Package ‘PPQplan’

Type Package
Title Process Performance Qualification (PPQ) Plans in Chemistry, Manufacturing and Controls (CMC) Statistical Analysis
Version 1.0.0
Maintainer Yalin Zhu <yalin.zhu@merck.com>
Depends R (>= 3.2.0)
Imports tolerance, ggplot2, plotly
License MIT + file LICENSE
Copyright Copyright 2019, Center for Mathematical Sciences, Merck & Co., Inc.
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
RoxygenNote 6.1.1
Encoding UTF-8
BugReports https://github.com/allenzhuaz/PPQplan/issues
LazyData true
Author Yalin Zhu [aut, cre] (<https://orcid.org/0000-0003-3830-8660>), Merck & Co., Inc. [cph]
Repository CRAN
Date/Publication 2019-09-03 16:20:04 UTC
Description

The function for dynamically plotting (ggplot) the heatmap to evaluate the sampling plan based on a general lower and/or upper specification limits.

Usage

```r
heatmap_ly(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, test.point, dynamic)
```

Arguments

- `attr.name`: (optional) user-defined attribute name for sampling plan assessment
- `attr.unit`: (optional) user-defined attribute unit
- `Llim`: lower specification limit
- `Ulim`: upper specification limit
- `mu`: hypothetical mean of the attribute
- `sigma`: hypothetical standard deviation of the attribute
- `n`: sample size (number of locations) per batch
- `test.point`: (optional) actual process data points for testing whether the processes pass PPQ
- `dynamic`: logical; if TRUE, then convert the plain heatmap to dynamic graph using plotly.

Value

A Plain or Dynamic Heatmap for Sampling Plan Assessment.
Author(s)
Yalin Zhu

References

See Also
pp and PPQ.ocurve.

Examples
```r
## Not run:
heatmap_ly(attr.name = "Thickness", attr.unit = ", Llim = -0.2, Ulim = 0.2,
mu = seq(-0.2, 0.2, 0.001), sigma = seq(0, 0.2, 0.001),
test.point=data.frame(c(0.1,-0.05),c(0.15,0.05), n=2, dynamic = T)
## End(Not run)
```

pi.ctplot

Heatmap/Contour Plot for Assessing Power of the CQA PPQ Plan Using Prediction Interval.

Description
The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage
```r
pi.ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, test.point)
```

Arguments
- `attr.name`: user-defined attribute name for PPQ assessment
- `attr.unit`: user-defined attribute unit
- `Llim`: lower specification limit
- `Ulim`: upper specification limit
- `mu`: hypothetical mean of the attribute
- `sigma`: hypothetical standard deviation of the attribute
- `n`: sample size (number of locations) per batch
- `n.batch`: number of batches for passing PPQ during validation
- `alpha`: significant level for constructing the prediction interval.
- `test.point`: (optional) actual process data points for testing whether the processes pass PPQ
Value

Heatmap (or Countour Plot) for PPQ Assessment.

Author(s)

Yalin Zhu

References

See Also

pi.pp and pi.occurve.

Examples

```r
## Not run:
## Example verifying simulation results in the textbook page 249
mu <- seq(95, 105, 0.1)
sigma <- seq(0.2, 3.5, 0.1)
pi.ctplot(attr.name = "Composite Assay", attr.unit = "%LC",
mu = mu, sigma = sigma, Llim=95, Ulim=105)
mu <- seq(90, 110, 0.5)
pi.ctplot(attr.name = "Composite Assay", attr.unit = "%LC",
mu = mu, sigma = sigma, Llim=90, Ulim=110)

mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
pi.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = ",%
mu = mu, sigma = sigma, Llim=95, Ulim=105)
test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
pi.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = ",%",
mu = mu, sigma = sigma, test.point=test)
## End(Not run)
```

pi.occurve

Operating Characteristic (OC) Curves for the CQA PPQ Plan using Prediction Interval.

