Package ‘PRECAST’

October 18, 2022

Type Package

Title Embedding and Clustering with Alignment for Spatial Datasets

Version 1.3

Date 2022-10-18

Author Wei Liu [aut, cre],
Yi Yang [aut],
Jin Liu [aut]

Maintainer Wei Liu <wei.liu@duke-nus.edu.sg>

Description An efficient data integration method is provided for multiple spatial transcriptomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spatial factor analysis simultaneously with spatial clustering and embedding alignment, requiring only partially shared cell/domain clusters across datasets. More details can be referred to Wei Liu, et al. (2022) <doi:10.1101/2022.06.26.497672>.

License GPL-3

Depends parallel, gtools, R (>= 4.0.0)

Imports GiRaF, MASS, Matrix, mclust, methods, purrr, utils, Seurat, cowplot, patchwork, scater, pbapply, ggthemes, dplyr, ggrepplot2, stats, DR.SC, scales, Rcpp (>= 1.0.5)

LazyData true

URL https://github.com/feiyoung/PRECAST

BugReports https://github.com/feiyoung/PRECAST/issues

Suggests knitr, rmarkdown

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-10-18 13:57:54 UTC
AddAdjList

Add adjacency matrix list for a PRECASTObj object

Description

Add adjacency matrix list for a PRECASTObj object to prepare for PRECAST model fitting.

Usage

AddAdjList(PRECASTObj, type="fixed_distance", platform="Visium", ...)

AddParSetting

AddTSNE

AddUMAP

Add_embed

boxPlot

coordinate_rotate

CreatePRECASTObject

dimPlot

doHeatmap

featurePlot

firstup

getAdj_fixedNumber

getAdj_reg

Human_HK_genes

ICM.EM

ICM.EM_structure

IntegrateSpaData

model_set

Mouse_HK_genes

plot_RGB

plot_scatter

PRECAST

PRECASTObj

PRECASTObj-class

selectIntFeatures

selectModel

SpaPlot

volinPlot

Index

AddAdjList

Add adjacency matrix list for a PRECASTObj object

R topics documented:
AddParSetting

Arguments

PRECASTObj a PRECASTObj object created by CreatePRECASTObject.

type an optional string, specify which type of neighbors’ definition. Here we provide two definition: one is "fixed_distance", the other is "fixed_number".

platform a string, specify the platform of the provided data, default as "Visium". There are many platforms to be supported, including ("Visium", "ST", "SeqFISH", "merFISH", 'slide-seqv2', 'seqscope', "HDST"), which means there are spatial coordinates information in the metadata of PRECASTObj. The platform helps to calculate the adjacency matrix by defining the neighborhoods when type="fixed_distance" is chosen.

... other arguments to be passed to getAdj, getAdj_auto and getAdj_fixedNumber function.

Details

When the type = "fixed_distance", then the spots within the Euclidean distance cutoffs from one spot are regarded as the neighbors of this spot. When the type = "fixed_number", the K-nearest spots are regarded as the neighbors of each spot.

Value

Return a revised PRECASTObj object by adding the adjacency matrix list.

Note

nothing

Author(s)

Wei Liu

See Also

AddParSetting.

AddParSetting Add model settings for a PRECASTObj object

Description

The main interface function provides serveral PRECAST submodels, so a model setting is required to specified in advance for a PRECASTObj object.

Usage

AddParSetting(PRECASTObj, ...)

AddTSNE

Arguments

- PRECASTobj: a PRECASTObj object created by CreatePRECASTObject.
- ... other arguments to be passed to model_set function.

Details

Nothing

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
PRECASTObj <- AddParSetting(PRECASTObj)
PRECASTObj@parameterList

Description

Run t-SNE dimensionality reduction on selected features.

Usage

AddTSNE(seuInt, n_comp=3, reduction='PRECAST', assay='PRE_CAST', seed=1)

Arguments

- seuInt: a Seurat object.
- n_comp: an optional positive integer, specify the number of features to be extracted.
- reduction: an optional string, means which dimensional reduction (e.g. PRECAST, PCA) to use for the tSNE. Default is PRECAST.
- assay: Name of assay that that t-SNE is being run on.
- seed: an optional integer, the random seed to evaluate tSNE.
AddUMAP

Details

Nothing

Value

Return a revised Seurat object by adding tSNE reduction object.

