements", manuscript of Princeton University
Model: $Y_t = Bf_t + u_t$, where B, f_t and u_t represent factor loading matrix, common factors and idiosyncratic error respectively. Only Y_t is observable. t=1,...,n. Dimension of Y_t is p. The goal is to estimate the covariance matrices of Y_t and u_t.
Note: (1) POET is optimization-free, so no initial value, tolerant, or maximum iterations need to be specified as inputs.

(2) We can apply the adaptive thresholding (Cai and Liu 2011, JASA) on either the correlation matrix or the covariance matrix, specified by the option 'matrix'.

(3) If no factor structure is assumed, i.e., no common factors exist and \(\text{var}(Y_t) \) itself is sparse, set \(K=0 \).

Value

- \(\text{SigmaY} \): estimated p by p covariance matrix of \(Y_t \)
- \(\text{SigmaU} \): estimated p by p covariance matrix of \(u_t \)
- \(\text{factors} \): estimated unobservable factors in a K by T matrix form
- \(\text{loadings} \): estimated factor loadings in a p by K matrix form

Author(s)

Jianqing Fan, Yuan Liao, Martina Mincheva

References

Examples

```r
p=100
n=100
Y<-array(rnorm(p*n),dim=c(p,n))
Sy<-POET(Y,3,0.5,'soft','vad')$SigmaY
Su<-POET(Y,3,0.5,'soft','vad')$SigmaU
F<-POET(Y,3,0.5,'soft','vad')$factors
B<-POET(Y,3,0.5,'soft','vad')$loadings
```

Description

This function is for determining the minimum constant in the threshold that guarantees the positive definiteness of the POET estimator.

Usage

```r
POETCmin(Y, K, thres, matrix)
```
Arguments

\textbf{Y}
\begin{itemize}
 \item p by n matrix of raw data, where p is the dimensionality, n is the sample size. It is recommended that Y is de-meaned, i.e., each row has zero mean.
\end{itemize}

\textbf{K}
\begin{itemize}
 \item number of factors. K is pre-determined by the users. Suggestions on choosing K:
 \begin{enumerate}
 \item A simple way of determining K is to count the number of very spiked (much larger than others) eigenvalues of the p by p sample covariance matrix of Y.
 \item A formal data-driven way of determining K is described in Bai and Ng (2002): "Determining the number of factors in approximate factor models", Econometrica, 70, 191-221. This procedure requires a one-dimensional optimization.
 \item POET is very robust to over-estimating K. But under-estimating K can result to VERY BAD performance. Therefore we strongly recommend choosing a relatively large K (normally less than 8) to avoid missing any important common factor.
 \item K=0 corresponds to threshoding the sample covariance directly.
 \end{enumerate}
\end{itemize}

\textbf{thres}
\begin{itemize}
 \item choice of thresholding. Users can choose from three thresholding methods:
 \begin{itemize}
 \item 'soft': soft thresholding
 \item 'hard': hard thresholding
 \item 'scad': scad thresholding
 \item 'alasso': adaptive lasso thresholding
 \end{itemize}
\end{itemize}

\textbf{matrix}
\begin{itemize}
 \item the option of thresholding either correlation or covariance matrix. Users can choose from:
 \begin{itemize}
 \item 'cor': threshold the error correlation matrix then transform back to covariance matrix
 \item 'vad': threshold the error covariance matrix directly.
 \end{itemize}
\end{itemize}

Details

Model: \(Y_t = B f_t + u_t \), where B, f_t and u_t represent factor loading matrix, common factors and idiosyncratic error respectively. Only \(Y_t \) is observable. \(t=1,...,n \). Dimension of \(Y_t \) is p. The goal is to estimate the covariance matrices of \(Y_t \) and u_t.

Note: (1) POET is optimization-free, so no initial value, tolerant, or maximum iterations need to be specified as inputs.

(2) We can apply the adaptive thresholding (Cai and Liu 2011, JASA) on either the correlation matrix or the covariance matrix, specified by the option 'matrix'.

(3) If no factor structure is assumed, i.e., no common factors exist and var(\(Y_t \)) itself is sparse, set K=0.

Value

Outputs:

\textbf{SigmaY:} estimated p by p covariance matrix of \(y_t \)

\textbf{SigmaU:} estimated p by p covariance matrix of \(u_t \)
POETKhat

Author(s)
Jianqing Fan, Yuan Liao, Martina Mincheva

References

Examples
\[
p = 100 \\
n = 50 \\
Y \leftarrow \text{array}(\text{rnorm}(p \times n), \text{dim}=c(p, n)) \\
C \leftarrow \text{POETCmin}(Y, 3, \text{'soft'}, \text{'vad'})
\]

Description
This function is for calculating the optimal number of factors in an approximate factor model.

Usage

POETKhat(Y)

Arguments

Y
\(p \) by \(n \) matrix of raw data, where \(p \) is the dimensionality, \(n \) is the sample size. It is recommended that \(Y \) is de-meaned, i.e., each row has zero mean.

Details
This method was proposed by Bai & Ng (2002) and Hallin & Liska (2007). They propose two penalty functions and in turn minimize the corresponding information criteria. Notice that this method may underestimate \(K \). POET is very robust to over-estimating \(K \). But under-estimating \(K \) can result to VERY BAD performance. Therefore we strongly recommend choosing a relatively large \(K \) (normally less than 8) to avoid missing any important common factor.

Value

\(K_{1HL} \)
estimated number of factors based on the first information criterion using Hallin & Liska method

\(K_{2HL} \)
estimated number of factors based on the second information criterion using Hallin & Liska method
K1BN estimated number of factors based on the first information criterion using Bai & Ng method

K2BN estimated number of factors based on the second information criterion using Bai & Ng method

Author(s)

Jianqing Fan, Yuan Liao, Martina Mincheva

References

Bai, Ng, 2002. Determining the number of factors in approximate factor models. Econometrica 70, 191-221.

Hallin, Liska, 2007. Determining the number of factors in the general dynamic factor model. JASA 102, 603-617.

Examples

p=100
n=100
Y<-array(rnorm(p*n),dim=c(p,n))
K<-POETKhat(Y)
Index

POET, 1
POETCmin, 3
POETKhat, 5