Description

The function for plotting the OC curves and optimizing the baseline and high performance PPQ plans, given lower and upper specification limits.
Usage

\[\text{pi.occurve}(\text{attr.name}, \text{attr.unit}, \text{Llim}, \text{Ulim}, \text{mu}, \text{sigma}, \text{n}, \text{n.batch}, \text{alpha}, \text{add.reference}) \]

Arguments

- **attr.name**: user-defined attribute name
- **attr.unit**: user-defined attribute unit
- **Llim**: lower specification limit
- **Ulim**: upper specification limit
- **mu**: hypothetical mean of the attribute
- **sigma**: hypothetical standard deviation of the attribute
- **n**: sample size (number of locations) per batch
- **n.batch**: number of batches for passing PPQ during validation
- **alpha**: significant level for constructing the prediction interval.
- **add.reference**: logical; if **TRUE**, then add reference OC curves (Baseline and High Performance) in the plot.

Value

OC curves for specification test and PPQ plan.

Author(s)

Yalin Zhu

References

See Also

- `pi.pp` and `rl.pp`

Examples

```r
## Not run:
pi.occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
            sigma = seq(0.01,1,0.01))
pi.occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
            sigma = seq(0.01,1,0.01), n.batch=3)
# Baseline curve
pi.occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
            sigma = seq(0.01,1,0.01), alpha = 0.1135434)
# High performance curve
pi.occurve(attr.name = "Total Protein", attr.unit = "mg/mL",
            sigma = seq(0.01,1,0.01), add.reference=TRUE)
```
pi.pp

Probability of Passing PPQ Test using Prediction Interval

Description

The function for calculating the probability of passing critical quality attributes (CQA) PPQ test.

Usage

pi.pp(Llim, Ulim, mu, sigma, n, n.batch, alpha)

Arguments

Llim lower specification limit
Ulim upper specification limit
mu hypothetical mean of the attribute
sigma hypothetical standard deviation of the attribute
n sample size (number of locations) per batch
n.batch number of batches for passing PPQ during validation
alpha significant level for constructing the prediction interval.

Value

A numeric value of the passing/acceptance probability
Author(s)

Yalin Zhu

References

See Also

rl.pp.

Examples

Not run:
pi.pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = pi.pp, mu=97, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = pi.pp, mu=100, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
End(Not run)

pp

Probability of Passing General Upper and/or Lower Specification Limit

Description

The function for calculating the probability of passing a general upper and/or lower boundary.

Usage

pp(Llim, Ulim, mu, sigma, n)

Arguments

<table>
<thead>
<tr>
<th>Llim</th>
<th>lower specification limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulim</td>
<td>upper specification limit</td>
</tr>
<tr>
<td>mu</td>
<td>hypothetical mean of the attribute</td>
</tr>
<tr>
<td>sigma</td>
<td>hypothetical standard deviation of the attribute</td>
</tr>
<tr>
<td>n</td>
<td>sample size (number of locations)</td>
</tr>
</tbody>
</table>

Value

A numeric value of the passing/acceptance probability
Author(s)
Yalin Zhu

See Also
rl.pp and PPQ.pp.

PPQ.ctplot
Heatmap/Contour Plot for Assessing Power of the CQA PPQ Plan Using General Multiplier.

Description

The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```
PPQ.ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, test.point)
```

Arguments

- **attr.name**: (optional) user-defined attribute name for PPQ assessment
- **attr.unit**: (optional) user-defined attribute unit
- **Llim**: lower specification limit
- **Ulim**: upper specification limit
- **mu**: hypothetical mean of the attribute
- **sigma**: hypothetical standard deviation of the attribute
- **n**: sample size (number of locations) per batch
- **n.batch**: number of batches for passing PPQ during validation
- **k**: general multiplier for constructing the specific interval
- **test.point**: (optional) actual process data points for testing whether the processes pass PPQ

Value

Heatmap (or Countour Plot) for PPQ Assessment.

Author(s)
Yalin Zhu

References

See Also

PPQ.pp and PPQ.occurnce.

Examples