Note

nothing

Author(s)

Wei Liu

See Also

None

AddUMAP
Add UMAP embeddings for a Seurat object

Description

Run UMAP dimensionality reduction on selected features.

Usage

```
AddUMAP(seuInt, n_comp=3, reduction='PRECAST', assay='PRE_CAST', seed=1)
```

Arguments

- **seuInt**
a Seurat object.
- **n_comp**
an optional positive integer, specify the number of features to be extracted.
- **reduction**
an optional string, means which dimensional reduction (e.g. PRECAST, PCA) to use for the UMAP. Default is PRECAST.
- **assay**
Name of assay that that t-SNE is being run on.
- **seed**
an optional integer, the random seed to evaluate UMAP.

Details

Nothing

Value

Return a revised Seurat object by adding UMAP reduction object.
Add_embeddings for a Seurat object

Description
Add embeddings for a Seurat object.

Usage
Add_embed(embed, seu, embed_name='tSNE', assay = "RNA")

Arguments
- embed: an embedding matrix.
- seu: a Seurat object.
- embed_name: an optional string, the name of embeddings.
- assay: Name of assay that that embed is being put

Details
Nothing

Value
Return a revised Seurat object by adding a embedding matrix to the Reduc slot in Seurat object.

Note
nothing

Author(s)
Wei Liu

See Also
None
boxPlot

Boxplot for a matrix

Description

Boxplot for a matrix.

Usage

boxPlot(mat, ylabel='ARI', cols=NULL, ...)

Arguments

mat a matrix with columns.

ylabel an optional string, the name of ylabel.

cols colors used in the plot

... Other parameters passed to geom_boxplot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

mat <- matrix(runif(100*3, 0.6, 1), 100, 3)
colnames(mat) <- paste0("Method", 1:3)
boxPlot(mat)
coordinate_rotate Coordinates rotation for visualization

Description

Coordinates rotation for visualization.

Usage

coordinate_rotate(pos, theta=0)

Arguments

- **pos**: a matrix, the n-by-d coordinates, where n is the number of coordinates, d is the dimension of coordinates.
- **theta**: a real number, the angle for counter-clock-wise rotation.

Details

Nothing

Value

Return a rotated coordinate matrix.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

```r
x <- 1:100
pos <- cbind(x, sin(pi/4*x))
oldpar <- par(mfrow = c(1,2))
plot(pos)
plot(coordinate_rotate(pos, 40))
par(oldpar)
```
CreatePRECASTObject

Create the PRECAST object with preprocessing step.

Description

Create the PRECAST object with preprocessing step.

Usage

CreatePRECASTObject(seuList, project = "PRECAST", gene.number=2000,
selectGenesMethod='SPARK-X',numCores_sparkx=1,
customGenelist=NULL, premin.spots = 20,
premin.features=20, postmin.spots=15, postmin.features=15,
rawData.preserve=FALSE,verbose=TRUE)

Arguments

seuList a list consisting of Seurat objects, where each object is a SRT data batch. The
default assay of each Seurat object will be used for data preprocessing and fol-
lowed model fitting. The specified format about seuList argument can be re-
ferred to the details and example.

project An optional string, name of the project, default as "PRECAST".

gene.number an optional integer, the number of top spatially variable genes (SVGs) or highly
variable genes (HVGs) to be chosen.

selectGenesMethod an optional integer, the method to select genes for each sample. It supports
'SPARK-X' and 'HVGs' to select genes now. Users can provide self-selected
genes using customGenelist argument.

numCores_sparkx an optional integer, specify the number of CPU cores in SPARK package to use
when selecting spatial genes.

customGenelist an optional string vector, the list of user specified genes to be used for PRECAST
model fitting. If this argument is given, SVGs/HVGs will not be selected.

premin.spots An optional integer, the features (genes) are retained in raw data filtering step
with at least premin.spots number of spots, default is 20.

premin.features An optional integer, the locations are retained in raw data filtering step with at least premin.features number of
nonzero-count features (genes), default is 20.

postmin.spots An optional integer, the features (genes) are retained in filtering step after com-
mon genes selected among all data batches with at least premin.spots number of
spots, default is 15.

postmin.features An optional integer, the locations are retained in filtering step after common
genes selected among all data batches with at least premin.features number of
nonzero-count features (genes), default is 15.
rawData.preserve
An optional logical value, whether preserve the raw seuList data.

verbose
whether display the message in the creating process.

Details

seuList is a list with Seurat object as component, and each Seurat object includes the raw expression count matrix, spatial coordinates and meta data for each data batch, where the spatial coordinates information must be saved in the metadata of Seurat, named "row" and "col" for each data batch.

Value

Returns PRECAST object prepared for PRECAST model fitting. See PRECASTObj-class for more details.

Examples

data(PRECASTObj)
library(Seurat)
seuList <- PRECASTObj@seulist
Check the input of seuList for create PRECAST object.
Check the default assay for each data batch
lapply(seuList, DefaultAssay)
Check the spatial coordinates in the meta data named "row" and "col".
head(seuList[[1]]@meta.data)
Then create PRECAST object using this seuList.
For convenience, we show the user-specified genes' list for creating PRECAST object.
Users can use SVGs from SPARK-X or HVGs.
PRECASTObj2 <- CreatePRECASTObject(seuList,
customGenelist= row.names(seuList[[1]]), verbose=FALSE)

dimPlot | Low-dimensional embeddings’ plot

Description

Low-dimensional embeddings’ plot colored by a specified meta data in the Seurat object.

Usage

dimPlot(seuInt, item=NULL, reduction=NULL, point_size=1, text_size=16,
cols=NULL, font_family='", border_col="gray10",
fill_col="white")
Arguments

- **seuInt**: an object named "Seurat".
- **item**: the item used for coloring the plot in the meta data of seuInt object.
- **reduction**: the reduction used for plot in the seuInt object. If reduction is null, the last added one is used for plotting.
- **point_size**: the size of point in the scatter plot.
- **text_size**: the text size in the plot.
- **cols**: colors used in the plot.
- **font_family**: the font family used for the plot.
- **border_col**: the border color in the plot.
- **fill_col**: the color used in background.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
PRECASTObj <- selectModel.PRECASTObj(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
dimPlot(seuInt, reduction = 'PRECAST')
or use the Seurat::DimPlot(seuInt, reduction = 'PRECAST')
doHeatmap

Heatmap for spots-by-feature matrix

Description
Plot heatmap for a Seurat object with expression data.

Usage
doHeatmap(seu, features=NULL, cell_label='Cell type', grp_label = FALSE,
 pt_size=4, grp_color=NULL, ...)

Arguments
- **seu**: an object named "Seurat". The object of class "Seurat" must include slot "scale.data".
- **features**: an optional string vector, the features to be plotted.
- **cell_label**: an optional string, the name of legend.
- **grp_label**: an optional logical value, whether display the group names.
- **pt_size**: the point size used in the plot
- **grp_color**: the colors to use for the group color bar.
- **...**: Other parameters passed to DoHeatmap.

Details
Nothing

Value
Return a ggplot2 object.

Note
nothing

Author(s)
Wei Liu

See Also
featurePlot
library(Seurat)
data(PRECASTObj)
PRECASTObj <- selectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
seuInt <- ScaleData(seuInt)
doHeatmap(seuInt, features=row.names(seuInt)[1:5])

featurePlot Spatial expression heatmap

Description
Plot spatial heatmap for a feature of Seurat object with spatial transcriptomics data.

Usage
featurePlot(seu, feature=NULL, cols=NULL, pt_size=1, title_size =16, quant=0.5,
assay='RNA', reduction="position")

Arguments
seu an object named "Seurat". The object of class "Seurat" must include slot "scale.data".
feature an optional string, specify the name of feature to be plotted. If it is null, the first
feature will be plotted.
cols colors used in the plot
pt_size the size of point in the spatial heatmap plot.
title_size the title size used for the plot.
quant the quantile value to generate the gradient color map.
assay the assay selected for plot.
reduction the Reduc object for plot.

Details
Nothing

Value
Return a ggplot2 object.

Note
nothing
Author(s)

Wei Liu

See Also

None

Examples

```r
library(Seurat)
data(PRECASTObj)
PRECASTObj <- selectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
seuInt <- ScaleData(seuInt)
featurePlot(seuInt, assay='PRE_CAST')
```

firstup

Set the first letter of a string vector to capital

Description

Set the first letter of a string vector to capital.