```r
## Not run:
mu <- seq(1.6,3.4,0.05)
sigma <- seq(0.05,0.8,0.01)
PPQ.ctplot(attr.name = "Total Protein", attr.unit = "mg/mL", Llim=1.5, Ulim=3.5,
           mu = mu, sigma = sigma, k=2.373)

## Example verifying simulation results in the textbook page 249
mu <- seq(95, 105, 0.1)
sigma <- seq(0.2, 5, 0.1)
PPQ.ctplot(attr.name = "Composite Assay", attr.unit = "%LC", Llim=95, Ulim=105,
           mu = mu, sigma = sigma, k=2.373)
mu <- seq(90, 110, 0.5)
PPQ.ctplot(attr.name = "Composite Assay", attr.unit = "%LC", Llim=90, Ulim=110,
           mu = mu, sigma = sigma, k=2.373)
mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
PPQ.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
           mu = mu, sigma = sigma, k=2.373)
test <- data.frame(mean=c(97,98.3,102.5), sd=c(0.55, 1.5, 1.2))
PPQ.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105,
           mu = mu, sigma = sigma, k=2.373, test.point=test)
## End(Not run)
```

PPQ.ggplot

Description

The function for dynamically plotting (ggplot) the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

```r
PPQ.ggplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k,
           test.point, dynamic)
```

Arguments

- `attr.name` (optional) user-defined attribute name for PPQ assessment
- `attr.unit` (optional) user-defined attribute unit
PPQ.ggplot

Llim lower specification limit
Ulim upper specification limit
mu hypothetical mean of the attribute
sigma hypothetical standard deviation of the attribute
n sample size (number of locations) per batch
n.batch number of batches for passing PPQ during validation
k general multiplier for constructing the specific interval
test.point (optional) actual process data points for testing whether the processes pass PPQ
dynamic logical; if TRUE, then convert the heatmap ggplot to dynamic graph using plotly.

Value

Dynamic Heatmap (or Contour Plot) for PPQ Assessment.

Author(s)

Yalin Zhu

References

See Also

PPQ.pp and PPQ.occurve.

Examples

Not run:
mu <- seq(95, 105, 0.1)
sigma <- seq(0.1,1.7,0.1)
PPQ.ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, dynamic = FALSE)
test <- data.frame(mu=c(97,98.3,102.5), sd=c(0.55, 1.5, 0.2))
PPQ.ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, test.point = test)

End(Not run)
PPQ.ocurve

Operating Characteristic (OC) Curves for the CQA PPQ Plan Using General Multiplier.

Description
The function for plotting the OC curve to show the PPQ plan, given lower and upper specification limits.

Usage
PPQ.ocurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, k, add.reference)

Arguments
- attr.name (optional) user-defined attribute name
- attr.unit (optional) user-defined attribute unit
- Llim lower specification limit
- Ulim upper specification limit
- mu hypothetical mean of the attribute
- sigma hypothetical standard deviation of the attribute
- n sample size (number of locations) per batch
- n.batch number of batches for passing PPQ during validation
- k general multiplier for constructing the specific interval
- add.reference logical; if TRUE, then add reference OC curves (Baseline and High Performance) in the plot.

Value
OC curves for specification test and PPQ plan.

Author(s)
Yalin Zhu

References

See Also
Examples

```r
## Not run:
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105, 
mu=97, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105, 
mu=100, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105, 
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373)
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105, 
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373, add.reference=TRUE)
PPQ.occurve(attr.name = "Protein Concentration", attr.unit="%", Llim=90, Ulim=110, 
mu=seq(90, 110, 0.1), sigma=1.25, k=2.373)
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105, 
mu=98, sigma=seq(0.1, 10, 0.1), n=10, add.reference=TRUE)
## Only display reference curves, leave k as NULL by default
PPQ.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%", Llim=95, Ulim=105, 
mu=seq(95,105,0.1), sigma=1, n=10, k=2.373, add.reference=TRUE)
## End(Not run)
```

PPQ.pp

Probability of Passing PPQ Test Using General Multiplier

Description

The function for calculating the probability of passing critical quality attributes (CQA) PPQ test.

Usage