Usage

```r
firstup(x)
```

Arguments

x a string vector.

Details

Nothing

Value

Return a string vector with first letter capital.

Note

nothing

Author(s)

Wei Liu
getAdj_fixedNumber

See Also
None

Examples
 x <- c("good", "Morning")
 firstup(x)

Arguments
 pos is a n-by-d matrix of position, where n is the number of spots, and d is the
dimension of coordinates.
 number is the number of neighbors of each spot. Euclidean distance to decide whether a
spot is an neighborhood of another spot.

Value
 A sparse matrix containing the neighbourhood.

See Also
 getAdj_auto, getAdj.
getAdj_reg

Calculate adjacency matrix for regular spatial coordinates.

Description

Calculate adjacency matrix for regular spatial coordinates from ST or Visium platform.

Usage

`getAdj_reg(pos, platform= "Visium")`

Arguments

- `pos` is a n-by-d matrix of position, where n is the number of spots, and d is the dimension of coordinates.
- `platform` a string, specify the platform of the provided data, default as "Visium", and only support "ST" and "Visium" platform.

Value

A sparse matrix containing the neighbourhood.

See Also

`getAdj_auto, getAdj, getAdj_fixedNumber`.

Human_HK_genes

Human housekeeping genes database

Description

Human housekeeping genes database.

Details

This data is a `data.frame` and include the Human housekeeping genes information in the columns named "Gene" and "Ensembl".
Description

ICM-EM algorithm for fitting PRECAST model

Usage

ICM.EM(XList, q, K, AdjList=NULL, Adjlist_car=NULL, posList = NULL,
platform = "ST", beta_grid=seq(0.2,4, by=0.2),maxIter_ICM=6,
maxIter=20, epsLogLik=1e-5, verbose=TRUE,mix_prop_heter=TRUE,
Sigma_equal=FALSE, Sigma_diag=TRUE,error_heter=TRUE, Sp2=TRUE,
wpca_int=FALSE, int.model='EEE', seed=1,coreNum = 1, coreNum_int=coreNum)

Arguments

XList an M-length list consisting of multiple matrices with class dgCMatrix or matrix
that specify the log-normalization gene expression matrix for each data sample
used for iDR-SC model.

q a positive integer, specify the number of latent features to be extracted, default
as 15.

K a positive integer allowing scalar or vector, specify the number of clusters in
model fitting.

AdjList an M-length list of sparse matrices with class dgCMatrix, specify the adjacency
matrix used for Potts model in iDR-SC. We provide this interface for those users
who would like to define the adjacency matrix by their own.

Adjlist_car an M-length list of sparse matrices with class dgCMatrix, specify the adjacency
matrix used for CAR model in iDR-SC, default as AdjList in the Potts model.
We provide this interface for those users who would like to use the different
adjacency matrix in CAR model.

posList an M-length list composed by spatial coordinate matrix for each data sample.

platform a string, specify the platform of the provided data, default as "Visium". There
are many platforms to be supported, including ("Visuim", "ST", "SeqFISH",
"merFISH", 'slide-seqv2', 'seqscope', "HDST"). If AdjList is not given, the The
platform helps to calculate the adjacency matrix by defining the neighbors.

beta_grid an optional vector of positive value, the candidate set of the smoothing parameter
to be searched by the grid-search optimization approach.

maxIter_ICM an optional positive value, represents the maximum iterations of ICM.

maxIter an optional positive value, represents the maximum iterations of EM.

epsLogLik an optional positive vlaue, tolerance vlaue of relative variation rate of the ob-
erved pseudo log-loglikelihood value, defualt as '1e-5'.

verbose an optional logical value, whether output the information of the ICM-EM algo-

rithm.
mix_prop_heter

an optional logical value, specify whether betar are distinct, default as TRUE.

Sigma_equal

an optional logical value, specify whether Sigmaks are equal, default as FALSE.

Sigma_diag

an optional logical value, specify whether Sigmaks are diagonal matrices, default as TRUE.

error_heter

an optional logical value, whether use the heterogenous error for DR-SC model, default as TRUE. If error_heter=FALSE, then the homogenuous error is used for probabilistic PCA model in iDR-SC.