```r
PPQ.pp(Llim, Ulim, mu, sigma, n, n.batch, k)
```

Arguments

- `Llim`: lower specification limit
- `Ulim`: upper specification limit
- `mu`: hypothetical mean of the attribute
- `sigma`: hypothetical standard deviation of the attribute
- `n`: sample size (number of locations) per batch
- `n.batch`: number of batches for passing PPQ during validation
- `k`: general multiplier for constructing the specific interval

Value

A numeric value of the passing/acceptance probability

Author(s)

Yalin Zhu
References

See Also
rl.pp.

Examples

```r
## Not run:
PPQ.pp(Llim = 90, Ulim = 110, mu=105, sigma=1.5, n=10, k=3.1034)

# One-sided tolerance interval with k=0.753 (95/67.5 one-sided tolerance interval LTL)
PPQ.pp(sigma=0.03, mu=.025, n=40, Llim=1, Ulim=Inf, k=0.753)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ.pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ.pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = PPQ.pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)

sigma <- seq(0.1, 4, 0.1)
pp1 <- sapply(X=sigma, FUN = PPQ.pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
pp2 <- sapply(X=sigma, FUN = PPQ.pp, mu=98, n=10, Llim=95, Ulim=105, k=2.373)
pp3 <- sapply(X=sigma, FUN = PPQ.pp, mu=99, n=10, Llim=95, Ulim=105, k=2.373)
pp4 <- sapply(X=sigma, FUN = PPQ.pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
plot(sigma, pp1, xlab="Standard Deviation", main="LSL=95, USL=105, k=2.373, n=10", ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(sigma, pp2, type="o", pch=2, col=2)
lines(sigma, pp3, type="o", pch=3, col=3)
lines(sigma, pp4, type="o", pch=4, col=4)
legend("topright", legend=paste0(rep("mu=",4),c(97,98,99,100)), bg="white", col=c(1,2,3,4), pch=c(1,2,3,4), lty=1, cex=0.8)

mu <- seq(95, 105, 0.1)
pp5 <- sapply(X=mu, FUN = PPQ.pp, sigma=0.5, n=10, Llim=95, Ulim=105, k=2.373)
pp6 <- sapply(X=mu, FUN = PPQ.pp, sigma=1, n=10, Llim=95, Ulim=105, k=2.373)
pp7 <- sapply(X=mu, FUN = PPQ.pp, sigma=1.5, n=10, Llim=95, Ulim=105, k=2.373)
pp8 <- sapply(X=mu, FUN = PPQ.pp, sigma=2, n=10, Llim=95, Ulim=105, k=2.373)
pp9 <- sapply(X=mu, FUN = PPQ.pp, sigma=2.5, n=10, Llim=95, Ulim=105, k=2.373)
plot(mu, pp5, xlab="Mean Value", main="LSL=95, USL=105, k=2.373, n=10", ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(mu, pp6, type="o", pch=2, col=2)
lines(mu, pp7, type="o", pch=3, col=3)
lines(mu, pp8, type="o", pch=4, col=4)
lines(mu, pp9, type="o", pch=5, col=5)
legend("topright", legend=paste0(rep("sigma=",5),seq(0.5,2.5,0.5)), bg="white", col=c(1,2,3,4,5), pch=c(1,2,3,4,5), lty=1, cex=0.8)

## End(Not run)
```
Description

The function for calculating the probability of passing critical quality attributes (CQA) specification test.

Usage

```r
rl.pp(Llim, Ulim, mu, sigma, NV)
```

Arguments

- `Llim`: lower specification limit
- `Ulim`: upper specification limit
- `mu`: hypothetical mean of the attribute
- `sigma`: hypothetical standard deviation of the attribute
- `NV`: nominal volume for the specification test.

Value

A numeric value of the passing/acceptance probability

Author(s)

Yalin Zhu

References

See Also

Examples