Sp2

an optional logical value, whether add the ICAR model component in the model, default as TRUE. We provide this interface for those users who don’t want to include the ICAR model.

w pca_int

an optional logical value, means whether use the weighted PCA to obtain the initial values of loadings and other parameters, default as FALSE which means the ordinary PCA is used.

int.model

an optional string, specify which Gaussian mixture model is used in evaluating the initial values for PRECAST, default as "EEE"; and see Mclust for more models’ names.

seed

an optional integer, the random seed in fitting PRECAST model.

coreNum

an optional positive integer, means the number of thread used in parallel computing.

coreNum_int

an optional positive integer, means the number of cores used in parallel computation for initial values when K is a vector, default as same as coreNum.

Details

Nothing

Value

ICM.EM returns a list with class "SeqKiDRSC_Object" with the number of components equal to the length of K, where each component includes the model fitting results for one number of cluster and is a list consisting of following components:

- **cluster**
 an M-length list that includes the inferred class labels for each data sample.

- **hZ**
 an M-length list that includes the batch corrected low-dimensional embeddings for each data sample.

- **hV**
 an M-length list that includes the estimate the ICAR component for each sample.

- **Rf**
 an M-length list that includes the posterior probability of domain clusters for each sample.

- **beta**
 an M-length vector that includes the estimated smoothing parameters for each sample.

- **Mu**
 mean vectors of mixtures components.

- **Sigma**
 covariance matrix of mixtures components.

- **W**
 estimated loading matrix

- **Lam**
 estimated variance of errors in probabilistic PCA model

- **loglik**
 pseudo observed log-likelihood.
ICM.EM_structure

Note

nothing

Author(s)

Wei Liu

References

Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi and Jin Liu. (2022) Joint dimension reduction and clustering analysis for single-cell RNA-seq and spatial transcriptomics data

See Also

None

Examples

```r
## we generate the spatial transcriptomics data with lattice neighborhood, i.e. ST platform.
library(Matrix)
q <- 10; K <- 4
data(PRECASTObj)
posList <- lapply(PRECASTObj@seulist, function(x) cbind(x$row, x$col))
AdjList <- lapply(posList, getAdj_reg, platform='ST')
XList <- lapply(PRECASTObj@seulist, function(x) t(x[['RNA']][data]))
XList <- lapply(XList, scale, scale=FALSE)
## For illustration, maxIter is set to 4
resList <- ICM.EM(XList, AdjList = AdjList, maxIter=4,
                  q=q, K=K, verbose=TRUE)
```

ICM.EM_structure

ICM-EM algorithm implementation with organized parameters

Description

Efficient data integration as well as spatial clustering for multiple spatial transcriptomics data

Usage

```r
ICM.EM_structure(XList, K, AdjList, q=15, parameterList=NULL)
```
ICM.EM_structure

Arguments

XList an M-length list consisting of multiple matrices with class dgCMatrix or matrix that specify the log-normalization gene expression matrix for each data sample used for PRECAST model.

K a positive integer allowing scalar or vector, specify the number of clusters in model fitting.

AdjList an M-length list of sparse matrices with class dgCMatrix, specify the adjacency matrix used for Potts model and Intrisic CAR model in PRECAST model. We provide this interface for those users who would like to define the adjacency matrix by their own.

q a positive integer, specify the number of latent features to be extracted, default as 15.

parameterList Other arguments in PRECAST model, it can be set by model_set.

Details

Nothing

Value

ICM.EM_structure returns a list with class "SeqK_PRECAST_Object" with the number of components equal to the length of K, where each component includes the model fitting results for one number of cluster and is a list consisting of following components:

cluster an M-length list that includes the inferred class labels for each data sample.

hZ an M-length list that includes the batch corrected low-dimensional embeddings for each data sample.

hV an M-length list that includes the estimate the ICAR component for each sample.

Rf an M-length list that includes the posterior probability of domain clusters for each sample.

beta an M-length vector that includes the estimated smoothing parameters for each sample.

Mu mean vectors of mixtures components.

Sigma covariance matrix of mixtures components.

W estimated loading matrix

Lam estimated variance of errors in probabilistic PCA model

loglik pseudo observed log-likelihood.

Note

nothing

Author(s)

Wei Liu
IntegrateSpaData

Integrate multiple SRT data

Description

Integrate multiple SRT data based on the PRECASTObj by PRECAST model fitting.

Usage

```r
IntegrateSpaData(PRECASTObj, species="Human", custom_housekeep=NULL)
```

Arguments

- **PRECASTObj**: a PRECASTObj object after finishing the PRECAST model fitting and model selection.
- **species**: an optional string, one of 'Human', 'Mouse' and 'Unknown', specify the species of the SRT data to help choose the housekeeping genes. 'Unknown' means only using the PRECAST results reconstruct the alligned gene expression.
- **custom_housekeep**: user-specified housekeeping genes.

Details

Nothing

References

Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi and Jin Liu. (2022) Joint dimension reduction and clustering analysis for single-cell RNA-seq and spatial transcriptomics data

See Also

None

Examples

```r
## we generate the spatial transcriptomics data with lattice neighborhood, i.e. ST platform.
library(Matrix)
q <- 10; K <- 4
data(PRECASTObj)
posList <- lapply(PRECASTObj@seulist, function(x) cbind(x$Sep, x$Col))
AdjList <- lapply(posList, getAdj_reg, platform="ST")
XList <- lapply(PRECASTObj@seulist, function(x) t(x[["RNA"]@data))
XList <- lapply(XList, scale, scale=FALSE)
parList <- model_set(maxIter=4)
resList <- ICM.EM_structure(XList, AdjList = AdjList, q=q, K=K, parameterList=parList)
```
Value

Return a Seurat object by integrating all SRT data batches into a SRT data, where the column "batch" in the meta.data represents the batch ID, and the column "cluster" represents the clusters obtained by PRECAST.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
PRECASTObj <- selectModel.PRECASTObj(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')

model_set

PRECAST model setting

Description

Set the PRECAST model structure and parameters in the algorithm.

Usage

```r
model_set(Sigma_equal=FALSE, Sigma_diag=TRUE, mix_prop_heter=TRUE,
          error_heter=TRUE, Sp2=TRUE, w pca_int=FALSE, int.model='EEE',
          coreNum = 1, coreNum_int=coreNum,
          beta_grid=seq(0.2,4, by=0.2),
          maxIter_ICM=6, maxIter=20, epsLogLik=1e-5, verbose=TRUE, seed=1)
```

Arguments

- `Sigma_equal` an optional logical value, specify whether Sigma are equal, default as FALSE.
- `Sigma_diag` an optional logical value, specify whether Sigma are diagonal matrices, default as TRUE.
- `mix_prop_heter` an optional logical value, specify whether betar are distinct, default as TRUE.
- `error_heter` an optional logical value, whether use the heterogenous error i.e. lambdarj != lambdark for each sample r, default as TRUE. If `error_heter=FALSE`, then the homogenous error is used for probabilistic PCA model.
```r
model_set

Sp2           an optional logical value, whether add the ICAR model component in the model, default as TRUE. We provide this interface for those users who don’t want to include the ICAR model.

w pca_int     an optional logical value, means whether use the weighted PCA to obtain the initial values of loadings and other parameters, default as FALSE which means the ordinary PCA is used.

int.model     an optional string, specify which Gaussian mixture model is used in evaluating the initial values for PRECAST, default as "EEE"; and see Mclust for more models’ names.

coreNum       an optional positive integer, means the number of thread used in parallel computing.

coreNum_int   an optional positive integer, means the number of cores used in parallel computation for initial values when K is a vector, default as same as coreNum.

beta_grid     an optional vector of positive value, the candidate set of the smoothing parameter to be searched by the grid-search optimization approach.

maxIter_ICM   an optional positive value, represents the maximum iterations of ICM.

maxIter       an optional positive value, represents the maximum iterations of EM.

epsLogLik     an optional positive value, tolerance value of relative variation rate of the observed pseudo log-loglikelihood value, default as ‘1e-5’.

verbose       an optional logical value, whether output the information of the ICM-EM algorithm.

seed          an optional integer, the random seed in fitting PRECAST model.

Details

Nothing

Value

Return a list including all parameters’ setting.

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

model_set()
```
Mouse HK genes Mouse housekeeping genes database

Description

Mouse housekeeping genes database.