```r
rl.pp(Llim = 1.5, Ulim = 3.5, mu = 2.5, sigma = 0.8)
```
The function for plotting the heatmap to evaluate the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

ti.ctplot(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha, coverprob, side, test.point)

Arguments

attr.name user-defined attribute name for PPQ assessment
attr.unit user-defined attribute unit
Llim lower specification limit
Ulim upper specification limit
mu hypothetical mean of the attribute
sigma hypothetical standard deviation of the attribute
n sample size (number of locations) per batch
n.batch number of batches for passing PPQ during validation
alpha significant level for constructing the tolerance interval.
coverprob coverage probability for constructing the tolerance interval
side whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively).
test.point (optional) actual process data points for testing whether the processes pass PPQ

Value

Heatmap (or Countour Plot) for PPQ Assessment.

Author(s)

Yalin Zhu

References

See Also
ti.pp and ti.occurve.

Examples

mu <- seq(95,105,0.1)
sigma <- seq(0.1,2.5,0.1)
ti.ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%",
 mu = mu, sigma = sigma, Llim=95, Ulim=105)

ti.ctplot(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL",
 Llim = 100, Ulim = Inf, mu=seq(100, 110, 0.5), sigma=seq(0.2, 15 ,0.5), n=40,
 alpha = 0.05, coverprob = 0.675, side=1)

ti.occurve Operating Characteristic (OC) Curves for the PPQ Plan using Tolerance Interval.

Description

The function for plotting the OC curve to show the PPQ plan based on the specification test, given lower and upper specification limits.

Usage

ti.occurve(attr.name, attr.unit, Llim, Ulim, mu, sigma, n, n.batch, alpha,
 coverprob, side, add.reference, NV)

Arguments

attr.name user-defined attribute name
attr.unit user-defined attribute unit
Llim lower specification limit
Ulim upper specification limit
mu hypothetical mean of the attribute
sigma hypothetical standard deviation of the attribute
n sample size (number of locations) per batch
n.batch number of batches for passing PPQ during validation
alpha significant level for constructing the tolerance interval.
coverprob coverage probability for constructing the tolerance interval
side whether a 1-sided or 2-sided tolerance interval is required (determined by side = 1 or side = 2, respectively).
add.reference logical; if TRUE, then add reference OC curves (Baseline and High Performance) in the plot.
NV nominal volume for the specification test.
Value

OC curves for specification test and PPQ plan.

Author(s)

Yalin Zhu

References

See Also

Examples

ti.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)

ti.occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)

ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL",
 Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40,
 alpha = 0.05, coverprob = 0.97, side=1, NV=3)

ti.occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL",
 Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40,
 alpha = 0.05, coverprob = 0.992, side=1, NV=3)
Arguments

- **Llim**: lower specification limit
- **Ulim**: upper specification limit
- **mu**: hypothetical mean of the attribute
- **sigma**: hypothetical standard deviation of the attribute
- **n**: sample size (number of locations) per batch
- **n.batch**: number of batches for passing PPQ during validation
- **alpha**: significant level for constructing the tolerance interval
- **coverprob**: coverage probability for constructing the tolerance interval
- **side**: whether a 1-sided or 2-sided tolerance interval is required (determined by `side = 1` or `side = 2`, respectively).

Value

A numeric value of the passing/acceptance probability

Author(s)

Yalin Zhu

References

See Also

rl.pp.

Examples

```r
  ti.pp(sigma=0.5, mu=2.5, n=10, n.batch=1, Llim=1.5, Ulim=3.5, alpha=0.05)
  sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti.pp, mu=97, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
  sapply(X=c(0.1,0.5, 1,2,3,4,5,10), FUN = ti.pp, mu=100, n=10, Llim=95, Ulim=105, n.batch=1, alpha=0.05)
```
Index

heatmap_ly, 2

pi.ctplot, 3
pi.occurve, 4
pi.pp, 6
pp, 7
PPQ.ctplot, 8
PPQ.ggplot, 9
PPQ.occurve, 11
PPQ.pp, 12

rl.pp, 14

ti.ctplot, 15
ti.occurve, 16
ti.pp, 17