Details

This data is a data.frame and include the mouse housekeeping genes information in the columns named "Gene" and "Ensembl".

plot_RGB Spatial RGB heatmap

Description

Plot spatial RGB heatmap.

Usage

plot_RGB(position, embed_3d, pointsize=2, textsize=15)

Arguments

position a coordinates matrix with two columns: x-coordinate and y-coordinate.
embed_3d a embedding matrix with three columns: x, y and z embeddings.
pointsize the size of point in the scatter plot.
textsize the text size in the plot.

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing

Author(s)

Wei Liu
plot_scatter

See Also
None

plot_scatter Scatter plot for two-dimensional embeddings

Description
Scatter plot for two-dimensional embeddings

Usage
plot_scatter(embed_use, meta_data, label_name,
xy_names=c('tSNE1', 'tSNE2'), no_guides = FALSE,
cols = NULL,
point_size = 0.5, point_alpha=1,
base_size = 12, do_points = TRUE, do_density = FALSE, border_col='gray',
legend_pos='right', legend_dir='vertical')

Arguments
embed_use an object named "Seurat", "matrix" or "dgCMatrix". The object of class "Seurat" must include slot "scale.data".
meta_data an optional positive integer, specify the number of features to be extracted.
label_name the size of point in the scatter plot.
xy_names the text size in the plot.
no_guides whether display the legend.
cols colors used in the plot.
point_size the point size of scatter plot.
point_alpha the transparency of the plot.
base_size the base text size.
do_points Plot point plot.
do_density Plot density plot
border_col the border color in the plot.
legend_pos the position of legend.
legend_dir the direction of legend.

details
Nothing

Value
Return a ggplot2 object.
PRECAST

Note
nothing

Author(s)
Wei Liu

See Also
None

Examples
embed_use <- cbind(1:100, sin((1:100)*pi/2))
meta_data <- data.frame(cluster=factor(rep(1:2, each=50)))
plot_scatter(embed_use, meta_data, label_name='cluster')

Description
Fit a PRECAST model.

Usage
PRECAST(PRECASTObj, K=NULL, q= 15)

Arguments
PRECASTObj an object named "PRECASTObj". The object PRECASTObj is created by CreatePRECASTObject.
K An optional integer or integer vector, specify the candidates of number of clusters. if K==NULL, it will be set to 4–12.
q An optional integer, specify the number of low-dimensional embeddings to extract in PRECAST.

Details
The model fitting results are saved in the slot of resList.

Value
Return a revised PRECASTObj object.

Note
nothing
PRECASTObj

Author(s)

Wei Liu

See Also

None

Description

A simple PRECASTObj for example.

Details

This PRECASTObj include the basic slots in PRECAST object; see **PRECASTObj-class** for more details.

Description

Each PRECASTObj object has a number of slots which store information. Key slots to access are listed below.

Slots

- **seuList**: A list with Seurat object as component, representing the raw expression count matrix, spatial coordinates and meta data for each data batch, where the spatial coordinates information is saved in the metadata of Seurat, named “row” and “col” for each data batch.
- **seulist**: A Seurat list after the preprocessing step in preparation for PRECAST model.
- **AdjList**: The adjacency matrix list for a PRECASTObj object.
- **parameterList**: The model parameter settings for a PRECASTObj object.
- **resList**: The results after fitting PRECAST models.
- **project**: Name of the project.
selectIntFeatures \hspace{1cm} Select common genes for multiple data batches

Description

selectIntFeatures prioritizes genes based on the number of times they were selected as SVGs in all data batches, and chose the top genes as the input for the analysis. We broke ties by examining the ranks of the tied genes in each original dataset and taking those with the highest median rank.

Usage

```r
selectIntFeatures(seulist, spaFeatureList, IntFeatures=2000)
```

Arguments

- **seulist**

a list consisting of Seurat objects, where each object is a SRT data batch.

- **spaFeatureList**

an list consisting of SVGs vectors, where each vector is the top SVGs for each SRT data batch obtained by SPARK or SPARK-X.

- **IntFeatures**

the number of common SVGs genes to be chosen.

Details

Nothing

Value

Return a string vector, the selected gene list for integration in PRECAST.

Note

nothing

Author(s)

Wei Liu

See Also

None
selectModel

Select best PRECAST model from candidated models

Description

Select best PRECAST model from candidated models with different number of clusters.

Usage

```r
## S3 method for class 'SeqK_PRECAST_Object'
selectModel(obj, criteria = 'MBIC', pen_const=1, return_para_est=FALSE)

## S3 method for class 'PRECASTObj'
selectModel(obj, criteria = 'MBIC', pen_const=1, return_para_est=FALSE)
```

Arguments

- `obj` a SeqK_PRECAST_Object or PRECASTObj object after PRECAST model fitting.
- `criteria` a string, specify the criteria used for selecting the number of clusters, supporting "MBIC", "BIC" and "AIC".
- `pen_const` an optional positive value, the adjusted constant used in the MBIC criteria.
- `return_para_est` an optional logical value, whether return the other parameters' estimators in PRECAST.

Details

Nothing

Value

Return a revised PRECASTObj object.

Note

nothing

Author(s)

Wei Liu

See Also

None
Examples

```r
data(PRECASTObj)
PRECASTObj <- selectModel(PRECASTObj)
```

Description

Plot spatial heatmap for a Seurat object with spatial transcriptomics data.

Usage

```r
SpaPlot(seuInt, batch=NULL, item=NULL, point_size=2, text_size=12,
        cols=NULL, font_family="", border_col="gray10",
        fill_col='white', ncol=2, combine = TRUE, title_name="Sample")
```

Arguments

- **seuInt**: an object named "Seurat", "matrix" or "dgCMatrix". The object of class "Seurat" must include slot "scale.data".
- **batch**: an optional positive integer or integer vector, specify the batches to be extracted. Users can check the batches' names by `unique(seuInt$batch)`.
- **item**: an optional string, which column is plotted in the meta data of seuInt. Users can check the meta data by `head(seuInt@meta.data)`.
- **point_size**: the size of point in the scatter plot.
- **text_size**: the text size in the plot.
- **cols**: colors used in the plot.
- **font_family**: the font family used for the plot, default as Times New Roman.
- **border_col**: the border color in the plot.
- **fill_col**: the color used in background.
- **ncol**: the number of columns in the layout of plots.
- **combine**: an optional logical value, whether plot all on a figure. If TRUE, all figures are plotted; otherwise, return a list with each plot as component.
- **title_name**: an optional string, title name in the plot.

Details

Nothing

Value

Return a ggplot2 object or list of ggplots objects.
volinPlot

Note

nothing

Author(s)

Wei Liu

See Also

None

Examples

data(PRECASTObj)
PRECASTObj <- selectModel(PRECASTObj)
seuInt <- IntegrateSpaData(PRECASTObj, species='unknown')
SpaPlot(seuInt)

Description

Volin/boxplot plot

Usage

volinPlot(mat, ylabel='ARI', cols=NULL)

Arguments

mat a matrix with columns.
ylabel an optional string, the name of ylabel.
cols colors used in the plot

Details

Nothing

Value

Return a ggplot2 object.

Note

nothing
See Also

None

Examples

mat <- matrix(runif(100*3, 0.6, 1), 100, 3)
colnames(mat) <- paste0("Method", 1:3)
volinPlot(mat)
Index

Add_embed, 6
AddAdjList, 2
AddParSetting, 3, 3
AddTSNE, 4
AddUMAP, 5

boxPlot, 7
coordinate_rotate, 8
CreatePRECASTObject, 3, 4, 9, 26
data.frame, 16, 24
dimPlot, 10
DoHeatmap, 12
doHeatmap, 12

featurePlot, 12, 13
firstup, 14
getAdj, 3, 15, 16
getAdj_auto, 3, 15, 16
getAdj_fixedNumber, 3, 15, 16
getAdj_reg, 16

Human_HK_genes, 16

ICM.EM, 17
ICM.EM_structure, 19
IntegrateSpaData, 21

list, 10, 18, 20, 23

model_set, 4, 20, 22
Mouse_HK_genes, 24

plot_RGB, 24
plot_scatter, 25
PRECAST, 26
PRECASTObj, 27
PRECASTObj-class, 10, 27, 27

selectIntFeatures, 28

selectModel, 29
SpaPlot, 30

volinPlot, 31

33